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Abstract

We construct a 3-factor, directed technical change growth model that ex-
hibits capital-augmenting technical change on the balanced growth path (BGP),
circumventing the issues usually caused by the 2-factor Uzawa growth theorem.
We calibrate the model to the United States and consider a non-unitary elas-
ticity of substitution between capital and labor. We show that the model con-
verges to the BGP with capital-augmenting technical change from any initial
condition. Our results indicate that natural resources and directed technical
change play a central role in explaining balanced growth.

Keywords: Balanced Growth, Uzawa Steady-State Growth Theorem, Directed Tech-
nical Change (DTC), Natural Resources, Three-Factor Model

JEL Classification Codes E13, E22, O33, O41

∗This paper was split out from an earlier working paper circulated under the title “A Multi-factor
Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change.” We are
grateful to Daron Acemoglu, Been-Lon Chen, Oded Galor, Andreas Irmen, Cecilia Garcia-Peñalosa,
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1 Introduction

The two-factor neoclassical growth model is central to much of macroeconomics. As

explained by Grossman et al. (2017), however, this model is inconsistent with stylized

facts observed in the United States, including balanced growth, a non-unitary elas-

ticity of substitution (EoS) between labor and reproducible capital, and the declining

relative price of investment goods.1 We present a three-factor neoclassical growth

model that is consistent with all of these stylized facts. Our results suggest that

natural resources and directed technical change are essential for making neoclassical

growth models consistent with data.

The Uzawa (1961) steady state growth theorem explains that, on the balanced

growth path (BGP) of a two-factor neoclassical growth model, all technological change

must be labor-augmenting, unless the production function is Cobb-Douglas (Ace-

moglu, 2008; Jones and Scrimgeour, 2008). But, this is inconsistent with two well-

documented pieces of evidence: the EoS between capital and labor is different than

one (i.e., the production function is not Cobb-Douglas), and the relative price of in-

vestment has been falling on the balanced growth path (i.e., there is capital-augmenting

technical change) (e.g., Greenwood et al., 1997; Antras et al., 2004; DiCecio, 2009;

Oberfield and Raval, 2021).

Casey and Horii (forthcoming) argue that including three or more factors of pro-

duction allows the neoclassical growth model to be consistent with data. They gen-

eralize the Uzawa growth theorem to show that a neoclassical growth model can be

consistent with balanced growth and capital-augmenting technical change as long

as capital has a unitary EoS with any single other factor of production. This leaves

open the possibility that capital has a non-unitary elasticity with labor, but a unitary

elasticity with some third factor. They argue that natural resources, like land and

energy, could play the role of this third factor and discuss existing evidence consistent

with this interpretation. When the EoS condition is satisfied, the generalized Uzawa

growth theorem implies that there is a log-linear relationship between the rates of

factor-augmenting technological change. The relationship guarantees stationary of

factor shares in the long run. If technological change is exogenous, then this is a

knife-edge condition. But, the theorem does not specify the economy mechanism

1See Jones (2016) for a recent review of these facts.
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through which technology growth rates are determined.

Building on their results, we formulate a directed technological change model

that has capital-augmenting technical change on the balanced growth path, despite

a non-unitary elasticity of substitution between capital and labor. The direction of

innovation is determined by profit-maximizing firms. The economy endogenously con-

forms to the log-linear condition identified in the generalized Uzawa growth theorem.

We also calibrate the model to U.S. data and show that the BGP is both locally and

globally stable. The transitional dynamics of our model are qualitatively different

from the standard two-factor neoclassical model. The convergence to the BGP goes

through two stages: capital and technological adjustments. The latter is much slower.

Our results contribute to the existing literature in two main ways. First, we show

how neoclassical production functions can be made consistent with data on balanced

growth and the EoS between capital and labor. Thus, our model will be useful in any

macroeconomic setting where matching these data patterns is important. Second, we

contribute to the existing literature on the Uzawa steady state theorem (e.g., Schlicht,

2006; Jones and Scrimgeour, 2008; Grossman et al., 2017). In particular, we present

the economic mechanism by which the direction of technical change endogenously

conforms to the log-linear technological condition in the generalized Uzawa growth

theorem. Unlike the case of the exogenous technological change analyzed in Casey

and Horii (forthcoming), we do not need to impose a parameter restriction on tech-

nological change. The sole restriction is the unitary elasticity between capital and a

single other factor, like land or energy. In this way, our results indicate that includ-

ing natural resources and directed technical change are promising ways to explain

balanced growth in neoclassical growth models.

Related literature. Our work is part of a growing literature that examines the

relationship between endogenous growth and the Uzawa steady state theorem. Several

studies have used directed technical change to explain why the economy might en-

dogenously conform to the two-factor version of the theorem. In particular, Acemoglu

(2003) and Irmen and Tabaković (2017) provide models where capital-augmenting

technical change disappears in the long run, while Jones (2005) and Leon-Ledesma

and Satchi (2019) specify models that are Cobb-Douglas in the long run. To the best

of our knowledge, Grossman et al. (2017) present the only other attempt to square
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balanced growth with the wider set of stylized facts observed in the United States.

They specify a specific type of capital-skill complementarity that allows growth mod-

els with schooling to match the data. Casey and Horii (forthcoming) demonstrate

how to interpret their findings in the context of the two-factor neoclassical growth

model. We build on these works by presenting a directed technical change growth

model that converges to a BGP that is consistent with data on both the existence of

capital-augmenting technical change and the less-than-unitary EoS between capital

and labor.

Our work is also related to the literature on directed technical change and natural

resource use (e.g., Smulders and De Nooij, 2003; Hassler et al., 2021, 2022; Casey,

forthcoming). This literature explains how technology endogenously evolves to ensure

balanced growth when there are three or more factors of production in a neoclassical

growth model. These models are usually used to study resource conservation or

climate change. We show how to extend the models in this literature to be consistent

with the additional stylized facts highlighted by Grossman et al. (2017). In doing

so, we demonstrate that including directed technical change and natural resources

in growth models is necessary to match data patterns unrelated to environmental

questions, broadening the importance of this existing literature.

2 The Uzawa Steady-State Growth Theorem

In a neoclassical growth model, continued economic growth requires technological

change. Theoretically, technological change in this context means time variation in

the aggregate production function, which is defined as the mapping from aggregate

production factors to aggregate output. Given that we observe sustained economic

growth in most countries, it is essential to include technological change in a macroe-

conomic model. However, there are limitless ways in which the mapping could evolve

over time. How should we specify technological change in the model so that the model

is consistent with data? This poses a great challenge to economists, particularly when

the mapping is not clearly observable.

The original Uzawa growth theorem provided a simple and convenient solution.

On the balanced growth path, technological change in a 2-factor neoclassical growth
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model can always be represented as labor-augmenting technological progress.2 This

solution is widely used in the growth literature. However, recent studies found evi-

dence that technological change is not purely labor-augmenting. The productivity of

capital has been increasing, as reflected in the fall in the relative price of investment.

To tackle this puzzle, Casey and Horii (forthcoming) provided a generalized version

of the Uzawa theorem that incorporates the possibility of capital-augmenting techno-

logical change on the BGP. A key difference from the original Uzawa theorem is that

the generalized version allows for more than two aggregate factors. Below, we present

a simpler 3-factor version of their result, focusing on elements that are relevant to the

directed technical change model in this paper.

Definition 1. A 3-factor neoclassical growth model is an economic environment

that satisfies:

1. Output, Yt, is produced from capital, Kt, labor Lt and another aggregate input

Xt:

Yt = Ft(Kt, Lt, Xt). (1)

In any t ≥ 0, it has constant returns to scale (CRS) in each argument, and all

inputs, Kt, Lt and Xt, have positive and diminishing marginal products.

2. The amount of capital, Kt, evolves according to

Kt+1 = Yt − Ct −Rt + (1− δ)Kt, K0 > 0, (2)

where Ct > 0 is consumption, Rt ≥ 0 is expenditure other than capital in-

vestment or consumption (e.g., R&D inputs), and δ ∈ [0, 1] is the depreciation

rate.

The focus of the theorem is how to express the evolution of production function

Ft(·) over time. To accomplish this goal, we rely on the property that the economy

has a BGP.

2An exception is when the production function is Cobb-Douglas. However, the estimates of the
elasticity of substitution between labor and capital do not support the Cobb-Douglas specification
(e.g., Oberfield and Raval, 2021).
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Definition 2. A balanced growth path (BGP) in a 3-factor neoclassical growth

model is a path along which all quantities, {Yt, Kt, Lt, Xt, Ct, Rt}, grow at constant

exponential rates for all t ≥ 0. We call it a non-degenerate BGP when the growth

rate of Kt is larger than −δ.

On the BGP, we denote the growth factor of output by g ≡ Yt/Yt−1, and the

growth factors of any variable Zt by gZ ≡ Zt/Zt−1. Unless otherwise noted, we focus

on the non-generate BGP with positive investments, i.e., gK > 1− δ. We also need to

define the elasticity of substitution, because the definition is not obvious when there

are more than two factors.

Definition 3. The Elasticity of Substitution between capital Kt and other factors

in the 3-factor production function Ft(Kt, Lt, Xt) is

σKL,t = − d ln(Kt/Lt)

d ln (FK,t/FL,t)

∣∣∣∣
Yt,Xt:fixed

, σKX,t = − d ln(Kt/Xt)

d ln (FK,t/FX,t)

∣∣∣∣
Yt,Lt:fixed

. (3)

In (3), FK,t represents ∂Ft(Kt, Xt, Lt)/∂Kt. FL,t and FX,t are similarly defined.

When evaluating σKL,t, we consider small changes in Kt and Lt while keeping Xt and

Yt = Ft(Kt, Xt, Lt) constant. When two factors have a unitary EoS between them,

they can be represented with the usual Cobb-Douglas relationship. Now, we have all

the definitions necessary to state a simpler version of the generalized Uzawa theorem.

Proposition 1 (Generalized Uzawa Growth Theorem for 3 Factors). Suppose that,

on a BGP of a 3-factor neoclassical growth model, σKX,t = 1 holds and σKL,t 6= 1

is constant. Also, suppose that shares of factors sK, sL, and sX are constant on the

BGP, and let α = sK
sK+sX

. Define factor-augmenting technologies by

AK,t = γtK , AL,t = γtL, AX,t = γtX , (4)

and choose growth factors of technologies γK, γL, and γX so that they satisfy

γαK(γXgX)1−α = g1−α and γL = g/gL. (5)

Then there exists a constant-returns-to-scale (CRS) function F̂ (·, ·) that satisfies, on
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the BGP,

F (Kt, Lt, Xt) = F̂
(
(AK,tKt)

α(AX,tXt)
1−α, AL,tLt

)
(6)

∂F (Kt, Lt, Xt)

∂Kt

=
∂F̂ ((AK,tKt)

α(AX,tXt)
1−α, AL,tLt)

∂Kt

(7)

and similarly for the first partial derivatives with respect to Xt and Lt. Moreover,

similarly to definition 3, define the elasticity of substitution in the RHS of (6) as

σ̂KL,t and σ̂KX,t. Then on the BGP,

σKL,t = σ̂KL,t, σKX,t = σ̂KX,t. (8)

This proposition can be obtained as a special case of the generalized Uzawa the-

orem in Casey and Horii (forthcoming).3 The proposition shows that technological

change — equivalently, the evolution of Ft — can be represented by a fixed function

F̂ along with factor augmenting terms AK,t, AL,t and AX,t. We call the RHS of (6)

the factor-augmenting representation of technological change. This representation

matches the level of the original production function in (6), first derivatives in (7),

and the elasticity of substitution in (8) on the balanced growth path. Therefore,

when the focus of economic analysis is on or around the BGP, the factor-augmenting

representation can be used as an approximation of the true production function Ft,

even when the economist does not know precisely how Ft evolves over time.

Unlike the original Uzawa theorem, the generalized Uzawa growth theorem allows

positive capital-augmenting technological change on the BGP. Condition (5) implies

there is freedom for an economist to choose γK > 1 to match the data.4 Cancelling g

in (5) and taking log gives

log γK =
1− α
α

(log γL + log gL − log γX − log gX) . (9)

3Proposition 1 is obtained from Propositions 4, 5 and 6 in Casey and Horii (forthcoming) when
the number of production factors is 3. They provide complete proof in the case of an arbitrary
number of factors. They also explain how F̂ can be obtained when an economist has access to the
shape of the true production function Ft at a point in time. Let this point t = 0. Then, in our

3-factor setting, function F̂ (M,N) is obtained as F0

(
X
−1/α
0 M1/α, N,X0

)
if F0, the true production

function at time 0, is known.
4The rate of capital-augmenting technological change can be measured by the decline in the

relative price of capital. By redefining the units of capital, it can also be interpreted as investment-
specific technological change.
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Thus, the BGP has positive capital-augmenting technological change (γK > 1) as

long as the effective labor is growing faster than the effective input of the third

factor (γLgL > γXgX). Moreover, the representation preserves the elasticity of sub-

stitution of the original production function, including σKL,t 6= 1. Therefore, the

generalized Uzawa growth theorem provides an economist with a representation of

the evolving production function that is simultaneously consistent with evidence on

the non-unitary EoS between capital and labor and on capital-augmenting technolog-

ical change. This is an improvement over the existing specifications of technological

change, which can match only one of the two properties.

The aim of this paper is twofold. First, we demonstrate how the generalized Uzawa

growth theorem can be utilized to build an endogenous growth model that exhibits

capital-augmenting technological change in the long run. We do so starting in the

next section. The second objective is to show technology condition (5), or equivalently

its log-linear version (9), is naturally satisfied in the long-term equilibrium of the

endogenous growth model. This condition means that effective inputs to function F̂

grows in a “balanced” way.5 If the values of γK , γL and γX are exogenously given,

then it is necessary to impose the log-linear relationship explained in Proposition 1.

In other words, it is necessary to place an extra restriction on the model. This paper

shows that when the rates of factor-augmenting technological change are endogenous,

the log-linear relationship is endogenously satisfied in the long run, and the economy

converges to a BGP with capital-augmenting technological progress.

Our result will contribute to a wide class of macroeconomic analysis. Even when

an economist is not interested in building an endogenous growth model, our result

provides a justification for assuming exogenous technological change that satisfies

condition (5) and, therefore, using the factor-augmenting representation (6) as a

good approximation of the true evolving production function in economic analysis.6

5The first part of Proposition 1 is directly derived from this balanced-ness. It can be shown
that g = gK holds on any balanced growth path for a neoclassical model satisfying Definition 1.
Then, technology condition (5) ensures that both arguments of F̂ grow at the same constant factor

g. Since function F̂ has constant returns to scale, the RHS of (6) grow at the same rate of the

output Yt = F (Kt, Lt, Xt). By appropriately defining the level of F̂ , equation (6) holds for all t on
the BGP.

6In this simplified version of the theorem, the assumption of σKX,t = 1 might also seem re-
strictive. However, in Casey and Horii (forthcoming), they showed that a similar theorem can be
obtained in an environment with many input factors, and the requirement is that at least one factor
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3 Model

In this section, we build an endogenous growth model in which firms undertake R&D

investments to improve factor-augmenting technologies. From Proposition 1, we know

that if there is a third production factor X such that σKX = 1, then technological

change on the BGP can be approximated by a representation in the form of (6),

which allows for capital-augmenting technological change. Since we want to build a

model that is consistent with a BGP with capital-augmenting technological change,

we provide a simple setting in which the aggregate production function takes the form

of (6). In this model, we will later confirm that technology condition (5) is satisfied

endogenously as a long-rem equilibrium outcome.

3.1 Structure

There are non-overlapping generations of representative firms, each of which exists

for only one period. A representative firm performs two types of tasks, M-tasks

and N-tasks.7 The number of M-tasks, as well as that of N-tasks, determines the

amount of final output. The M-tasks require effective capital AK,tKt and effective

natural resource AX,tXt as inputs. Xt is composed of production factors that are

not included in the conventional definition of (reproducible) capital Kt and labor Lt.

Examples are land and energy. The number of M-tasks it can complete is given by

Mt = (AK,tKt

)α(
AX,tXt

)1−α
, α ∈ (0, 1). (10)

We refer to the RHS as the aggregate amount of the capital composite, which combines

effective capital and effective natural resources with unit elasticity. An N-task uses

only effective labor, AL,tLt, where AL,t is the labor-augmenting technology of the

representative firm. The number of N-tasks is simply

Nt = AL,tLt. (11)

Xj has σKXj
= 1. They discuss the likely candidates for factor X, such as energy and land, referring

to evidence found in empirical studies.
7This setting is first considered by Irmen (2017) and Irmen and Tabaković (2017), and we

expanded it to incorporate three production factors. A benefit of using the model of tasks is that it
can incorporate R&D activity within a perfectly competitive economy. Another benefit is that the
model is scale independent.
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By performing Mt and Nt tasks, the representative firm produces

Yt = F̂ (Mt, Nt) = F̂

((
AK,tKt

)α(
AX,tXt

)1−α
, AL,tLt

)
(12)

units of output, where F̂ (·) is a standard neoclassical production function that has

CRS and satisfies the Inada conditions.8

Now, we explain how the factor-augmenting technologies {AK,t, AX,t, AL,t} are

determined. Technical knowledge can be kept within the firm for only one period,

after which it becomes public. Thus, the representative firm at time t can freely

use the technology of the period t − 1 firm, {AK,t−1, AX,t−1, AL,t−1}. In addition,

the period t firm can improve each of factor-augmenting technologies through R&D.

Tasks are differentiated and require separate R&D investments.9 Specifically, for each

factors Z = K,X,L, the technology follows AZ,t = (1 + aZ(iZ,t))AZ,t−1, where iZ is

the amount of investments in final goods. We assume that function aZ(·) satisfies

following properties: a′Z > 0, a′′Z < 0, aZ(0) = 0, aZ(∞) =∞, and a′Z(0) =∞.10

It is convenient to define the R&D cost function by iZ(γZ) = a
(−1)
Z (γZ − 1), where

a
(−1)
Z (·) is the inverse function of aZ(·). To improve the Z-augmenting technology in

a task by a factor of γZ , it costs iZ(γZ) in final goods. The properties of aZ(·) imply

i′Z > 0, i′′Z > 0, iZ(1) = 0, iZ(∞) =∞, i′Z(1) = 0 for Z = K,X,L. (13)

Adding up the R&D costs for all tasks and technologies, the total R&D cost for the

representative firm is

Rt = Mt ·
(
iK

(
AK,t
AK,t−1

)
+ iX

(
AX,t
AX,t−1

))
+Nt · iL

(
AL,t
AL,t−1

)
. (14)

8There are two ways to represent the production function in an intensive form: f(M/N) =

F̂ (M/N, 1) and h(N/M) = F̂ (1, N/M). We assume that both f(·) and h(·) satisfy the Inada
conditions.

9From the symmetry of tasks within each group (M or N) and from the convexity of the R&D
cost functions as assumed in (13), it is always optimal to choose the same levels of AK,t, AX,t, and
AL,t across individual tasks. Therefore, we omit subscripts for technologies for individual tasks.

10The declining marginal in the R&D function, a′′Z < 0, can be explained by congestion in R&D
activities. When many researchers are devoted to improvements in the same task at the same time,
some of them will end up inventing the same innovation. The risk of duplication becomes more
prominent as R&D inputs increase. See Horii and Iwaisako (2007) for a simple micro foundation.
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The objective of the representative firm is to maximize the single period profit

net of R&D costs, because it lives only for one period and its knowledge will become

public next period. By taking the output in each period as numéraire, the period

profit is given by

πt = F̂ (Mt, Nt)−Rt − rtKt − τtXt − wtLt, (15)

where rt, τt, and wt are interest rate, payment for a unit of natural resources (e.g.,

land rent), and wage rate, respectively.

The demand side of the economy is standard. There is a representative household.

The size of the representative household (i.e., population) evolves according to11

Lt = L0g
t
L, L0 > 0, gL > 1− δ : given. (16)

As in the Ramsey-Cass-Koopman model, the period utility of the household is given

by the product of the number of household members and the per capita period felicity

function:

ut = Ltu(Ct/Lt), (17)

where Ct/Lt > 0 is per capita consumption. We assume the felicity function u(·)
takes the CRRA form. Then, the intertemporal objective function of the household

can be written as

U =
∞∑
t=0

Ltβ
t (Ct/Lt)

1−θ − 1

1− θ
, (18)

where θ > 0 is the degree of the relative risk aversion (i.e., the inverse of the intertem-

poral elasticity of substitution) and β > 0 is the discount factor. We later discuss the

upper bound for β in Proposition 3.

The representative household owns capital, Kt, and natural resources, Xt, in ad-

dition to labor, Lt. The household also owns the representative firm and receives the

profit, πt, although, in equilibrium, profits will be zero due to perfect competition

and free entry.12 For simplicity, we assume that the supply of natural resources is

11gL > 1− δ is commonly assumed in neoclassical growth models to avoid a degenerate BGP.
12Note that R&D cost Rt is already subtracted from profit πt. In addition, the firm can retain

the rent from R&D only for one period. Therefore, the firms are indifferent to entering the market
when πt = 0.
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exogenous:13

Xt = X0g
t
X , X0, gX > 0 : given. (19)

As in the case of population, its available quantity can be either constant gX = 1,

shrinking gX ∈ (0, 1), or growing gX > 1. The budget constraint of the household is

Kt+1 = (rt + 1− δ)Kt + τtXt + wtLt + πt − Ct, K0 > 0 : given, (20)

where physical capital accumulates through the savings of the household.14 The

household is subject to the no-Ponzi game condition. Specifically, the present value

of its asset holding as T →∞ should not be negative:

lim
T→∞

(
T∏
t=1

(rt + 1− δ)

)−1
KT+1 ≥ 0. (21)

This completes the description of the model economy.

3.2 R&D by Firms and the Direction of Technological Progress

Now we examine the behavior of the representative firm, focusing on the role of

R&D. The representative firm maximizes profit (15) subject to production function

(12) and R&D cost (14) with respect to {Kt, Xt, Lt, AK,t, AX,t, AL,t}, taking as given

prices, {rt, τt, wt}, and lagged technology levels, {AK,t−1, AX,t−1, AL,t−1}. For

convenience, we define µt ≡ Mt/Nt, which is the relative task intensity in final good

production. It also represents the ratio of effective capital composite to effective labor

13The factor share of natural resources is around 8-9% (Caselli and Feyrer, 2007), of which about
5% is from land (Valentinyi and Herrendorf, 2008). Since the supply of land is mostly constant, we
assume Xt is exogenous in this baseline scenario. Our theory is also applicable to the case where Xt

is depleted or expanded endogenously (See robustness scenario f in Section 4.1). Note that, although
Xt is exogenous, its effective amount AX,tXt as a production factor can be enhanced endogenously
through R&D for AX .

14Using (15), equation (20) becomes Kt+1 = F̂ (Mt, Nt) − Ct − Rt + (1 − δ)Kt. Since Yt =

F̂ (Mt, Nt), the evolution of capital in this model is exactly the same as (2) in Definition 1. The
aggregate production function (12) also conforms to Definition 1. Therefore, the model in this section
is a 3-factor neoclassical growth model. Moreover, the form of aggregate production (12) is exactly
the same as the factor-augmenting representation (6) in Proposition 1. We did this modeling choice
because we already know that a 3-factor production function (with σKX = 1) can be represented
in the form of (6) whenever it has a BGP with capital-augmenting change, which is observed in the
data.
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µt =
(
AK,tKt

)α(
AX,tXt

)1−α
/AL,tLt. Then, because F̂ (·) in (12) is a CRS function, we

can write it in intensive form, F̂ (Mt, Nt)/Nt = F̂ (µt, 1) ≡ f(µt), F̂M(Mt, Nt) = f ′(µt),

and F̂N(Mt, Nt) = f(µt)− µtf ′(µt).15

Using this notation, we can conveniently express the first-order conditions for

factor demand. The firm demands capital, natural resources, and labor so as to

satisfy16,17

rt = (αMt/Kt) (f ′(µt)− iK(γK,t)− iX(γX,t)) , (22)

τt = ((1− α)Mt/Xt) (f ′(µt)− iK(γK,t)− iX(γX,t)) , (23)

wt = AL,t(f(µt)− µtf ′(µt)− iL(γL,t)). (24)

Now, we turn to R&D, starting with the condition for improving the labor-

augmenting technology AL,t. The representative firm chooses AL,t, or equivalently

the speed of technological progress γL,t ≡ AL,t/AL,t−1 ≥ 1, to maximize the profit.

The first order condition is 18

γL,ti
′
L(γL,t) + iL(γL,t) = f(µt)− µtf ′(µt). (25)

15F̂M (·) and F̂N (·) represent the partial derivatives of function F̂ (·) with respect to its first and
second arguments, respectively.

16The RHS of (22) represents the (net) marginal product of Kt in producing output Yt. It is given
by the product of two parts. The first part, αM/K, is the marginal product of Kt in increasing
the number of M-tasks performed in the firm. The second part is the net marginal product of Mt

in producing the final output. Note that, in the second part, the innovation cost for an M-task,
iK(γK,t) + iX(γX,t), is subtracted from the “gross” marginal product of Mt, f

′(µt). When the firm
performs more M-tasks, it chooses to pay R&D costs to increase AK,t and AX,t in these tasks so
as to keep up with other M-tasks. Similarly, in (23), (1− α)M/X is the marginal product of Xt in
performing more M-tasks.

17By substituting (22), (23), and (24) into (15), it can be confirmed that the firm achieves zero
profit, πt = 0. This is due to the CRS property of the firm’s problem.

18The firm’s private benefit from improving technology AL,t is the ability to perform a larger

number of N-tasks, which increases the final output Yt = F̂ (Mt, Nt). The RHS of (25) shows

the marginal benefit, F̂N (Mt, Nt) = f(µt) − µtf ′(µt). The LHS corresponds to the marginal cost
of performing a larger number of N-tasks through augmenting labor efficiency AL,t (given labor
employment Lt). This can be broken into two components. First, by intensifying the R&D efforts
in existing N-tasks to raise labor efficiency, the representative firm can decrease labor inputs by just
enough to perform one additional N-task. The cost associated with this activity is given by the first
term γL,ti

′
L(γL,t), which we call the intensive marginal R&D cost. The saved labor is then used to

perform a new N-task, which means the representative firm needs to invest in R&D for one more
N-task, which costs iL(γL,t). This extensive marginal R&D cost is represented by the second term
in the LHS.
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Figure 1: Equilibrium innovation in K- and X-augmenting technologies.
γK and γX are determined by the intersection of the combined R&D and R&D allocation conditions.
When µt increases from µ1 to µ2, both γK and γX decrease.

As we formally prove in Proposition 2 below, condition (25) has a unique solution

for γL,t as a function of µt = Mt/Nt, and it is strictly increasing in µt. Intuitively, a

high value of µt ≡Mt/Nt means that the resources to perform N-tasks (i.e., effective

labor) are relatively scarce. Then, the marginal product of an N-task is higher, and

therefore the benefit of improving AL,t to increase Nt is larger. Therefore, the firm

chooses a larger γL,t when µt is higher.

Next, the first-order conditions for AK,t and AX,t yield19

(γK,ti
′
K(γK,t) + iK(γK,t)) + (γX,ti

′
X(γX,t) + iX(γX,t)) = f ′(µt). (26)

γK,ti
′
K(γK,t)

γX,ti′X(γX,t)
=

α

1− α
, (27)

Condition (26) specifies the optimal combined size of R&D investments.20 Since

19The first order condition for AK,t yields (γK,t/α)i′K(γK,t) + iK(γK,t) + iX(γX,t) = f ′(µt),
whereas that for AX,t gives (γX,t/1− α)i′X(γX,t) + iK(γK,t) + iX(γX,t) = f ′(µt). Condition (27) is
obtained by subtracting the second equation from the first. Condition (26) is from adding α times
the first equation and (1− α) times the second equation.

20Capital and natural resources are used in M-tasks, and therefore improving K- and X-
augmenting technologies will enable the firm to perform more M-tasks. This marginal benefit is
represented by the RHS of (26), f ′(µt) = F̂M (Mt, Nt). The LHS is the marginal cost of R&D,
which has two parts, γK,ti

′
K(γK,t) + iK(γK,t) and γX,ti

′
X(γX,t) + iX(γX,t), because both K- and

13



the LHS is increasing both in γKt and γX,t, the locus of (γK,t, γX,t) that satisfies

this condition is depicted by the downward-sloping curve, as depicted in Figure 1.

Condition (27) gives the optimal allocation of R&D investment between K- and X-

augmenting technologies. Observe that γK,ti
′
K(γK,t) and γX,ti

′
X(γX,t) on the LHS are

strictly increasing in γKt and γX,t, respectively. Therefore, this condition can be

expressed as an upward-sloping curve in the (γK,t, γX,t) space.21 The intersection of

the R&D allocation condition and the combined R&D condition gives the optimal

rates of innovation for K- and X-augmenting technologies. When µt = Mt/Nt is

higher, the combined R&D condition curve locates closer to the origin. Then the

values of γK and γX at the intersection are smaller. Intuitively, When the resources

for M-tasks, i.e., effective capital and effective natural resources, are relatively ample,

the marginal product of an M-task is smaller. Then, the firm has less incentive to

improve γK and γX . The proposition below summarises the results.

Proposition 2. (Direction of Technological Change)

In the endogenous growth model defined in Section 3.1, the growth factors of each

of the factor augmenting technologies are uniquely determined as a function of µt =

Mt/Nt ∈ (0,∞). Let us denote by them by γ̂K(µt), γ̂X(µt), and γ̂L(µt). Then,

(a) The signs of (γ̂′K(µ), γ̂′X(µ), γ̂′L(µ)) are (−,−,+) for all µ ∈ (0,∞).

(b) limµ→0 (γ̂K(µ), γ̂X(µ), γ̂L(µ)) = (∞,∞, 1).

(c) limµ→∞ (γ̂K(µ), γ̂X(µ), γ̂L(µ)) = (1, 1,∞).

Proof. See Appendix A.2.

Figure 2 illustrates the direction of the technological change in 3-dimensional

space. The γK-γX plane depicted at the bottom of the figure is the same as Figure

1. The equilibrium direction is obtained by extending vertically from the intersecting

X-augmenting technologies receive some R&D according to the allocation condition (27). In each of
the two parts, the first term represents the intensive marginal R&D cost, whereas the second term
is the extensive marginal R&D cost, as in condition (25).

21As the RHS of condition (27) shows, the allocation should depend on the relative contribution of
capital and natural resources in performing M-tasks. When capital’s relative contribution is higher
(i.e., when α is higher), more resources should be allocated to R&D for the capital-augmenting
technology. In addition, the slope and convexity of the R&D cost function also affect the optimal
allocation. For example, if it is relatively difficult to improve the efficiency of natural resources, i.e.,
if the marginal R&D cost i′X(γX,t) increases more rapidly with its argument than i′K(γK,t), then it
is optimal not to improve AX,t as fast as AK,t.

14
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Figure 2: The direction of technological change and the Equilibrium Innovation Pos-
sibility Frontier (EIPF) curve.
The direction rotates toward the vertical axis along the EIPF curve as µt increases from µ1 to µ2.

point in the γK-γX plane by the distance of L-augmenting innovation, γ̂L(µt) − 1.

As µt increases, the combined R&D locus shifts inward,22 which lowers γK,t and

γX,t. At the same time γL,t increases because γ̂′L(µt) > 0. This way, the direction

of the technological change from the solid arrow to the dashed arrow in Figure 2.

In general, property (a) in Proposition 2 says that when capital composite becomes

more abundant relative to effective labor (i.e. when µt is higher), the direction of

technological change becomes more upright, depressing improvements in technologies

that enhance capital composite while enhancing improvements in labor-augmenting

technology. In other words, firms are ‘induced’ to do more innovation that enhances

the relatively scarce effective production factors.23

The thick downward-sloping curve in Figure 2 depicts the locus of all equilibrium

points that correspond to various values of µt. This is the equilibrium innovation

possibility frontier (EIPF).24 As µt changes, the equilibrium direction of technological

22The shift occurs because the RHS of (26) is decreasing in µt.
23This notion of induced innovation was first introduced by Hicks (1932). See Acemoglu (2002)

for further discussion.
24In this model, not only the direction within the EIPF, but also the EIPF itself is determined
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changes moves along the EIPF curve. Property (b) in Proposition 2 says that when

the capital composite is almost zero relative to effective labor, all the R&D efforts

are directed to enhancing technologies that are related to capital composite. In this

extreme case, the direction coincides with the vertical axis. On the contrary, property

(c) implies that, when µt is almost 0, the direction rotates toward the R&D allocation

condition curve and becomes almost flat. Either way, the economy moves away from

the corner solution.

To summarize, when the direction of technological change is chosen by the repre-

sentative firm in this model, the direction is adjusted so that the ratio of two inputs

to function F̂ , i.e., Mt and Nt is stabilized. This tendency provides a significant force

to achieve balanced growth in the long run. Yet, we also need to solve the full equilib-

rium dynamics to see how (reproducible) capital is accumulated through saving and

investment decisions. This is the theme of the next subsection.

3.3 Equilibrium Dynamics

The equilibrium path of this economy is given by the sequence of output, consumption,

production factors, technologies, and R&D investments, {Yt, Ct, Kt, Xt, Lt, AK,t, . . .

AX,t, AL,t, Rt}∞t=0, which satisfy the representative firm’s optimization problem, the

representative consumer’s utility maximization problem, and the market clearing con-

ditions for output and production factors. The economy is endowed with K0, X0 and

L0 at time 0, as well as the initial levels of publicly available technologies, AK,−1,AX,−1

and AL,−1.

While the equilibrium involves many variables, we can analytically characterize

its dynamic path in terms of only three: relative task intensity µt = Mt/Nt, the

amount of capital per effective labor kt ≡ Kt/AL,tLt, and consumption per effective

labor ct ≡ Ct/AL,tLt. Below, we construct the equilibrium mapping from {µt, kt, ct}
to {µt+1, kt+1, ct+1} for t ≥ 0. The mapping and the initial conditions µ0 and k0,

together with the transversality condition for ct, will pin down the equilibrium path

endogenously from the firm’s profit condition. In most models of the direction of technological
change, it is assumed that innovation requires a certain type of exogenously given resource (e.g.,
scientists). In these cases, the innovation possibility frontier is derived from the resource constraint.
On the contrary, in our model, the total amount of R&D input (Rt) is determined in equilibrium
through profit maximization, and hence the frontier is called the ‘equilibrium’ innovation possibility
frontier. Any innovation beyond this frontier is not profitable, although it might be feasible.
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of {µt, kt, ct}, from which the path of all variables in the model can be recovered.

Before so doing, it is convenient to define the net aggregate output in the economy

as Vt = F̂ (Mt, Nt)−Rt, which means the aggregate output minus the total R&D costs

in the economy. The net output per effective labor can be written as a function of µt:

Vt/Nt = f(µt)− µt(iK(γ̂K(µt)) + iX(γ̂X(µt)))− iL(γ̂L(µt)) ≡ v(µt). (28)

Then, substituting profits (15) into the budget constraint (20), we can express the

growth of aggregate capital supply in terms of µt, kt and ct:

Kt+1

Kt

=
Vt + (1− δ)Kt − Ct

Kt

=
v(µt)− ct

kt
+ 1− δ. (29)

Dynamics for µt+1. The growth factor of µt+1 is defined by µt+1/µt = (Mt+1/Mt)/(Nt+1/Nt).

By using (10), (11), (16), (19) and (29), its value in equilibrium can be written as

µt+1

µt
=

(gX γ̂X(µt+1))
1−α

gLγ̂L(µt+1)

(
γ̂K(µt+1)

(
v(µt)− ct

kt
+ 1− δ

))α
, (30)

where γ̂K(µt), γ̂X(µt), and γ̂L(µt) are the rates of technological progress defined in

Proposition 2. While equation (30) gives a relationship between the period-t variables

{µt, kt, ct} and µt+1, it is not easy to understand how µt+1 is determined since both

sides of the equation depend on µt+1.

To obtain more straightforward dynamics, let us decompose the dynamic rela-

tionship in (30) into two steps. First, we define the pre-R&D relative factor intensity

by

µpre
t+1 ≡

(
AK,tKt+1

)α(
AX,tXt+1

)1−α
AL,tLt+1

=
g1−αX

gL

(
v(µt)− ct

kt
+ 1− δ

)α
µt, (31)

where the last equality is from (16), (19), (29) and the definition of µt. It is the value

of µt+1 before technologies are improved from their period-t state. Second, µpre
t+1 and

the post-R&D value of µt+1 are related by the growth of technological levels γ̂K(µt),

γ̂X(µt), and γ̂L(µt) as follows:

µpre
t+1 =

γ̂L(µt+1)

γ̂K(µt+1)αγ̂X(µt+1)1−α
µt+1 ≡ Γ(µt+1). (32)
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Note that, Proposition 2 implies that function Γ(µt+1) is a strictly increasing differ-

entiable function with limµ→0 Γ(µ) = 0 and limµ→∞ Γ(µ) =∞. Therefore, its inverse

function µt+1 = Γ(−1)(µpre
t+1) is well-defined for all µpre

t+1 > 0, and is a strictly increasing

differentiable function.

Using (31) and the inverse function of (32), the dynamic relationship (30) can be

written as

µt+1 = Γ(−1)
(
g1−αX

gL

(
v(µt)− ct

kt
+ 1− δ

)α
µt

)
≡ ψµ(µt, kt, ct). (33)

Function ψµ(µt, kt, ct) gives a mapping from period-t variables µt, kt, ct to µt+1. It pro-

vides a natural 2-step interpretation of the equivalent equation (30). The argument

of function Γ(−1)(·) in (33) represents the pre-R&D relative task intensity, which is

determined by the relative supply of production factors, as well as the period-t tech-

nology levels. Then, function Γ(−1)(·) describes how R&D in period t+ 1 transforms

the relative task intensity.

Dynamics for kt+1. From (16) and (29), the growth factor of kt ≡ Kt/AL,tLt is

obtained as
kt+1

kt
=

1

gLγ̂L(µt+1)

(
v(µt)− ct

kt
+ 1− δ

)
. (34)

While µt+1 is present in the RHS, we can replace it with (33) so that the RHS depends

only on the variables in period t.

kt+1 =
1

gLγ̂L(ψµ(µt, kt, ct))
(v(µt)− ct + (1− δ)kt) ≡ ψk(µt, kt, ct). (35)

This dynamic equation simply represents the process of capital accumulation per

effective labor. The expression (v(µt)−ct+(1−δ)kt) shows the sum of the net saving

and the un-depreciated part of existing capital per effective labor in period t. It must

be divided by gLγ̂L because of the growth of effective labor between period t and t+1.

Dynamics for ct+1. The representative household maximizes the intertemporal

utility function (18) subject to the budget constraint (20) and the non-Ponzi Game

condition (21). The Euler equation for this problem is25

25Note that ∂U/∂Ct = βt(Ct/Lt)
−θ from From (18). From this, the Euler equation is

(Ct/Lt)
−θ = (rt+1 + 1− δ)β(Ct+1/Lt+1)−θ, which simplifies to (36).
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C−θt = (rt+1 + 1− δ)βgθLC−θt+1. (36)

By substituting the market interest rate (22) into the Euler equation (36) and then

applying it to the definition ct ≡ Ct/AL,tLt, we obtain the growth factor of consump-

tion per effective labor:

ct+1

ct
=

β1/θ

γ̂L(µt+1)

(
αµt+1

kt+1

(f ′(µt+1)− iK(γ̂K(µt+1))− iX(γ̂X(µt+1))) + 1− δ
)1/θ

.

(37)

By replacing the period-(t+ 1) variables in the RHS by (33) and (35), we can rewrite

equation (37) as

ct+1 =
β1/θct

γ̂L(ψµ(µt, kt, ct))

(
αψµ(µt, kt, ct)

ψk(µt, kt, ct)

(
f ′(ψµ(µt, kt, ct))

− iK(γ̂K(ψµ(µt, kt, ct)))− iX(γ̂X(ψµ(µt, kt, ct)))
)

+ 1− δ

)1/θ

≡ ψc(µt, kt, ct).

(38)

Equations (33), (35) and (38) constitute the equilibrium mapping from {µt, kt, ct} to

{µt+1, kt+1, ct+1} for all t ≥ 0.

Boundary Conditions. To obtain the equilibrium path of {µt, kt, ct}∞t=0, we need

three boundary conditions. First, since K0, X0, L0, AK,−1,AX,−1 and AL,−1 are given,

we can construct µpre
0 , the pre-R&D relative task intensity for period 0. Using it with

the inverse function of Γ from (32), we have the initial value of µt:

µ0 = Γ(−1)
(

(AK,−1K0)
α(AX,−1X0)

1−α

AL,−1L0

)
. (39)

Second, using µ0, the initial value of kt is readily obtained by

k0 =
K0

γ̂L(µ0)AL,−1L0

. (40)

Finally, the initial value of ct must be chosen so as to satisfy the non-Ponzi game
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condition (21) and the transversality condition

lim
T→∞

βT
(
CT
LT

)−θ
KT+1 ≤ 0. (41)

Combining Euler equation (36) with (21) and (41) gives the unified terminal condi-

tional

lim
T→∞

(βgL)T

(
T∏
t=0

γ̂L(µt)

)1−θ

γ̂L(µT+1)c
−θ
T kT+1 = 0. (42)

The next subsection will show that the economy has a BGP that satisfies this terminal

condition.

3.4 The Balanced Growth Path

Now, we are ready to characterize the BGP of this economy. We will show that the

direction of technological progress is endogenously chosen so that in equilibrium there

is a unique BGP with a positive rate of capital-augmenting technical change.

Lemma 1. Define a BGP as an equilibrium path where the growth factors of {Yt, Kt,

Xt, Lt, Ct, Rt, Mt, Nt} are all constant.26 Then, on any BGP, the values of µt, kt

and ct must be constant.

Proof. See Appendix A.3.

We denote the BGP values of µt, kt and ct by µ∗, k∗ and c∗, respectively. Their

values are obtained by substituting µt+1 = µt = µ∗, kt+1 = kt = k∗ and ct+1 = ct = c∗

into (33), (35), and (38).

First, from (33) and (35), the BGP value of µt ≡Mt/Nt will satisfy

1 =
(gX γ̂X(µ∗))1−α (γ̂K(µ∗))α

(gLγ̂L(µ∗))1−α.
≡ Φ(µ∗). (43)

Proposition 2 implies Φ′(µ∗) < 0 with Φ(0) = ∞ and Φ(∞) = 0. Therefore, there

exists a unique value of µ∗ > 0 that satisfies Φ(µ∗) = 1, and hence condition (43).

26Here, we slightly extend Definition 2 by requiring constancy of the growth factors of Mt and
Nt, i.e., the numbers of tasks performed in the economy.
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An intuitive way to interpret (43) is to multiply both of its sides by (gLγ̂L(µ∗))α.

(gX γ̂X(µ∗))1−α (γ̂K(µ∗)gLγ̂L(µ∗))α = gLγ̂L(µ∗) (= g∗). (44)

The LHS represents the growth factor of Mt on the BGP, while the RHS is that for

Nt. Therefore, this condition means that the relative factor intensity µ∗ = Mt/Nt is

determined so that Mt and Nt grow at the same speed. This condition singles out

a point on the Equilibrium Innovation Possibility Frontier (recall Figure 2), which

determines the direction of technological change on the BGP. Note that, due to the

CRS property of production function Yt = F̂ (Mt, Nt), the value of equation (44) also

represents the economic growth factor g∗ ≡ Yt+1/Yt.

Second, from the Euler equation (38), the BGP value of kt = Kt/(AtLt) is

k∗ =
βαµ∗(f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗)))

γ̂L(µ∗)θ − β(1− δ)
. (45)

Intuitively, the capital-effective labor ratio on the BGP is determined from the interest

rate r∗ that yields constant consumption per effective labor on the BGP.27 Third, from

(35) and gLγ̂L(µ∗) = g∗ in (44), the BGP value of c∗ = Ct/AL,tLt must satisfy

c∗ = v(µ∗)− (g∗ − 1 + δ)k∗. (46)

These three equations describe the unique BGP in this economy. The following

proposition shows that the BGP uniquely exists when the discount factor is sufficiently

smaller than 1.28

27Using (22), condition (45) is shown to be equivalent to r∗ + 1 − δ = β−1γ̂L(µ∗)θ. Here, the
RHS is the marginal rate of intertemporal substitution given that consumption per effective labor
is constant (which must be true on the BGP).

28There are two reasons why the existence of the BGP requires an upper bound for β (or, equiv-
alently a lower bound for ρ = (1 − β)/β). First, on the BGP, the amount of consumption for the
household Ct = AL,tLtc

∗ increases over time, causing the instantaneous utility to grow. Therefore,
if β is too close to one, the intertemporal utility U in (18) becomes infinity, which means that the
household’s problem is not well defined. Second, as effective labor AL,tLt grows, the household ac-
cumulates more capital Kt so as to prevent the dilution of capital per effective labor, k∗. However,
when β is too large (i.e. when the discount rate ρ is too small), the BGP requires a too-low real
interest rate, or a too-high level of k∗, to the extent that preventing the dilution is impossible even
when all net output is invested in Kt. We rule out these extreme cases by assuming an upper bound
for β.
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Proposition 3. There exists a value of β > 0 such that whenever β ∈ (0, β), there

exists a unique BGP that satisfies µ∗ > 0, k∗ > 0, c∗ > 0, and the terminal condition

(42). On this BGP, the long-term rate of capital-augmenting technological change is

positive (γK(µ∗) > 1).

Proof. See Appendix A.4. The exact expression for the upper bound β is given by

(A.8).

An important implication from this model is that the technology condition (9)

in Section 2 is now an endogenous outcome. Specifically, the BGP condition (43)

is equivalent to (9), except that the speed of technological progress is endogenously

determined by profit-maximizing producers. This difference has important implica-

tions for the plausibility of capital-augmenting technological progress on the BGP.

As discussed in Section 2, if the rates of innovation for the three factor-augmenting

technologies are exogenously given, then (9) becomes a knife-edge condition. In con-

trast, this section has shown that, once we consider endogenous technical change,

this condition is necessarily satisfied when the economy is on the BGP, which exists

if discount factor β is sufficiently less than one.

A missing link is that we have not yet shown whether the economy actually con-

verges to this BGP. If it is shown, we can conclude that condition (9) in the general-

ized Uzawa growth model is naturally satisfied in the long run, greatly widening the

plausibility of the theorem as an explanation of the capital-augmenting technological

change observed in data. We do so in the next section.

4 Numerical Analysis and Convergence to the BGP

In this section, we investigate the local and global stability of the three-factor en-

dogenous growth model. Our primary objective is to show that the model economy

converges to a BGP with capital-augmenting technical change, where log-linear rela-

tionship (9) is endogenously satisfied. We also illustrate how having multiple tech-

nologies (including K-augmenting technology) affects the transition dynamics. To

accomplish these goals, we present a series of numerical examples for which we can

check stability computationally. Whenever possible, we ensure that our numerical

examples are consistent with macroeconomic data characterizing the BGP of the
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United States. The data sources are provided in Appendix C. We stress, however,

that this is not a complete calibration, and the results would be insufficient for a

precise quantitative analysis.

4.1 Calibration

Functional Forms

We assume that the aggregate production function takes a CES form: F̂ (Mt, Nt) =

(ηM
ε−1
ε

t +N
ε−1
ε

t )
ε

1−ε , where ε > 0 and η ∈ (0, 1). Output in the economy (12) can be

written as

Yt =
{
η
(
(AK,tKt)

α (AX,tXt)
1−α) ε−1

ε + (1− η)(AL,tLt)
ε−1
ε

} ε
1−ε

. (47)

Next, we assume that R&D costs are power functions29

iZ(γZ) = ζZ
(
γZ − 1

)λ
, ζZ > 0, λ > 1, Z = K,X,L. (48)

We allow R&D cost parameter ζZ to differ across types of technology. We normalize

ζK to 1, and calibrate ζX and ζL. The degree of convexity, λ, is assumed to be the

same across the three types of technology.

With these functional form assumptions, our model has 11 parameters, {ε, η, α, λ, ζL, ζX ,
β, θ, δ, gL, gX}. To calibrate the model, we also need to determine the period length,

measured in years, denoted by χ. The period length in our model has an important

economic meaning because it represents the duration for which a firm can monopolize

the benefit from its R&D investments. Including χ, we have 12 parameters.

Exogenous Parameters

We set five parameters exogenously. Their values are given in Table 1. In the CES

production function (47), we take ε = 0.7 as the baseline value. This is a common

estimate for the EoS between labor and reproducible capital (e.g., Antras et al., 2004;

Oberfield and Raval, 2014). The mapping between these estimates and a structural

parameter in our model is not exact, and we show robustness with ε = 0.9 and

29Note that function (48) satisfies condition (13).
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Parameter Baseline Alternate Description Explanation / Source
ε 0.7 0.9, 1.2 EoS b/w M and N Oberfield and Raval (2014)
λ 2.0 1.5, 2.25 R&D Cost convexity Quadratic
θ 1.0 0.5, 2 Inverse of IES Log Preferences

g
1/χ
L 1.01 Population growth BEA 1960-2020 average

g
1/χ
X 1.0 0.99 Growth of X Fixed Supply of Land

Table 1: Exogenous Parameters

Target Moment (in annual values) Value Model Variable Source
Capital output ratio 2.9 K/(Y/χ) BEA 1960-2020 average
Labor share of income 63% κL ≡ wL/Y BEA 1960-2020 average
Share of R&D payments in GDP 2.7% κR ≡ R

Y
BEA 1960-2020 average

Consumption of fixed capital in GDP 14% δK/Y BEA 1960-2020 average

Growth rate of income per capita 1.9% γ
1/χ
L − 1 BEA 1960-2020 average

Decline in the relative price of capital 0.66% γ
1/χ
K − 1 BEA 1960-2020 average

Return on investment 4% (1 + r − δ)1/χ − 1 McGrattan et al. (2003)

Table 2: Target Moments for Calibration

ε = 1.2.30 In the baseline calibration, we assume the R&D cost function is quadratic

(λ = 2) and also check robustness with λ = 1.5 and λ = 2.25. Quadratic cost is a

common assumption, and it is consistent with existing empirical work in endogenous

growth (Acemoglu et al., 2018; Akcigit and Kerr, 2018). As for utility function (18),

we take log preferences (θ = 1) as the baseline and also consider cases where the

intertemporal EoS is higher or lower than 1 (θ = 0.5 and 2). Population growth is

set to the 1960-2020 average in the U.S. (1% per year). When one period in the

model corresponds to χ years, this means g
1/χ
L = 1.01. We do not have good data for

the growth rate of factor X, which we interpret as natural resources, including land.

Given that land is a major factor of production, we take gX = 1 as a benchmark (i.e.,

constant X). We also consider the case where natural resources are depleted 1% per

year (g
1/χ
X = 0.99).
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Data

We calibrate the remaining parameters so that the model variables on the BGP

match data from the U.S. Table 2 reports the target moments and model variables

in annualized values (e.g,. aggregate output per year is Y/χ, where one period in

the model is χ years). For the capital-output ratio (2.9), labor share of income

(63%), R&D share of income (2.7%), consumption of fixed capital as a share of GDP

(14%), and real GDP per capita growth (1.9%), we use data from the Bureau of

Economic Analysis (BEA) to calculate the arithmetic averages of the annual levels in

the 1960-2020 period. To measure the growth rate of capital-augmenting technology,

we calculate the annual decline in the relative price of all capital goods from 1960-

2020 (0.66%). Finally, we set the rate of return on investment (r∗ − δ) equal to the

return on bonds (4%) from McGrattan and Prescott (2003).

Calibration Results

There are seven remaining parameters to calibrate, {δ, β, α, η, ζL, ζX , χ}, which we

identify with the seven moments in Table 2. We do so in two steps. First, we use

equilibrium conditions to derive four analytical relationships among these parameters.

This leaves us with three undetermined parameters, {ζL, η, χ}. In the second step,

we numerically pin them down so that the target moments in Table 2 match the

corresponding model variables on the BGP. The details of the calibration procedure

are presented in Appendix B.

Table 3 presents the results of the two-step calibration procedure with the baseline

assumptions. Period length χ is 3.94 years, which is the time until the knowledge

becomes public. At this point, someone else can freely use the knowledge to generate

a new innovation. Discount factor β is 0.923 (β
1
χ = 0.98/year). The depreciation

rate δ is 0.19 per period, which is about 5% per year. The share parameter α is

0.76. This implies that the capital share in the GDP is 26.3%, whereas the natural

resource share (including land) is 8%. Although these shares were not targeted in the

calibration, they are consistent with the existing literature discussed in Casey and

Horii (forthcoming).

30Karabarbounis and Neiman (2014) and Piketty (2014) estimate the EoS between reproducible
capital and labor and find an elasticity that is greater than one.
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Parameter Calibrated Annualized Description

χ 3.94 Period Length (years)
β 0.923 0.980 Discount Factor
δ 0.190 5.21% Depreciation Rate
α 0.767 Capital Share within K-X composite
η 0.685 CES Distribution parameter
ζX 0.279 Cost parameter for AX R&D
ζL 20.8 Cost parameter for AL R&D

Table 3: Calibrated Parameters for Baseline Scenario

Variable Value Description

κK 26.3% Capital Share
κX 8.0% Natural Resource Share (incl. Land)

γ
1/χ
X − 1 0.72% Tech. Change in AX per year

Table 4: Untargeted Variables in Calibrated Model

Robustness

Changing the free parameters, we present calibration results with λ ∈ {1.5, 2.25},
θ ∈ {0.5, 2}, and ε ∈ {0.9, 1.2}. We also calibrated the model under the assumption

that natural resources X are depleted by 1% per year; i.e., g
1/χ
X = 0.99. In each case,

we change one parameter from the baseline value and then re-calibrate the model. In

all cases, we find the set of parameters with which the model matches all the target

moments in Table 2. The results are reported in Table 5 as scenarios (a)–(g).

4.2 Local Stability

Using parameters calibrated for the baseline setting and alternative scenarios, we can

now examine the local stability of the model. Recall that the dynamic system is

characterized by three variables {µt, kt, ct}, which evolve according to equations (33),

(35) and (38). Also, note that the initial values of µ0 and k0 are pre-determined,

whereas c0 should be chosen endogenously so that the system satisfies the transver-

sality condition (42). In this system, the BGP is saddle-stable and determinate if

the Jacobian matrix evaluated at the BGP has two stable eigenvalues with absolute

values less than one and one unstable eigenvalue with an absolute value greater than
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(a) (b) (c) (d) (e) (f) (g)

Param- Base- λ λ ε ε θ θ g
1/χ
X

eters line =1.5 =2.25 =0.9 =1.2 =0.5 =2 =0.99

χ 3.94 2.92 4.20 3.94 3.94 3.94 3.94 3.72
β1/χ 0.98 0.98 0.98 0.98 0.98 0.97 0.998 0.98
δ1/χ 5.21% 5.07% 5.25% 5.21% 5.21% 5.21% 5.21% 5.18%
α 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77
η 0.69 0.38 0.79 0.41 0.27 0.69 0.69 0.70
ζL 20.82 1.88 61.74 10.05 7.64 20.82 20.82 25.69
ζX 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.11

κK 26.3% 26.1% 26.4% 26.3% 26.3% 26.3% 26.3% 26.2%
κX 8.00% 8.25% 7.93% 8.00% 8.00% 8.00% 8.00% 8.05%

γ
1/χ
X − 1 0.72% 0.80% 0.69% 0.72% 0.72% 0.72% 0.72% 1.75%

Table 5: Calibrated Parameters for the Robustness Scenarios

one.

Table 6 summarizes the results of the local stability analysis. In all cases, we find

that the BGP is saddle-stable and determinate: when state variables are near the

BGP, they will converge to the BGP along the unique saddle path. In Subsection 3.4,

we demonstrate that one of the conditions for balanced growth, (43), is equivalent to

the technology condition (9). Therefore, the saddle stability of the BGP implies that

the technology condition is endogenously satisfied as the economy converges to the

BGP.

On this equilibrium path converging to the BGP, firms choose the intensities of

three types of R&D, γK , γX , and γL, and hence the direction of the technological

change, to maximize profits. The capital-augmenting technology AK is still growing

on the BGP, because firms always benefit from improving AK . This naturally explains

the observed long-term decline in the relative price of capital, which theoretically

corresponds to capital-augmenting technological change.

The saddle stability is confirmed in all seven alternative scenarios. It demonstrates

that our explanation of capital-augmenting technological change is robust to changes

in parameters. It is particularly interesting to note that we find stability even when

the EoS between labor and the capital-composite, ε, is greater than one (scenario d).
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Eigenvalues BGP-
Scenario Stable Unstable Stability

Baseline 0.602 0.970 1.672 Saddle/Determinate
(a) λ = 1.5 0.667 0.957 1.479 Saddle/Determinate
(b) λ = 2.25 0.587 0.971 1.722 Saddle/Determinate
(c) ε = .9 0.633 0.971 1.610 Saddle/Determinate
(d) ε = 1.2 0.664 0.974 1.550 Saddle/Determinate
(e) θ = 0.5 0.496 0.969 2.034 Saddle/Determinate
(f) θ = 2 0.692 0.971 1.454 Saddle/Determinate
(g) gX = 0.99 0.620 0.964 1.629 Saddle/Determinate

Table 6: Eigenvalues and Local Stability of the Calibrated Model

Most directed technical change growth models require a low elasticity to be stable,

especially when allowing for the possibility of capital-augmenting technical change

(e.g., Acemoglu, 2003; Grossman et al., 2017).31

4.3 Transition Dynamics and Global Stability

Local stability only examines convergence within the neighborhood of the BGP. In

this subsection, we go one step further and demonstrate that convergence to the BGP

occurs even when the initial states are far away. We call this property global stability.

With three factors of production, this is not a trivial exercise, because the transitional

dynamics may take various patterns depending on the initial combination of µ0 and

k0.
32 They are determined by initial stock of production factors K0, X0 and L0, as

well as initial technology levels AK,−1, AX,−1, AL,−1. Depending on the initial state

of technology or resources, µ0 and k0 will take a wide range of combinations.

To cover various possibilities, we consider a large rectangular area in µ-k plane

surrounding the BGP: namely, µt ∈ [0.2µ∗, 2µ∗] and kt ∈ [0.2k∗, 2k∗]. We choose

36 points on the border of a rectangular area and calculate the transition dynamics

from each of them. We use a forward shooting method to determine the value of c0

31An exception is a model by Irmen and Tabaković (2017), which has an elasticity greater than
one. As explained above, their model has capital-augmenting technical change on the transition
path, but not on the steady state.

32In typical macro models with two factors of production, the dynamics can be written in terms
of kt and ct, where kt is the only state variable. In this case, the transition dynamics only have two
possible patterns, depending on whether k0 is higher or lower than the steady-state value. In either
case, kt typically converges monotonically to the steady state.
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Figure 3: Global Stability of the Calibrated Model (Baseline Setting).

that eventually satisfies the transversality condition (42) as t→∞. The equilibrium

path from each starting point is depicted in Figure 3, where the parameters are

from baseline calibration in Section 4.1. Because the graph is three-dimensional, we

depicted the same graph from two angles. We also provide the projection of the paths

to the bottom µ-k plane in darker colors.

From each of the 36 starting pairs of µ0 and k0, we always find a unique level of

c0 such that the path from {µ0, k0, c0} leads to the BGP (i.e., {µ∗, k∗, c∗}). If c0 is

higher the resource constraint is eventually violated (kt becomes negative), and if c0 is

lower the TVC is violated (ct converges to zero). This means that convergence to the

BGP is the only possible long-term outcome in equilibrium. These findings suggest

that, as long as the initial µ0 and k0 are on or within the border of the rectangle, the

economy necessarily converges to the BGP. Since the rectangle is reasonably large,

we call it global stability.

There are a couple of properties worth observing from the figure. First, the

convergence is not monotonic. To illustrate this, let us focus on the path that starts

from the upper right corner in Figure 3(a), as indicated by a thick arrow (µ0 = 2µ∗

and k0 = 0.2k∗).33 Although the initial level of µ0 is double the steady-state level, µt

33In the color PDF version of the article, the path that we now focus on is depicted in purple.
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initially increases further, going out of the rectangular area. This phenomenon can

be interpreted as follows. At the initial state, the capital composite is abundant even

though the reproducible capital is scarce. This happens when natural resources are so

abundant that it more than offsets capital scarcity. In this setting, the consumption

of reproducible capital (i.e., the depreciation of Kt) is small, and savings from ample

production leads to more accumulation Kt, which increases the capital composite

further. This process continues until the level of kt comes close to the steady state

level. This is the first stage of convergence. In the second stage, the ratio of capital

composite to effective labor µt gradually falls to the steady state level. This is because

a high µt means that effective labor is relatively scarce, and the firms have more

incentives to improve AL through R&D, rather than AK or AX . This tendency

continues until µt reaches µ∗. Once µt comes to µ∗, firms have incentives to improve

all types of technologies in a ‘balanced’ way such that the ratio of capital composite

to effective labor does not change further. This illustrates how firms, in the long run,

choose the direction of technological change that satisfies the BGP condition (43) or,

equivalently, the technology condition (9).

The figure also shows that, even though the stable manifold34 is two-dimensional,

the equilibrium paths first converge to a common one-dimensional arm (or curve),

and then converge to the BGP along the arm. This is because the system has two

stable eigenvalues with significantly different magnitudes. In the baseline calibration,

stable eigenvalues are 0.602 and 0.970. Given that one period χ is 3.94 years, those

eigenvalues mean the speed of convergence is 12% and 0.7% per year, respectively.

As we discussed in the above example (the path starting from the upper-right corner,

indicated by a thick arrow), the convergence to the BGP typically goes through two

stages, and each stage corresponds to a different eigenvalue. The initial adjustment

towards the common arm is driven mainly by capital accumulation. It is relatively

fast: the distance from the common arm declines by 12% every year. However, the

second stage, along the common arm, is very slow. In the baseline example, the

convergence speed is only 0.7% per year, which means it takes about 90 years to

halve the distance. This adjustment takes much longer than capital accumulation

because it is driven by the difference in the speed of technological change among

34The stable manifold is the set of points in the (µ, k, c) space that converges to the BGP. In
Figure 3, all converging paths are on the (same) stable manifold.
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AK , AX , and AL. Note that these numbers are just for illustration, because the

eigenvalues depend on the free parameters, as shown in Table 6. Still, this result

suggests that, without considering the endogenous technological change for various

production factors (including capital-augmenting technological change), neoclassical

growth models may overestimate the speed of convergence to the steady state by large

margins.

5 Conclusion

We build a neoclassical growth model that has capital-augmenting technical change

on the BGP, despite a non-unitary EoS between capital and labor. As noted by

Grossman et al. (2017), standard neoclassical growth models cannot incorporate these

elements simultaneously, due to the Uzawa steady state theorem. This is a significant

limitation, because each of the elements has strong empirical support. To overcome

the restrictive nature of the theorem, we follow Casey and Horii (forthcoming) and

add natural resources to the model as a third factor of production. We then add

directed technical change and show that the model endogenously converges to the

BGP with capital-augmenting technical change. By relaxing the constraints posed

by the theorem, our model should be useful in a wide range of settings.
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Online Appendix

“Endogenous Capital-Augmenting Technological Change”

by Gregory Casey and Ryo Horii
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A Proofs of Propositions and Lemmas

A.1 Notation for derivatives

Unless otherwise mentioned, FK(·; t) denotes the partial derivative of function F (·; t)
with respect to its first argument, whereas FXj(·; t) denotes the partial derivative of

F (·; t) with respect to its 1 + jth argument. The same applies to other functions,

such as F̃ (·).
Following the convention in economics, ∂

∂Kt
and ∂

∂Xj,t
represent the partial deriva-

tives with respect to variables Kt and Xj,t, respectively. For example, if F̃ (·) is the

production function, ∂
∂Xj,t

F̃ (·) gives the marginal product of factor Xj,t.

Note that these two definitions are different when the argument of the function is

not a single variable. For example, using the chain rule, we have

∂

∂Xj,t

F̃ (Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t) = ÃXj ,tF̃Xj(Kt, ÃX1,tX1,t, ..., ÃXJ ,tXJ,t). (A.1)

A.2 Proof of Proposition 2

Properties of γL(µt)

As explained in the main text, the representative firm chooses γL,t so as to satisfy

R&D for N-tasks: γL,ti
′
L(γL,t) + iL(γL,t) = f(µt)− µtf ′(µt). (25)

Let us denote the LHS of (25) by ΨL(γL,t) because it depends only on γL,t. Then,

Ψ′L(γL,t) = γL,ti
′′
L(γL,t)+2i′L(γL,t) > 0 for all γL,t > 1 from iL(γL,t) > 0 and i′L(γL,t) > 0

in (13). When γL,t = 1, the properties of iL(·) imply ΨL(1) = i′L(1) + iL(1) = 0. Also,
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ΨL(∞) ≡ limγL,t→∞ΨL(γL,t) = ∞ from iL(∞) = ∞ and γL,ti
′
L(γL,t) > 0.35 Then,

since ΨL(·) is differentiable and strictly increasing, we can define its inverse function

Ψ
(−1)
L (·), which is also differentiable and strictly increasing with Ψ

(−1)
L (0) = 1 and

Ψ
(−1)
L (∞) =∞. Using this function, condition (25) can be solved for γL,t:

γL,t = Ψ
(−1)
L (f(µt)− µtf ′(µt)) ≡ γ̂L(µt). (A.2)

Note that f(µt)−µtf ′(µt) represents the marginal product of Nt in the production

function, i.e., F̂N(µt, 1). We can express the production function Yt = F̂ (Mt, Nt) in

an intensive form with respect to Nt/Mt ≡ νt, instead of µt = Mt/Nt. Namely, output

per Mt can be expressed as Yt/Mt = F̂ (Mt, Nt)/Mt = F̂ (1, νt) ≡ h(νt). Since F̂ (·)
is CRS, its first derivative F̂N(·) is homogeneous of degree 0. Using this property,

h′(ν) = FN(1, Nt/Mt) = FN(Mt/Nt, 1) = FN(µt, 1) = f(µt) − µtf
′(µt). From the

definition of the production function F̂ (·), its alternate intensive form, h(νt), satisfies

the Inada conditions. Therefore, limµt→0 f(µt) − µtf ′(µt) = limνt→∞ h
′(νt) = 0, and

limµt→∞ f(µt) − µtf ′(µt) = limνt→0 h
′(νt) = ∞. Substituting these into (A.2) gives

γL(0) = Ψ
(−1)
L (0) = 1 and γL(∞) = Ψ

(−1)
L (∞) =∞.

Finally, we show γ′L(µt) > 0. The derivative of f(µt) − µtf ′(µt) with respect to

µt is −µtf ′′(µt). It is positive for all µt > 0 since the production function satisfies

the Inada conditions, which include f ′′(µt) < 0. Since Ψ
(−1)
L

′
(·) > 0, this means

γ′L(µt) > 0.

Properties of γ̂K(µK) and γ̂X(µX)

The representative firm chooses γK,t and γX,t according to the following two condi-

tions:

R&D allocation:
γK,ti

′
K(γK,t)

γX,ti′X(γX,t)
=

α

1− α
, α ∈ (0, 1), (27)

Combined R&D: (γK,ti
′
K(γK,t) + iK(γK,t)) + (γX,ti

′
X(γX,t) + iX(γX,t)) = f ′(µt).

(26)

35Similarly to the main text, we employ an abuse of notation by writing iL(∞) to represent
limγL→∞ iL(γL). We will employ similar abbreviations as long as they cause no confusion.
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Let us define ΩK(γK,t) ≡ γK,ti
′
K(γK,t) and similarly ΩX(γX,t) ≡ γX,ti

′
K(γX,t). Then,

from properties in (13), we can confirm Ω′K(γK,t) > 0 for γK,t > 1, ΩK(1) = 0

and ΩK(∞) = ∞. Similar conditions also hold for ΩX(·). Then, since ΩX(·) is

differentiable and strictly increasing, we can define its inverse function Ω
(−1)
X (·), which

is also differentiable and strictly increasing with Ω
(−1)
X (0) = 1 and Ω

(−1)
X (∞) = ∞.

Using this inverse function, condition (27) can be solved for γX,t as

γX,t = Ω
(−1)
X

(
α

1− α
ΩK(γK,t)

)
≡ Ω(γK,t). (A.3)

Now let us focus on condition (26). Let us define ΨK(γK,t) ≡ γK,ti
′
K(γK,t)+iK(γK,t)

and likewise ΨX(γX,t) ≡ γX,ti
′
K(γX,t) + iK(γX,t). Using these and (A.3), the LHS of

condition (26) can be expressed as a function only of γK,t:

ΨK(γK,t) + ΨX(Ω(γK,t)) ≡ Ψ(γK,t).

Note that the properties of ΩK(·) and Ω
(−1)
X (·) imply that Ω(γK,t) > 0 for all γK,t > 1,

Ω(0) = 0 and Ω(∞) = ∞. Also, in the same way that we derived the properties of

ΨL(γL,t) earlier in this proof, we can confirm ΨK(γK,t) > 0 for all γK,t > 1, ΨK(1) = 0,

ΨK(∞) = ∞, and similar properties for ΨX(γX,t). From these, we have Ψ(γK,t) > 0

for all γK,t > 1, Ψ(1) = 0, Ψ(∞) =∞. On the RHS of (26), f ′(µt) satisfies the usual

Inada conditions. The results we have obtained so far can be summarized as

γK,t 1 · · · ∞
Ψ′(γK,t) +

Ψ(γK,t) 0 ↗ ∞

µt 0 · · · ∞
f ′′(µt) −
f ′(µt) ∞ ↘ 0

The tables above implies that condition (26), Ψ(γK,t) = f ′(µt), gives a 1 to 1 cor-

respondence between µt ∈ (0,∞) and γK,t ∈ (1,∞) that satisfies property (a):

γ̂′K(µt) < 0 for all µt > 0, γ̂K(0) =∞, and γ̂K(∞) = 1.

Given γ̂K(µt), equation (A.3) uniquely determines γX,t = Ω(γ̂K(µt)) ≡ γ̂X(µt).

From the properties of Ω(·) and γ̂K(·) above, we can confirm that property (b) is

satisfied: γ̂′X(µt) < 0 for all µt > 0, γ̂X(0) =∞, and γ̂X(∞) = 1.
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A.3 Proof of Lemma 1

Consider a BGP. We will show in turn that µt, kt and ct must be constant. First, from

the definition of a BGP, Nt+1/Nt = (AL,t+1Lt+1)/(AL,tLt) = γ̂L(µt+1)gL is constant.

To keep the RHS of the latter equation constant, µt must also be constant, since γ̂L(·)
is a strictly increasing function from Proposition 2.

Second, since the growth factors of Ct and Nt are constant, the growth factor of

ct = Ct/AtLt = Ct/Nt is also constant. This, in turn, means that the LHS of the

Euler equation (37) is constant. Then, for the RHS of (37) to be constant, kt must

be constant, since we already know that µt is constant as shown above.

Third, the growth factor of kt = Kt/AtLt = Kt/Nt is constant on the BGP, which

means the LHS of (34) is constant. For its RHS to be constant, given that µt and kt

are already shown to be constant, ct also needs to be constant.

A.4 Proof of Proposition 3

Proof of µ∗ > 0

In the text, we have already shown that there exists a unique µ∗ > 0 such that

Φ(µ∗) = 1 holds since Proposition 2 implies Φ′(µ∗) < 0 with Φ(0) =∞ and Φ(∞) = 0.

Therefore, there exists a unique value of µ∗ > 0.

Proof of k∗ > 0

The value of k∗ is explicitly given by equation (45), shown again here:

k∗ =
βαµ∗(f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗)))

γ̂L(µ∗)θ − β(1− δ)
. (45)

We now show that both the numerator and the denominator of the RHS are positive.

Note that the combined R&D condition (26) is satisfied on the BGP. By rearranging

terms, it gives

f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗)) = γ̂K(µ∗)i′K(γ̂K(µ∗)) + γ̂X(µ∗)i′X(γ̂X(µ∗)) > 0,

(A.4)
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where the inequality follows from Proposition 2 and (13). Given β ∈ (0, 1), α ∈ (0, 1),

and µ∗ > 0, this means that the numerator of (45) is strictly positive. Now, note

that γ̂L(µ∗) > 1 from Proposition 2. Combined with θ > 0, β ∈ (0, 1) and δ ∈ [0, 1],

it turns out that the denominator of (45) is also strictly positive.

Proof of c∗ > 0

The value of c∗ is given by

c∗ = v(µ∗)− (g∗ − 1 + δ)k∗. (46)

We first show v(µ∗) > 0. Combining the R&D conditions (25) and (26), we have

γL,ti
′
L(γL,t)+iL(γL,t)+µt ((γK,ti

′
K(γK,t) + iK(γK,t)) + (γX,ti

′
X(γX,t) + iX(γX,t))) = f(µt).

Rearranging and then evaluating this condition at µt = µ∗ gives

v(µ∗) = f(µ∗)− iL(γ̂L(µ∗))− µ∗ (iK(γ̂K(µ∗))− iX(γ̂X(µ∗)))

= γ̂L(µ∗)i′L(γ̂L(µ∗)) + µ∗ (γ̂K(µ∗)i′K(γ̂K(µ∗)) + γ̂X(µ∗)i′X(γ̂X(µ∗))) > 0,

where the inequality follows from µ∗ > 0 and (13).

Note that g∗ = γ̂L(µ∗)gL is greater than 1− δ because γ̂L(µ∗) > 1 and gL > 1− δ
from (16). Therefore, (g∗ − 1 + δ) in (46) is positive. From this, c∗ > 0 is equivalent

to

k∗ <
v(µ∗)

g∗ − 1 + δ
.

Using (45), we can rewrite this condition in terms of β:

β < γ̂L(µ∗)θ
(
αµ∗

v(µ∗)
(f ′(µ∗)− iK(γ̂K(µ∗))− iX(γ̂X(µ∗))) (g∗ − 1 + δ) + 1− δ

)−1
≡ β1.

(A.5)

Note that β1 > 0 from (A.4) and g∗ > 1 − δ > 0. Observe also that β1 does not

depend on β itself since µ∗ is determined entirely by the production side (see equation

43). Therefore, if β > 0 is sufficiently small, condition (A.5) holds and c∗ > 0.
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Terminal Condition

On the BGP, the terminal condition (42) becomes

lim
T→∞

(
βgLγ̂L(µ∗)1−θ

)T
γ̂L(µ∗)(c∗)−θk∗ = 0. (A.6)

Given that γ̂L(µ∗) > 1, c∗ > 0 and c∗ > 0, this condition is equivalent to

β <
1

gLγ̂L(µ∗)1−θ
≡ β2. (A.7)

Note that β2 > 0 and that it does not depend on β since µ∗ is determined entirely by

the production side of the model. Therefore, if β > 0 is sufficiently small, condition

(A.7) holds and the terminal condition (42) is satisfied.

Combining conditions (A.5) and (A.7), we have confirmed the unique existence of

BGP with µ∗ > 0, k∗ > 0, c∗ > 0, and the terminal condition (42) whenever

β < β ≡ min{β1, β2}, (A.8)

where β > 0 is a constant that does not depend on β.

B Calibration Procedure

There are seven parameters to calibrate, {δ, β, α, η, ζL, ζX , χ}, which we identify with

the seven moments in Table 2. We do so in two steps.

Step 1: Analytical calibration. Given period length χ, exogenous parameters,

and moments, we analytically derive the values of four parameters {δ, β, α, η}. The

depreciation rate is determined by data on the consumption of fixed capital and the

capital-output ratio:

δ =
δK/Y

K/Y
=

0.14

2.9
χ ≡ δ(χ). (B.1)
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Evaluating the Euler equation (36) on the BGP gives the discount factor β:36

β =
γθL

1 + r − δ
=

(1.019χ)1.0

1.04χ
≡ β(χ). (B.2)

Similarly, the first-order conditions of the representative firm, (22) and (23), give the

share parameter α:

α =
κK

κK + κX
=

(r − δ)(K/Y ) + δK/Y

1− κL − κR
=

(1.04χ − 1)(2.9χ) + 0.14

1− 0.63− 0.027
≡ α(χ), (B.3)

where we used the identity κK + κX + κL + κR = 1.

Next, BGP relationship (43), which is equivalent to the technology condition (9),

gives the growth rate for the unobserved endogenous variable γX :

γX = γ
− α

1−α
K

gLγL
gX

=

(
(1.066)−

α(χ)
1−α(χ)

(1.01)(1.019)

1.0

)χ
≡ γX(χ). (B.4)

Using (B.4) and the R&D allocation condition (27), the R&D cost parameter ζX can

be derived as follows.

ζX =
1− α
α
· ζKγK(γK − 1)λ−1

γX(γX − 1)λ−1
=

1− α(χ)

α(χ)
· (1(1.0066)(0.0066)2.0−1)

χ

γX(χ)(γX(χ)− 1)2.0−1
≡ ζX(χ).

(B.5)

Step 2: Minimization. Among the 12 parameters of the model, five of them are

given by Table 1, and four are given as functions of χ, in (B.1), (B.2), (B.3) and

(B.5). This leaves us with three remaining parameters, {ζL, η, χ}. We calibrate them

so as to minimize the squared sum of percent difference (error) between the target

moments in Table 2 and the corresponding model variables on the BGP.

36Equation (B.2) assumes that parameter θ takes the baseline value of 1.0. When doing robustness
checks with θ = 0.8 and 1.2, the numbers in this equation are adjusted accordingly. The same applies
for (B.3)-(B.6) when using alternative parameter values or calibration targets.
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Let us define the squared sum of percent error as37

SSE =

(
K/(Y/χ)− 2.9

2.9

)2

+

(
κL − 0.63

0.63

)2

+

(
κR − 0.027

0.027

)2

+

(
γ
1/χ
L − 1− 0.019

0.019

)2

+

(
γ
1/χ
K − 1− 0.0066

0.0066

)2

.

(B.6)

In (B.6), endogenous variables K/Y , κL, κR, γL and γX represent their respective

BGP values, when the model is solved given all 12 parameters. Using exogenous

parameters and the results of analytical calibration, we determine the remaining

three parameters as the solution to the following minimization problem:

{ζL, η, χ} = argmin
ζL,η,χ

SSE s.t.

{ε, λ, θ, gL, gX} : given by Table 1,

δ = δ(χ), β = β(χ), α = α(χ), ζX = ζX(χ).

(B.7)

We have done this minimization numerically utilizing ‘FindMinimum’ function of

Mathematica. The minimized value of SSE is virtually zero (precisely, of the order

of 10−22), implying that we obtained the set of parameters that fits all the moments

in Table 2.

Robustness Scenarios. To check the robustness of the result, we repeat the ana-

lytical calibration (B.1)-(B.5) with modified values for the exogenous parameters. In

all robustness scenarios, the modified version of minimization problem (B.7) yields

almost zero. This means that the model can match all the target moments in those

scenarios.

C Data Sources

All data are originally from the Bureau of Economic Analysis (BEA) and retrieved

from FRED, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org. We

37Among seven moments in Table 2, we use five moments to define the squared sum of errors.
The other two moments, consumption of fixed capital in GDP and return on investments, always
match the data given that other moments are correct, since we impose relationships (B.1) and (B.2).
In numerical calibration, we confirmed that these two moments match the data exactly.
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reference series by their codes in FRED. We use annual values of Real GDP (GDPCA),

real investment (GPDICA), and real personal consumption expenditures (PCECCA).

The real capital stock is calculated as the net stock of fixed assets at current cost

(K1TTOTL1ES000) divided by the GDP price deflator (A191RD3A086NBEA). The

relative price of investment is obtained by the price deflators for gross private invest-

ment (A006RD3A086NBEA) divided by the price deflator for personal consumption

expenditures (DPCERD3A086NBEA). In addition to the variables listed above, the

calibration utilizes data on nominal consumption of fixed capital (GDICONSPA), la-

bor compensation, and R&D expenditure (Y694RC1A027NBEA) all relative to nom-

inal GDP (GDPA) in Table 2, as well as population (B230RC0A052NBEA) in Table

1. Labor compensation is calculated as compensation of employees (A033RC1A027NBEA)

plus proprietors’ income with inventory valuation and capital consumption adjust-

ments (A041RC1A027NBEA).
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