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Abstract

While the market design advocates the importance of good design to achieve
desirable properties, experiments on coalition formation theory have shown fragility
in proposed mechanisms to do so. We experimentally investigate the effectiveness
of “structured” mechanisms that implement the Shapley value as an ex-ante equi-
librium outcome with those of corresponding “semi-structured” bargaining proce-
dures. We find a significantly higher frequency of the grand coalition formation and
the higher efficiency in the semi-structured than in the structured procedure regard-
less of whether it is demand-based or offer-based. While significant differences in
the resulting allocations are observed between the two structured procedures, little
difference is observed between the two semi-structured procedures. Finally, pos-
sibility of free-form chat induces the equal division more frequently than without
it. Our results suggest, when it comes to bargaining and coalition formation, not
having various restrictions imposed by different mechanisms may lead to more
desirable outcomes.
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1 Introduction

For decades, economists, particularly game theorists, have gained a crucial role in as-

sisting legislators, regulators, lawyers, and judges in designing markets. They have been

instrumental in developing complex markets such as in the classical theory of auctions

(Vickrey, 1961; Milgrom and Weber, 1982a,b), in labor clearing houses for American

doctors getting their first jobs (Roth and Peranson, 1999), or markets for electric power

(Wilson, 2002; Cramton, 2017). Additionally, they have proposed allocation procedures

for markets that do not use prices, such as coalition formation (Kahan and Rapoport,

2014), school choice (Roth, 1985), live-donor kidney transplantation (Roth et al., 2004,

2007) or the job market for new economists (Coles et al., 2010). The common and well-

established vision in the literature is that “design is important because markets don’t

always grow like weeds–some of them are hothouse orchids” (Roth, 2002, p. 1373).

Without external intervention, in fact, markets naturally struggle to provide desirable

properties such as thickness, efficiency, safety, and simplicity.

Bargaining is one of the most ubiquitous and effective forms of market interaction

between potentially conflicting or cooperating agents, at the basis of many of the situa-

tions listed above. Thus, bargaining interactions, among others, may particularly benefit

from the potential welfare gains of well-designed procedures. As such, the importance

of bargaining research for enhancing the efficiency – and the many other desirable prop-

erties – of these interactions has been widely emphasized (Crawford, 1982).

Over the years, experimental economics has become a natural complement to the-

oretical work, aiding in understanding market failures and testing new solutions before

proposing them to policymakers (Kagel and Levin, 1986; Kagel and Roth, 2000). Then,

the goals achieved through extensive theoretical research on mechanism design – among
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which bargaining procedures design – have been well-supported and documented by a

growing body of experimental literature (Brosig et al., 2003; Chen and Sönmez, 2006;

Cox et al., 1988; Denton et al., 2001; Smith, 1967) and numerous field applications

(Dickerson et al., 2012). However, there is a field where experiments have shown a

certain fragility in validating the proposed theoretical mechanisms and their appealing

results: coalition formation theory (Abe et al., 2021; Okada and Riedl, 2005).

Coalitions are means oriented, often temporary, alliances among individuals or groups

who may have different initial goals. In many situations, forming a coalition is both in-

dividual and group advantageous. Coalition formation behavior is a pervasive aspect of

social life (Gamson, 1961) and thus a crucial matter in economics (Kahan and Rapoport,

2014; Konishi and Ray, 2003). A theory of coalition formation has been developed in

many models coming from different disciplines, such as mathematics, in the theory of

cooperative games, then widely adopted not only in economics and political science

(Holler, 1982), but also in models in management (Stevenson et al., 1985), social psy-

chology (Komorita and Kravitz, 1983) and computer science (Dang et al., 2006).

In this paper, we focus on the matter of coalition formation from the classical per-

spective of game theorists, thanks to the means of cooperative game theory. This theory

emerged alongside noncooperative game theory thanks to the seminal paper by von

Neumann (1928). Then by the active collaboration of John von Neumann together with

Oskar Morgenstern, culminated in the renowned book Theory of Games and Economic

Behavior (von Neumann and Morgenstern, 1944). Despite a common origin founded on

the well-established assumption of rationality of individuals, however, noncooperative

game theory and cooperative game theory have advanced for decades on two different

paths, incrementing a gap that has become more and more apparent over the years.

Cooperative game theory primarily seeks to answer two fundamental questions:
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What coalitions will form (thus, originating coalition formation studies), and how will

their members share the proceeds? (Maschler, 1992). The Nash program (Nash, 1953)

offers a noncooperative foundation for addressing both questions, thereby creating a nat-

ural bridge between the two related but distinct theories. The Nash program is based on

describing mechanisms, mostly in the form of strategic bargaining procedures, to lead

individuals to cooperation. The theory predicts that individuals, guided by the proposed

mechanisms in their interactions, will manage to cooperate in the most efficient way and

share the proceeds according to well-known cooperative solutions. While many authors

have contributed to the development of the Nash program (see, Serrano, 2005, 2008,

2014, 2021, for surveys), so in line with the previously illustrated common opinion on

the importance of investing in research in bargaining, experimental investigations, in the

specific context of the Nash program, have been scarce.

To address this gap in the literature, Chessa et al. (2022, 2023a,b) have conducted

a series of experiments comparing different mechanisms. These mechanisms are theo-

retically expected to implement full cooperation in games where rationality would lead

individuals to choose cooperative strategies and share the proceeds according to the

Shapley value, the most well-known cooperative solution (Shapley, 1953). Even if mo-

tivated by different research questions, the common pattern in all these experiments is

that, despite the implementation of structured bargaining procedures promising cooper-

ation, unfortunately the experimental results show that individuals, in many cases, fail

to cooperate. And these results are in line with other experimental investigations of

theoretical models for coalition formation (Kahan and Rapoport, 1980a; Rapoport and

Kahan, 1984).

In this study, we aim to shed light on whether reducing the structural constraints

in bargaining procedures can lead to higher levels of cooperation among individuals.
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Indeed, previous studies have already highlighted the importance of shifting focus to-

wards more unstructured bargaining experiments, advocating for their revival as a future

direction in experimental research (Güth, 2012; Karagözoğlu, 2019).

It is, however, difficult to design an “unstructured” computerized bargaining experi-

ment, because the very same design of a computer interface necessary puts some struc-

ture into the bargaining procedure. For example, Shinoda and Funaki (2019) conducted

what they call a computerized “unstructured” three-player bargaining experiment. Par-

ticipants could freely propose a coalition and an associated allocation that is feasible

among the members of the proposed coalition. Participants were also free to modify

their proposal anytime during the negotiation, and also free to agree on the proposal

made by another participant. A coalition was formed if all its members agreed. They

also considered a treatment in which participants could freely send chat messages to

others. Similarly, in three-players games that model negotiable conflicts involving two

weak players and one strong player, Kahan and Rapoport (1980b) also considered two

communication conditions: namely a condition where subjects could exchange mes-

sages, and a condition where subjects were not allowed to send messages and were

unaware that they had been denied this option. While these procedures are much less

structured compared to those considered in Chessa et al. (2022, 2023a,b), there remain

some constraints in what participants could do and how the coalition was formed.

We therefore consider both an offer-based and a demand-based (an alternative pro-

cedure where participants, instead of freely proposing a coalition with an associated

allocation among its member, freely make their demand for them to join a coalition)

“semi-structured” bargaining experiment. We call our experiments “semi-structured”

(Duffy et al., 2021) because, as noted above, while they are much less structured com-

pared to the “structured” bargaining experiments considered by Chessa et al. (2022,
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2023a,b), there remains some structure in the bargaining procedures.

More specifically, we vary (a) whether or not participants can communicate freely

via online chat during the negotiation. This dimension is motivated by Shinoda and

Funaki (2019), who found that the grand coalition is more likely to be formed with

than without a possibility of free-form communication among players through a chat

window. (b) Whether the negotiation is offer-based or demand-based. This second di-

mension is motivated by Chessa et al. (2023b), who found that demand-based and offer-

based mechanism can result in outcomes satisfying much different properties. Then

(c) we contrast the results of these “semi-structured” experiments with the results of

“structured” experiments of Chessa et al. (2023b), and this represents the third and key

motivation of our analysis.

We find that semi-structured experiments, both offer-based and demand-based, re-

sult in the higher frequency of grand coalition formation and the efficiency than the

structured ones. Unlike Chessa et al. (2023b) who find significant differences in the

outcome of an offer-based and a demand-based procedure, we do not find significant

differences between the two regardless of the possibility of free-form communication.

The latter result is assuring in that, at least for the semi-structured bargaining exper-

iments on the games with non-empty core, exact procedure may have little impact on

the outcomes. As a consequence of the lower efficiency of “structured” experiments, we

find that the average payoffs deviate significantly from the Shapley values for more play-

ers in more games under the “structured” experiments than under the “semi-structured”

ones. While investigating for the possible sources of deviation of the realized allocations

from the Shapley value, applying the approach of Aguiar et al. (2018), we report that

which axioms are violated depend on whether the freeform communication is allowed,

and on whether the experiments are offer-based or demand-based. Finally, we observe
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that the possibility of chat in semi-structured experiments pushes the allocation toward

equal sharing.

The rest of the paper is organized as follows. Section 2 illustrate the theoretical

background of this paper. Section 3 presents the experimental design. The results are

presented and discussed in Section 4. And Section 5 concludes.

2 Theoretical background

2.1 Cooperative TU games and solutions

Let N = {1, . . . , n} be a finite set of players. Each subset S ⊆ N is referred to as

a coalition, with N called the grand coalition. A cooperative transferable utility (TU)

game is defined as a pair (N, v), where N is the set of players and v : 2N → R,

with v(∅) = 0, is the characteristic function. This function assigns a worth v(S) to

each coalition S ⊆ N , representing the worth that members of S can achieve through

cooperation. When the set of players N is fixed, we denote the game by v instead of

(N, v). The set of all games with player set N is denoted by GN .

Players i and j are symmetric in v ∈ GN , if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \ {i, j}. A player i is a null player in v ∈ GN if v(S) = v(S \ {i}) for all

S ⊆ N .

A game v ∈ GN is called monotonic if v(S) ≤ v(T ) for each S ⊆ T ⊆ N ,

superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S ∩ T = ∅, with S, T ⊆ N ,

and convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for each S, T ⊆ N (with the

game being strictly convex if the inequality is strict). Another equivalent definition of

convexity is that for each S ⊆ T ⊆ N \ {i}, v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).
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In (strictly) convex games, cooperation becomes increasingly advantageous, leading

to the formation of the grand coalition. It is important to note that convexity implies

superadditivity, which in turn implies monotonicity.

For a game v ∈ GN , an allocation is an n-dimensional vector (x1, . . . , xn) ∈ RN

that assigns an amount xi ∈ R to each player i. For each coalition S ⊆ N , we define

x(S) =
∑

i∈S xi. The imputation set is defined as:

I(v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},

which includes all allocations that are efficient (i.e. x(N) = v(N)) and individually

rational (i.e. xi ≥ v({i}) ∀i ∈ N ).

The core is the set of imputations that are also coalitionally rational, defined as:

C(v) = {x ∈ I(v)|x(S) ≥ v(S) ∀S ⊆ N}.

An allocation within the core is stable in the sense that, if proposed for the grand

coalition, no coalition has an incentive to deviate and form its own.

A solution is a function ψ : GN → RN that assigns an allocation ψ(v) to every game

v ∈ GN . The most well-known solution concept is the Shapley value, which is widely

applied in economic models and defined as:

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns to each player his/her expected marginal contribution to

the coalition of players that entered before him/her given that every order of entrance is

equally likely. This concept was defined to satisfy certain fairness criteria, but it is not
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necessarily within the core. However, if the game is superadditive, the Shapley value is

an imputation and, if the game is convex, it belongs to the core.

In our analysis, we will also consider a simpler solution concept, the Equal Division

solution, which distributes the worth v(N) equally among all players. It is defined as:

EDi(v) =
v(N)

n
∀i ∈ N.

This solution has been investigated as a compelling option for cooperative players

when the worth of coalitions is not a primary consideration.

2.2 Winter and H-MC mechanisms

Winter (1994) introduced a bargaining model based on sequential demands within strictly

convex cooperative games. In these games, cooperation becomes increasingly attractive,

generating a “snowball effect” that leads to the formation of the grand coalition. Fur-

thermore, in convex games, the Shapley value is a focal point within the core, which is

always nonempty. In this model, players take turns publicly announcing their demands.

Essentially, each player declares, “I am willing to join any coalition that offers me...”

and then waits for these demands to be satisfied by other players. The bargaining pro-

cess begins with a randomly selected player from the set N , say player i. This player

publicly states her demand di and then selects a second player, who must also declare

her demand. The game continues in this manner, with each player presenting a demand

and then selecting another player to take their turn. If at any point a compatible demand

is made - meaning there exists a coalition S ⊆ N for which the total demand of the

players in S does not exceed v(S) - the first player to make such a demand selects the

compatible coalition S. The players in S then receive their demands and exit the game,
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while the remaining players continue bargaining under the same rules applied to v re-

stricted to N \ S. In a T -period implementation, where T > 1 and T is finite, if any

players are left with unmet demands after the first period, the bargaining procedure is

repeated in the second period with this subset of players. Their previous demands are

canceled, and they incur a fixed delay cost. This process continues until the T peri-

ods have been completed. In our analysis, we consider a one-period implementation in

which players with unmet demands at the end of the first period receive their individual

value considered in Chessa et al. (2023b).1

Winter (1994) demonstrated that this mechanism has a unique subgame perfect equi-

librium, which assigns equal probabilities according to the principle of indifference. At

this equilibrium, the grand coalition forms, and the a priori expected equilibrium payoff

aligns with the Shapley value.

Hart and Mas-Colell (1996) introduced a bargaining procedure designed for mono-

tonic cooperative games, which is a less stringent condition compared to the strict con-

vexity required by Winter mechanism. In the following, we present the simplified ver-

sion of the mechanism, as implemented in Chessa et al. (2023b). In this mechanism,

the bargaining process begins with a randomly selected proposer making an offer to the

other players, framed as, “If you wish to form a coalition with me, I will give you...”

The other players, acting sequentially, may choose to either accept or reject the offer.

Unanimity is required for the proposal to be accepted. A critical aspect of the model

is determining what happens if no agreement is reached, leading the game to progress

to the next stage. The more general mechanism proposed by Hart and Mas-Colell al-

1Chessa et al. (2023a) compared a one-period implementation and a two-period implementation of the
Winter mechanism, investigating scenarios with both low and high delay costs in the latter case. Their
findings indicate that the three different implementations yield similar outcomes in terms of coalition
formation, alignment with the Shapley value predictions, and satisfaction of the axioms.
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Table 1: A three-player game

S 1 2 3 1,2 1,3 2,3 N

v(S) 10 20 20 50 50 60 100

lows the proposer, even after a rejection, to remain in the game and continue to the next

stage with a certain probability. In our analysis, we consider the special case where

this probability is zero. If the proposal is rejected, the proposer exits the game with her

individual value, and bargaining continues among the remaining players, with a new

proposer randomly selected.

Hart and Mas-Colell (1996) demonstrated that this game has a unique subgame per-

fect equilibrium. At this equilibrium, the grand coalition forms, and the a priori ex-

pected equilibrium payoff corresponds to the Shapley value.

We illustrate the two mechanisms using the strictly convex three-player game pre-

sented in Table 1.

As previously mentioned, the convexity assumption implies monotonicity. There-

fore, this game satisfies the conditions required by both the Winter and H-MC mecha-

nisms. The Shapley value for this game is represented by the vector φ(v) =
(
80
3
, 110

3
, 110

3

)
≈

(26.67, 36.67, 36.67), which corresponds to the a priori equilibrium payoff for both

mechanisms.

Now, let us assume that player 1 is randomly selected as the first proposer in both

mechanisms. Regardless of the subsequent order of players in the Winter mechanism,

the proposer will receive an a posteriori equilibrium payoff of 40 in both mechanisms,

which equals their marginal contribution to the grand coalition, i.e., v(N)−v(N \{1}).

Suppose further that the order of players in the Winter mechanism is 1, 2, and 3. In this
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Table 2: The games

S 1 2 3 4 1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4 N

v1(S) 0 5 5 10 20 20 25 20 25 25 50 60 60 60 100
v2(S) 0 20 20 30 20 20 30 45 55 60 45 55 60 100 100
v3(S) = v1(S) + v2(S)
v4(S) = 2v1(S)

case, the a posteriori equilibrium payoff for the Winter mechanism is given by the vector

(40, 40, 20), where player 2 demands his/her marginal contribution v({2, 3})− v({3}),

and player 3 claims his/her individual value v({3}). Conversely, in the case of the H-MC

mechanism, the proposer offers the Shapley value of the reduced game to players 2 and

3. Consequently, the a posteriori equilibrium payoff is given by the vector (40, 30, 30).

3 The experimental design

We first describe the 4-player bargaining games we consider in our experiment. We then

explain our four treatments.

3.1 The games

We consider the four 4-player games shown in Table 2. These games are the same as

those considered in Chessa et al. (2022, 2023a,b). This is to allow a direct comparison

of the results. The Shapley values of the four games is presented in Table 3. The Equal

Division solution is simply equal to ED(vk) = (25, 25, 25, 25) when k = 1, 2, and

ED(vk) = (50, 50, 50, 50) when k = 3, 4.

Following Chessa et al. (2022, 2023a,b), in our experiment, each participants played
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Table 3: The Shapley value of games 1, 2, 3 and 4

φ1(v) φ2(v) φ3(v) φ4(v)

Game 1 22.08 23.75 23.75 30,42
Game 2 0 28.33 30.83 40.83
Game 3 22.08 52.08 54.58 71.25
Game 4 44.16 47.5 47.5 60.83

all four games twice. The order of games was counter balanced across sessions. Namely,

participants played these four games in one of the following four orderings: 1234, 2143,

3412, and 4321. At the beginning of a new round (i.e., new play of a game), participants

were randomly rematched into groups of four players, and their roles were randomly

reassigned within a newly created group.2

3.2 Treatments

In our 2×2 between subjects design, we vary (a) whether or not participants commu-

nicate freely via online chat during the negotiation, and (b) whether the negotiation is

offer-based or demand-based.

In the treatments with free-form communication, participants could freely send chat

messages (except for those messages that can identify oneself and those ones that can

insult others). Messages could be seen by everyone in the same group, and they could

be sent anytime during a play of a game (or a negotiation).

In all the treatments, the maximum duration of a negotiation was randomly deter-

2The reasons for these design chocies given in Chessa et al. (2023b) are as follow. While letting
participants play all four games, instead of just one, in each session as well as randomly reassigning their
roles across rounds instead of fixing it might slow down their learning how to play the game, (a) having
within-session variations was needed for some of the analyses to choose the within session variation of
the games, and (b) random reassingment was implemented to avoid upsetting participants because of the
existence of the null player in one of the four games.
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mined between 300 and 360 seconds. Participants were informed that a negotiation

could continue for at least 300 seconds, but its end would have been terminated at a

randomly chosen moment during the following 60 seconds. The negotiation could end

earlier, when the grand coalition was formed, or when only one player remained without

belonging to any coalition. We now describe the difference between our offer-based and

demand-based negotiation protocol in detail.

3.3 Offer-based protocol

This protocol is similar to the one that Shinoda and Funaki (2019) call “unstructured

bargaining” protocol. Namely, at any time during a negotiation, each player is free to

propose or to approve a coalition that include him/herself among players who remain

in the game and an associated allocation within the coalition. Below, let proposing or

approving a coalition mean both proposing or approving members of a coalition and

the associated allocation among them. For example, at the beginning of a negotiation

when all the four players remain in the game, player 1 can propose either {1,2}, {1,3},

{1,4}, {1,2,3}, {1,2,4}, {1,3,4}, or {1,2,3,4}. Note that single player coalition is not

considered here as, we explain later, it is the default outcome for the player when s/he

ends the game without belonging to any coalition. Instead of proposing a coalition,

a player can also approve a coalition, that includes him/herself, proposed by another

player.

In our experiment, each player can propose or approve at most one coalition at any

point in time. Thus, if a player has proposed a coalition but would like to approve

the one proposed by another player, first the player has to withdraw his/her proposal.

Similarly, if a player has approved a coalition proposed by another player but would
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like to propose a new one, the player has to first withdraw his/her approval.

If all the members of a proposed coalition approve it, the coalition is formed and

its members all exit the negotiation and receive the allocated points. The negotiation

continues with remaining players. If there remains only one player, the negotiation ends.

The players without an agreed coalition at the end of the negotiation (either because of

the time limit or because s/he is the only player left) obtain their individual value.

3.4 Demand-based protocol

In this protocol, at any point during a negotiation, players are free to demand points they

want to obtain. Note that, unlike the offer-based protocol, in doing so, players are not

proposing a coalition. Instead, they are expressing the points they want to receive for

them to join a coalition. Each player can make at most one demand at any time during

the negotiation. Players are free to modify their demands anytime during a negotiation.

A coalition can be formed if the sum of the demands made by its members is no

greater than its worth. When there is such a coalition for a player, the player is free to

agree to form it. Just as in the offer-based protocol, we exclude a single player coalition

here, because it is the default outcome for the player when s/he ends the game without

belonging to any coalition. Each player can agree to form at most one coalition at any

time during the negotiation. Thus, if players want to form a different coalition than

the one s/he is currently agreeing to form, they need to withdraw the current agreement

before agreeing to form a new coalition.

A coalition is formed if all its members agree to form it. Once a coalition is formed,

its members exit the negotiation and receive the points they have demanded. Just as

in the offer-based protocol, the negotiation continues with remaining players. If there
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remains only one player, the negotiation ends. The players without an agreed coalition

at the end of the negotiation (either because of the time limit or because s/he is the only

player left) obtain his/her singleton value.

4 Results

The experiment was conducted at the Institute of Social and Economic Research (ISER),

Osaka University, in May and June 2021 (offer-based) and May and June 2022 (demand-

based). A total of 344 students, who have never participated in similar experiments

before, were recruited as subjects of the experiment. See Table 4 for the number of

participants as well as mean duration and mean payment in each treatment. The experi-

ment was computerized with z-Tree (Fischbacher, 2007) and participants were recruited

using ORSEE (Greiner, 2015).

At the end of the experiment, two rounds (one from the first four rounds and another

from the last four rounds) were randomly selected for payments. Participants received

cash reward based on the point they have earned in these two selected rounds with an

exchange rate of 20 JPY = 1 points in addition to 1500 JPY participation fee. The ex-

periment lasted on average around 90 minutes including the instruction, comprehension

quiz, and payment. Participants received a copy of instruction slides, and a pre-recorded

instruction video was played. Quiz was given on the computer screen after the explana-

tion of the game. The user interface was explained during the practice rounds referring

to the handout about the computer screen. See Appendix A for English translations of

the instruction materials and the comprehension quiz.

Table 5 summarizes the duration of a negotiation, the frequency of complete break

down (no coalition being formed), the number of proposals/demands made within a
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Table 4: The number of participants, the mean duration, and the mean payment in four
semi-structured treatments and Winter and H-MC from Chessa et al. (2023b).

Treatment No. of Mean Mean When
Participants Duration payment

Demand-based 88 1h34m 2810 JPY May-June 2022
Without chat (No chat) (24x2 + 20x2)

Demand-based 84 1h22m 2860 JPY May-June 2022
With chat (chat) (24x2,16,20)

Offer-based 88 1h36m 2810 JPY June-July 2021
Without chat (No chat) (24x2 + 20x2)

Offer-based 84 1h36m 2900 JPY June-July 2021
With chat (chat) (20x3 + 24x1)

Winter 96 1h40m 2650 JPY Jan - Feb. 2019
(24x4)

H-MC 80 1h45m 2850 JPY Jan - Feb. 2022
(24, 20x2, 16)

negotiation, and the number of messages sent during a negotiation (in treatments with

chat), and the time until the first coalition being formed in the semi-structured experi-

ments.3

The average duration of a negotiation is significantly longer in the offer-based than

in the demand-based protocols.4 The possibility of chat does not significantly affect

the duration of the negotiation.5 Note that while more messages are sent under the

3The table is created based on the estimated coefficients of the following linear regressions: yi =
β1ONCi + β2OCi + β3DNCi + β4DCi + µi where yi is the statistics of interest in group i, ONCi,
OCi, DNCi, and DCi are dummy variables that take value 1 if the treatment is offer-based no chat
(ONC), offer-based with chat (OC), demand-based no chat (DNC), and demand-based with chat (DC),
respectively, and zero otherwise. The standard errors are corrected for within session clustering effect.
The statistical tests are based on the Wald test for the equality of the estimated coefficients of treatment
dummies.

4p = 0.0069 and p < 0.0001 for without chat and with chat, respectively. Wald test.
5p = 0.207 and p = 0.975 for the demand-based and the offer-based protocols, respectively. Wald

test.
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offer-based than the demand-based protocol when chat is possible, the difference is

not statistically significant.6 The complete failure of the negotiation is more frequently

observed under the offer-based than the demand-based protocols,7 and the possibility of

chat does not significantly affect the failure rate.8

The longer duration of a negotiation under the offer-based protocol is not just be-

cause there are more groups in which negotiation failed completely. Even among those

groups where a coalition has been formed, the negotiation took longer under the offer-

based than the demand-based protocols.9 The same is true for the time it has taken

before the first coalition being formed.10

The number of proposals made under the offer-based protocols is significantly smaller

than the number of demands made under the demand-based protocols.11 The possibility

of chat significantly reduces the number of proposals or the demands made.12 Both the

number of demands and the proposals made are, however, large compared to what have

been allowed in Winter and H–MC (maximum is 4) considered in Chessa et al. (2023b).

One may expect that this difference in the number of demands or proposals made be-

tween the structured and semi-structured procedures would affect the outcomes. We

now turn to analyzing the outcomes of the negotiation.

6p = 0.1200 and p = 0.1619 with and without greeting messages, respectively. Wald test.
7p = 0.0166 and p = 0.0013 for without chat and with chat, respectively. Wald test.
8p = 0.3834 and p = 0.6701 for the demand-based and the offer-based protocols, respectively. Wald

test.
9p = 0.0084 and p = 0.0011 for without chat and with chat, respectively. Wald test.

10p = 0.0008 and p = 0.0008 for without chat and with chat, respectively. Wald test.
11p < 0.0001 and p < 0.0001 for without chat and with chat, respectively. Wald test.
12p = 0.0030 and p = 0.0001 for the demand-based and the offer-based protocols, respectively. Wald

test.
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4.1 Grand coalition formation and efficiency

For our four games, the structured mechanisms (namely, a simplified version of the

demand-based Winter mechanism (Winter, 1994) and a simplified version of the offer-

based Hart and MasColell (H–MC) mechanism (Hart and Mas-Colell, 1996), as pre-

sented in Section 2.2) theoretically predict that the grand coalition will form, and that

full efficiency will be reached. Then, we first compare the frequency of cooperation

and the level of efficiency across our four semi-structured mechanisms treatments, and

then we compare these outcomes with the results from the experiments on the structured

bargaining mechanisms reported in Chessa et al. (2023b).

Table 6 shows the frequencies of various coalitions being formed, focusing on the

grand coalition and coalitions with three members. Our analysis thus centers on those

groups that reached full cooperation, or those groups that did not succeed in doing that,

but that have shown a high level of cooperation. As one can observe, on the one hand,

in games 1, 3 and 4, the grand coalition is the most frequently formed under semi-

structured procedures regardless of whether it is demand-based or offer-based, and with

or without chat. It is also the case under structured Winter and H–MC mechanisms,

except for Winter mechanism in game 3 where the coalition {2, 3, 4} is the most fre-

quently formed coalition. In game 2, on the other hand, instead of the grand coalition,

the three player coalition that excludes the null player {2, 3, 4} is the most frequently

formed coalition except under the H–MC mechanism. Chessa et al. (2023b) noted that

the proposers do not exclude the null player in game 2 to avoid the risk of the proposal

being rejected and receiving a singleton payoff under H–MC. This result shows that

such a risk imposed by an offer-based structured mechanism is eliminated under the

offer-based semi-structured procedures.
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Table 6: Frequencies of coalitions being formed

Game 1
Demand based Offer based

Coalition No Chat Chat Winter No Chat Chat H-MC
{1234} 38 34 23 34 39 25

{234},{1} 1 1 2 1 0 3
{134},{2} 1 1 10 0 0 4
{124},{3} 0 2 8 2 0 4
{123},{4} 1 0 0 1 0 2

others 3 4 5 6 3 2
total 44 42 48 44 42 40

Game 2
Demand based Offer based

Coalition No Chat Chat Winter No Chat Chat H-MC
{1234} 3 5 0 3 9 18

{234},{1} 33 28 27 27 20 7
{134},{2} 0 1 0 0 0 1
{124},{3} 0 0 0 0 0 1
{123},{4} 0 0 0 0 0 0

others 8 9 21 14 13 13
total 44 42 48 44 42 40

Game 3
Demand based Offer based

Coalition No Chat Chat Winter No Chat Chat H-MC
{1234} 21 26 6 23 31 19

{234},{1} 10 8 27 14 9 5
{134},{2} 3 1 4 0 1 3
{124},{3} 3 1 1 0 0 3
{123},{4} 0 0 2 1 0 1

others 7 6 8 6 1 9
total 44 42 48 44 42 40

Game 4
Demand based Offer based

Coalition No Chat Chat Winter No Chat Chat H-MC
{1234} 29 35 21 35 34 30

{234},{1} 4 2 4 0 1 1
{134},{2} 3 1 7 2 0 2
{124},{3} 0 2 6 0 0 2
{123},{4} 4 2 5 0 0 0

others 4 0 5 7 7 5
total 44 42 48 44 42 40
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Figure 1: Proportion of times the grand coalition formed.

(a) Game 1 (b) Game 2, allow (2,3,4)
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(c) Game 3 (d) Game 4
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Note: Error bars show one standard error range. ***, **, and * indicates the proportion of times the grand coalition formed being

significantly different between two treatments at 1%, 5%, and 10% significance level, respectively (Wald test). The “n.s.” indicate

the absence of significant difference at 10% level between the two treatments compared.

In Figure 1, we show graphically the result of comparisons across treatments of

the frequencies of the grand coalition formation. To take into account the existence of

the null player, we include the three player coalition without the null player in game 2

({2,3,4}) as a grand coalition. The horizontal line with indication of Winter and H–MC

are the experimental results of these two structured procedures reported in Chessa et al.

(2023b).13

13The figure is created based on the estimated coefficients of the following linear regressions: yi =
β1ONCi + β2OCi + β3DNCi + β4DCi + β5Winteri + β6H − MCi + µi where yi is a dummy
variable that takes the value 1 if the grand coalition is formed, and zero otherwise, in group i, for the
grand coalition formation,Winteri, andH−MCi are dummy variables that take value 1 if the treatment
is winter, and H–MC, respectively, and zero otherwise. Other treatment dummies are the same as the one
explained above. The standard errors are corrected for within session clustering effect. The statistical
tests are based on the Wald test for the equality of the estimated coefficients of treatment dummies.
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We observe that the grand coalition is formed more frequently under the semi-

structured procedure than under the structured procedure, both for the demand-based

and the offer-based procedures regardless of the existence of chat in game 1, and when

chat is allowed for game 3. In games 2 and 4, there is no significant difference between

the semi-structured and structured offer-based procedure. For the demand-based proce-

dures, the grand coalition is more frequently formed under the semi-structured ones than

structured one, and significantly so when chat is not allowed in game 2 and when chat is

allowed in game 4. Among semi-structured procedures, there are cases where chat sig-

nificantly facilitates the formation of the grand coalition (game 1 for the offer-based and

game 3 for the demand-based procedure). Conditionnal on whether the freefrom chat is

possible or not, we do not observe significant difference between the demand-based and

the offer-based semi-structured procedures in none of the four games.

Figure 2 shows the efficiency across treatments in each game. The efficiency is de-

fined as the share of the sum of the points obtained by four players relative to the worth

of the grand coalition.14 Because the efficiency is higher when the grand coalition is

formed more frequently, the results are similar to the frequencies of the grand coali-

tion formation we have discussed above. However, it is important to notice that even

when the grand coalition is formed, the resulting share can still be inefficient. Thus, this

additional analysis is of interest. In our results, efficiency is significantly higher, both

for the demand-based and the offer-based, under semi-structured procedure with chat

than structured procedure in games 1 and 3. For games 2 and 4, while the efficiency

is not significantly different between structured and semi-structured offer-based proce-

dures, in case of the demand-based procedure, it is higher under semi-structured than

14The figure is created based on the estimated coefficients of the linear regressions similar to the fre-
quencies of the grand coalition formation except the dependent variable is now the efficiency.
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Figure 2: Efficiency

(a) Game 1 (b) Game 2
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(c) Game 3 (d) Game 4
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Note: Error bars show one standard error range. ***, **, and * indicates the proportion of times the grand coalition formed being

significantly different between two treatments at 1%, 5%, and 10% significance level, respectively (Wald test). The “n.s.” indicate

the absence of significant difference at 10% level between the two treatments compared.

the structured procedure (without chat in game 2 and with chat in game 4).

4.2 Allocations

In the previous section, we examined our allocation payoffs from the perspective of the

resulting social welfare. Now, we turn our attention to an individual-level analysis, i.e.,

investigating the results of each player, depending on his/her role in the games.

Figure 3 shows the mean payoffs for each player in the four games. Treatments are

divided into those demand-based (without chat (No C.), with chat (chat), and Winter)

and those offer-based (without chat (No C.), with chat (chat), and H–MC). The horizon-
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Figure 3: Mean payoffs for each player in each treatment
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Game 3: Demand Based Game 3: Offer Based
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Game 4: Demand Based Game 4: Offer Based
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Note: the horizontal lines indicate the Shapley values. Error bars show one standard error range. ***, **, and * indicate the average

payoff being significantly different from the Shapley value at 1, 5, and 10 % significance level (Wald test).
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tal lines indicate the Shapley values for each player in each game. The mean and the

standard errors are obtained by running a set of ordinary least squares (OLS) regressions

for the following system of equations for each treatment separately:

π1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π4 = d1g1 + d2g2 + d3g3 + d4g4 + u4

(1)

where πi is the payoff of player i, gj is a dummy variable that takes a value of 1 if the

game j ∈ {1, 2, 3, 4} is played, and zero otherwise. Because participants play all four

games twice, we correct the standard errors for within-group clustering effects. Note

that the estimated coefficients aj , bj , cj , and dj are the average payoffs in game j for

players 1, 2, 3, and 4, respectively.

We observe that mean payoff of player 4 is significantly lower than the Shapley

value, at at least 5% significance level, in all the games and all the treatments. In terms

of treatment differences, we observe that the average payoffs tend to be lower under

Winter and H–MC than the corresponding semi-structured ones. As a result, the average

payoffs deviate significantly from the Shapley values for more players in more games

under the structured than under the semi-structured procedure.

Furthermore, there is a notable difference in terms of the average payoff of the null

player, i.e., player 1 in game 2, between the structured and semi-structured procedures.

On one hand, in Winter, the average payoff of the null player was zero and equal to the

Shapley value. On the other hand, in H–MC, the average payoff of the null player is

much higher. The average payoffs of the null player under the semi-structured experi-

ments are between Winter and H–MC, and is higher when chat is possible. As we will
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see next, the null player property tend to fail by a larger extent under the offer-based ex-

periment than under the demand-based experiment regardless of whether it is structured

(Winter vs H–MC as shown by Chessa et al., 2023b) or semi-structured, although the

difference is smaller in the latter. We now investigate the sources of the deviation of the

realized allocation of the Shapley value.

We observe that both the higher average payoff for the null player (the one with a

zero Shapley value) and the generally lower payoff for the fourth player (the one with the

highest Shapley value) align with the observable tendency towards an equal distribution

of shares. This matter, largely documented in the literature, will be further discussed in

Section 4.4.

4.3 Shapley distance

To understand in greater detail why the realized allocations diverge so significantly

from the Shapley value prediction, we apply the approach of Aguiar et al. (2018) to

decompose the deviation15 into the failure of efficiency, symmetry, additivity, and null

player property.16 The same method of decomposition is used in Chessa et al. (2022,

2023a,b) in their experiments on structured mechanisms. Although the procedure of

the decomposition is presented in these previous papers, in order for this paper to be

self-contained, we re-present it here.

Let π be the realized allocation (i.e., vector of payoffs) in a game. First, we find an

allocation, πsym, that satisfies the symmetry and is closest to π. We do so by summing

15Rapoport (1987) considers alternative metrics to measure the distance between payoff vectors and
solution concepts such as the Bonacich’s error measure (Bonacich, 1979) and the net rate of success
(Selten and Krischker, 1983).

16Aguiar et al. (2018) decompose the deviation into the failure of efficiency, symmetry, and marginality.
While these three components are orthogonal to each other, in our decomposition, the failure due to
additivity and null player property are not orthogonal.

27



the payoffs obtained by symmetric players s (players 2 and 3 in games 1 and 4) and

divide it equally among them. That is, in games 1 and 4, πsyms =
∑

s∈{2,3} πs/2. For

other players k, πsymk = πk.

Second, we find a new allocation, πsym,eff , that satisfies efficiency and is closest to

πsym. For each player i = 1, 2, 3, 4, πsym,effi = πsymi + [v(N)−
∑

j∈N πj]/4.

Third, we find yet another allocation, πsym,eff,null, that satisfies null player property

and is closest to πsym,eff . For a null player n (player 1 in game 2), πsym,eff,nulln = 0.

And for other players j in the game, πsym,eff,nullj = πsym,effj +πsym,effn /3. That is, three

other players in the game equally share πsym,effn of the null player. If there is no null

player, πsym,eff,nulli = πsym,effi for all i.

Let esymi = πi − πsymi , eeffi = πsymi − πsym,effi , enulli = πsym,effi − πsym,eff,nulli , and

eaddi = πsym,eff,nulli − φi(v) for all i.

Aguiar et al. (2018, Theorem 3) shows that an allocation π from game v can be

decomposed as π = φ(v) + esym + eeff + enull + eadd. Therefore, the Shapley error,

eφ = π− φ(v), is eφ = esym+ eeff + enull + eadd, and the Shapley distance, ||eφ||2, can

be decomposed into

||eφ||2 = ||esym||2 + ||eeff ||2 + ||enull||2 + ||eadd||2 + 2 < eadd, enull >

where < ·, · > is the scalar product and for any vector y ∈ Rn, ||y||2 =< y, y >=∑
i∈N y

2
i . As noted above, in general, vectors enull and eadd are not orthogonal so that

< eadd, enull > is not equal to zero. Its magnitude, however, is much smaller than the

remaining components in our experimental data.

We perform the Shapley distance decomposition of each realized allocation and the

corresponding Shapley value, and compute the average distance, pooling data of all
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Table 7: Result of Shapley distance decomposition. Based on pooling the data of all
groups and all games

||esym||2 ||eeff ||2 ||enull||2 ||eadd||2 ||eφ||2
Demand-Based 16.03 448.09 7.03 216.50 687.59

No chat (5.29) (127.33) (1.37) (20.29) (145.27)
Demand-Based 10.53 241.08 19.45 281.07 552.09

With chat (4.96) (76.67) (6.34) (28.56) (98.00)
Offer-Based 7.98 478.02 13.49 164.30 663.74

No chat (1.78) (74.28) (2.73) (11.71) (64.54)
Offer-Based 0.07 363.13 25.64 211.55 600.37

With chat (0.07) (119.73) (6.94) (13.49) (115.54)
Winter 85.18 606.81 7.28 321.49 1020.68

(18.55) (99.11) (1.83) (14.95) (70.63)
H–MC 38.19 429.96 63.97 270.84 802.88

(12.45) (52.23) (8.08) (20.25) (61.32)
No. Obs 1040 1040 1040 1040 1040
R2 0.121 0.146 0.079 0.343 0.300

p-value∗ 0.0047 0.0068 0.0000 0.0000 0.0007
Note: Standard errors are corrected for session-level clustering effects and shown
in parentheses. < eadd, enull > are not reported in the table as they are negligible
(the mean values are 0.0020, 0.0031, 0.0039, 0.0046, 0.0026, 0.0093 for demand-
based no chat, demand-based with chat, offer-based no chat, offer-based with chat,
Winter, and H–MC, respectively.).
*: The null hypothesis is the estimated coefficients of four treatment dummies
(excluding Winter and H–MC) are the same (Wald test).

groups and all games, to compare across four treatments by regressing each of them onto

four treatment dummies (without constant).17 Results of the regressions are presented

in Table 7.

Column ||eφ||2 of Table 7 shows that the Shapley distance is lower under the semi-

17Namely, we run the following regressions ||ei||2 = β1ONCi + β2OCi + β3DNCi + β4DCi +
β5Winteri + β6H − MCi + µi where ||ei||2 is the decomposed distance in group i, ONCi, OCi,
DNCi, DCi, Winteri, H −MCi are dummy variables that take value 1 if the treatment is offer based
no chat (ONC), offer based with chat (OC), demand based no chat (DNC), demand based with chat
(DC), Winter, and H–MC, respectively, and zero otherwise. The standard errors are corrected for within
session clustering effect. The statistical tests are based on the Wald test for the equality of the estimated
coefficients of treatment dummies.
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Table 8: p-values for pair-wise comparisons

||esym||2
Test p-value
Demand, No Chat vs Demand, With Chat 0.323
Offer, No Chat vs Offer, With Chat 0.867
Demand, No Chat vs Offer, No Chat 0.361
Demand, With Chat vs Offer, With Chat 0.859
Demand, No Chat vs Winter 0.220
Demand, With Chat vs Winter 0.041∗∗

Offer, No Chat vs H–MC 0.552
Offer, With Chat vs H–MC 0.550

||eeff ||2
Test p-value
Demand, No Chat vs Demand, With Chat 0.131
Offer, No Chat vs Offer, With Chat 0.441
Demand, No Chat vs Offer, No Chat 0.859
Demand, With Chat vs Offer, With Chat 0.309
Demand, No Chat vs Winter 0.346
Demand, With Chat vs Winter 0.014∗∗

Offer, No Chat vs H–MC 0.607
Offer, With Chat vs H–MC 0.619

||enull||2
Test p-value
Demand, No Chat vs Demand, With Chat 0.135
Offer, No Chat vs Offer, With Chat 0.078∗

Demand, No Chat vs Offer, No Chat 0.003∗∗∗

Demand, With Chat vs Offer, With Chat 0.637
Demand, No Chat vs Winter 0.913
Demand, With Chat vs Winter 0.092∗

Offer, No Chat vs H–MC 0.0001∗∗∗

Offer, With Chat vs H–MC 0.0042∗∗∗

||eadd||2
Test p-value
Demand, No Chat vs Demand, With Chat 0.102
Offer, No Chat vs Offer, With Chat 0.063∗

Demand, No Chat vs Offer, No Chat 0.035∗∗

Demand, With Chat vs Offer, With Chat 0.107
Demand, No Chat vs Winter 0.0022∗∗∗

Demand, With Chat vs Winter 0.249
Offer, No Chat vs H–MC 0.0008∗∗∗

Offer, With Chat vs H–MC 0.0330∗∗

||eφ||2
Test p-value
Demand, No Chat vs Demand, With Chat 0.364
Offer, No Chat vs Offer, With Chat 0.627
Demand, No Chat vs Offer, No Chat 0.891
Demand, With Chat vs Offer, With Chat 0.699
Demand, No Chat vs Winter 0.064∗

Demand, With Chat vs Winter 0.0026∗∗∗

Offer, No Chat vs H–MC 0.146
Offer, With Chat vs H–MC 0.150
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structured bargaining than Winter or H–MC. As one can observe from Table 8, however,

among these differences between semi-structured and structured procedures, the differ-

ence between the demand-based and Winter is only marginally statistically significant

(at 5% level and 10% level for with chat vs Winter and without chat vs Winter, respec-

tively). Tables 7 and 8 further shows that this significant difference of ||eφ||2 between

the demand-based with chat and Winter is due to the significant difference in ||esym||2

and ||eeff ||2, and the difference between the demand-based without chat and Winter is

due to the difference in ||eadd||2.

Other significant differences between semi-structured experiments and structured

ones are ||enull||2 and ||eadd||2 between offer-based protocol (with and without chat)

and H–MC. As we have seen in Figure 3, the average payoffs of the null player was

particularly high in H–MC, compared to the other treatments. Chessa et al. (2023b)

conjectured this to be caused by proposers trying to avoid their proposal to be rejected

by the null player. Indeed, in the version of H–MC considered in Chessa et al. (2023b), it

was not possible for the proposer to propose a coalition excluding the null player unless

the null player has been removed from the game already. In the semi-structured offer-

based protocol, it is possible for non-null players to propose such a coalition without

fear of the null player rejecting it. The possibility of chat makes is more likely for the

null player property to be violated both under the demand-based and the offer-based

protocols although the differences, from the treatment without chat, are not statistically

significant.18

18In the same vein,Kahan and Rapoport (1980b) demonstrated that the presence or absence of messages
(conditions R and N in their paper, respectively) affects their discrepancy score index from the bargaining
sets defined as the mean absolute deviation of each player’s payoff in a winning coalition from his quota.
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Table 9: Eight allocation types

Type Example Description
1: Eff, Equal, WCR {25,25,25,25} in game 1

∑
i πi = v(N), πi = πj

for all i, j ∈ GC, WCR
2: Eff, Not Equal, WCR {0,33,33,34} in game 2

∑
i πi = v(N), πi 6= πj

for some i, j ∈ GC, WCR
3: Eff, Equal, Not WCR {25,25,25,25} in game 2

∑
i πi = v(N), πi = πj

for all i, j ∈ GC, Not
WCR

4: Eff, Not Equal, Not
WCR

{1,33,33,33} in game 2
∑

i πi = v(N), πi 6= πj
for some i, j ∈ GC, Not
WCR

5: Not Eff, Equal, WCR {24,24,24,24} in game 1
∑

i πi < v(N), πi = πj
for all i, j ∈ GC, WCR

6: Not Eff, Not Equal,
WCR

{15,15,20,30} in game 1
∑

i πi < v(N), πi 6= πj
for some i, j ∈ GC, WCR

7: Not Eff, Equal, Not
WCR

{0,33,33,33} in game 2
∑

i πi < v(N), πi = πj
for all i, j ∈ GC, Not
WCR

8: Not Eff, Not Equal, Not
WCR

{0,30,30,35} in game 2
∑

i πi < v(N), πi 6= πj
for some i, j ∈ GC, Not
WCR

Note: WCR stands for satisfying the weak coalitional rationality. GC stands for the grand coalition.

4.4 The realized allocations within the grand coalition

In the final part of this results session, we investigate the realized allocations within the

grand coalition (including {2,3,4} in game 2), to better understand the previous results.

We focus on grand coalition because it is important to stress that potential differences

with the theoretical prediction are not only the consequence of failing to form the grand

coalition, but also on the final allocations even when players manage to form it.

We categorize various allocations into eight types, summarized with examples in

Table 9, depending on whether they are efficient, they respect equal sharing (i.e., πi =
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πj for all i, j ∈ GC), and they satisfy a weak coalitional rationality argument. As

we have already previously stated, formation of the grand coalition does not always

coincide with efficiency. Surprisingly, in fact, players could form the grand coalition

while “wasting” some value. As also previously observed, investigating about equal

sharing, in particular when the grand coalition is formed, is a crucial matter. Previous

studies have shown the tendency of individuals to go for the equal sharing (Murnighan

and Roth, 1977). It may be speculated that the possibility of communicating through

a chat may bring even more often to the equal sharing. Note that the equal division

solution is an allocation satisfies both the efficiency and the equal sharing. Finally, we

check whether the allocation x satisfies the weak coalitional rationality (WCR), namely,

whether x(S) ≥ v(S) ∀S ⊂ N . In words, the sum of payoffs obtained by members

of all the possible coalitions under the realized allocation is no less than their worth,

except for the grand coalition. The allocations that are efficient and satify WCR (types

1 and 2 in Table 9) belongs to the core. In this sense, checking for efficiency and WCR

separately can be interpreted as a way to decompose why some given allocations do

not belong to the core. Investigating for WCR, moreover, is essential for checking if,

regardless of the possible inefficiency of a proposed share, the allocation is still stable

against possible departure of smaller groups of players.

Tables 10 and 11 show the frequencies of observed allocation types, among those

formed the grand coalition, in each treatment for games 1 and 4 and games 2 and 3,

respectively. See Appendix B for list of the realized allocations, among those formed

the grand coalition, in each game and treatment.

For games 1 and 4 shown in Table 10, we observe most allocations belong to the core

(i.e., types 1 and 2). Even among those cases that do not belong to the core because

they are not efficient (only observed under demand-based), only 1 or 2 fail to satisfy
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Table 10: Frequencies of realized allocation types for games 1 and 4
Game 1
Demand-based Offer-based

Allocation Type No Chat Chat Winter No Chat Chat H-MC
1: Eff, Equal, WCR 17 30 0 17 34 11
2: Eff, Not Equal, WCR 15 1 16 17 5 14
3: Eff, Equal, Not WCR 0 0 0 0 0 0
4: Eff, Not Equal, Not WCR 0 0 0 0 0 0
5: Not Eff, Equal, WCR 0 0 0 0 0 0
6: Not Eff, Not Equal, WCR 5 3 5 0 0 0
7: Not Eff, Equal, Not WCR 0 0 0 0 0 0
8: Not Eff, Not Equal, Not WCR 1 0 2 0 0 0
in the core 32 31 16 34 39 25
not in the core 6 3 7 0 0 0
total 38 34 23 34 39 25

Game 4
Demand-based Offer-based

Allocation Type No Chat Chat Winter No Chat Chat H-MC
1: Eff, Equal, WCR 16 24 0 13 26 14
2: Eff, Not Equal, WCR 9 7 16 22 8 16
3: Eff, Equal, Not WCR 0 0 0 0 0 0
4: Eff, Not Equal, Not WCR 0 0 0 0 0 0
5: Not Eff, Equal, WCR 0 2 0 0 0 0
6: Not Eff, Not Equal, WCR 4 1 4 0 0 0
7: Not Eff, Equal, Not WCR 0 0 0 0 0 0
8: Not Eff, Not Equal, Not WCR 0 1 1 0 0 0
in the core 25 31 16 35 34 30
not in the core 4 4 5 0 0 0
total 29 35 21 35 34 30

WCR. Furthermore, the equal division solution (that is, type 1 allocation in these games)

accounts for almost a half of the cases in both the demand-based and the offer-based

semi-structured procedures without chat. Similar observation can be made for H-MC.

The equal division solution is even more frequently observed in semi-structured

procedures when chat is allowed. It is only under Winter that it is not observed. This

prevalence of the equal division solution can easily explain the reason behind the aver-
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Table 11: Frequencies of realized allocation types for games 2 and 3
Game 2
Demand-based Offer-based

Allocation Type No Chat Chat Winter No Chat Chat H-MC
1: Eff, Equal, WCR 0 0 0 0 0 0
2: Eff, Not Equal, WCR 21 18 25 27 20 7
3: Eff, Equal, Not WCR 0 2 0 0 2 2
4: Eff, Not Equal, Not WCR 2 2 0 3 7 16
5: Not Eff, Equal, WCR 0 0 0 0 0 0
6: Not Eff, Not Equal, WCR 0 0 0 0 0 0
7: Not Eff, Equal, Not WCR 6 3 0 0 0 0
8: Not Eff, Not Equal, Not WCR 7 8 2 0 0 0
in the core 21 18 25 27 20 7
not in the core 15 15 2 3 9 18
total 36 33 27 30 29 25

Game 3
Demand-based Offer-based

Allocation Type No Chat Chat Winter No Chat Chat H-MC
1: Eff, Equal, WCR 0 0 0 0 0 0
2: Eff, Not Equal, WCR 16 7 4 16 17 6
3: Eff, Equal, Not WCR 1 18 0 5 11 9
4: Eff, Not Equal, Not WCR 2 0 0 2 3 4
5: Not Eff, Equal, WCR 0 0 0 0 0 0
6: Not Eff, Not Equal, WCR 2 1 2 0 0 0
7: Not Eff, Equal, Not WCR 0 0 0 0 0 0
8: Not Eff, Not Equal, Not WCR 0 0 0 0 0 0
in the core 16 7 4 16 17 6
not in the core 5 19 2 7 14 13
total 21 26 6 23 31 19

age payoff of player 4s being smaller than the Shapley value, as well as why the Shapley

distance due to the violation of additivity tends to be larger with chat than without chat.

For games 2 and 3 shown in Table 11 allocations do not belong to the core (i.e.,

types 3 to 8) is more frequently observed, compared to games 1 and 4. As in games 1

and 4, failure of the efficiency is observed only in demand-based. Among the efficient

allocations, however, there are cases, especially so in offer-based, in which WCR is not
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satisfied.

This difference, between games 1 and 4 and games 2 and 3 is mainly due to the

equal division solution not belonging to the core in the latter. To see this, one can easily

check that the worth of a three player coalition {2, 3, 4} is greater than the sum of the

payoff for these three players under the equal division solution (75 < 100 in case of

game 2, and 150 < 160 in case of game 3). However, in game 3, under semi-structured

procedure with chat, the equal division solution (type 3) is realized frequently both for

the demand-based (18 out of 26) and the offer-based procedure (11 out of 31). Thus,

just as in games 1 and 4, the possibility of chat pushes the allocation toward the equal

division solution.19

However, the chat does not pushes the allocation toward equal division solution

when a null player exsts (game 2). For this game, the most frequently observed alloca-

tions are type 2, i.e., the efficient, non-equal one that satify WCR (thus belong to the

core), except in H-MC. In these allocations, coalition without the null player {2, 3, 4} is

formed and the worth of grand coalition is fully shared among the members, with one

of the members obtaining slightly higher payoff than the others (thus, close to equal

sharing, see Appendix B). In the semi-structured demand based procedure without chat,

there are also cases where these three players obtain 33 points each leaving 1 point aside

(type 6 allocation, not efficient but equal, and does satify WCR).

19Interestingly, we observe the following differences in the proposals or demand with and without chat
in semi-structured procedures in game 3. In the offer-based case, coalition {2, 3, 4} is proposed 29 times
out of a total of 154 proposals with chat (18.8%), and without chat, it is 59 times out of total of 226
(26.1%). This difference, however, is not statistically significant (p=0.1269, the proportion test). In the
demand-based case, the grand coalition is feasible when four players have submitted demand in 45 out
of 98 cases with chat (45.9%) while it is 40 out of 130 cases without chat (30.8%). This difference is
significant (p=0.0276, the proportion test). Also, in the demand-based case, when players 2, 3, and 4 have
submitted their demand, the sum of their demand is between 151 and 160 (thus, better than equal sharing
among four and feasible) 32 out of 157 cases with chat (20.4%) while it is 73 out of 195 cases without
chat (37.4%). This difference is also significant (p<0.001, the proportion test).
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Table 12: Frequencies of allocations when the coalition {2, 3, 4} is formed in game 3

Demand-Based Offer-Based
No Chat Chat Winter No Chat Chat H–MC

Better than the equal division 7 6 8 13 9 4
Others 3 2 19 1 0 1
total 10 8 27 14 9 5

4.4.1 Further investigation of Game 3

Table 6 showed that the coalition {2, 3, 4} was formed frequently in game 3 when play-

ers failed to form the grand coalition. As noted above, in this game, the worth of coali-

tion v({2, 3, 4}) = 160 is higher than the sum of payoffs to its three members under

the equal division solution. Participants are aware of this as such a discussion appear,

although only a few times (4 times both in the offer-based and in the demand-based)

in our chat data. As a result, we have observed that without chat, the equal division

solution is not frequently observed in this game. Indeed, except for Winter, in most

of the cases when coalition {2, 3, 4} was formed, at least one of its members receiving

more than 50 (indicated as “Better than the equal division”) was observed as shown in

Table 12.

5 Concluding remarks

Unstructured, or, in our case, semi-structured bargaining experiments, have been argued

to more closely resemble real-world bargaining situations, suggesting that, after many

decades, it is time for a revival of unstructured bargaining experiments (Karagözoğlu,

2019). This paper seeks to contribute to this body of literature by experimentally com-

paring the outcomes of “structured” versus “semi–structured” bargaining experiments.
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Specifically, it contrasts the experimental results of two mechanisms that implement

the Shapley value (Shapley, 1953) as an ex-ante equilibrium outcome, as considered in

Chessa et al. (2023b): simplified versions of the demand-based mechanism proposed by

Winter (1994) and the offer-based mechanism proposed by Hart and Mas-Colell (1996),

with the outcomes of two corresponding, but much less structured, bargaining proce-

dures. In doing so, this paper also contributes to the literature on the Nash program

(Nash, 1953).

We found that semi-structured bargaining procedures led to a significantly higher

frequency of grand coalition formation and greater efficiency compared to structured

procedures. This outcome is partly because participants in the former could explore a

wider range of proposals or demands during negotiations than in the latter.

We also found significant differences in terms of the duration of the negotiations

or the likelihood of complete failure of the negotiation (such that no coalition is be-

ing formed) between the offer-based and the demand based semi-structured procedures.

However, unlike the sharp differences between the outcomes of the demand-based and

the offer-based structured bargaining reported by Chessa et al. (2023b) in terms of fre-

quency of the grand coalition formation, efficiency, and the way realized allocations

deviate from the Shapley value, no significant differences between the demand-based

and the offer-based semi-structured bargaining procedures arose in these dimensions,

except that the null player property and additivity are violated by a larger extent under

the latter than the former when there is no chat. In terms of the design of bargaining

experiments, this result is encouraging because it suggests that when the participants

are less constrained in terms of the timing and the number of times they can act, the

outcomes of the negotiations become similar regardless of whether the protocol is an

offer-based or a demand-based. Finally, the possibility of freefrom communication via

38



online chat in semi-structured bargaining procedures led players toward an equal divi-

sion outcome.

Our findings suggest that one should carefully consider the potential effects of vari-

ous restrictions imposed by different mechanisms–such as who can act and when–while

also accounting for behavioral biases and cognitive limitations. When it comes to bar-

gaining and coalition formation, in fact, not having various restrictions imposed by dif-

ferent mechanisms may lead to more desirable outcomes. More broadly, our results

align with the extensive literature supporting Adam Smith’s ‘invisible hand’ (Roth-

schild, 1994) and the possibility of cooperation without coercion (Friedman, 2016).

The directions for future research are many and challenging. At first, in our ex-

periment we used only the four games considered by Chessa et al. (2022, 2023a,b),

in order to make a direct comparison with previous experimental investigations. As a

first step, future studies should consider more varieties of games (with empty-core, non-

superadditive, non-convex, with more than four players, or more general games such

as partition function games (Thrall and Lucas, 1963)) to better understand the possible

impacts of various behavioral biases, such as fairness consideration and loss aversion, in

advancing Nash program while incorporating the fruits of the advances in the behavioral

and experimental economics. Testing our unstructured and semi-structured bargaining

mechanisms for a wider range of games can confirm or question the results of this paper.

But the most challenging future direction is to further investigate the impact of our re-

sults, and why they differ from some established literature, illustrated in the Introduction

of this paper, on the importance of designing and regulating markets and the validation

of these theoretical interventions in many experimental and field applications. Future

research should investigate the reasons for such differences if our results are applicable

to a wide range of bargaining situations. This will allow us to understand which mech-
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anisms are better for facilitating cooperation, if any, and under what circumstances.
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A Instructions

English translation of instructions (of the game and of the experimental software) as well

as comprehension quiz are available at https://osf.io/kqw6n/?view_only=

ea41e1284a1347d09760fba82fda37ea

File names starting with demand-based are for the demand-based treatments, and

those starting with offer-based are for the offer-based treatments.

B Allocations within Grand Coalition

In this appendix, we list the frequencies of the realized allocation within the grand
coalition (including {2, 3, 4} in game 2). In each table, type corresponds to the type of
allocation described in Section 4.4, allocation in the form of {π1, π2, π3, π4}, freq. is
the frequency of the realization, efficiency is

∑
πi∈GC/v(N), Dis. Eq. is the sum of the

squared deviation from the equal devision within the grand coalition (GC)
∑

i∈GC(πi−∑
πi∈GC/|GC|)2, ∈ Core = 1 when the allocation belongs to the core, and = 0 oth-

erwise, No. Block is the number of coalitions that can potentially block the realized
coalition by offering at least one of its members are better payoff, and Block is the
largest coalition among such blocking coalitions. Allocations are sorted according to
the type, frequency, efficiency and the distance from the equal devision.

48

https://osf.io/kqw6n/?view_only=ea41e1284a1347d09760fba82fda37ea
https://osf.io/kqw6n/?view_only=ea41e1284a1347d09760fba82fda37ea


Table 13: Realized allocations. Game 1. Demand-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 25,25,25,25 17 1.000 0.000 1 0
3 20,25,25,30 2 1.000 50.000 1 0
3 25,25,20,30 2 1.000 50.000 1 0
3 25,20,30,25 2 1.000 50.000 1 0
3 25,25,30,20 1 1.000 50.000 1 0
3 20,25,30,25 1 1.000 50.000 1 0
3 20,20,30,30 1 1.000 100.000 1 0
3 15,25,30,30 1 1.000 150.000 1 0
3 30,30,15,25 1 1.000 150.000 1 0
3 20,25,20,35 1 1.000 150.000 1 0
3 20,15,30,35 1 1.000 250.000 1 0
3 20,20,20,40 1 1.000 300.000 1 0
3 10,30,20,40 1 1.000 500.000 1 0
7 25,25,20,25 1 0.950 18.750 1 0
7 20,25,25,25 1 0.950 18.750 1 0
7 20,20,25,25 1 0.900 25.000 1 0
7 20,25,25,27 1 0.970 26.750 1 0
7 15,15,20,30 1 0.800 150.000 1 0
8 15,15,25,5 1 0.600 200.000 0 6 124

Table 14: Realized allocations. Game 1. Demand-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 25,25,25,25 30 1.000 0.000 1 0
3 25,15,25,35 1 1.000 200.000 1 0
7 25,23,25,25 1 0.980 3.000 1 0
7 25,20,25,25 1 0.950 18.750 1 0
7 15,20,30,25 1 0.900 125.000 1 0
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Table 15: Realized allocations. Game 1. Demand-based. Winter
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

3 20,20,30,30 2 1.000 100.000 1 0
3 29,26,20,25 1 1.000 42.000 1 0
3 25,25,20,30 1 1.000 50.000 1 0
3 25,30,20,25 1 1.000 50.000 1 0
3 30,25,25,20 1 1.000 50.000 1 0
3 20,25,30,25 1 1.000 50.000 1 0
3 20,30,30,20 1 1.000 100.000 1 0
3 34,23,23,20 1 1.000 114.000 1 0
3 30,25,15,30 1 1.000 150.000 1 0
3 30,30,15,25 1 1.000 150.000 1 0
3 14,25,31,30 1 1.000 182.000 1 0
3 30,30,10,30 1 1.000 300.000 1 0
3 15,20,25,40 1 1.000 350.000 1 0
3 5,30,30,35 1 1.000 550.000 1 0
3 14,23,15,48 1 1.000 754.000 1 0
7 25,25,20,15 1 0.850 68.750 1 0
7 32,15,17,28 1 0.920 206.000 1 0
7 38,21,15,25 1 0.990 284.750 1 0
7 10,34,25,25 1 0.940 297.000 1 0
7 35,10,30,20 1 0.950 368.750 1 0
8 25,20,10,25 1 0.800 150.000 0 1 234
8 5,33,30,12 1 0.800 558.000 0 3 134

Table 16: Realized allocations. Game 1. Offer-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 25,25,25,25 17 1.000 0.000 1 0
3 20,25,25,30 3 1.000 50.000 1 0
3 10,30,30,30 3 1.000 300.000 1 0
3 22,26,26,26 2 1.000 12.000 1 0
3 25,25,24,26 1 1.000 2.000 1 0
3 24,26,26,24 1 1.000 4.000 1 0
3 23,25,25,27 1 1.000 8.000 1 0
3 21,26,26,27 1 1.000 22.000 1 0
3 20,25,27,28 1 1.000 38.000 1 0
3 19,27,27,27 1 1.000 48.000 1 0
3 20,22,28,30 1 1.000 68.000 1 0
3 20,21,30,29 1 1.000 82.000 1 0
3 16,28,28,28 1 1.000 108.000 1 0
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Table 17: Realized allocations. Game 1. Offer-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 25,25,25,25 34 1.000 0.000 1 0
3 10,30,30,30 2 1.000 300.000 1 0
3 20,25,25,30 1 1.000 50.000 1 0
3 16,27,27,30 1 1.000 114.000 1 0
3 8,30,30,32 1 1.000 388.000 1 0

Table 18: Realized allocations. Game 1. Offer-based. H-MC.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 25,25,25,25 11 1.000 0.000 1 0
3 23,31,23,23 3 1.000 48.000 1 0
3 20,25,25,30 2 1.000 50.000 1 0
3 28,24,24,24 1 1.000 12.000 1 0
3 21,25,25,29 1 1.000 32.000 1 0
3 23,23,31,23 1 1.000 48.000 1 0
3 22,22,31,25 1 1.000 54.000 1 0
3 21,23,31,25 1 1.000 56.000 1 0
3 34,22,22,22 1 1.000 108.000 1 0
3 23,35,22,20 1 1.000 138.000 1 0
3 15,25,25,35 1 1.000 200.000 1 0
3 15,20,20,45 1 1.000 550.000 1 0

51



Table 19: Realized allocations. Game 2. Demand-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

3 0,30,30,40 5 1.000 66.667 1 0
3 0,33,32,35 3 1.000 4.667 1 0
3 0,30,35,35 3 1.000 16.667 1 0
3 0,35,32,33 2 1.000 4.667 1 0
3 0,29,31,40 2 1.000 68.667 1 0
3 0,25,25,50 2 1.000 416.667 1 0
3 0,33,33,34 1 1.000 0.667 1 0
3 0,33,30,37 1 1.000 24.667 1 0
3 0,33,27,40 1 1.000 84.667 1 0
3 0,28,27,45 1 1.000 204.667 1 0
4 10,20,30,40 1 1.000 500.000 0 1 234
4 3,28,31,38 1 1.000 698.000 0 1 234
6 0,33,33,33 4 0.990 0.000 0 1 234
6 0,30,30,30 2 0.900 0.000 0 1 234
8 0,30,25,35 1 0.900 50.000 0 1 234
8 0,25,27,35 1 0.870 56.000 0 1 234
8 0,35,25,35 1 0.950 66.667 0 1 234
8 0,20,30,35 1 0.850 116.667 0 1 234
8 0,30,22,40 1 0.920 162.667 0 1 234
8 0,22,25,50 1 0.970 472.667 0 1 234
8 1,33,33,30 1 0.970 726.750 0 1 234
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Table 20: Realized allocations. Game 2. Demand-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 25,25,25,25 2 1.000 0.000 0 3 234
3 0,35,30,35 5 1.000 16.667 1 0
3 0,33,34,33 2 1.000 0.667 1 0
3 0,33,33,34 2 1.000 0.667 1 0
3 0,34,33,33 1 1.000 0.667 1 0
3 0,32,33,35 1 1.000 4.667 1 0
3 0,30,35,35 1 1.000 16.667 1 0
3 0,30,30,40 1 1.000 66.667 1 0
3 0,30,40,30 1 1.000 66.667 1 0
3 0,25,40,35 1 1.000 116.667 1 0
3 0,35,25,40 1 1.000 116.667 1 0
3 0,25,35,40 1 1.000 116.667 1 0
3 0,20,30,50 1 1.000 466.667 1 0
4 25,20,25,30 1 1.000 50.000 0 2 234
4 1,33,33,33 1 1.000 768.000 0 1 234
6 0,33,33,33 2 0.990 0.000 0 1 234
6 0,30,30,30 1 0.900 0.000 0 1 234
8 0,30,33,30 1 0.930 6.000 0 1 234
8 0,30,35,33 1 0.980 12.667 0 1 234
8 0,33,30,35 1 0.980 12.667 0 1 234
8 0,30,32,35 1 0.970 12.667 0 1 234
8 0,30,30,35 1 0.950 16.667 0 1 234
8 0,35,25,35 1 0.950 66.667 0 1 234
8 0,22,30,35 1 0.870 86.000 0 1 234
8 7,25,27,40 1 0.990 552.750 0 1 234
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Table 21: Realized allocations. Game 2. Demand-based. Winter
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

3 0,30,30,40 3 1.000 66.667 1 0
3 0,25,40,35 3 1.000 116.667 1 0
3 0,35,25,40 3 1.000 116.667 1 0
3 0,30,35,35 2 1.000 16.667 1 0
3 0,25,35,40 2 1.000 116.667 1 0
3 0,25,30,45 2 1.000 216.667 1 0
3 0,34,34,32 1 1.000 2.667 1 0
3 0,32,33,35 1 1.000 4.667 1 0
3 0,30,37,33 1 1.000 24.667 1 0
3 0,30,39,31 1 1.000 48.667 1 0
3 0,32,29,39 1 1.000 52.667 1 0
3 0,30,29,41 1 1.000 88.667 1 0
3 0,25,41,34 1 1.000 128.667 1 0
3 0,30,25,45 1 1.000 216.667 1 0
3 0,29,25,46 1 1.000 248.667 1 0
3 0,35,20,45 1 1.000 316.667 1 0
8 0,25,30,40 1 0.950 116.667 0 1 234
8 0,25,25,42 1 0.920 192.667 0 1 234

Table 22: Realized allocations. Game 2. Offer-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

3 0,30,30,40 10 1.000 66.667 1 0
3 0,33,33,34 4 1.000 0.667 1 0
3 0,30,35,35 3 1.000 16.667 1 0
3 0,34,33,33 2 1.000 0.667 1 0
3 0,31,31,38 2 1.000 32.667 1 0
3 0,33,34,33 1 1.000 0.667 1 0
3 0,32,34,34 1 1.000 2.667 1 0
3 0,31,34,35 1 1.000 8.667 1 0
3 0,34,31,35 1 1.000 8.667 1 0
3 0,32,32,36 1 1.000 10.667 1 0
3 0,29,29,42 1 1.000 112.667 1 0
4 20,30,25,25 1 1.000 50.000 0 2 234
4 10,30,30,30 1 1.000 300.000 0 1 234
4 1,33,33,33 1 1.000 768.000 0 1 234
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Table 23: Realized allocations. Game 2. Offer-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 25,25,25,25 2 1.000 0.000 0 3 234
3 0,30,30,40 7 1.000 66.667 1 0
3 0,33,33,34 6 1.000 0.667 1 0
3 0,32,32,36 2 1.000 10.667 1 0
3 0,34,33,33 1 1.000 0.667 1 0
3 0,32,33,35 1 1.000 4.667 1 0
3 0,33,32,35 1 1.000 4.667 1 0
3 0,35,30,35 1 1.000 16.667 1 0
3 0,30,35,35 1 1.000 16.667 1 0
4 15,25,25,35 2 1.000 200.000 0 1 234
4 20,25,25,30 1 1.000 50.000 0 1 234
4 10,30,30,30 1 1.000 300.000 0 1 234
4 10,28,28,34 1 1.000 324.000 0 1 234
4 7,28,28,37 1 1.000 486.000 0 1 234
4 1,33,33,33 1 1.000 768.000 0 1 234
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Table 24: Realized allocations. Game 2. Offer-based. H–MC.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 25,25,25,25 2 1.000 0.000 0 3 234
3 0,33,33,34 2 1.000 0.667 1 0
3 0,33,34,33 1 1.000 0.667 1 0
3 0,30,35,35 1 1.000 16.667 1 0
3 0,37,27,36 1 1.000 60.667 1 0
3 0,30,30,40 1 1.000 66.667 1 0
3 0,25,40,35 1 1.000 116.667 1 0
4 15,25,25,35 3 1.000 200.000 0 1 234
4 24,24,28,24 1 1.000 12.000 0 3 234
4 25,20,25,30 1 1.000 50.000 0 2 234
4 21,23,24,32 1 1.000 70.000 0 1 234
4 21,21,27,31 1 1.000 72.000 0 2 234
4 21,23,23,33 1 1.000 88.000 0 1 234
4 22,22,22,34 1 1.000 108.000 0 2 234
4 15,25,30,30 1 1.000 150.000 0 1 234
4 20,22,22,36 1 1.000 164.000 0 2 234
4 20,20,20,40 1 1.000 300.000 0 2 234
4 11,27,27,35 1 1.000 304.000 0 1 234
4 10,25,30,35 1 1.000 350.000 0 1 234
4 10,27,27,36 1 1.000 354.000 0 1 234
4 10,20,40,30 1 1.000 500.000 0 2 234
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Table 25: Realized allocations. Game 3. Demand-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 50,50,50,50 1 1.000 0.000 0 1 234
3 40,50,50,60 3 1.000 200.000 1 0
3 40,53,50,57 2 1.000 158.000 1 0
3 40,60,50,50 2 1.000 200.000 1 0
3 40,56,50,54 1 1.000 152.000 1 0
3 40,55,40,65 1 1.000 450.000 1 0
3 35,50,50,65 1 1.000 450.000 1 0
3 35,45,53,67 1 1.000 548.000 1 0
3 30,50,60,60 1 1.000 600.000 1 0
3 40,50,40,70 1 1.000 600.000 1 0
3 30,60,60,50 1 1.000 600.000 1 0
3 25,60,45,70 1 1.000 1150.000 1 0
3 20,50,70,60 1 1.000 1400.000 1 0
4 50,50,40,60 1 1.000 200.000 0 1 234
4 47,40,53,60 1 1.000 218.000 0 1 234
7 30,50,50,60 1 0.950 475.000 1 0
7 15,50,60,70 1 0.975 1718.750 1 0

Table 26: Realized allocations. Game 3. Demand-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 50,50,50,50 18 1.000 0.000 0 1 234
3 40,50,60,50 2 1.000 200.000 1 0
3 30,60,50,60 1 1.000 600.000 1 0
3 25,60,55,60 1 1.000 850.000 1 0
3 25,50,60,65 1 1.000 950.000 1 0
3 20,50,60,70 1 1.000 1400.000 1 0
3 10,50,70,70 1 1.000 2400.000 1 0
7 15,50,50,60 1 0.875 1168.750 1 0

Table 27: Realized allocations. Game 3. Demand-based. Winter.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

3 30,51,45,74 1 1.000 1002.000 1 0
3 20,50,65,65 1 1.000 1350.000 1 0
3 10,70,60,60 1 1.000 2200.000 1 0
3 11,70,50,69 1 1.000 2282.000 1 0
7 20,45,84,50 1 0.995 2080.750 1 0
7 35,30,40,90 1 0.975 2318.750 1 0
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Table 28: Realized allocations. Game 3. Offer-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 50,50,50,50 5 1.000 0.000 0 1 234
3 35,51,51,63 2 1.000 396.000 1 0
3 25,55,55,65 2 1.000 900.000 1 0
3 20,60,60,60 2 1.000 1200.000 1 0
3 10,60,60,70 2 1.000 2200.000 1 0
3 40,55,55,50 1 1.000 150.000 1 0
3 38,55,49,58 1 1.000 234.000 1 0
3 35,55,55,55 1 1.000 300.000 1 0
3 31,54,54,61 1 1.000 514.000 1 0
3 30,55,55,60 1 1.000 550.000 1 0
3 30,50,50,70 1 1.000 800.000 1 0
3 25,55,60,60 1 1.000 850.000 1 0
3 25,60,55,60 1 1.000 850.000 1 0
4 47,47,47,59 1 1.000 108.000 0 1 234
4 45,45,45,65 1 1.000 300.000 0 1 234

Table 29: Realized allocations. Game 3. Offer-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 50,50,50,50 11 1.000 0.000 0 1 234
3 30,55,55,60 4 1.000 550.000 1 0
3 40,50,50,60 3 1.000 200.000 1 0
3 35,55,55,55 2 1.000 300.000 1 0
3 35,50,50,65 2 1.000 450.000 1 0
3 20,50,50,80 2 1.000 1800.000 1 0
3 38,52,52,58 1 1.000 216.000 1 0
3 35,52,53,60 1 1.000 338.000 1 0
3 31,53,53,63 1 1.000 548.000 1 0
3 25,55,55,65 1 1.000 900.000 1 0
4 45,51,51,53 1 1.000 36.000 0 1 234
4 45,50,50,55 1 1.000 50.000 0 1 234
4 41,53,53,53 1 1.000 108.000 0 1 234
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Table 30: Realized allocations. Game 3. Offer-based. H–MC.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

2 50,50,50,50 9 1.000 0.000 0 1 234
3 30,50,50,70 3 1.000 800.000 1 0
3 40,50,50,60 2 1.000 200.000 1 0
3 40,40,80,40 1 1.000 1200.000 1 0
4 50,55,40,55 1 1.000 150.000 0 1 234
4 50,45,45,60 1 1.000 150.000 0 1 234
4 50,50,40,60 1 1.000 200.000 0 1 234
4 55,35,55,55 1 1.000 300.000 0 1 234

Table 31: Realized allocations. Game 4. Demand-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 50,50,50,50 16 1.000 0.000 1 0
3 40,50,50,60 2 1.000 200.000 1 0
3 56,50,50,44 1 1.000 72.000 1 0
3 50,40,50,60 1 1.000 200.000 1 0
3 44,43,50,63 1 1.000 254.000 1 0
3 40,60,40,60 1 1.000 400.000 1 0
3 50,30,60,60 1 1.000 600.000 1 0
3 35,40,50,75 1 1.000 950.000 1 0
3 40,40,40,80 1 1.000 1200.000 1 0
7 50,50,50,45 1 0.975 18.750 1 0
7 45,40,40,55 1 0.900 150.000 1 0
7 30,30,50,70 1 0.900 1100.000 1 0
7 30,50,45,50 1 0.875 268.750 1 0

Table 32: Realized allocations. Game 4. Demand-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 50,50,50,50 24 1.000 0.000 1 0
3 40,50,50,60 3 1.000 200.000 1 0
3 45,52,53,50 1 1.000 38.000 1 0
3 50,50,40,60 1 1.000 200.000 1 0
3 30,50,60,60 1 1.000 600.000 1 0
3 30,40,50,80 1 1.000 1400.000 1 0
5 40,40,40,40 2 0.800 0.000 1 0
7 35,50,50,50 1 0.925 168.750 1 0
8 35,40,50,40 1 0.825 118.750 0 1 124
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Table 33: Realized allocations. Game 4. Demand-based. Winter.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

3 55,45,45,55 1 1.000 100.000 1 0
3 60,40,50,50 1 1.000 200.000 1 0
3 40,50,60,50 1 1.000 200.000 1 0
3 50,40,62,48 1 1.000 248.000 1 0
3 35,50,65,50 1 1.000 450.000 1 0
3 40,40,70,50 1 1.000 600.000 1 0
3 30,50,60,60 1 1.000 600.000 1 0
3 50,63,30,57 1 1.000 618.000 1 0
3 25,60,60,55 1 1.000 850.000 1 0
3 30,40,70,60 1 1.000 1000.000 1 0
3 66,30,35,69 1 1.000 1242.000 1 0
3 30,79,61,30 1 1.000 1762.000 1 0
3 50,50,20,80 1 1.000 1800.000 1 0
3 40,80,20,60 1 1.000 2000.000 1 0
3 40,30,40,90 1 1.000 2200.000 1 0
3 53,13,54,80 1 1.000 2294.000 1 0
7 70,45,50,25 1 0.950 1025.000 1 0
7 40,40,30,80 1 0.950 1475.000 1 0
7 60,66,25,35 1 0.930 1157.000 1 0
7 50,50,10,60 1 0.850 1475.000 1 0
8 15,50,40,50 1 0.775 818.750 0 2 134
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Table 34: Realized allocations. Game 4. Offer-based. No Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 50,50,50,50 13 1.000 0.000 1 0
3 40,50,50,60 6 1.000 200.000 1 0
3 47,51,51,51 2 1.000 12.000 1 0
3 35,55,55,55 2 1.000 300.000 1 0
3 49,51,50,50 1 1.000 2.000 1 0
3 48,50,51,51 1 1.000 6.000 1 0
3 51,51,51,47 1 1.000 12.000 1 0
3 52,45,51,52 1 1.000 34.000 1 0
3 44,52,52,52 1 1.000 48.000 1 0
3 50,45,55,50 1 1.000 50.000 1 0
3 50,50,45,55 1 1.000 50.000 1 0
3 43,51,51,55 1 1.000 76.000 1 0
3 42,52,52,54 1 1.000 88.000 1 0
3 40,50,55,55 1 1.000 150.000 1 0
3 35,50,50,65 1 1.000 450.000 1 0
3 20,65,50,65 1 1.000 1350.000 1 0

Table 35: Realized allocations. Game 4. Offer-based. With Chat.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 50,50,50,50 26 1.000 0.000 1 0
3 40,50,50,60 4 1.000 200.000 1 0
3 45,50,50,55 2 1.000 50.000 1 0
3 45,55,50,50 1 1.000 50.000 1 0
3 30,55,55,60 1 1.000 550.000 1 0
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Table 36: Realized allocations. Game 4. Offer-based. H–MC.
type allocation freq. efficiency Dis. Eq. ∈ Core No. Block Block

1 50,50,50,50 14 1.000 0.000 1 0
3 40,50,50,60 3 1.000 200.000 1 0
3 45,65,45,45 2 1.000 300.000 1 0
3 55,50,50,45 1 1.000 50.000 1 0
3 47,59,47,47 1 1.000 108.000 1 0
3 55,55,40,50 1 1.000 150.000 1 0
3 35,55,55,55 1 1.000 300.000 1 0
3 40,44,68,48 1 1.000 464.000 1 0
3 50,40,40,70 1 1.000 600.000 1 0
3 41,73,41,45 1 1.000 716.000 1 0
3 40,75,40,45 1 1.000 850.000 1 0
3 80,40,40,40 1 1.000 1200.000 1 0
3 30,35,60,75 1 1.000 1350.000 1 0
3 30,40,80,50 1 1.000 1400.000 1 0

62


	Introduction
	Theoretical background
	Cooperative TU games and solutions
	Winter and H-MC mechanisms

	The experimental design
	The games
	Treatments
	Offer-based protocol
	Demand-based protocol

	Results
	Grand coalition formation and efficiency
	Allocations
	Shapley distance
	The realized allocations within the grand coalition
	Further investigation of Game 3


	Concluding remarks
	Instructions
	Allocations within Grand Coalition

