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Abstract

We construct a 3-factor, directed technical change growth model that ex-
hibits capital-augmenting technical change on the balanced growth path (BGP),
circumventing the issues usually caused by the 2-factor Uzawa growth theorem.
We calibrate the model to the United States and consider a non-unitary elas-
ticity of substitution between capital and labor. We show that the model con-
verges to the BGP with capital-augmenting technical change from any initial
condition. Our results indicate that natural resources and directed technical
change play a central role in explaining balanced growth.
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1 Introduction

The two-factor neoclassical growth model is central to much of macroeconomics. As
explained by Grossman et al. (2017), however, this model is inconsistent with stylized
facts observed in the United States, including balanced growth, a non-unitary elas-
ticity of substitution (EoS) between labor and reproducible capital, and the declining
relative price of investment goods.! We present a three-factor neoclassical growth
model that is consistent with all of these stylized facts. Our results suggest that
natural resources and directed technical change are essential for making neoclassical
growth models consistent with data.

The Uzawa (1961) steady state growth theorem explains that, on the balanced
growth path (BGP) of a two-factor neoclassical growth model, all technological change
must be labor-augmenting, unless the production function is Cobb-Douglas (Ace-
moglu, 2008; Jones and Scrimgeour, 2008). But, this is inconsistent with two well-
documented pieces of evidence: the EoS between capital and labor is different than
one (i.e., the production function is not Cobb-Douglas), and the relative price of in-
vestment has been falling on the balanced growth path (i.e., there is capital-augmenting
technical change) (e.g., Greenwood et al., 1997; Antras et al., 2004; DiCecio, 2009;
Oberfield and Raval, 2021).

Casey and Horii (forthcoming) argue that including three or more factors of pro-
duction allows the neoclassical growth model to be consistent with data. They gen-
eralize the Uzawa growth theorem to show that a neoclassical growth model can be
consistent with balanced growth and capital-augmenting technical change as long
as capital has a unitary EoS with any single other factor of production. This leaves
open the possibility that capital has a non-unitary elasticity with labor, but a unitary
elasticity with some third factor. They argue that natural resources, like land and
energy, could play the role of this third factor and discuss existing evidence consistent
with this interpretation. When the EoS condition is satisfied, the generalized Uzawa
growth theorem implies that there is a log-linear relationship between the rates of
factor-augmenting technological change. The relationship guarantees stationary of
factor shares in the long run. If technological change is exogenous, then this is a

knife-edge condition. But, the theorem does not specify the economy mechanism

1See Jones (2016) for a recent review of these facts.



through which technology growth rates are determined.

Building on their results, we formulate a directed technological change model
that has capital-augmenting technical change on the balanced growth path, despite
a non-unitary elasticity of substitution between capital and labor. The direction of
innovation is determined by profit-maximizing firms. The economy endogenously con-
forms to the log-linear condition identified in the generalized Uzawa growth theorem.
We also calibrate the model to U.S. data and show that the BGP is both locally and
globally stable. The transitional dynamics of our model are qualitatively different
from the standard two-factor neoclassical model. The convergence to the BGP goes
through two stages: capital and technological adjustments. The latter is much slower.

Our results contribute to the existing literature in two main ways. First, we show
how neoclassical production functions can be made consistent with data on balanced
growth and the EoS between capital and labor. Thus, our model will be useful in any
macroeconomic setting where matching these data patterns is important. Second, we
contribute to the existing literature on the Uzawa steady state theorem (e.g., Schlicht,
2006; Jones and Scrimgeour, 2008; Grossman et al., 2017). In particular, we present
the economic mechanism by which the direction of technical change endogenously
conforms to the log-linear technological condition in the generalized Uzawa growth
theorem. Unlike the case of the exogenous technological change analyzed in Casey
and Horii (forthcoming), we do not need to impose a parameter restriction on tech-
nological change. The sole restriction is the unitary elasticity between capital and a
single other factor, like land or energy. In this way, our results indicate that includ-
ing natural resources and directed technical change are promising ways to explain
balanced growth in neoclassical growth models.

Related literature. Our work is part of a growing literature that examines the
relationship between endogenous growth and the Uzawa steady state theorem. Several
studies have used directed technical change to explain why the economy might en-
dogenously conform to the two-factor version of the theorem. In particular, Acemoglu
(2003) and Irmen and Tabakovié¢ (2017) provide models where capital-augmenting
technical change disappears in the long run, while Jones (2005) and Leon-Ledesma
and Satchi (2019) specify models that are Cobb-Douglas in the long run. To the best

of our knowledge, Grossman et al. (2017) present the only other attempt to square



balanced growth with the wider set of stylized facts observed in the United States.
They specify a specific type of capital-skill complementarity that allows growth mod-
els with schooling to match the data. Casey and Horii (forthcoming) demonstrate
how to interpret their findings in the context of the two-factor neoclassical growth
model. We build on these works by presenting a directed technical change growth
model that converges to a BGP that is consistent with data on both the existence of
capital-augmenting technical change and the less-than-unitary EoS between capital
and labor.

Our work is also related to the literature on directed technical change and natural
resource use (e.g., Smulders and De Nooij, 2003; Hassler et al., 2021, 2022; Casey,
forthcoming). This literature explains how technology endogenously evolves to ensure
balanced growth when there are three or more factors of production in a neoclassical
growth model. These models are usually used to study resource conservation or
climate change. We show how to extend the models in this literature to be consistent
with the additional stylized facts highlighted by Grossman et al. (2017). In doing
so, we demonstrate that including directed technical change and natural resources
in growth models is necessary to match data patterns unrelated to environmental

questions, broadening the importance of this existing literature.

2 The Uzawa Steady-State Growth Theorem

In a neoclassical growth model, continued economic growth requires technological
change. Theoretically, technological change in this context means time variation in
the aggregate production function, which is defined as the mapping from aggregate
production factors to aggregate output. Given that we observe sustained economic
growth in most countries, it is essential to include technological change in a macroe-
conomic model. However, there are limitless ways in which the mapping could evolve
over time. How should we specify technological change in the model so that the model
is consistent with data? This poses a great challenge to economists, particularly when
the mapping is not clearly observable.

The original Uzawa growth theorem provided a simple and convenient solution.

On the balanced growth path, technological change in a 2-factor neoclassical growth



model can always be represented as labor-augmenting technological progress.? This
solution is widely used in the growth literature. However, recent studies found evi-
dence that technological change is not purely labor-augmenting. The productivity of
capital has been increasing, as reflected in the fall in the relative price of investment.
To tackle this puzzle, Casey and Horii (forthcoming) provided a generalized version
of the Uzawa theorem that incorporates the possibility of capital-augmenting techno-
logical change on the BGP. A key difference from the original Uzawa theorem is that
the generalized version allows for more than two aggregate factors. Below, we present
a simpler 3-factor version of their result, focusing on elements that are relevant to the

directed technical change model in this paper.

Definition 1. A 3-factor neoclassical growth model is an economic environment
that satisfies:

1. Output, Y;, is produced from capital, Ky, labor L; and another aggregate input
Xt'.
)/t = Ft<KtaLt7Xt)- (1)

In any t > 0, it has constant returns to scale (CRS) in each argument, and all

wputs, K, Ly and Xy, have positive and diminishing marginal products.

2. The amount of capital, K;, evolves according to
Kt+1 :Yt—Ct—Rt‘i‘(].—(S)Kt, K() > O, (2)

where Cy > 0 s consumption, R; > 0 is expenditure other than capital in-
vestment or consumption (e.g., RED inputs), and 6 € [0,1] is the depreciation

rate.

The focus of the theorem is how to express the evolution of production function
F,(+) over time. To accomplish this goal, we rely on the property that the economy
has a BGP.

2 An exception is when the production function is Cobb-Douglas. However, the estimates of the
elasticity of substitution between labor and capital do not support the Cobb-Douglas specification
(e.g., Oberfield and Raval, 2021).



Definition 2. A balanced growth path (BGP) in a 3-factor neoclassical growth
model is a path along which all quantities, {Y;, Ky, Ly, Xy, Cy, Ry}, grow at constant
exponential rates for all t > 0. We call it a non-degenerate BGP when the growth
rate of K; is larger than —d.

On the BGP, we denote the growth factor of output by g = Y;/Y;_1, and the
growth factors of any variable Z; by g7 = Z;/Z;_1. Unless otherwise noted, we focus
on the non-generate BGP with positive investments, i.e., gx > 1 —9. We also need to
define the elasticity of substitution, because the definition is not obvious when there

are more than two factors.

Definition 3. The Elasticity of Substitution between capital K; and other factors
in the 3-factor production function Fy(Ky, Ly, Xy) is

dln(Kt/Lt) o . dln(Kt/Xt)
_ , KXt = — .
dIn (FKvt/FL,t) Y, Xy fized ' dln (FK,t/FXJ) Yy, Ly fized

OKLt = (3)

In (3), Fk: represents 0F (K, Xy, Ly)/OK;. Fp; and Fx, are similarly defined.
When evaluating ok ¢, we consider small changes in K; and L, while keeping X; and
Y, = Fi(Ky, Xy, L) constant. When two factors have a unitary EoS between them,
they can be represented with the usual Cobb-Douglas relationship. Now, we have all

the definitions necessary to state a simpler version of the generalized Uzawa theorem.

Proposition 1 (Generalized Uzawa Growth Theorem for 3 Factors). Suppose that,
on a BGP of a 3-factor neoclassical growth model, oxx: = 1 holds and ok # 1

1s constant. Also, suppose that shares of factors si, sp, and sx are constant on the

BGP, and let o« = —E—. Define factor-augmenting technologies by

SK+Sx
Apyt = ’75(7 Ape = ’Ytu Axi = ’Y_ti(a (4)
and choose growth factors of technologies Vi, vr, and vx so that they satisfy

)lfa l—«

Ve (vxgx)' " = ¢ and v = g/9r. (5)

Then there exists a constant-returns-to-scale (CRS) function F(-,-) that satisfies, on



the BGP,
F(Ky, L, Xo) = F (Ao Ko)* (Ax X0)' ™% A L) (6)
OF (K, Ly, X;) _ OF ((Ak Ky (Ax X0)' ™, A L) ™
0K, 0K,
and similarly for the first partial derivatives with respect to X; and L;. Moreover,
similarly to definition 3, define the elasticity of substitution in the RHS of (6) as

kLt and 0gxt. Then on the BGP,

OKLt = OKLt, OKXt — OKXt- (8)

This proposition can be obtained as a special case of the generalized Uzawa the-

3 The proposition shows that technological

orem in Casey and Horii (forthcoming).
change — equivalently, the evolution of F; — can be represented by a fixed function
F along with factor augmenting terms Ag;, Ar; and Ay, We call the RHS of (6)
the factor-augmenting representation of technological change. This representation
matches the level of the original production function in (6), first derivatives in (7),
and the elasticity of substitution in (8) on the balanced growth path. Therefore,
when the focus of economic analysis is on or around the BGP, the factor-augmenting
representation can be used as an approximation of the true production function Fj,
even when the economist does not know precisely how F}; evolves over time.

Unlike the original Uzawa theorem, the generalized Uzawa growth theorem allows
positive capital-augmenting technological change on the BGP. Condition (5) implies

there is freedom for an economist to choose i > 1 to match the data.* Cancelling g

in (5) and taking log gives

1 —«
log vk = —— (log vz, + log g, — logyx — log gx) . (9)

3Proposition 1 is obtained from Propositions 4, 5 and 6 in Casey and Horii (forthcoming) when
the number of production factors is 3. They provide complete proof in the case of an arbitrary
number of factors. They also explain how F' can be obtained when an economist has access to the
shape of the true production function F; at a point in time. Let this point ¢ = 0. Then, in our
3-factor setting, function ﬁ(M7 N) is obtained as Fy (X(;l/aMl/a, N, Xo) if Fy, the true production
function at time 0, is known.

4The rate of capital-augmenting technological change can be measured by the decline in the
relative price of capital. By redefining the units of capital, it can also be interpreted as investment-
specific technological change.



Thus, the BGP has positive capital-augmenting technological change (yx > 1) as
long as the effective labor is growing faster than the effective input of the third
factor (vrgr, > 7vxgx). Moreover, the representation preserves the elasticity of sub-
stitution of the original production function, including ok, # 1. Therefore, the
generalized Uzawa growth theorem provides an economist with a representation of
the evolving production function that is simultaneously consistent with evidence on
the non-unitary EoS between capital and labor and on capital-augmenting technolog-
ical change. This is an improvement over the existing specifications of technological
change, which can match only one of the two properties.

The aim of this paper is twofold. First, we demonstrate how the generalized Uzawa
growth theorem can be utilized to build an endogenous growth model that exhibits
capital-augmenting technological change in the long run. We do so starting in the
next section. The second objective is to show technology condition (5), or equivalently
its log-linear version (9), is naturally satisfied in the long-term equilibrium of the
endogenous growth model. This condition means that effective inputs to function F
grows in a “balanced” way.” If the values of Vg, vz and vy are exogenously given,
then it is necessary to impose the log-linear relationship explained in Proposition 1.
In other words, it is necessary to place an extra restriction on the model. This paper
shows that when the rates of factor-augmenting technological change are endogenous,
the log-linear relationship is endogenously satisfied in the long run, and the economy
converges to a BGP with capital-augmenting technological progress.

Our result will contribute to a wide class of macroeconomic analysis. Even when
an economist is not interested in building an endogenous growth model, our result
provides a justification for assuming exogenous technological change that satisfies
condition (5) and, therefore, using the factor-augmenting representation (6) as a

good approximation of the true evolving production function in economic analysis.®

5The first part of Proposition 1 is directly derived from this balanced-ness. It can be shown
that g = gx holds on any balanced growth path for a neoclassical model satisfying Definition 1.
Then, technology condition (5) ensures that both arguments of F' grow at the same constant factor
g. Since function F has constant returns to scale, the RHS of (6) grow at the same rate of the
output Y; = F(Ky, Ly, X;). By appropriately defining the level of 13, equation (6) holds for all ¢ on
the BGP.

6In this simplified version of the theorem, the assumption of oxx; = 1 might also seem re-
strictive. However, in Casey and Horii (forthcoming), they showed that a similar theorem can be
obtained in an environment with many input factors, and the requirement is that at least one factor



3 Model

In this section, we build an endogenous growth model in which firms undertake R&D
investments to improve factor-augmenting technologies. From Proposition 1, we know
that if there is a third production factor X such that oxx = 1, then technological
change on the BGP can be approximated by a representation in the form of (6),
which allows for capital-augmenting technological change. Since we want to build a
model that is consistent with a BGP with capital-augmenting technological change,
we provide a simple setting in which the aggregate production function takes the form
of (6). In this model, we will later confirm that technology condition (5) is satisfied

endogenously as a long-rem equilibrium outcome.

3.1 Structure

There are non-overlapping generations of representative firms, each of which exists
for only one period. A representative firm performs two types of tasks, M-tasks
and N-tasks.” The number of M-tasks, as well as that of N-tasks, determines the
amount of final output. The M-tasks require effective capital Ag K, and effective
natural resource Ax,;X; as inputs. X; is composed of production factors that are
not included in the conventional definition of (reproducible) capital K; and labor L;.

Examples are land and energy. The number of M-tasks it can complete is given by
M, = (AK,th)a(AX,tXt)liaa a e (0,1). (10)

We refer to the RHS as the aggregate amount of the capital composite, which combines
effective capital and effective natural resources with unit elasticity. An N-task uses
only effective labor, Ay ,L;, where Ay, is the labor-augmenting technology of the

representative firm. The number of N-tasks is simply

Nt :ALﬂth. (].1)

Xj has o x; = 1. They discuss the likely candidates for factor X, such as energy and land, referring
to evidence found in empirical studies.

"This setting is first considered by Irmen (2017) and Irmen and Tabakovié (2017), and we
expanded it to incorporate three production factors. A benefit of using the model of tasks is that it
can incorporate R&D activity within a perfectly competitive economy. Another benefit is that the
model is scale independent.



By performing M; and N, tasks, the representative firm produces
Y, = F(M,, N) = ﬁ((AK,th)“(AX,tXt)l‘“, AL,tLt> (12)

units of output, where F (+) is a standard neoclassical production function that has
CRS and satisfies the Inada conditions.®

Now, we explain how the factor-augmenting technologies {Ax, Ax, Ap:} are
determined. Technical knowledge can be kept within the firm for only one period,
after which it becomes public. Thus, the representative firm at time ¢ can freely
use the technology of the period ¢ — 1 firm, {Ax; 1, Axt+-1,Ars—1}. In addition,
the period t firm can improve each of factor-augmenting technologies through R&D.
Tasks are differentiated and require separate R&D investments.? Specifically, for each
factors Z = K, X, L, the technology follows Az: = (1 + az(iz:))Az—1, where iz is

the amount of investments in final goods. We assume that function az(-) satisfies

following properties: ay, > 0, a% < 0, az(0) = 0, az(0c0) = oo, and a’,(0) = 0o.!”

(*1)(

It is convenient to define the R&D cost function by iz(vz) = a, ' (vz — 1), where

a(Zfl)(‘) is the inverse function of az(-). To improve the Z-augmenting technology in

a task by a factor of vz, it costs iz(yz) in final goods. The properties of az(-) imply
ity > 0,i% > 0,iz(1) = 0,iz(00) = 00, iy(1) = 0 for Z = K, X, L. (13)

Adding up the R&D costs for all tasks and technologies, the total R&D cost for the

representative firm is

. AKt ) . ( AXt )) . < ALt )
R, =M, -1 . +1 : + Ny -1 : . 14
t t < o (AK,t—l . Ax i1 Lo Apia (14)

8There are two ways to represent the production function in an intensive form: f(M/N) =
F(M/N,1) and h(N/M) = F(1,N/M). We assume that both f(-) and h(-) satisfy the Inada
conditions.

9From the symmetry of tasks within each group (M or N) and from the convexity of the R&D
cost functions as assumed in (13), it is always optimal to choose the same levels of Ak ¢, Ax , and
Ay, across individual tasks. Therefore, we omit subscripts for technologies for individual tasks.

10The declining marginal in the R&D function, a’ < 0, can be explained by congestion in R&D
activities. When many researchers are devoted to improvements in the same task at the same time,
some of them will end up inventing the same innovation. The risk of duplication becomes more
prominent as R&D inputs increase. See Horii and Iwaisako (2007) for a simple micro foundation.




The objective of the representative firm is to maximize the single period profit
net of R&D costs, because it lives only for one period and its knowledge will become
public next period. By taking the output in each period as numéraire, the period

profit is given by
T = F\(Mt, Nt) — Ry — Ky — 1 Xy — wi Ly, (15)

where 7y, 7;, and w, are interest rate, payment for a unit of natural resources (e.g.,
land rent), and wage rate, respectively.
The demand side of the economy is standard. There is a representative household.

The size of the representative household (i.e., population) evolves according to'!
Ly = Logh, Lo >0, g, >1—0: given. (16)

As in the Ramsey-Cass-Koopman model, the period utility of the household is given
by the product of the number of household members and the per capita period felicity
function:

up = Lyu(Cy/Ly), (17)

where Cy/L; > 0 is per capita consumption. We assume the felicity function u(-)
takes the CRRA form. Then, the intertemporal objective function of the household

can be written as

U= ZLtﬁt e (18)

where 6 > 0 is the degree of the relative risk aversion (i.e., the inverse of the intertem-
poral elasticity of substitution) and § > 0 is the discount factor. We later discuss the
upper bound for g in Proposition 3.

The representative household owns capital, K;, and natural resources, X, in ad-
dition to labor, L;. The household also owns the representative firm and receives the
profit, m;, although, in equilibrium, profits will be zero due to perfect competition

and free entry.!? For simplicity, we assume that the supply of natural resources is

g, >1— 6 is commonly assumed in neoclassical growth models to avoid a degenerate BGP.

12Note that R&D cost R; is already subtracted from profit ;. In addition, the firm can retain
the rent from R&D only for one period. Therefore, the firms are indifferent to entering the market
when m; = 0.

10



exogenous:13

X; = Xog%, Xo, gx > 0: given. (19)

As in the case of population, its available quantity can be either constant gy = 1,

shrinking gx € (0, 1), or growing gx > 1. The budget constraint of the household is
Kt+1 = (T’t +1-— (S)Kt + X, +w Ly + 7 — Ct, Ky>0: given, (20)

where physical capital accumulates through the savings of the household.'* The
household is subject to the no-Ponzi game condition. Specifically, the present value

of its asset holding as T" — oo should not be negative:

T -1

lim {[Jtre+1-06)| Ky >0. (21)

T—o0
t=1

This completes the description of the model economy.

3.2 R&D by Firms and the Direction of Technological Progress

Now we examine the behavior of the representative firm, focusing on the role of
R&D. The representative firm maximizes profit (15) subject to production function
(12) and R&D cost (14) with respect to { Ky, X+, Li, Axt, Ax e, Art}, taking as given
prices, {ry, 7, w:}, and lagged technology levels, {Ax:+1, Ax¢-1, Ars—1}. For
convenience, we define pu, = M;/N;, which is the relative task intensity in final good

production. It also represents the ratio of effective capital composite to effective labor

13The factor share of natural resources is around 8-9% (Caselli and Feyrer, 2007), of which about
5% is from land (Valentinyi and Herrendorf, 2008). Since the supply of land is mostly constant, we
assume X is exogenous in this baseline scenario. Our theory is also applicable to the case where X;
is depleted or expanded endogenously (See robustness scenario f in Section 4.1). Note that, although
X is exogenous, its effective amount Ax X, as a production factor can be enhanced endogenously
through R&D for Ax.

HUsing (15), equation (20) becomes K41 = F(M;,N;) — C; — Ry + (1 — 6)K;. Since Y; =
ﬁ(Mt, Ny), the evolution of capital in this model is exactly the same as (2) in Definition 1. The
aggregate production function (12) also conforms to Definition 1. Therefore, the model in this section
is a 3-factor neoclassical growth model. Moreover, the form of aggregate production (12) is exactly
the same as the factor-augmenting representation (6) in Proposition 1. We did this modeling choice
because we already know that a 3-factor production function (with oxx = 1) can be represented
in the form of (6) whenever it has a BGP with capital-augmenting change, which is observed in the
data.

11



= (AK,th)a(AxﬁtXt)l_a/AL,tLt. Then, because 1/7\() in (12) is a CRS function, we
can write it in intensive form, ﬁ(Mt, N;)/Ny = ﬁ(ut, 1) = fue), ﬁM(Mt, Ny) = (),
and Fy(My, Ny) = f(pe) — pef'(11e)-"

Using this notation, we can conveniently express the first-order conditions for

factor demand. The firm demands capital, natural resources, and labor so as to

satisfy!6:17
re = (aMy/Ke) (f () — ik (k) — ix(7x.)) 5 (22)
7= ((1 = )M/ Xy) (f (o) — i (Vi) —ix (yx,0)) s (23)
wy = Apo(f () — pef (1) —in(v2.0))- (24)

Now, we turn to R&D, starting with the condition for improving the labor-
augmenting technology Ay ;. The representative firm chooses Ap:, or equivalently
the speed of technological progress v, = Arp:/ArL+—1 > 1, to maximize the profit.

The first order condition is '®

Yoty (Yoe) Fin(vee) = f(e) = pef' (pe). (25)

15F0(+) and Fy(-) represent the partial derivatives of function F(-) with respect to its first and
second arguments, respectively.

16The RHS of (22) represents the (net) marginal product of K; in producing output Y;. It is given
by the product of two parts. The first part, aM /K, is the marginal product of K, in increasing
the number of M-tasks performed in the firm. The second part is the net marginal product of M;
in producing the final output. Note that, in the second part, the innovation cost for an M-task,
i (Yi,t) +ix(vx,t), is subtracted from the “gross” marginal product of My, f'(u;). When the firm
performs more M-tasks, it chooses to pay R&D costs to increase Ax; and Ax . in these tasks so
as to keep up with other M-tasks. Similarly, in (23), (1 — a)M/X is the marginal product of X} in
performing more M-tasks.

7By substituting (22), (23), and (24) into (15), it can be confirmed that the firm achieves zero
profit, m; = 0. This is due to the CRS property of the firm’s problem.

18The firm’s private benefit from improving technology Ay : is the ability to perform a larger
number of N-tasks, which increases the final output Y; = ﬁ(Mt,Nt). The RHS of (25) shows
the marginal benefit, F\N(Mt,Nt) = f(ut) — pef'(11e). The LHS corresponds to the marginal cost
of performing a larger number of N-tasks through augmenting labor efficiency Ay, (given labor
employment L;). This can be broken into two components. First, by intensifying the R&D efforts
in existing N-tasks to raise labor efficiency, the representative firm can decrease labor inputs by just
enough to perform one additional N-task. The cost associated with this activity is given by the first
term vy, 437 (yL,t), which we call the intensive marginal R&D cost. The saved labor is then used to
perform a new N-task, which means the representative firm needs to invest in R&D for one more
N-task, which costs ir,(yr,). This extensive marginal R&D cost is represented by the second term
in the LHS.
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Figure 1: Equilibrium innovation in K- and X-augmenting technologies.
vk and vx are determined by the intersection of the combined R&D and R&D allocation conditions.
When g, increases from p; to pa, both v, and vx decrease.

As we formally prove in Proposition 2 below, condition (25) has a unique solution
for v, as a function of y, = M;/N,, and it is strictly increasing in g Intuitively, a
high value of p; = M;/N; means that the resources to perform N-tasks (i.e., effective
labor) are relatively scarce. Then, the marginal product of an N-task is higher, and
therefore the benefit of improving Ay, to increase N; is larger. Therefore, the firm
chooses a larger vz, when g is higher.

Next, the first-order conditions for Ay, and Ax, yield"

(Vi () ik () + (Vxeix (vxe) +ix (xe)) = (1) (26)

Vi (Vi) _ o
Yxuix(vxe)  1—a

: (27)

Condition (26) specifies the optimal combined size of R&D investments.?’ Since

The first order condition for Ag; yields (vxt/@)i% (Vi) + ix(Vie) + ix(vxe) = F(pe),
whereas that for Ax gives (vx/1 — )i’y (vx,¢t) +ix (Vi) +ix(vx,t) = f'(pe). Condition (27) is
obtained by subtracting the second equation from the first. Condition (26) is from adding « times
the first equation and (1 — &) times the second equation.

20Capital and natural resources are used in M-tasks, and therefore improving K- and X-
augmenting technologies will enable the firm to perform more M-tasks. This marginal benefit is
represented by the RHS of (26), f'(u:) = Far(My, Ny). The LHS is the marginal cost of R&D,
which has two parts, v % (Vr.t) + i (Vrt) and vyx.i'y (vx.t) + ix(Vx.), because both K- and
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the LHS is increasing both in 7k, and 7yx., the locus of (yx.,vx,.) that satisfies
this condition is depicted by the downward-sloping curve, as depicted in Figure 1.
Condition (27) gives the optimal allocation of R&D investment between K- and X-
augmenting technologies. Observe that vx ,i% (7x+) and x4y (7x+) on the LHS are
strictly increasing in g, and vyx., respectively. Therefore, this condition can be
expressed as an upward-sloping curve in the (yx,, vx:) space.”’ The intersection of
the R&D allocation condition and the combined R&D condition gives the optimal
rates of innovation for K- and X-augmenting technologies. When u; = M,;/N; is
higher, the combined R&D condition curve locates closer to the origin. Then the
values of v and vy at the intersection are smaller. Intuitively, When the resources
for M-tasks, i.e., effective capital and effective natural resources, are relatively ample,
the marginal product of an M-task is smaller. Then, the firm has less incentive to

improve v and yx. The proposition below summarises the results.

Proposition 2. (Direction of Technological Change)

In the endogenous growth model defined in Section 3.1, the growth factors of each
of the factor augmenting technologies are uniquely determined as a function of p; =
M,;/N; € (0,00). Let us denote by them by Yk (1), Vx (1), and 3 (ue). Then,

(a) The signs of (Vi (1), Vx (1), V(1)) are (=, —, +) for all ju € (0, 00).

(b) Tim o (e (1), Fx (1), T (1)) = (00, 00, ).

(¢) timy, o0 (ke (1), x (1), A2 (1)) = (1,1, 00).

Proof. See Appendix A.2. n
Figure 2 illustrates the direction of the technological change in 3-dimensional

space. The vg-vx plane depicted at the bottom of the figure is the same as Figure

1. The equilibrium direction is obtained by extending vertically from the intersecting

X-augmenting technologies receive some R&D according to the allocation condition (27). In each of
the two parts, the first term represents the intensive marginal R&D cost, whereas the second term
is the extensive marginal R&D cost, as in condition (25).

21 As the RHS of condition (27) shows, the allocation should depend on the relative contribution of
capital and natural resources in performing M-tasks. When capital’s relative contribution is higher
(i.e., when « is higher), more resources should be allocated to R&D for the capital-augmenting
technology. In addition, the slope and convexity of the R&D cost function also affect the optimal
allocation. For example, if it is relatively difficult to improve the efficiency of natural resources, i.e.,
if the marginal R&D cost ¢’y (vx,;) increases more rapidly with its argument than i (vx ), then it
is optimal not to improve Ax ; as fast as Ag ;.

14
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Figure 2: The direction of technological change and the Equilibrium Innovation Pos-
sibility Frontier (EIPF) curve.

The direction rotates toward the vertical axis along the EIPF curve as u; increases from pq to ps.

point in the vx-yx plane by the distance of L-augmenting innovation, 7 () — 1.
As p; increases, the combined R&D locus shifts inward,?? which lowers g, and
vxt At the same time 77, increases because 7} (u:) > 0. This way, the direction
of the technological change from the solid arrow to the dashed arrow in Figure 2.
In general, property (a) in Proposition 2 says that when capital composite becomes
more abundant relative to effective labor (i.e. when g, is higher), the direction of
technological change becomes more upright, depressing improvements in technologies
that enhance capital composite while enhancing improvements in labor-augmenting
technology. In other words, firms are ‘induced’ to do more innovation that enhances
the relatively scarce effective production factors.?

The thick downward-sloping curve in Figure 2 depicts the locus of all equilibrium
points that correspond to various values of p;. This is the equilibrium innovation

possibility frontier (EIPF).?* As y; changes, the equilibrium direction of technological

22The shift occurs because the RHS of (26) is decreasing in .

23This notion of induced innovation was first introduced by Hicks (1932). See Acemoglu (2002)
for further discussion.

24Tn this model, not only the direction within the EIPF, but also the EIPF itself is determined
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changes moves along the EIPF curve. Property (b) in Proposition 2 says that when
the capital composite is almost zero relative to effective labor, all the R&D efforts
are directed to enhancing technologies that are related to capital composite. In this
extreme case, the direction coincides with the vertical axis. On the contrary, property
(c) implies that, when y; is almost 0, the direction rotates toward the R&D allocation
condition curve and becomes almost flat. Either way, the economy moves away from
the corner solution.

To summarize, when the direction of technological change is chosen by the repre-
sentative firm in this model, the direction is adjusted so that the ratio of two inputs
to function F ,i.e., M; and N, is stabilized. This tendency provides a significant force
to achieve balanced growth in the long run. Yet, we also need to solve the full equilib-
rium dynamics to see how (reproducible) capital is accumulated through saving and

investment decisions. This is the theme of the next subsection.

3.3 Equilibrium Dynamics

The equilibrium path of this economy is given by the sequence of output, consumption,
production factors, technologies, and R&D investments, {Y;, Cy, K¢, Xy, Ly, Ay, - - -
Ax i, Apt, Ri}52,, which satisfy the representative firm’s optimization problem, the
representative consumer’s utility maximization problem, and the market clearing con-
ditions for output and production factors. The economy is endowed with Ky, X, and
Ly at time 0, as well as the initial levels of publicly available technologies, Ax _1,Ax _1
and Ap 4.

While the equilibrium involves many variables, we can analytically characterize
its dynamic path in terms of only three: relative task intensity pu; = M,;/Ny, the
amount of capital per effective labor k, = K;/Ar L, and consumption per effective
labor ¢; = Cy/AL+L;. Below, we construct the equilibrium mapping from {p, ki, ¢:}
to {tus1, kir1, i1} for t > 0. The mapping and the initial conditions g and ko,

together with the transversality condition for ¢;, will pin down the equilibrium path

endogenously from the firm’s profit condition. In most models of the direction of technological
change, it is assumed that innovation requires a certain type of exogenously given resource (e.g.,
scientists). In these cases, the innovation possibility frontier is derived from the resource constraint.
On the contrary, in our model, the total amount of R&D input (R;) is determined in equilibrium
through profit maximization, and hence the frontier is called the ‘equilibrium’ innovation possibility
frontier. Any innovation beyond this frontier is not profitable, although it might be feasible.
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of {4, ki, ¢ }, from which the path of all variables in the model can be recovered.
Before so doing, it is convenient to define the net aggregate output in the economy

as V; = F(M,, N;) — R, which means the aggregate output minus the total R&D costs

in the economy. The net output per effective labor can be written as a function of y;:

Vi/Ne = f(pe) = i (Vi () + ix (U () — i (Y (pe)) = 0(pe). (28)

Then, substituting profits (15) into the budget constraint (20), we can express the
growth of aggregate capital supply in terms of iy, k; and ¢;:

Kyt Vi+(1=0)K,—Cy  v(m) —c
o= 7 =16 (29)

Dynamics for p 1. The growth factor of pu,41 is defined by g1 /pe = (Myr1/My)/(Neyr /Ny).
By using (10), (11), (16), (19) and (29), its value in equilibrium can be written as

= O (e (Mg 1))

where Y (1¢), Yx(p¢), and 7 (p) are the rates of technological progress defined in
Proposition 2. While equation (30) gives a relationship between the period-t variables
{1, ki, e} and pgyq, it is not easy to understand how ;41 is determined since both
sides of the equation depend on fis11.

To obtain more straightforward dynamics, let us decompose the dynamic rela-
tionship in (30) into two steps. First, we define the pre-R&D relative factor intensity
by

pre _ (AK,thH)a(AX,tXtH)l_a Cgx © (v() — “
t+1 = = +1—=0| pu, (31)
AL,tLt-i-l gL kt

where the last equality is from (16), (19), (29) and the definition of u;. It is the value
of pu41 before technologies are improved from their period-t state. Second, py}; and
the post-R&D value of p;4 are related by the growth of technological levels Yx (1),

x (1), and 7, (py) as follows:

pre __ :Y\L<,Ut+l) =T 32
:ut-i-l ?K(ﬂt-‘,—l)a;}?)( (/th-',-l)lia K1 (H’H‘l)’ ( )
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Note that, Proposition 2 implies that function I'(usy1) is a strictly increasing differ-
entiable function with lim, o I'(#) = 0 and lim,,_, I'(1t) = oo. Therefore, its inverse
function pi; = TV (1) is well-defined for all uftS > 0, and is a strictly increasing
differentiable function.

Using (31) and the inverse function of (32), the dynamic relationship (30) can be

written as

-« v —c @
Hiy1 = re=y (g;(L ( (Mtlit Ly1— 5) Mt) = PH (e, Ky cr). (33)

Function " (pu, ki, ¢;) gives a mapping from period-t variables p, k¢, ¢; to p41. It pro-
vides a natural 2-step interpretation of the equivalent equation (30). The argument
of function I'=Y(-) in (33) represents the pre-R&D relative task intensity, which is
determined by the relative supply of production factors, as well as the period-t tech-
nology levels. Then, function I'=Y(-) describes how R&D in period ¢ + 1 transforms

the relative task intensity.

Dynamics for k¢ ;. From (16) and (29), the growth factor of k; = K;/ArL: is

obtained as " . ()
t+1 vift) — Ct
= — +1-— 5) . 34

K gL’YL(MtH) < ki ( )

While g1y 1 is present in the RHS, we can replace it with (33) so that the RHS depends

only on the variables in period .

1
gﬁL(w“(ut, K, Ct))

ki1 = (v(pe) = e+ (1 = 0)ke) = U™ (e, ki, ). (35)

This dynamic equation simply represents the process of capital accumulation per
effective labor. The expression (v(pu:) — ¢+ (1 —0)k;) shows the sum of the net saving
and the un-depreciated part of existing capital per effective labor in period £. It must

be divided by gr71, because of the growth of effective labor between period ¢ and t+1.

Dynamics for c¢,;. The representative household maximizes the intertemporal

utility function (18) subject to the budget constraint (20) and the non-Ponzi Game

condition (21). The Euler equation for this problem is*

%Note that U/0C; = BY(C;/Ly)~? from From (18). From this, the Euler equation is
(Cy/L)™% = (rez1 +1—=6)B(Cey1/Liy1) Y, which simplifies to (36).
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C70 = (e +1—0)B90C70. (36)

By substituting the market interest rate (22) into the Euler equation (36) and then
applying it to the definition ¢; = Cy/AL L, we obtain the growth factor of consump-

tion per effective labor:

Ct41 B1/0 (oz,utJrl ) o o )1/0
B ! —1 +1-68) .
Ct ’YL(/“Lt-i-l) kt—i—l (f (:ut+1) K(ny(/ILH»l)) X(W/X(,UGH»I)))

(37)
By replacing the period-(¢ + 1) variables in the RHS by (33) and (35), we can rewrite
equation (37) as

(/@ (s s c0))

c _ Bl/act Q¢M(Mt, kt7 Ct)
t V(WP (e, ke ee)) \ R (s ke, )

1/6
— e (Vi (VF (s Fors ) — i (Ve (" (e, K, Ct)))) +1- 5) = (e, ey ¢r).
(38)

Equations (33), (35) and (38) constitute the equilibrium mapping from {p, k¢, ¢} to
{tts1, ki1, ceyq} for all ¢ > 0.

Boundary Conditions. To obtain the equilibrium path of {u, ki, ¢ }2,, we need
three boundary conditions. First, since Ko, Xo, Lo, Ax,—1,Ax —1 and Ay _; are given,
pre

we can construct y , the pre-R&D relative task intensity for period 0. Using it with

the inverse function of I' from (32), we have the initial value of p:

_ A, 1K) (Ax,1X0)' ™
_ F( 1) ( K,—14v0 , .
po =i (L follo, (39)

Second, using o, the initial value of k; is readily obtained by

Ky
?L(MO)AL,—lLo‘

ko = (40)

Finally, the initial value of ¢; must be chosen so as to satisfy the non-Ponzi game

19



condition (21) and the transversality condition

li T C'T -’
im Kriy <0. (41)

T—o0 LT

Combining Euler equation (36) with (21) and (41) gives the unified terminal condi-

tional
. 1-6
’Ili—{go(ﬁgL)T (tll %(Mt)) Y (prs1)ep ki = 0. (42)

The next subsection will show that the economy has a BGP that satisfies this terminal

condition.

3.4 The Balanced Growth Path

Now, we are ready to characterize the BGP of this economy. We will show that the
direction of technological progress is endogenously chosen so that in equilibrium there

is a unique BGP with a positive rate of capital-augmenting technical change.

Lemma 1. Define a BGP as an equilibrium path where the growth factors of {Yy, K,
X, Ly, Cy, Ry, My, N;} are all constant.® Then, on any BGP, the values of i, ki

and ¢, must be constant.
Proof. See Appendix A.3. m

We denote the BGP values of 1, k; and ¢; by p*, k* and c¢*, respectively. Their
values are obtained by substituting g1 = py = p*, ki1 =k =k and ¢i41 = ¢ = ¢*
into (33), (35), and (38).

First, from (33) and (35), the BGP value of u; = M;/N; will satisfy

(A () A (u))” .
R P M=) 265). (43)

Proposition 2 implies ®'(u*) < 0 with ®(0) = oo and ®(oc0) = 0. Therefore, there
exists a unique value of p* > 0 that satisfies ®(u*) = 1, and hence condition (43).

26Here, we slightly extend Definition 2 by requiring constancy of the growth factors of M, and
Ny, i.e., the numbers of tasks performed in the economy.
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An intuitive way to interpret (43) is to multiply both of its sides by (g7 (u*))*.

11—«

(9x3x (1) (W) gy () = gL (’) (= g°). (44)

The LHS represents the growth factor of M; on the BGP, while the RHS is that for
N;. Therefore, this condition means that the relative factor intensity p* = M;/Ny is
determined so that M; and N, grow at the same speed. This condition singles out
a point on the Equilibrium Innovation Possibility Frontier (recall Figure 2), which
determines the direction of technological change on the BGP. Note that, due to the
CRS property of production function Y; = 2 (M, Ny), the value of equation (44) also
represents the economic growth factor ¢* = Y1/}

Second, from the Euler equation (38), the BGP value of k; = K;/(A:L:) is

o _ B (f/(p) —ix (Y (07)) = ix(Gx (1))

g AGe) — AL — )

(45)

Intuitively, the capital-effective labor ratio on the BGP is determined from the interest
rate r* that yields constant consumption per effective labor on the BGP.%” Third, from
(35) and g, 7L (p*) = ¢* in (44), the BGP value of ¢* = C;/AL +L; must satisfy

cF=o(p")— (9" — 14+ 0)k" (46)

These three equations describe the unique BGP in this economy. The following

proposition shows that the BGP uniquely exists when the discount factor is sufficiently

smaller than 1.28

2TUsing (22), condition (45) is shown to be equivalent to r* + 1 —§ = 3713, (u*)?. Here, the
RHS is the marginal rate of intertemporal substitution given that consumption per effective labor
is constant (which must be true on the BGP).

28There are two reasons why the existence of the BGP requires an upper bound for 3 (or, equiv-
alently a lower bound for p = (1 — 8)/8). First, on the BGP, the amount of consumption for the
household Cy = Ar, +L.c* increases over time, causing the instantaneous utility to grow. Therefore,
if B is too close to one, the intertemporal utility U in (18) becomes infinity, which means that the
household’s problem is not well defined. Second, as effective labor Ay +L; grows, the household ac-
cumulates more capital K; so as to prevent the dilution of capital per effective labor, k*. However,
when (3 is too large (i.e. when the discount rate p is too small), the BGP requires a too-low real
interest rate, or a too-high level of k*, to the extent that preventing the dilution is impossible even
when all net output is invested in K;. We rule out these extreme cases by assuming an upper bound
for .
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Proposition 3. There exists a value of 3 > 0 such that whenever 3 € (0,/), there
exists a unique BGP that satisfies u* > 0, k* > 0, ¢* > 0, and the terminal condition

(42). On this BGP, the long-term rate of capital-augmenting technological change is
positive (v (pu*) > 1).

Proof. See Appendix A.4. The exact expression for the upper bound § is given by
(A.8). O

An important implication from this model is that the technology condition (9)
in Section 2 is now an endogenous outcome. Specifically, the BGP condition (43)
is equivalent to (9), except that the speed of technological progress is endogenously
determined by profit-maximizing producers. This difference has important implica-
tions for the plausibility of capital-augmenting technological progress on the BGP.
As discussed in Section 2, if the rates of innovation for the three factor-augmenting
technologies are exogenously given, then (9) becomes a knife-edge condition. In con-
trast, this section has shown that, once we consider endogenous technical change,
this condition is necessarily satisfied when the economy is on the BGP, which exists
if discount factor f is sufficiently less than one.

A missing link is that we have not yet shown whether the economy actually con-
verges to this BGP. If it is shown, we can conclude that condition (9) in the general-
ized Uzawa growth model is naturally satisfied in the long run, greatly widening the
plausibility of the theorem as an explanation of the capital-augmenting technological

change observed in data. We do so in the next section.

4 Numerical Analysis and Convergence to the BGP

In this section, we investigate the local and global stability of the three-factor en-
dogenous growth model. Our primary objective is to show that the model economy
converges to a BGP with capital-augmenting technical change, where log-linear rela-
tionship (9) is endogenously satisfied. We also illustrate how having multiple tech-
nologies (including K-augmenting technology) affects the transition dynamics. To
accomplish these goals, we present a series of numerical examples for which we can
check stability computationally. Whenever possible, we ensure that our numerical

examples are consistent with macroeconomic data characterizing the BGP of the
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United States. The data sources are provided in Appendix C. We stress, however,
that this is not a complete calibration, and the results would be insufficient for a

precise quantitative analysis.

4.1 Calibration

Functional Forms

We assume that the aggregate production function takes a CES form: I (My, Ny) =
(nM, © + N, © )<, where € > 0 and n € (0,1). Output in the economy (12) can be
written as

€

Vo= {1 (AxeK0)® (AxX)' ™) + (1= )ALy T} (@1)

Next, we assume that R&D costs are power functions®

iz(v2) = C2(vz=1)" >0, A>1, Z=K, X, L, (48)

We allow R&D cost parameter (4 to differ across types of technology. We normalize
(k to 1, and calibrate (x and (;,. The degree of convexity, A, is assumed to be the
same across the three types of technology.

With these functional form assumptions, our model has 11 parameters, {€,n, a, A, (1, (x,
B,0,60,91,9x}. To calibrate the model, we also need to determine the period length,
measured in years, denoted by y. The period length in our model has an important
economic meaning because it represents the duration for which a firm can monopolize

the benefit from its R&D investments. Including x, we have 12 parameters.

Erogenous Parameters

We set five parameters exogenously. Their values are given in Table 1. In the CES
production function (47), we take ¢ = 0.7 as the baseline value. This is a common
estimate for the EoS between labor and reproducible capital (e.g., Antras et al., 2004;
Oberfield and Raval, 2014). The mapping between these estimates and a structural

parameter in our model is not exact, and we show robustness with ¢ = 0.9 and

2INote that function (48) satisfies condition (13).
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Parameter Baseline Alternate Description Explanation / Source

€ 0.7 0.9, 1.2 EoS b/w M and N Oberfield and Raval (2014)
A 2.0 1.5, 2.25  R&D Cost convexity Quadratic

0 1.0 0.5, 2 Inverse of IES Log Preferences

g}/ X 1.01 Population growth BEA 1960-2020 average
g;(/X 1.0 0.99 Growth of X Fixed Supply of Land

Table 1: Exogenous Parameters

Target Moment (in annual values) Value Model Variable Source

Capital output ratio 2.9 K/(Y/x) BEA 1960-2020 average
Labor share of income 63% kL =wL/Y BEA 1960-2020 average
Share of R&D payments in GDP 2.7%  kgr = ’—; BEA 1960-2020 average
Consumption of fixed capital in GDP  14%  0K/Y BEA 1960-2020 average
Growth rate of income per capita 1.9% vi/x —1 BEA 1960-2020 average
Decline in the relative price of capital 0.66% ’y[l(/x -1 BEA 1960-2020 average
Return on investment 4% (147 —090)Yx—1 McGrattan et al. (2003)

Table 2: Target Moments for Calibration

€ = 1.2.3Y In the baseline calibration, we assume the R&D cost function is quadratic
(A = 2) and also check robustness with A = 1.5 and A = 2.25. Quadratic cost is a
common assumption, and it is consistent with existing empirical work in endogenous
growth (Acemoglu et al., 2018; Akcigit and Kerr, 2018). As for utility function (18),
we take log preferences ( = 1) as the baseline and also consider cases where the
intertemporal EoS is higher or lower than 1 (§# = 0.5 and 2). Population growth is
set to the 1960-2020 average in the U.S. (1% per year). When one period in the
model corresponds to x years, this means g}/ X = 1.01. We do not have good data for
the growth rate of factor X, which we interpret as natural resources, including land.
Given that land is a major factor of production, we take gx = 1 as a benchmark (i.e.,
constant X'). We also consider the case where natural resources are depleted 1% per

year (g% = 0.99).

24



Data

We calibrate the remaining parameters so that the model variables on the BGP
match data from the U.S. Table 2 reports the target moments and model variables
in annualized values (e.g,. aggregate output per year is Y/y, where one period in
the model is y years). For the capital-output ratio (2.9), labor share of income
(63%), R&D share of income (2.7%), consumption of fixed capital as a share of GDP
(14%), and real GDP per capita growth (1.9%), we use data from the Bureau of
Economic Analysis (BEA) to calculate the arithmetic averages of the annual levels in
the 1960-2020 period. To measure the growth rate of capital-augmenting technology;,
we calculate the annual decline in the relative price of all capital goods from 1960-
2020 (0.66%). Finally, we set the rate of return on investment (r* — ¢) equal to the
return on bonds (4%) from McGrattan and Prescott (2003).

Calibration Results

There are seven remaining parameters to calibrate, {0, 3, a,n,(r,(x, x}, which we
identify with the seven moments in Table 2. We do so in two steps. First, we use
equilibrium conditions to derive four analytical relationships among these parameters.
This leaves us with three undetermined parameters, {(;,7n, x}. In the second step,
we numerically pin them down so that the target moments in Table 2 match the
corresponding model variables on the BGP. The details of the calibration procedure
are presented in Appendix B.

Table 3 presents the results of the two-step calibration procedure with the baseline
assumptions. Period length y is 3.94 years, which is the time until the knowledge
becomes public. At this point, someone else can freely use the knowledge to generate
a new innovation. Discount factor 5 is 0.923 (b’i = 0.98/year). The depreciation
rate ¢ is 0.19 per period, which is about 5% per year. The share parameter « is
0.76. This implies that the capital share in the GDP is 26.3%, whereas the natural
resource share (including land) is 8%. Although these shares were not targeted in the
calibration, they are consistent with the existing literature discussed in Casey and

Horii (forthcoming).

30Karabarbounis and Neiman (2014) and Piketty (2014) estimate the EoS between reproducible
capital and labor and find an elasticity that is greater than one.
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Parameter Calibrated Annualized Description

X 3.94 Period Length (years)
6] 0.923 0.980 Discount Factor
) 0.190 5.21% Depreciation Rate
a 0.767 Capital Share within K-X composite
n 0.685 CES Distribution parameter
(x 0.279 Cost parameter for Ax R&D
(L 20.8 Cost parameter for A; R&D
Table 3: Calibrated Parameters for Baseline Scenario
Variable Value Description
KK 26.3% Capital Share
Kx 8.0%  Natural Resource Share (incl. Land)
’yi(/x -1 0.72% Tech. Change in Ax per year
Table 4: Untargeted Variables in Calibrated Model
Robustness

Changing the free parameters, we present calibration results with A € {1.5,2.25},
0 € {0.5,2}, and € € {0.9,1.2}. We also calibrated the model under the assumption
that natural resources X are depleted by 1% per year; i.e., g}(/X = 0.99. In each case,
we change one parameter from the baseline value and then re-calibrate the model. In
all cases, we find the set of parameters with which the model matches all the target

moments in Table 2. The results are reported in Table 5 as scenarios (a)-(g).

4.2 Local Stability

Using parameters calibrated for the baseline setting and alternative scenarios, we can
now examine the local stability of the model. Recall that the dynamic system is
characterized by three variables {j, ki, ¢; }, which evolve according to equations (33),
(35) and (38). Also, note that the initial values of py and ky are pre-determined,
whereas ¢ should be chosen endogenously so that the system satisfies the transver-
sality condition (42). In this system, the BGP is saddle-stable and determinate if
the Jacobian matrix evaluated at the BGP has two stable eigenvalues with absolute

values less than one and one unstable eigenvalue with an absolute value greater than
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@ ) (@ @ (o (& (g
Param-  Base- A A € € 7 7 g0
eters line =15 =225 =09 =12 =05 =2 =099
X 3.94 2.92 4.20 3.94 3.94 3.94 3.94 3.72
pl/x 0.98 0.98 0.98 0.98 0.98 097 0998 0.98
§1/x 5.21% 5.07% 5.25% 5.21% 5.21% 5.21% 5.21% 5.18%
o 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77
n 0.69 0.38 0.79 0.41 0.27 0.69 0.69 0.70
(L 20.82 1.8 61.74 10.05 7.64 20.82 20.82 25.69
Cx 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.11

KK 26.3% 26.1% 26.4% 26.3% 26.3% 26.3% 26.3% 26.2%
Kx 8.00% 8.25% 7.93% 8.00% 8.00% 8.00% 8.00% 8.05%

Wif/x—l 0.72% 0.80% 0.69% 0.72% 0.72% 0.72% 0.72% 1.75%

Table 5: Calibrated Parameters for the Robustness Scenarios

one.

Table 6 summarizes the results of the local stability analysis. In all cases, we find
that the BGP is saddle-stable and determinate: when state variables are near the
BGP, they will converge to the BGP along the unique saddle path. In Subsection 3.4,
we demonstrate that one of the conditions for balanced growth, (43), is equivalent to
the technology condition (9). Therefore, the saddle stability of the BGP implies that
the technology condition is endogenously satisfied as the economy converges to the
BGP.

On this equilibrium path converging to the BGP, firms choose the intensities of
three types of R&D, vk, 7x, and ~r, and hence the direction of the technological
change, to maximize profits. The capital-augmenting technology A is still growing
on the BGP, because firms always benefit from improving Ax. This naturally explains
the observed long-term decline in the relative price of capital, which theoretically
corresponds to capital-augmenting technological change.

The saddle stability is confirmed in all seven alternative scenarios. It demonstrates
that our explanation of capital-augmenting technological change is robust to changes
in parameters. It is particularly interesting to note that we find stability even when

the EoS between labor and the capital-composite, €, is greater than one (scenario d).
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Eigenvalues BGP-

Scenario Stable Unstable Stability

Baseline 0.602 0.970 1.672  Saddle/Determinate
(a) A=1.5 0.667 0.957  1.479  Saddle/Determinate
b) A=2.25 0.587 0.971 1.722  Saddle/Determinate
c)e=.9 0.633 0.971  1.610  Saddle/Determinate
d)e=12 0.664 0974  1.550  Saddle/Determinate
)6 =0.5 0.496 0.969  2.034  Saddle/Determinate
)0 =2 0.692 0971  1.454  Saddle/Determinate
g) gx =0.99 0.620 0.964 1.629  Saddle/Determinate

Table 6: Eigenvalues and Local Stability of the Calibrated Model

Most directed technical change growth models require a low elasticity to be stable,
especially when allowing for the possibility of capital-augmenting technical change
(e.g., Acemoglu, 2003; Grossman et al., 2017).3!

4.3 Transition Dynamics and Global Stability

Local stability only examines convergence within the neighborhood of the BGP. In
this subsection, we go one step further and demonstrate that convergence to the BGP
occurs even when the initial states are far away. We call this property global stability.
With three factors of production, this is not a trivial exercise, because the transitional
dynamics may take various patterns depending on the initial combination of py and
ko.>? They are determined by initial stock of production factors Ky, Xy and Lo, as
well as initial technology levels Ax 1, Ax 1, Ar—1. Depending on the initial state
of technology or resources, g and ko will take a wide range of combinations.

To cover various possibilities, we consider a large rectangular area in u-k plane
surrounding the BGP: namely, u;, € [0.2p*,2u*] and &, € [0.2k*,2k*]. We choose
36 points on the border of a rectangular area and calculate the transition dynamics

from each of them. We use a forward shooting method to determine the value of ¢

31 An exception is a model by Irmen and Tabakovié¢ (2017), which has an elasticity greater than
one. As explained above, their model has capital-augmenting technical change on the transition
path, but not on the steady state.

32Tn typical macro models with two factors of production, the dynamics can be written in terms
of k; and ¢, where k; is the only state variable. In this case, the transition dynamics only have two
possible patterns, depending on whether kg is higher or lower than the steady-state value. In either
case, k; typically converges monotonically to the steady state.
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Figure 3: Global Stability of the Calibrated Model (Baseline Setting).

that eventually satisfies the transversality condition (42) as t — 0o. The equilibrium
path from each starting point is depicted in Figure 3, where the parameters are
from baseline calibration in Section 4.1. Because the graph is three-dimensional, we
depicted the same graph from two angles. We also provide the projection of the paths
to the bottom pu-k plane in darker colors.

From each of the 36 starting pairs of pg and kg, we always find a unique level of
co such that the path from {ug, ko, co} leads to the BGP (i.e., {u*, k*, ¢*}). If ¢ is
higher the resource constraint is eventually violated (k; becomes negative), and if ¢y is
lower the TVC is violated (¢; converges to zero). This means that convergence to the
BGP is the only possible long-term outcome in equilibrium. These findings suggest
that, as long as the initial o and ky are on or within the border of the rectangle, the
economy necessarily converges to the BGP. Since the rectangle is reasonably large,
we call it global stability.

There are a couple of properties worth observing from the figure. First, the
convergence is not monotonic. To illustrate this, let us focus on the path that starts
from the upper right corner in Figure 3(a), as indicated by a thick arrow (py = 2u*
and ko = 0.2k*).33 Although the initial level of yg is double the steady-state level, j;

33Tn the color PDF version of the article, the path that we now focus on is depicted in purple.
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initially increases further, going out of the rectangular area. This phenomenon can
be interpreted as follows. At the initial state, the capital composite is abundant even
though the reproducible capital is scarce. This happens when natural resources are so
abundant that it more than offsets capital scarcity. In this setting, the consumption
of reproducible capital (i.e., the depreciation of K}) is small, and savings from ample
production leads to more accumulation K;, which increases the capital composite
further. This process continues until the level of k; comes close to the steady state
level. This is the first stage of convergence. In the second stage, the ratio of capital
composite to effective labor p; gradually falls to the steady state level. This is because
a high p, means that effective labor is relatively scarce, and the firms have more
incentives to improve Aj through R&D, rather than Agx or Ayxy. This tendency
continues until p; reaches p*. Once py comes to p*, firms have incentives to improve
all types of technologies in a ‘balanced” way such that the ratio of capital composite
to effective labor does not change further. This illustrates how firms, in the long run,
choose the direction of technological change that satisfies the BGP condition (43) or,
equivalently, the technology condition (9).

The figure also shows that, even though the stable manifold** is two-dimensional,
the equilibrium paths first converge to a common one-dimensional arm (or curve),
and then converge to the BGP along the arm. This is because the system has two
stable eigenvalues with significantly different magnitudes. In the baseline calibration,
stable eigenvalues are 0.602 and 0.970. Given that one period x is 3.94 years, those
eigenvalues mean the speed of convergence is 12% and 0.7% per year, respectively.
As we discussed in the above example (the path starting from the upper-right corner,
indicated by a thick arrow), the convergence to the BGP typically goes through two
stages, and each stage corresponds to a different eigenvalue. The initial adjustment
towards the common arm is driven mainly by capital accumulation. It is relatively
fast: the distance from the common arm declines by 12% every year. However, the
second stage, along the common arm, is very slow. In the baseline example, the
convergence speed is only 0.7% per year, which means it takes about 90 years to
halve the distance. This adjustment takes much longer than capital accumulation

because it is driven by the difference in the speed of technological change among

34The stable manifold is the set of points in the (u,k,c) space that converges to the BGP. In
Figure 3, all converging paths are on the (same) stable manifold.
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Ak, Ax, and Ay. Note that these numbers are just for illustration, because the
eigenvalues depend on the free parameters, as shown in Table 6. Still, this result
suggests that, without considering the endogenous technological change for various
production factors (including capital-augmenting technological change), neoclassical
growth models may overestimate the speed of convergence to the steady state by large

margins.

5 Conclusion

We build a neoclassical growth model that has capital-augmenting technical change
on the BGP, despite a non-unitary EoS between capital and labor. As noted by
Grossman et al. (2017), standard neoclassical growth models cannot incorporate these
elements simultaneously, due to the Uzawa steady state theorem. This is a significant
limitation, because each of the elements has strong empirical support. To overcome
the restrictive nature of the theorem, we follow Casey and Horii (forthcoming) and
add natural resources to the model as a third factor of production. We then add
directed technical change and show that the model endogenously converges to the
BGP with capital-augmenting technical change. By relaxing the constraints posed

by the theorem, our model should be useful in a wide range of settings.
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Online Appendix

“Endogenous Capital-Augmenting Technological Change”
by Gregory Casey and Ryo Horii
November 28, 2023

A Proofs of Propositions and Lemmas

A.1 Notation for derivatives

Unless otherwise mentioned, Fi(+;t) denotes the partial derivative of function F(-;t)
with respect to its first argument, whereas Fix,(-;t) denotes the partial derivative of
F(-;t) with respect to its 1 4+ jth argument. The same applies to other functions,
such as F(-).

Following the convention in economics, BiKt and %ﬁ represent the partial deriva-
tives with respect to variables K; and Xj,, respectively. For example, if F'(-) is the

production function F (-) gives the marginal product of factor X;;.

0
' 0X;
Note that these two definitions are different when the argument of the function is

not a single variable. For example, using the chain rule, we have

0

o P Axy X, Ay 1 X0) = A B, (K Ax g X, o Axy i Xog). (AL
gyt

A.2 Proof of Proposition 2
Properties of 7 (1)

As explained in the main text, the representative firm chooses 7y so as to satisfy

R&D for N-tasks:  vyr4i7 (Yoe) +in(vee) = fpe) — pef' (1e)- (25)

Let us denote the LHS of (25) by W (y.+) because it depends only on vz, Then,

U (voe) = Yo (vp.e)+207 () > 0 forall v, > 1 fromip (v ) > 0and i} (yr:) > 0
in (13). When 7., = 1, the properties of i7(-) imply W, (1) =i (1) +i.(1) = 0. Also,



Wp(00) = limy, o Ui (y24) = 00 from ip(c0) = oo and g% (yr) > 0. Then,
since W (+) is differentiable and strictly increasing, we can define its inverse function
\IJ(L*D(-), which is also differentiable and strictly increasing with \I/(Lfl)(O) = 1 and

U (0) = 0. Using this function, condition (25) can be solved for v ;:
L k)

Yoo = O (Fe) = e () = An (o). (A.2)

Note that f(p)— pef'(1¢) represents the marginal product of N, in the production
function, i.e., ﬁN(,ut, 1). We can express the production function Y; = ﬁ(Mt, N;) in
an intensive form with respect to N;/M,; = v, instead of y; = M,;/N,. Namely, output
per M, can be expressed as Y;/M, = F(M,, N,)/M, = F(1,14) = h(1). Since F()
is CRS, its first derivative F, ~ () is homogeneous of degree 0. Using this property,
W(v) = Fn(1,Ni/My) = Fy(My/Ni,1) = Fn(pe, 1) = f(e) — pef'(pe). From the
definition of the production function F(-), its alternate intensive form, h(vy), satisfies
the Inada conditions. Therefore, lim,, o f(p) — puf' (1) = limy, o0 /(1) = 0, and
limy, oo f(pte) — pf'(pe) = lim,, 0 h'(14) = oco. Substituting these into (A.2) gives
£(0) = U5 V(0) = 1 and 4z, (00) = 5 (00) = 0.

Finally, we show 7} (1) > 0. The derivative of f(u;) — pef'(pe) with respect to
e is —pe f"(pe). 1t is positive for all gy > 0 since the production function satisfies

the Inada conditions, which include f”(p;) < 0. Since ‘IIS:_I)/(-) > 0, this means
V(1) > 0.

Properties of 7 (ux) and Fx (1y)

The representative firm chooses vx; and 7yx, according to the following two condi-

tions:

-/
R&D allocation: VK’tZ,,K (yxce) __“
Yxix(Vxe) 11—«
Combined R&D: (v ik (Vi) + ix (Vi) + (Yt (vxe) +ix (vx6)) = f/(e).

(26)

, ae(0,1), (27)

35Similarly to the main text, we employ an abuse of notation by writing iy (c0) to represent
lim,, o0 ir,(72). We will employ similar abbreviations as long as they cause no confusion.



Let us define Qg (vkt) = Vrrik (7k,) and similarly Qx(yx:) = vx4i% (7x,¢). Then,
from properties in (13), we can confirm Q% (yx:) > 0 for v > 1, Qg(1) = 0
and Qg (oo0) = oo. Similar conditions also hold for Qx(-). Then, since Qx(-) is
differentiable and strictly increasing, we can define its inverse function Qg(_l)(-), which
is also differentiable and strictly increasing with Q(X_l)(O) =1 and Qg;l)(oo) = 00.

Using this inverse function, condition (27) can be solved for vx, as

_ a
Txgt = Q& Y <EQK(’YK¢)) = Q(vks)- (A.3)

Now let us focus on condition (26). Let us define Uk (yr+) = Vi ti'% (Vi t) Fir (Vkt)
and likewise Wx(vx+) = Vxelx (Yxt) + ik (7x,). Using these and (A.3), the LHS of

condition (26) can be expressed as a function only of v

Ui (vre) + Ux (k) = Y(vke)-

Note that the properties of Qx(-) and Qg;l)(-) imply that Q(vx,) > 0 for all yx; > 1,
Q(0) = 0 and Q(o0) = co. Also, in the same way that we derived the properties of
Uy (L) earlier in this proof, we can confirm Vg (g ) > 0 for all v, > 1, Uk (1) = 0,
Uk (00) = 0o, and similar properties for Uy (yx;). From these, we have ¥(yx;) > 0
for all yg¢ > 1, ¥(1) =0, ¥(o0) = co. On the RHS of (26), f'(u:) satisfies the usual

Inada conditions. The results we have obtained so far can be summarized as

Vit 11+ | 0 n 01|00
\I’/(WK,t) + f" () -
‘I’(VK,t) 0| /7 |oo f/(,ut) oo N\ |0

The tables above implies that condition (26), U(vk.) = f'(e), gives a 1 to 1 cor-
respondence between p; € (0,00) and vk, € (1,00) that satisfies property (a):
Vi () < 0 for all p; > 0, Y (0) = oo, and Jx(o0) = 1.

Given Ak (1), equation (A.3) uniquely determines vx: = QY (1)) = Yx(e).
From the properties of €(:) and 7k(-) above, we can confirm that property (b) is
satisfied: 7y (p) < 0 for all gy > 0, 7x(0) = oo, and Fx(c0) = 1.



A.3 Proof of Lemma 1

Consider a BGP. We will show in turn that u, k; and ¢; must be constant. First, from
the definition of a BGP, Nyy1 /Ny = (Apsy1Lei1)/(ApeLy) = n(pes1)gz is constant.
To keep the RHS of the latter equation constant, p; must also be constant, since ()
is a strictly increasing function from Proposition 2.

Second, since the growth factors of C; and N; are constant, the growth factor of
¢, = Cy /ALy = Cy/Ny; is also constant. This, in turn, means that the LHS of the
Euler equation (37) is constant. Then, for the RHS of (37) to be constant, k; must
be constant, since we already know that i, is constant as shown above.

Third, the growth factor of k;, = K;/A;L; = K;/N, is constant on the BGP, which
means the LHS of (34) is constant. For its RHS to be constant, given that u; and k;

are already shown to be constant, ¢; also needs to be constant.

A.4 Proof of Proposition 3
Proof of u* >0

In the text, we have already shown that there exists a unique p* > 0 such that
®(p*) = 1 holds since Proposition 2 implies ®'(1*) < 0 with ®(0) = oo and ®(o0) = 0.

Therefore, there exists a unique value of p* > 0.

Proof of k* > 0

The value of k* is explicitly given by equation (45), shown again here:

e = B (f'(p) — ik (e (1)) — ix (x (1))

T — 41— 9) )

We now show that both the numerator and the denominator of the RHS are positive.
Note that the combined R&D condition (26) is satisfied on the BGP. By rearranging
terms, it gives
F) =ik (7)) — ix (Gx (1) = A (Wi (T (1)) + Ax (1) Fx (07)) > 0,
(A.4)



where the inequality follows from Proposition 2 and (13). Given 8 € (0,1), a € (0, 1),
and p* > 0, this means that the numerator of (45) is strictly positive. Now, note
that 77 (¢*) > 1 from Proposition 2. Combined with § > 0, 8 € (0,1) and § € [0, 1],

it turns out that the denominator of (45) is also strictly positive.

Proof of ¢* > 0

The value of ¢* is given by
¢ = v() — (g — 1+ O (46)
We first show v(p*) > 0. Combining the R&D conditions (25) and (26), we have

Yot (Vo) Fin (vne) T (Vreaise (Vi) + ik (Vi) + (rxedix (vxe) +ix (vx0))) = f (e

Rearranging and then evaluating this condition at p; = p* gives

v(p*) = flpx) —in(o(p®) — p* (ix (T (1)) — ix(Ax (1))
= AL ()i (VL () + 1" e ()i (Ve (1)) + Ax ()i (Fx (1)) > 0,

where the inequality follows from p* > 0 and (13).

Note that ¢* = 7 (u*)gy is greater than 1 — § because . (u*) > 1 and g, > 1—06
from (16). Therefore, (¢* — 1+ 0) in (46) is positive. From this, ¢* > 0 is equivalent
N o)

. v
k" < g*——linté'
Using (45), we can rewrite this condition in terms of g:
" -1

5<%ww(ﬁgumﬂwm%mw—u@mm»@—rwww—ﬂ =B,
(A.5)

Note that 5, > 0 from (A.4) and ¢* > 1 — & > 0. Observe also that 3, does not

depend on /3 itself since p* is determined entirely by the production side (see equation

43). Therefore, if 5 > 0 is sufficiently small, condition (A.5) holds and ¢* > 0.




Terminal Condition
On the BGP, the terminal condition (42) becomes

T ~

T (B9 (")) A7) () 'K = 0. (A.6)

Given that 7 (p*) > 1, ¢* > 0 and ¢* > 0, this condition is equivalent to

1 _

Note that 3, > 0 and that it does not depend on 8 since p* is determined entirely by
the production side of the model. Therefore, if 8 > 0 is sufficiently small, condition
(A.7) holds and the terminal condition (42) is satisfied.

Combining conditions (A.5) and (A.7), we have confirmed the unique existence of

BGP with g* > 0, k* > 0, ¢* > 0, and the terminal condition (42) whenever

B<B= min{31732}7 (A.8)

where 8 > 0 is a constant that does not depend on f.

B Calibration Procedure

There are seven parameters to calibrate, {9, 5, «, 1, (1, Cx, x}, which we identify with

the seven moments in Table 2. We do so in two steps.

Step 1: Analytical calibration. Given period length y, exogenous parameters,
and moments, we analytically derive the values of four parameters {4, 3, a,n}. The
depreciation rate is determined by data on the consumption of fixed capital and the

capital-output ratio:
OK/Y  0.14 -
0= ——F=— 0(x)-
K/Y g X =0(x)

(B.1)



Evaluating the Euler equation (36) on the BGP gives the discount factor [3:3

+4 (1.019%)19

b1, =5~ 1om =W (B:2)

Similarly, the first-order conditions of the representative firm, (22) and (23), give the
share parameter a:
KK (r=0)(K/Y)+0K/Y  (1.04%—1)(2.9x) +0.14

o = —_=

KK + Kx 1—/€L—/€R 1—-0.63—0.027

alx), (B.3)

where we used the identity kx + kx + kK + kg = 1.
Next, BGP relationship (43), which is equivalent to the technology condition (9),

gives the growth rate for the unobserved endogenous variable vy:

(1.01)(1.019)\ ¥
)

o (x)
f)/X — ,}/Klfa gLfYL — ((1066)1‘;2)()

2 0 (BA)

Using (B.4) and the R&D allocation condition (27), the R&D cost parameter (x can
be derived as follows.
_l-a Ceye (v — DM 1 —a(y) . (1(1.0066)(0.0066)*0-1)X

e ) N R O

ZX (x)-
(B.5)

Step 2: Minimization. Among the 12 parameters of the model, five of them are
given by Table 1, and four are given as functions of x, in (B.1), (B.2), (B.3) and
(B.5). This leaves us with three remaining parameters, {(z,n, x}. We calibrate them
so as to minimize the squared sum of percent difference (error) between the target

moments in Table 2 and the corresponding model variables on the BGP.

36Equation (B.2) assumes that parameter 6 takes the baseline value of 1.0. When doing robustness
checks with 8 = 0.8 and 1.2, the numbers in this equation are adjusted accordingly. The same applies
for (B.3)-(B.6) when using alternative parameter values or calibration targets.



Let us define the squared sum of percent error as®’

SSE = (K/(Y/X) - 2-9)2 N (m — 0.63)2 N <LW)2

2.9 0.63 0.027

2 2 B.6

. /X —1-0.019 . X = 1—0.0066 (B:6)
0.019 0.0066 '

In (B.6), endogenous variables K/Y',| k1, kg, 7z and 7yx represent their respective
BGP values, when the model is solved given all 12 parameters. Using exogenous
parameters and the results of analytical calibration, we determine the remaining

three parameters as the solution to the following minimization problem:

{CL,m, x} =argmin SSE  s.t.

CLymyX

{e,\,0,91,9x} : given by Table 1, (B.7)

§=10(x), B="7Px), a=a(x), ¢x =Cx()

We have done this minimization numerically utilizing ‘FindMinimum’ function of
Mathematica. The minimized value of SSE is virtually zero (precisely, of the order
of 1072%), implying that we obtained the set of parameters that fits all the moments
in Table 2.

Robustness Scenarios. To check the robustness of the result, we repeat the ana-
lytical calibration (B.1)-(B.5) with modified values for the exogenous parameters. In
all robustness scenarios, the modified version of minimization problem (B.7) yields
almost zero. This means that the model can match all the target moments in those

scenarios.

C Data Sources

All data are originally from the Bureau of Economic Analysis (BEA) and retrieved
from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org. We

37T Among seven moments in Table 2, we use five moments to define the squared sum of errors.
The other two moments, consumption of fixed capital in GDP and return on investments, always
match the data given that other moments are correct, since we impose relationships (B.1) and (B.2).
In numerical calibration, we confirmed that these two moments match the data exactly.
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reference series by their codes in FRED. We use annual values of Real GDP (GDPCA),
real investment (GPDICA), and real personal consumption expenditures (PCECCA).
The real capital stock is calculated as the net stock of fixed assets at current cost
(KITTOTL1ES000) divided by the GDP price deflator (A191RD3A086NBEA). The
relative price of investment is obtained by the price deflators for gross private invest-
ment (AOO6RD3A086NBEA) divided by the price deflator for personal consumption
expenditures (DPCERD3AO86NBEA). In addition to the variables listed above, the
calibration utilizes data on nominal consumption of fixed capital (GDICONSPA), la-
bor compensation, and R&D expenditure (Y694RC1A027NBEA) all relative to nom-
inal GDP (GDPA) in Table 2, as well as population (B230RC0A052NBEA) in Table
1. Labor compensation is calculated as compensation of employees (A033RC1A027NBEA)
plus proprietors’ income with inventory valuation and capital consumption adjust-

ments (A0O41RC1IA027NBEA).
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