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Abstract

This paper studies the optimal disclosure of information about an agent’s talent
when it consists of two components. The agent observes the first component of his
talent as his private type, and reports it to a principal to perform a task which
reveals the second component of his talent. Based on the report and performance,
the principal discloses information to a firm who pays the agent the wage equal to
his expected talent. We study incentive compatible disclosure rules that minimize
the mismatch between the agent’s true talent and his wage. The optimal rule entails
full disclosure when the agent’s talent is a supermodular function of the two com-
ponents, but entails partial pooling when it is submodular. Under a mild degree of
submodularity, we show that the optimal disclosure rule is obtained as a solution to
a linear programming problem, and identify the number of messages required under
the optimal rule. We relate it to the agent’s incentive compatibility conditions, and
show that each pooling message has binary support.

Key words: talent, mechanism, revelation, pooling, performance.
JEL Codes: C72, D47, D82.

1 Introduction
The labor market often evaluates the productivity of a worker on the basis of multiple
skills some of which are recognized by the worker himself, whereas others are identified
only through actual engagement in a task. For example, the market finds it important
that a worker possess both “hard” and “soft” skills: While a worker is well aware of
his hard skills, which represent expertise in a particular field, familiarity with a specific
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tool, fluency in a foreign language, and so on, he may need to place himself in the actual
work environment to discover his soft skills, which represent ability in communication,
teamwork, time management, leadership, and so on. While these two sets of skills may be
correlated, they need to be separately identified for the correct evaluation of a worker’s
talent.

In this paper, we develop a model of career concerns where an agent’s talent has two
components. The agent observes the first component as his private type, but learns the
second component only through his own performance at a task assigned by a principal.
In light of the above discussion, the agent’s type can be identified as the level of hard
skills he possesses, whereas performance at a task can be identified as the level of his
soft skills. The agent’s talent then is a positive combination of these skills. The agent
reports his type to the principal, and is assigned a task based on his report. The agent’s
performance at his task is measured by a stochastic score, which we assume is more likely
to be higher when his type is higher in the sense of stochastic dominance. Based on the
agent’s reported type and his performance score, the principal discloses information to
a firm, who then pays the agent the wage equal to the expected value of his talent
conditional on the disclosed information. The principal’s instruments consist of the
disclosure rule as well as the cost of effort required to complete the task assigned to each
agent type. The agent’s utility function is quasi-linear and equals the wage payment
from the firm minus the effort cost. The principal uses these instruments to provide the
agent an incentive for truth-telling, and his objective is to minimize the loss function
which equals the quadratic difference between the agent’s true talent and his wage.

The model described above differs from the standard career concerns models (e.g.,
Holmström, 1999) in the sense that the agent’s talent has two underlying components,
and that the principal controls information disclosed to the labor market.1 The prin-
cipal in our model can be thought of as a public school system that accepts students
to different programs and then sends them to the labor market with grade information,
or a human resources department within a firm that offers prospective employees dif-
ferent probationary tasks based on their self-reported qualifications before a permanent
contract is signed.2,3 As an alternative interpretation of our model, we may view it as
a model of product certification where the principal is a public agency who performs
product tests for fees based on the quality classes of the products as submitted by the
suppliers of those products, and then discloses product information to consumers. Also

1In career concerns models, an agent’s talent (along with effort) stochastically determines his per-
formance. Although it may appear that our assumption that the agent’s talent is a function of his
performance score reverses this relationship, no formal distinction exists between the two formulations
of this point in the sense that the market infers the agent’s talent from information about his performance
in both cases.

2The principal may also be viewed as an autonomous certification agency that offers programs and
courses whose participants can demonstrate competence in soft skills. These programs are gaining
popularity: Examples include the Emotional Intelligence Certification (EIC), the Certified Professional
in Learning and Performance (CPLP), the Project Management Professional (PMP), and the Certified
Scrum Master (CSM).

3Recent literature in education sciences advocate the development of soft employability skills (Teng
et al., 2019; Dolce et al., 2020).
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related are stress tests by the banking authority which evaluates the test performance
of a bank at the time of crisis.4

In the absence of the agent’s incentive problem, full disclosure of both the agent’s
private type and his performance score minimizes the principal’s loss function since it
allows the wage to be equalized to the agent’s talent. However, we show that full dis-
closure does not always induce the agent to report his type truthfully. Our main result
highlights the importance of the functional form of the agent’s talent in formulating the
optimal disclosure mechanism. Specifically, we show that with proper adjustment of the
effort cost of each task, full disclosure can be made incentive compatible if the agent’s
talent is a supermodular function of his type and the performance score. Intuitively, su-
permodularity implies that the higher is the agent’s private type, the larger the marginal
impact of the performance score on his talent. For example, the function is supermodu-
lar if the talent equals the product or sum of the agent’s type and his performance score.
Conversely, the talent function is submodular if the higher is the agent’s private type,
the smaller the marginal impact of the performance score on his talent. With a strictly
submodular talent function, it is not possible to adjust the effort costs of different tasks
to make full disclosure incentive compatible.

To understand the intuition behind the need for pooling, consider the simplest 2× 2
environment in which the agent’s types and his performance scores are both binary. By
assumption, the distribution of the performance score of the high type agent stochasti-
cally dominates that of the low type agent. Since the high type agent is more confident
in generating a higher performance score than the low type agent, the expected wage
in the event of the high performance score is more important for the high type than
for the low type. Conversely, the expected wage in the event of the low performance
score is more important for the low type than for the high type. This suggests that
a disclosure rule can be made incentive compatible if it creates a larger difference in
the expected wages between low and high performance scores for the task assigned to
the high type than for the task assigned to the low type. If the agent’s talent function
is supermodular, this is achieved by perfectly revealing the reported type and realized
performance score. On the other hand, when it is submodular, full disclosure fails to
achieve this, and there should be some message that does not fully reveal the agent’s
type or his performance score. One way to create such a message is to pool two perfor-
mance scores at the task assigned to the low type while separating the two performance
scores at the task assigned to the high type. With appropriate adjustment in the effort
cost, then, the low type can be induced to choose the task intended for the low type
since the expected wage differential is zero at the task, and the high type is induced to
choose the task intended for the high type since the expected wage differential is high
at the task. Another way to create an imperfect message is to pool the two types when
their performance score is low while separating the two types when their performance

4In the stress test model of Goldstein and Leitner (2018), the regulator observes a bank’s type
and discloses information to the public so as to influence its subsequent interaction with the market.
According to the stress test interpretation of the present model, the regulator first collects information
about a bank’s type and then observes its test performance before disclosing information.

3



score is high. This also makes the expected wage differential at the task intended for
the high type higher than that at the task intended for the low type. In other words,
if we define the ex post expected wage function to be the agent’s expected talent as a
function of his reported type and the performance score, then the disclosure rule can be
made incentive compatible if and only if it renders the ex post expected wage function
supermodular. Although the argument so far assumes pure disclosure rules that entail
complete pooling depending on the realization of the underlying type and score, the
optimal disclosure rule typically entails partial pooling in order to reduce the mismatch
loss from pooling. This implies that each combination of the type and performance score
is perfectly revealed with positive probability, and one pooling message is sent with pos-
itive probability based on particular realizations of the type and performance score. In
other words, in the 2 × 2 environment under consideration, the optimal rule typically
sends four perfectly revealing messages and one pooling message. Note that the above
discussion suggests that the pooling message has binary support in the sense that it is
sent only after the realization of certain combinations of the type and performance score.

In the 2× 2 environment described above, supermodularity of the ex post expected
wage function is expressed by a single condition: The difference in the expected talents
of the agent with the low and high performance scores is higher when his type is high
than when it is low. The number of pooling messages under the optimal disclosure rule
hence equals the number of the conditions required for the supermodularity of the ex
post expected wage function. The same holds for the environment in which the agent
has K ≥ 3 types, but the performance score is binary. In this case, a disclosure rule
can be made incentive compatible with the adjustment in the effort cost if and only if
it leads to a supermodular ex post expected wage function as in the 2× 2 environment.
Since the performance score is binary, the supermodularity of the ex post expected wage
function reduces to the K − 1 local conditions.5 When the degree of submodularity of
the talent function is mild, we show that K − 1 gives an upper bound on the number of
pooling messages in the optimal disclosure rule.

When the performance score takes more than two values, however, we show that the
disclosure rule can be made incentive compatible under a weaker requirement than the
supermodularity of the ex post expected wage function.6 This condition, which we call
cyclical supermodularity, pertains to the agent’s interim expected wage function, which
equals his expected talent as a function of his true and reported types, and summarizes
the conditions that make the incentive compatibility conditions feasible with the adjust-
ment in the effort costs of different tasks. Again under a mild degree of submodularity
of the talent function, we show that the number of conditions required for cyclical super-
modularity gives an upper bound on the number of pooling messages under the optimal
disclosure rule.

We approach the optimization problem by expressing the disclosure rule by the prob-
5That is, it is supermodular if and only if for any reported type s, the difference in the expected

talents of the agent with the low and high performance scores at the task intended for type s is larger
than that at the task intended for the type right below type s.

6Compared with the case of binary performance scores, supermodularity is a much stronger require-
ment when the preformance score is more than binary.
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ability that each pooling message is sent after the realization of each pair of the agent
type and the performance score. The key step in the analysis is to show that both the
feasibility constraints (i.e., the supermodularity of the ex post expected wage function or
the cyclical modularity of the interim expected wage function) as well as the principal’s
quadratic loss function can be written as linear functions of a certain transformation of
these probabilities. As such, this optimization problem has a corner solution and this
corresponds to the optimal disclosure rule if the solution can indeed be replicated by the
probabilities of pooling messages. In general, this last step requires that the degree of
submodularity of the talent function be not too large.

The paper is organized as follows: Section 2 discusses the related literature. We
formulate our model in Section 3 and discuss the implementability of a disclosure rule
in Section 4. Section 5 establishes the optimality of full disclosure under the supermod-
ularity of the talent function, and also presents a description of the general disclosure
rule. Assuming a submodular talent function, we proceed to the analysis of the opti-
mal disclosure rule: Section 6 studies the environment with binary performance scores,
and Section 7 studies the problem when the performance score can take three or more
values. In Section 8, we consider an extension of the baseline model in which the agent
can make an ex ante action choice that determines the distribution of his private type.
We characterize the optimal disclosure rule that induces the agent to take action that
stochastically enhances his type. We conclude with a discussion in Section 9.

2 Related Literature
The present paper is related to a few strands of the literature. First, it is related to the
literature on career concerns (see, e.g., Holmström, 1999; Dewatripont et al., 1999a,b;
Bonatti and Hörner, 2017). As mentioned in the Introduction, however, our model
marks a few important departures from this literature. On the one hand, in standard
models of career concerns, an agent’s performance is stochastically determined by his
effort and talent, and the agent faces moral hazard when choosing effort. Our model
assumes away moral hazard and instead introduces adverse selection by assuming that
the agent reports his private type.7 We hence take the mechanism design approach and
consider an incentive compatible task-assignment mechanism that specifies the agent’s
effort cost required to perform each task.8 On the other hand, an implicit but important
assumption in the standard career concerns models is that the agent’s performance is
publicly observable by the labor market.9 In contrast, the principal in our model filters

7Effort provision in the presence of asymmetric information is studied by several authors in different
contexts. Cisternas (2018) assumes that an agent’s effort improves his skills, and Board and Meyer-ter-
Vehn (2013) assume that an agent exerts effort to control the evolution of his type. In Li and Li (2021),
agents privately observe how much they care about their future careers.

8In contrast, career concerns models assume that the tasks are exogenously specified. This is so even
in multitasking environments (see, e.g., Dewatripont et al., 1999b; Kaarbøe and Olsen, 2006; Alesina
and Tabellini, 2008). Siemsen (2008) supposes that agents choose their tasks from a (prefixed) menu.

9As an exception, Rodina (2020) studies a career concerns model in which the principal engages in
information disclosure with the objective of maximizing an agent’s effort.
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information that is released to the labor market. As mentioned in the Introduction, we
show that whether or not full disclosure is optimal depends on how the agent’s type and
performance score interactively determine his talent.

Second, our model is related to the extensive literature on certification design.10 In
canonical models of certification design, a supplier privately informed about the qual-
ity of his good chooses whether or not to have it certified, and the certifier optimizes
over certification schemes by controlling information disclosed to the public. The key
difference hence is that our model has the task performance stage which would corre-
spond to product testing in the certification framework.11,12 One salient conclusion in
the certification design literature is that information revealed by the optimal disclosure
rule is coarse. For example, it is often found that the binary “pass-fail” scheme is op-
timal. However, the optimality of coarse information in the certification literature is
based on a different logic from the optimality of partial obscurity found here since it
arises when the talent is submodular in the agent’s type and his performance score. On
this point, it is instructive to compare our model with the certification design model of
Harbaugh and Rasmusen (2018). Harbaugh and Rasmusen (2018) show that the certifier
finds it optimal to disclose coarse information when the supplier’s reporting incentive is
taken into account.13 Since the certifier’s objective function in Harbaugh and Rasmusen
(2018) is given by the quadratic loss function as in the present model, their model closely
resembles the one considered in this paper if the agent’s talent is independent of his per-
formance score. The supermodularity of the talent function holds under independence
and our conclusion implies that full disclosure would be optimal. The difference in the
conclusions mainly arises from the fact that in Harbaugh and Rasmusen (2018), there
is no monetary transfer between the certifier and the supplier, whereas the effort cost
chosen for each task by the principal serves the role of transfer in our model.

One interpretation of the present model is that it combines the models of certification,
where an agent reports his private information to a certifier but performs no task, and
those of career concerns, where an agent has no private information but performs a task
to signal his quality.

Third, our model can also be related to the literature on school design which discusses
the grading system of a school as a way to disclose information to a potential employer
of its students. Among them, Bizzotto and Vigier (2021) present a model that includes
types and performance as in this paper. In their model, a planner allocates a population
of students to schools based on their types, and designs a grading system with the
objective of maximizing the students’ performance as measured by the rate at which
they acquire competency through their effort. One major difference is that the planner

10See Dranove and Jin (2010) for a comprehensive survey.
11There is also difference in the certifier’s objective function: In many models, certifiers either maximize

their own profit (see, e.g., Lizzeri, 1999), or the senders’ benefit as in the case of Ostrovsky and Schwarz
(2010) where colleges maximize the students’ job prospects.

12Some recent literature on certification considers the combination of reporting of private information
and testing by a certifier. See for example Bizzotto et al. (2020).

13Harbaugh and Rasmusen (2018) assume that the certifier perfectly observes the agent’s type when
the agent choose to receive certification, and also uses pure disclosure rules.
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observes the students’ types in Bizzotto and Vigier (2021) so that allocation and grading
are determined so as to mitigate the moral hazard problem.

Finally, with the principal being the sender of information about the agent’s private
type and performance score, our model is one of information design as pioneered by
Kamenica and Gentzkow (2011).14 The major departure from that literature is the
assumption that the principal must collect part of his information from the agent through
the provision of proper incentives. This is in contrast with the standard assumption in
the literature that the sender has free access to information that he discloses. The
standard concavification argument cannot be used because of the incentive constraints
required for truthful reporting by the agent.15

3 Model
There exist an agent, a principal, and a firm. The agent’s talent θ consists of two
components s and ω. The first component s is observed privately by the agent, and is
distributed over a finite set S ≡ {s1, . . . , sK} where s1 < · · · < sK and K ≥ 2. On
the other hand, the second component ω of the talent θ is the agent’s performance at a
task offered by the principal, and is distributed over a finite set Ω ≡ {ω1, . . . , ωL}. The
agent’s talent θ is a non-negative increasing function of s and ω:

θ = θ(s, ω).

The pair (s, ω) is referred to as a profile and denoted by v. For any profile v = (s, ω),
write θv = θsw = θ(s, ω). The probability of every profile v = (s, ω) is positive

pv ≡ Pr(v) > 0 for every v = (s, ω) ∈ V ≡ S × Ω,

and the conditional distribution gs(ω) ≡ Pr(ω | s) is ordered by stochastic dominance:
For any s, t ∈ S such that s < t,

Pr(ω ≤ ωℓ | s) > Pr(ω ≤ ωℓ | t) for ℓ = 1, . . . , L− 1. (1)

In other words, the agent with a higher type s is more likely to generate a higher
performance score ω.

The principal elicits from the agent his private type s and then assigns him a task.
Each task is characterized by its difficulty, which is measured in terms of the effort cost y
incurred by the agent to complete it. The agent faces no moral hazard and needs to bear
the cost of the assigned task. Let y : S → R be a cost assignment rule which specifies the
effort cost for each reported type. The principal observes the agent’s performance score
at the assigned task, but the firm observes neither the reported type nor the performance
score. At the completion of the task, the principal chooses a message as a function of
both s and ω and sends it to the firm. The functional relationship between the profile

14The principal in our model minimizes the expected posterior variance of the talent.
15See Section 9.
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v = (s, ω) and the message is described by a disclosure rule (Z, f): Z is the set of possible
messages and f : V → ∆Z maps each profile v = (s, ω) to a probability distribution
over Z. Specifically, f(z | v) ∈ [0, 1] is the probability that message z is sent when the
profile v ∈ V is realized. The firm then offers to the agent wage w equal to his expected
talent:

w = Ev[θv | z]. (2)

The agent’s utility equals the wage minus the effort cost of his assigned task: w − y. A
task assignment mechanism Γ = (y, Z, f) is a pair of the cost assignment rule y and the
disclosure rule (Z, f). The timing of events is summarized as follows:

1. The principal chooses and publicly announces the mechanism Γ = (y, Z, f).
2. The agent reports to the principal his type s.
3. The principal assigns to the agent a task with the effort cost y(s).
4. The agent performs the task and the principal observes the performance score ω.
5. The principal sends a message z to the firm according to the disclosure rule (Z, f).
6. The firm pays to the agent wage equal to his expected talent Ev[θv | z].

We now describe the conditions that incentivize the agent to report his type truthfully
to the principal. Let a disclosure rule (Z, f) be given, and define the ex post expected
wage function ϕ : V → R+ by

ϕ(s, ω) =
∑
z∈Z

Ev[θv | z] f(z | s, ω) for v = (s, ω) ∈ V .

ϕ(s, ω) is the expected talent of the agent (and hence his expected wage) conditional on
his report s and the performance score ω. Define also the interim expected wage function
H : S2 → R+ by

H(s, t) =
∑
ω∈Ω

gs(ω)ϕ(t, ω) for s, t ∈ S.

H(s, t) is the expected talent of the agent before the realization of the performance score
ω but after the agent learns his type s and reports t to the principal.

The mechanism Γ = (y, Z, f) is incentive compatible (IC) if the agent has incentive
to report his private type truthfully:

H(s, s)− y(s) ≥ H(s, t)− y(t) for any s, t ∈ S, (3)

and is individually rational (IR) if his utility from participation in the mechanism with
truth-telling is greater than or equal to that of his outside option, which is normalized
to zero:

H(s, s)− y(s) ≥ 0 for any s ∈ S.

The principal chooses a mechanism to best inform the firm about the agent’s talent.
Specifically, the principal aims to minimize the quadratic difference between the agent’s
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talent as revealed from (s, ω), and the market expectation of his talent formed from the
principal’s announcement:16

L(Γ) = Ev,z

[(
θv − Ev[θv | z]

)2]
. (4)

Note that (4) can equivalently be written as L(Γ) = Ez

[
Var(θv | z)

]
, where Var(θv | z)

is the posterior variance of θv given z ∈ Z. Hence, we can alternatively state that the
principal’s objective is minimization of the expected value of the posterior variance.17

The mechanism Γ∗ = (y, Z, f) is optimal if it minimizes L(Γ) in the class of incentive
compatible and individually rational mechanisms:

Γ∗ ∈ argmin {L(Γ) : Γ satisfies (IC) and (IR)}.

Since the cost of the task assigned to the agent does not enter the principal’s objective
function, it is used solely for the purpose of controlling the agent’s incentive in the
reporting stage. Our primary focus is hence on the disclosure rule which constitutes an
incentive compatible and individually rational mechanism when coupled with some cost
assignment rule. Specifically, a disclosure rule (Z, f) is implementable if there exists a
cost assignment rule y such that the mechanism Γ = (y, Z, f) is incentive compatible
(IC) and individually rational (IR).

4 Implementable disclosure rules
We begin with the characterization of implementable disclosure rules in terms of the
interim expected wage function H. The function H : S2 → R is cyclically supermodular
if, for any n = 2, . . . ,K and any k1, . . . , kn ∈ {1, . . . ,K} which are all distinct, k1 =
mini ki, and kn+1 = k1,

n∑
i=1

{H(ski , ski)−H(ski , ski+1
)} ≥ 0. (5)

Cyclical supermodularity is illustrated in Figure 1, where a = H(s1, s2) − H(s1, s1),
b = H(s2, s4)−H(s2, s2), c = H(s3, s3)−H(s3, s1), and d = H(s4, s4)−H(s4, s3). The
inequality (5) for the sequence (k1, k2, k3, k4) = (1, 2, 4, 3) requires that c + d ≥ a + b.
In general, the graphical interpretation of (5) is that when we draw a series of (non-
overlapping) right triangles with their hypotenuses on the diagonal both above and
below it, the sum of the changes in the value of H along the vertical line segments of
those triangles above the diagonal (a+b in the example) is no larger than the sum of the
corresponding changes below the diagonal (c + d in the example). Different sequences

16This loss function encompasses a preference for conveying accurate information, a reputational in-
centive if the principal relies on an external certifier agency, or a concern for the welfare of the firm if
the principal relies on a specific department within the firm.

17This is in contrast with a common assumption in the information design literature that the sender’s
objective is a function of the posterior mean of the state (e.g., Dworczak and Martini, 2019; Kolotilin,
2018; Arieli et al., 2023).
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s1 s2 s3 s4

s1

s2

s3

s4
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b

c

d

true type

reported type

Figure 1: Cyclical supermodularity of H requires a + b ≤ c + d when (k1, k2, k3, k4) =
(1, 2, 4, 3) in (5)

(k1, . . . , kn) correspond to different collections of such triangles. Since k1 is chosen to
be the smallest among k1, . . . , kn, there exist (n− 1)! such sequences for a fixed n. The
total number of inequalities in (5) for n = 2, . . . ,K hence equals

N =

K∑
n=2

(
K

n

)
(n− 1)!. (6)

Importantly, cyclical supermodularity is weaker than supermodularity, which requires
that the change in the value of H along each vertical line segment is no larger than the
corresponding change along the vertical line segment to the right. The following lemma
is a formal statement of this observation.

Lemma 1 If H is supermodular, then it is cyclically supermodular.

To understand the relationship between cyclical supermodularity of H and imple-
mentability of a mechanism, suppose first that the agent has two types: S = {s1, s2}.
In this case, the unique relevant sequence is (k1, k2) = (1, 2), and (5) is written as

H(s1, s2)−H(s1, s1) ≤ H(s2, s2)−H(s2, s1).

We can then choose the cost assignment rule y to satisfy

H(s1, s2)−H(s1, s1) ≤ y(s2)− y(s1) ≤ H(s2, s2)−H(s2, s1).

It can be readily verified that these inequalities correspond to the (IC) conditions (3)
for s1 and s2. Suppose next that the agent has three types S = {s1, s2, s3}. Under Γ,
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s1 should have no incentive to misrepresent himself as s2, s2 as s3, and s3 as s1. These
conditions can be respectively written as:

y(s2)− y(s1) ≥ H(s1, s2)−H(s1, s1),

y(s3)− y(s2) ≥ H(s2, s3)−H(s2, s2),

H(s3, s3)−H(s3, s1) ≥ y(s3)− y(s1).

Adding these inequalities side by side, we obtain

H(s3, s3)−H(s3, s1) ≥ H(s1, s2)−H(s1, s1) +H(s2, s3)−H(s2, s2),

which is equivalent to (5) for the sequence (k1, k2, k3) = (1, 2, 3). Different sequences ap-
pearing in (5) likewise correspond to the feasibility of different combinations of incentive
conditions. The following proposition shows that cyclical supermodularity is not only
necessary but also sufficient for the existence of a cost assignment rule y that makes Γ
incentive compatible and individually rational.

Proposition 2 The disclosure rule (Z, f) is implementable if and only if H is cyclically
supermodular.

In general, a cost assignment rule y that makes Γ incentive compatible and individ-
ually rational is defined only implicitly. When H is supermodular, however, an explicit
characterization is available as follows.

Proposition 3 Suppose that (Z, f) is such that H is supermodular. Then Γ = (y, Z, f)
is incentive compatible and individually rational if the effort cost y is defined recursively
by

y(s1) = 0,

y(sk+1) = y(sk) +H(sk, sk+1)−H(sk, sk) for k = 1, . . . ,K − 1.
(7)

Note that y defined in (7) is increasing if and only if

H(sk, sk+1)−H(sk, sk) ≥ 0 for every k = 1, . . . ,K − 1.

That is, if type sk expects a higher wage by reporting sk+1 than by reporting sk, then the
agent should be assigned a task of a higher effort cost when he reports sk+1. However,
it does not follow from the general specification of the disclosure rule that reporting a
higher type indeed leads to a higher expected wage.

Despite the difference between interim and ex post expectations, the following lemma
shows that the cyclical supermodularity of H reduces to the supermodularity of the ex
post expected wage function ϕ when the performance score is binary (Ω = {ω1, ω2}).

Lemma 4 When the performance score is binary Ω = {ω1, ω2}, the disclosure rule (Z, f)
is implementable if and only if ϕ is supermodular:

ϕ(t, ω2) + ϕ(s, ω1) ≥ ϕ(t, ω1) + ϕ(s, ω2) if s < t. (8)

Furthermore, ϕ is supermodular if and only if

ϕ(sk+1, ω2) + ϕ(sk, ω1) ≥ ϕ(sk+1, ω1) + ϕ(sk, ω2) for k = 1, . . . ,K − 1. (9)

11



Based on this observation, we below present a few examples that illustrate the im-
plementability of some disclosure rules in the simple 2 × 2 environment: S = {s1, s2}
and Ω = {ω1, ω2}. Denote the four profiles by

v1 = (s1, ω1), v2 = (s1, ω2), v3 = (s2, ω1), and v4 = (s2, ω2), (10)

and let

pm = p(vm), θm = θ(vm), ϕm = ϕ(vm) for m = 1, . . . , 4. (11)

Example 1 Let Z = V and

f(vi | vi) = 1 for i = 1, . . . , 4.

This is the “full” disclosure rule that perfectly reveals every profile (Figure 2). Since
ϕ(vi) = Ev[θv | vi] = θi under this rule, it is implementable if and only if θ is supermod-
ular by Lemma 4.

Since the full disclosure rule eliminates any loss arising from the difference between
the true and expected talents, it is clearly optimal for the principal if it is implementable.
In the following examples, then, suppose that θ is not supermodular:

∆ ≡ θ2 + θ3 − θ1 − θ4 > 0. (12)

Example 2 Let Z = {z1, z2}, and

f(z1 | v) =

{
1 if v = v1,
0 otherwise,

f(z2 | v) =

{
0 if v = v1,
1 otherwise.

This is the rule where the agent obtains the “Fail” grade z1 when the profile v1 = (s1, ω1)
realizes and the “Pass” grade z2 otherwise (Figure 2). In this case,

Ev[θv | z] =

{
θ1 if z = z1,
µ2 otherwise,

where µ2 = Eθ[θ | v ̸= v1]. Verify also that

ϕm =

{
θ1 if m = 1,
µ2 otherwise.

Since µ2 > θ1, ϕ is not supermodular:

ϕ4 − ϕ3 − ϕ2 + ϕ1 = θ1 − µ2 < 0.

It follows that this disclosure rule is not implementable.

12



Example 3 Let Z = {z1, z2}, and

f(z1 | v) =

{
0 if v = v4,
1 otherwise,

f(z2 | v) =

{
1 if v = v4,
0 otherwise.

This is the rule where the agent obtains the “Pass” grade z2 when the profile v4 = (s2, ω2)
realizes and the “Fail” grade otherwise (Figure 2). In this case,

Ev[θv | z] =

{
θ4 if z = z2,
µ1 otherwise,

where µ1 = Ev[θv | v ̸= v4]. Verify also that

ϕm =

{
θ4 if m = 4,
µ1 otherwise.

Since µ1 < θ4, ϕ is supermodular:

ϕ4 − ϕ3 − ϕ2 + ϕ1 = θ4 − µ1 > 0.

This disclosure rule is hence implementable.

The above examples suggest the following intuition: In order to make ϕ supermodular
when θ is not, one needs to either “shrink” the distance ϕ2−ϕ1 or ϕ3−ϕ1 by “pushing up”
ϕ1 and at the same time “pulling down” ϕ2 or ϕ3 by pooling v1 with a higher realization
v2 or v3. The disclosure rule in Example 3 above does this and hence is implementable.
On the other hand, the disclosure rule in Example 2 pools the highest profile v4 with
lower realizations. Such a rule is not implementable since it will shrink the distance
ϕ4 − ϕ3 and ϕ4 − ϕ2 and hence lead to an even severer violation of the supermodularity
condition.

Example 4 Let Z = {z1, z2, z3}, and

f(z1 | v) =

{
1 if v = v1,
0 otherwise,

f(z2 | v) =

{
1 if v = v2 or v3,
0 otherwise,

and

f(z3 | s, ω) =

{
1 if v = v4,
0 otherwise.

This is the rule where the agent receives the “high” grade z3 if v = (s2, ω2), the “low”
grade z1 if v = (s1, ω1), and the “medium” grade z2 otherwise (Figure 2). In this case,

Ev[θv | z] =


θ4 if z = z3,
θ1 if z = z1,
µ2 otherwise,

13
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Figure 2: Disclosure rules in the 2× 2 environment
Connected profiles are pooled.
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1: No;
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4: Yes iff ∆ ≤ (θ3−θ2)(p2−p3)

p2+p3
.
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where
µ2 = Ev[θv | v ∈ {v2, v3}] =

p2θ2 + p3θ3
p2 + p3

.

We also have

ϕm =


θ4 if m = 4,
θ1 if m = 1,
µ2 otherwise.

Since θ1 < µ2 < θ4, this disclosure rule is implementable if and only if

ϕ4 − ϕ3 − ϕ2 + ϕ1 = θ4 − 2µ2 + θ1 ≥ 0

⇔ ∆ ≤ (p2 − p3)(θ3 − θ2)

p2 + p3
,

(13)

where ∆ = θ2 + θ3 − θ1 − θ4. Hence, if

(p2 − p3) (θ3 − θ2) > 0, (14)

then (13) holds if ∆
|θ3−θ2| > 0 is small compared with |p2 − p3|. We will return to this

last observation in Section 6.

5 Full and partial disclosure rules
As noted in Section 4, when there is no incentive issue in the reporting stage, per-
fectly disclosing information about the realized profile v = (s, ω) clearly minimizes the
principal’s loss function L. Specifically, (Z, f) is a full disclosure rule if Z = S ×Ω, and

f(z | s, ω) =

{
1 if z = (s, ω),
0 otherwise.

The full disclosure rule however may not induce truth-telling from the agent when his
type s is private. To see when full disclosure induces truth-telling, note that the ex
post expected talent ϕ equals the true talent θ under full disclosure, and hence that the
interim expected wage function H is given by H(s, t) =

∑
ω gs(ω) θ(t, ω). Even when

type s is private, hence, full disclosure is implementable if and only if this function is
cyclically supermodular. The following proposition presents a sufficient condition for
this as the first main result on the optimal disclosure rule.

Proposition 5 Suppose that the talent function θ is supermodular. Then the optimal
mechanism Γ entails full disclosure.

For example, the talent function θ is supermodular if for δ ≥ 0,

θ(s, ω) = s+ ω + δ sω. (15)
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Note that the supermodularity of θ does not imply complementarity between the private
type and performance in the determination of talent since they are perfect substitutes
if δ = 0.

In view of Proposition 5, we assume in what follows that the talent function θ is not
supermodular, and more concretely, that it is strictly submodular: For any s, t ∈ S and
ω, ω̂ ∈ Ω such that t > s and ω̂ > ω,

θ(t, ω̂) + θ(s, ω) < θ(s, ω̂) + θ(t, ω). (16)

For example, θ is strictly submodular if δ < 0 in (15), or if there exists a strictly concave
and increasing function u : R+ → R+ such that

θ(s, ω) = u(s+ ω).

When considering a class of talent functions in our analysis, we fix the relative ranking
of their values at different profiles. Specifically, we consider a total ordering ≽ over the
set V = S × Ω of profiles that are consistent with the value of ϕ in the sense that

v ≺ w ⇔ θ(v) < θ(w).

Since we assume that θ is increasing, ≽ satisfies

(s, ω) ≤ (ŝ, ω̂) and (s, ω) ̸= (ŝ, ω̂) ⇒ (s, ω) ≺ (ŝ, ω̂).

When ŝ > s and ω̂ > ω, any of (s, ω̂) ≻ (ŝ, ω), (ŝ, ω) ≻ (s, ω̂), and (s, ω̂) ∼ (ŝ, ω) is
possible.

We now turn to the description of a general disclosure rule. Any disclosure rule (Z, f)
with a finite message set Z can be expressed as:

Z = V ∪ {z1, . . . , zR}, V ∩ {z1, . . . , zR} = ∅,

f(v | v) +
R∑

r=1

f(zr | v) = 1 for any v ∈ V .
(17)

In other words, when the profile v is realized, one of the R+ 1 messages v, z1, . . . , zR is
potentially chosen. Since the message v ∈ V is sent only after its realization (f(v̂ | v) = 0
if v, v̂ ∈ V and v ̸= v̂), each v ∈ V is a perfectly revealing message of its realization.18

In contrast, each zr ∈ Z is a pooling message that is sent with positive probability after
the realization of multiple profiles. Given any disclosure rule (Z, f) represented as in
(17), define for each v, w ∈ V and r = 1, . . . , R,

αr
v = f(zr | v), σr =

∑
v∈V

pvα
r
v, µr = Ev[θv | zr] = 1

σr

∑
v∈V

pvα
r
vθv. (18)

As seen, αr
v is the probability that message zr is sent when the profile v is realized, σr

is the marginal probability that message zr is sent, and µr is the expected talent of the
18Inclusion of such a message v in Z is without loss of generality since f(v | v) = 0 is also allowed.
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agent conditional on the observation of message zr. For each message z ∈ Z, let supp(z)
denote the support of z:

supp(z) = {v : αr
v > 0}.

Define now

xvw = |θv − θw|
R∑

r=1

αr
vα

r
w

σr
. (19)

By definition, xvw = xwv for any v, w ∈ V and xvw = xwv = 0 if v = w. Although it
is not easy to give an intuitive meaning to xvw, they play the key role in the analysis
in what follows since the expected wage functions ϕ and H as well as the quadratic loss
function L are all linear functions of x = (xvw)v,w as shown in the following lemma.

Lemma 6 Suppose that the disclosure rule (Z, f) is given by (17) and is implementable.
Then19

ϕ(s, ω) = θsω +
∑
v

pv xv,sω (−1)1{v≺sω} , (20)

H(s, t) =
∑
ω

gs(ω)
[
θtω +

∑
v

pv xv,tω (−1)1{v≺tω}
]
, (21)

L(Γ) =
∑

{(v,w): v≺w}

pvpw xvw |θw − θv|. (22)

The rest of this section introduces some conditions on the talent function. Given
ε > 0, we say that a submodular talent function θ is ε-linear if there exists h > 0 such
that for any s < t and ω, ∣∣∣ θ(t, ω)− θ(s, ω)

t− s
− h

∣∣∣ < ε. (23)

When θ is submodular, its degree of submodularity is small if it is also ε-linear since for
any s < t and ω < ω̂,{

θ(t, ω̂) + θ(s, ω)
}
−
{
θ(s, ω̂) + θ(t, ω)

}
≥ (h− ε)(t− s)− (h+ ε)(t− s)

= −2ε(t− s)

≥ −2ε(sK − s1).

191 is the indicator function so that

(−1)1{v≺sω} =

{
−1 if θv < θsω,
1 if θv ≥ θsω.
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Given η > 0, a talent function θ has a value margin η if, when θ changes its values from
one profile v to another profile w, it does so at least by margin η: There exists η > 0
such that for any v, w ∈ V ,

θ(v) ̸= θ(w) ⇒ |θ(v)− θ(w)| > η.

Given ≽ and η > 0, let Θ≽,η be the class of talent functions such that

Θ≽,η = {θ : θ is consistent with ≽, and has a value margin η}. (24)

6 Models with binary performance scores
A binary performance score is relevant in many situations where performance can only
be judged either good or poor because of physical limitation in precise measurement.
When the performance score is binary (L = 2), a disclosure rule is implementable if and
only if the ex post expected wage function ϕ is supermodular by Lemma 4. Lemma
4 further shows that submodularity of ϕ reduces to the (K − 1) local conditions (9),
implying that implementability of a disclosure rule is expressed by (K − 1) inequalities.
We begin with the 2 × 2 model where K = L = 2 (i.e, S = {s1, s2} and Ω = {ω1, ω2}),
and then consider the case where K ≥ 3.

6.1 2× 2 Model
The discussion of implementable disclosure rules in Section 4 (Examples 1-4) already
furnishes the key intuitions developed in this section. We use the notation in (10)
and (11) in Section 4 while noting that the submodularity of θ in (16) is equivalent
to (12). Although none of the disclosure rules in Examples 2-4 involve randomization,
the principal may also benefit from randomization if pooling multiple profiles without
randomization results in the slackness in the supermodularity of ϕ. This can be seen in
the following example.

Example 5 Suppose that the disclosure rule (Z, f) is such that

• Z = V ∪ {z} for z /∈ V ;

• f(z | v1) = f(z | v2) = λ for some λ ∈ (0, 1);

• f(v1 | v1) = f(v2 | v2) = 1− λ and f(v3 | v3) = f(v4 | v4) = 1.

Figure 3 illustrates this disclosure rule, which pools v1 and v2 with probability λ, but
perfectly reveals them with probability 1 − λ. It also perfectly reveals both v3 and v4.
ϕ is supermodular if and only if

ϕ1 + ϕ4 − ϕ2 − ϕ3 = {λθ1 + (1− λ)µ1}+ θ4 − {λθ2 + (1− λ)µ1} − θ3

= (θ4 − θ3)− λ(θ2 − θ1)

≥ 0.
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Figure 3: Disclosure rule of Example 5 in the 2×2 environment
Each circle represents a message. z is an pooling message that is sent

when either v1 or v2 is realized.

When λ = 1, (Z, f) is the full disclosure rule and not implementable if θ is submodular
( θ4−θ3
θ2−θ1

< 1). On the other hand, when λ = 0, it is implementable but always gen-
erates a loss equal to (θ1 − µ1)

2 when the profile is (s1, ω1) and (θ2 − µ1)
2 when the

profile is (s1, ω2). One can minimize the probability of such a loss while maintaining
implementability by setting λ = θ4−θ3

θ2−θ1
.

Proposition 7 Suppose that the talent function θ is submodular (∆ > 0) and that (θ, p)
satisfies either one of (25), (26), and (27) below:20

(p2 − p3)(θ3 − θ2) ≤ 0, (25)

(p2 − p3)
(θ2 − θ1
θ3 − θ1

− p3(p1 + p2)

p2(p1 + p3)

)
≤ 0, (26)

∆ ≤ (p2 − p3)(θ3 − θ2)

p2 + p3
. (27)

Then there exists an optimal disclosure rule (Z, f) with exactly one pooling message z:

Z = V ∪ {z} for z /∈ V .
20Since (26) implies (p2 − p3)(θ3 − θ2) > 0, (25) and (26) are mutually exclusive, and so are (25) and

(27). On the other hand, (26) and (27) have an overlap.
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The support of the pooling message z is binary and is given by

supp(z) =



{v1, v2} if θ2−θ1
θ3−θ1

≤ p3(p1+p2)
p2(p1+p3)

and
either p2 > p3 or (p2 − p3)(θ3 − θ2) ≤ 0,

{v1, v3} if θ2−θ1
θ3−θ1

≥ p3(p1+p2)
p2(p1+p3)

and
either p2 < p3 or (p2 − p3)(θ3 − θ2) ≤ 0

{v2, v3} if (27) holds but (26) fails.

Proposition 7 shows that the unique pooling message is sent only after the realization of
a particular pair of profiles.21 In line with the intuition provided in Examples 2-5, the
pooling shrinks the difference between the expected talents at v1 and at v2 or between
those at v1 and at v3. The disclosure rule of Example 5 (in Figure 3) is indeed one of the
rules described in Proposition 7. Although the highest profile v4 is never pooled with
other profiles, v2 and v3 are pooled with each other in some cases.22

We also note that the probability f(z | v) that the pooling message z is sent increases
with ∆: The proof of Proposition 7 shows that the probability of pooling under the
optimal disclosure rule can be taken as:

f(z | v1) = f(z | v2) = ∆
θ2−θ1

if supp(z) = {v1, v2},
f(z | v1) = f(z | v3) = ∆

θ3−θ1
if supp(z) = {v1, v3},

f(z | v2) = f(z | v3) = p2+p3
p2−p3

∆
θ3−θ2

if supp(z) = {v2, v3}.
(28)

The interpretation is that the higher degree of submodularity ∆ requires a higher prob-
ability of pooling in order to make the ex post expected wage function ϕ supermodular.

Graphical illustration of Proposition 7 is possible with the introduction of some
structure on p. Let q = Pr(s1) ∈ (0, 1) be the probability that the agent has the low
type, and suppose that

γ ≡ Pr(ω1 | s1) = Pr(ω2 | s2) > 1
2 .

γ is the probability that the performance score is low when the agent has the low type
or that it is high when the agent has the high type. γ > 1

2 ensures first-order stochastic
dominance.23 Denote

β =
θ2 − θ1
θ3 − θ1

.

21In other words, the posterior belief given the pooling message is the convex combination of two
degenerate posteriors. Kolotilin and Wolitzky (2020) call such posteriors pairwise.

22Since (27) is equivalent to (13), the disclosure rule that pools v2 and v3 with positive probability
is optimal only if the disclosure rule that pools these profiles with probability one (in Example 5) is
implementable.

23The joint distribution p is hence given by

p1 = qγ, p2 = q(1− γ), p3 = (1− q)(1− γ), p4 = (1− q)γ.
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Figure 4: Support of the pooling message z
q = Pr(s1), β = θ2−θ1

θ3−θ1
, and γ = Pr(ω1 | s1) = Pr(ω2 | s2).

q ≶ 1
2
⇔ p2 ≶ p3 and β ≶ 1 ⇔ θ2 ≶ θ3.

Pooling with support {v2, v3} is optimal only if ∆ satisfies (27).

The sufficient conditions of Proposition 7 are then written as:

(25) : (1− β)(2q − 1) ≤ 0,

(26) : (2q − 1)
(
β − 1− q

qγ + (1− q)(1− γ)

)
≤ 0,

(27) : ∆ ≤ (1− β)(2q − 1).

Figure 4 describes the optimal disclosure rule for each combination of (β, q). As seen,
pooling v1 and v2 is optimal when β < 1 (⇔ θ2 < θ3) and q = Pr(s1) is not high, and
pooling v1 and v3 is optimal when β > 1 (⇔ θ2 > θ3) and q is not low. The disclosure
rule that pools v2 and v3 is feasible only when ∆ satisfies (27).

The intuition behind Proposition 7 is as follows: Using Lemma 6, the proof of the
proposition converts the optimization problem with respect to the probabilities αr

v =
f(zr | v) of message zr given the profile v into a linear problem with respect to the
variables x = (xvw)v≻w: Since the objective function L and the inequality expressing
the supermodularity of the ex post talent function ϕ are both linear in x, there exists
a corner solution x∗ to this problem. Specifically, corresponding to the single inequality
constraint, there exists a single coordinate (v, w) such that x∗vw > 0. By the definition
of x, this implies that

∑R
r=1 α

r
v α

r
w > 0 for exactly one pair of profiles (v, w). Given this,

we can find the probabilities α1
v, α1

w ∈ (0, 1] that replicate the solution x∗vw. In other
words, we can take the number R of pooling messages equal to one, and let this pooling
message z1 be sent only when the realized profile is either v or w. This last construction
requires (27) when the pooling message z has support {2, 3} so that the probabilities
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αv2 and αv3 would not exceed one.24

If x∗23 > 0 but (27) fails, replication of x∗23 using α1
2 and α1

3 is not possible since
their values would then exceed one. We conjecture that the optimal disclosure rule in
this case involves four fully revealing messages v1, . . . , v4 along with a pooling message
z with support supp(z) = {v1, v2, v3} as in Example 3. Characterization of the optimal
rule however is difficult and remains an open question. On the other hand, Proposition
7 holds whenever the talent function θ is mildly submodular (and satisfies (27)) since
the conditions (25) and (26) do not involve ∆. This observation leads to the following
corollary to Proposition 7.

Corollary 8 Let ≽ and η > 0 be given, and suppose that θ ∈ Θ≽,η is submodular and
ε-linear for ε satisfying 4ε

η ≤ |p2−p3|
p2+p3

. Then there exists an optimal disclosure rule as
described in Proposition 7.

In the analysis of a more general environment below, we generalize Corollary 8 by
assuming that ∆ > 0 is not large while fixing the probability distribution p.

6.2 K × 2 Model
We now suppose that the number K = |S| of the agent’s types s can be greater than
two but continue to assume that his performance score ω is binary.

Example 6 Consider the following generalization of the disclosure rule discussed in
Example 5: (Z, f) is such that for z1, . . . , zK /∈ V and λ1, . . . , λK ∈ [0, 1],

• Z = V ∪ {z1, . . . , zK};

• f(vkℓ | vkℓ) = λk for every k, ℓ;

• f(zk | v) =

{
1− λk if v = vk1 or vk2,
0 otherwise,

Figure 5 illustrates this disclosure rule, which either perfectly reveals the realized profile
or pools the two profiles vk1 and vk2 if either of them occurs. Define

µk = Ev[θv | zk] =
pk1θk1 + pk2θk2

pk1 + pk2
.

Then
ϕkℓ = λkθkℓ + (1− λk)µk,

so that

ϕk1 + ϕk+1,2 − ϕk2 − ϕk+1,1 = −λk(θk2 − θk1) + λk+1(θk+1,2 − θk+1,1).

24This can be seen from the fact that f(z | v2) = f(z | v3) ≤ 1 in the third line of (28) if and only if
(27) holds.
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Figure 5: Disclosure rule of Example 6 in the K × 2 environment

It follows that ϕ is supermodular if and only if

λk+1

λk
≥ ψk ≡ θk2 − θk1

θk+1,2 − θk+1,1
for k = 1, . . . ,K − 1. (29)

Since θ is assumed submodular, ψk ≥ 1, suggesting that the probability of perfect
revelation should increase with k. In particular, we may take λK = 1 so that full
disclosure takes place when the agent reports the highest type sK .

Proposition 9 Let p, ≽ and η > 0 be given, and suppose that the talent function
θ ∈ Θ≽,η is submodular. Then there exists ε > 0 such that if θ is ε-linear, there exists
an optimal disclosure rule (Z, f) such that

• Z = V ∪ {z1, . . . , zR} for some R ≤ K − 1 and z1, . . . , zR /∈ V .

• | supp(zr)| = 2 for every r = 1, . . . , R.

• supp(zr) ̸= {v12, vK2}, {vK1, vK2} for any r = 1, . . . , R.

Proposition 9 shows that if the talent function θ is mildly submodular, there exists an
optimal disclosure policy with at most (K − 1) pooling messages each of which pools no
more than two profiles. Furthermore, the pooled pair of profiles is never the combination
of the extreme upper-left profile and the extreme upper-right profile (v12, vK2) or the
extreme lower-right profile and the extreme upper-right profile (vK1, vK2).

Although Proposition 9 establishes the existence of an optimal disclosure rule with
at most K − 1 pooling messages, not every optimal disclosure rule needs to have such
a property. First, as mentioned in Section 6.1, the argument is based on the existence
of a corner solution x∗ to the linear problem that has at most K − 1 strictly positive
coordinates. For a non-generic specification of (p, θ), the linear problem may have mul-
tiple (non-corner) solutions which would correspond to more than K−1 pairs of profiles
being pooled. Second, the proof of the proposition replicates x∗ using (αr

v)v,r such that
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for each r = 1, . . . ,K − 1, αr
v, αr

w > 0 for a single pair (v, w). There may as well be
other ways to replicate x∗. The number of pooling messages can also be strictly less
than K − 1. To see this point, return to Example 6 and assume K = 4. The disclosure
rule in this example is in line with the statement of Proposition 9 since it has K − 1 = 3
pooling messages each of which has binary support. On the other hand, if a disclosure
rule has just one pooling message z1 which has support {v, v̂, ṽ}, then this message pools(
3
2

)
= 3 pairs of profiles with each other ((v, v̂), (v, ṽ) and (v̂, ṽ)), and hence would imply

x∗vw > 0 for three pairs of profiles (v, w). Such a rule would also be consistent with the
proof of the proposition.

7 General model
We now consider the most general framework where the number of the agent’s types
can be greater than two (K ≥ 2) and the number of performance scores is greater than
or equal to three (L ≥ 3). Unlike when L = 2, the ex post expected wage function
ϕ is not required to be supermodular when L ≥ 3. Instead, as seen in Proposition
2, the disclosure rule (Z, f) is implementable if and only if the interim talent function
H : S2 → R is cyclically supermodular. Recall from (6) that N ≡

∑K
n=2

(
K
n

)
(n − 1)!

equals the number of inequalities in the definitions of cyclical supermodularity of H.

Example 7 Further generalize the disclosure rule discussed in Example 6 as follows.
(Z, f) is such that for z1, . . . , zK /∈ V and λ1, . . . , λK ∈ [0, 1],

• Z = V ∪ {z1, . . . , zK};

• f(vkℓ | vkℓ) = λk for every k, ℓ;

• f(zk | v) =

{
1− λk if v ∈ {vk1, . . . , vkL},
0 otherwise.

In other words, when the profile vkℓ is realized, it is either perfectly revealed or is
pooled with all other profiles with the same s-coordinates. For any s, t ∈ S, define

ν(s, t) =
∑
ω∈Ω

gs(ω) θtω.

ν(s, t) can be interpreted as the interim expected talent under full disclosure when the
agent has true type s but reports t. When s < t, gt(·) stochastically dominates gs(·) by
(1). Since θtω is increasing in ω, we have for any t̂,

ν(t, t̂) > ν(s, t̂) if s < t. (30)

Since Ev[θv | zk] = ν(sk, sk), the function H can be written in terms of λt as:

H(s, t) = λt ν(s, t) + (1− λt) ν(t, t).
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We look for the conditions under which the functionH is supermodular, which by Lemma
1 ensures that (Z, f) is implementable. Take any s, ŝ, t, t̂ ∈ S such that s < ŝ and t < t̂.

H(ŝ, t̂)−H(s, t̂) ≥ H(ŝ, t)−H(s, t)

⇔
{
λt̂ ν(ŝ, t̂) + (1− λt̂) ν(t̂, t̂)

}
−
{
λt̂ ν(s, t̂) + (1− λt̂) ν(t̂, t̂)

}
≥

{
λt ν(ŝ, t) + (1− λt) ν(t, t)

}
−
{
λt ν(s, t) + (1− λt) ν(t, t)

}
.

Since ν(ŝ, t̂)− ν(s, t̂) > 0 when ŝ > s as noted above, H is supermodular if and only if

λt̂
λt

≥ ν(ŝ, t)− ν(s, t)

ν(ŝ, t̂)− ν(s, t̂)
if s < ŝ and t < t̂. (31)

By assumption, θ is submodular so that θt̂ω − θtω is decreasing in ω when t < t̂. By the
stochastic dominance (1) of gŝ over gs, we then have

ν(ŝ, t̂)− ν(ŝ, t) =
∑
ω

gŝ(ω) (θt̂ω − θtω) ≤
∑
ω

gs(ω) (θt̂ω − θtω) = ν(s, t̂)− ν(s, t).

It follows that the right-hand side of (31) satisfies

ν(ŝ, t)− ν(s, t)

ν(ŝ, t̂)− ν(s, t̂)
≥ 1.

Hence, (Z, f) is implementable when λt is chosen to be increasing in t to satisfy the
inequalities in (31). In particular, for k < ℓ, denote

ψkℓ = min
s<ŝ

ν(ŝ, sk)− ν(s, sk)

ν(ŝ, sℓ)− ν(s, sℓ)
≥ 1.

Then (31) holds if for any λsK > 0, λs1 , . . . , λsK−1 satisfy

λsk = min
λsK

ψk1k2 · · ·ψkm−1km

for each k = 1, . . . ,K − 1,

where minimization is taken over all sequences (k1, . . . , km) such that k1 = k < k2 <
· · · < km−1 < km = K.

Proposition 10 Let p, ≽ and η > 0 be given, and suppose that the talent function
θ ∈ Θ≽,η is submodular and defined over V = S × Ω with L = |Ω| ≥ 3. Then for
N defined in (6), there exists ε > 0 such that if θ is ε-linear, there exists an optimal
disclosure rule (Z, f) such that

• Z = V ∪ {z1, . . . , zR} for some R ≤ N and z1, . . . , zR /∈ V .

• | supp(zr)| = 2 for every r = 1, . . . , R.
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Although the disclosure rule described in Example 7 is implementable as long as
λs1 , . . . , λsK satisfy (31) and the number of pooling messages K satisfies K < N , Propo-
sition 10 implies that it is not optimal when L is large compared with K provided that
the talent function θ is mildly submodular: To see this, note that the disclosure rule in
Example 7 has at least (K − 1) ×

(
L
2

)
pairs of profiles (v, w) that are pooled with each

other.25 On the other hand, Proposition 10 shows that the number of pairs of profiles
that are pooled together is a function of only K. Suppose for example that the types
are binary (K = 2) and that the performance score can take three values (L = 3). In
this case, the disclosure rule in Example 7 with λs2 = 1 sends no pooling message when
s = s2, and sends one pooling message when s = s1. This pooling message has support
{v11, v12, v13} and hence pools three (=

(
3
2

)
) pairs of profiles: {v11, v12}, {v12, v13}, and

{v11, v13}. The variable x that corresponds to this rule hence has three strictly positive
coordinates. Proposition 10, on the other hand, states that there exists a unique pair
of profiles (v, w) for which x∗vw > 0. This implies that the disclosure rule in Example 7
is not optimal for a generic specification of (θ, p).26 We should interpret N as an upper
bound on the number of inequalities for the cyclical supermodularity of H since some
of those inequalities may be redundant in some cases. This is most evident when the
performance score is binary (L = 2). As seen in Section 6.2, the number of inequalities
for the supermodularity of ϕ is just K − 1 so that there exist N − (K − 1) redundant
inequalities.27

Proposition 10 has the following intuitive implication: When a performance score
takes many values, it is commonly observed that those scores are bundled into a few cat-
egories. For example, scores above some threshold are bundled as a good score and those
below it are bundled as a bad score, and disclosure is based on the binary categorization.
Proposition 10 implies that disclosure based on such bundling not only aggravates the
quadratic loss, but also involves excessive coarsening of information from the point of
view of inducing truth-telling from the agent.28

8 Mechanism inducing skill acquisition
Although the only decision that the agent makes in our baseline model concerns reporting
of the private component of his talent to the principal, it is conceivable in some situations
that the agent also engages himself in the enhancement of his skills before reporting to
the principal. For example, a student may make effort to acquire software skills before
attending college, or a company may invest in the improvement of its product before

25Assume that λsK = 1 so that the performance score is perfectly revealed when the agent reports the
highest type sK .

26Under a generic specification of (θ, p), the linear programming problem in terms of x has a unique
corner solution.

27When K = 3, for example, N = 5 and K − 1 = 2 so that three inequalities are redundant.
The redundant inequalities are those corresponding to: (k1, k2) = (1, 3), (k1, k2, k3) = (1, 2, 3), and
(k1, k2, k3) = (1, 3, 2).

28There may exist other motives for bundling such as simplification of the process which we do not
address.
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applying for a certification program. This section considers one such extension: The
agent makes an ex ante choice over costly action e which determines the probability
distribution of his private type s. For simplicity, we assume that the set of action
choices is binary {0, 1}: e = 0 and e = 1 are interpreted as making no effort and making
effort, respectively. Let qe denote the probability distributions of the agent’s private
type when his action is e. We assume that q1 stochastically dominates q0 so that the
agent is more likely to have a higher private type when he chooses e = 1 than when he
chooses e = 0. The cost of action e equals ce and satisfies c1 − c0 > 0. We assume that
conditional on his private type s, the agent’s performance score ω is independent of his
action choice, and given by gs(ω). Since the agent’s incentive in the reporting stage is
solely guided by the distribution of the performance score conditional on his private type,
the conditional independence assumption implies that the incentive compatibility of the
task assignment mechanism is independent of the agent’s action choice. The following
lemma records this observation.

Lemma 11 The mechanism Γ = (y, Z, f) is incentive compatible when the agent’s pri-
vate type s is distributed according to q1 ∈ ∆S if and only if it is incentive compatible
when his type is distributed according to q0 ∈ ∆S.

Lemma 11 in particular implies that given any incentive compatible mechanism, no
combinatorial deviation, where the agent first deviates in his action choice and then
misreports his type, is profitable. Let Ue denote the agent’s ex ante utility when he
chooses action e:

Ue =
∑
s

{∑
ω

ϕ(s, ω) gs(ω)− y(s)
}
qe(s)− ce.

An incentive compatible task-assignment mechanism Γ = (y, Z, f) is effort-inducing if
the agent finds it optimal to choose e = 1, or equivalently,

U1 ≥ U0. (32)

An effort-inducing incentive compatible mechanism is optimal if it minimizes the quadratic
loss function (4) among the class of such mechanisms.29 A disclosure rule (Z, f) is effort-
inducing if there exists a cost-assignment rule y for which Γ = (y, Z, f) is effort-inducing,
and is optimal if it corresponds to an optimal effort-inducing incentive compatible mech-
anism.

For simplicity, the analysis in what follows restricts attention to the 2×2 environment
of Section 6.1 where both the private type and performance score are binary. The
four profiles are named as in (10). Stochastic dominance of q1 over q0 is equivalent to
q1(s2) > q0(s2), and (32) can be simplified as

y(s2)− y(s1) ≤
∑
ω

{
ϕ(s2, ω) gs2(ω)− ϕ(s1, ω) gs1(ω)

}
− c1 − c0
q1(s2)− q0(s2)

. (33)

29With the presence of ex ante action choice, the appropriate participation constraint would be ex
ante individual rationality. This, however, is ignored in this section for simplicity.
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Clearly, it is not possible to induce the agent to choose e = 1 if it is very costly com-
pared with the corresponding increase in the expected wage. We introduce the following
measure to quantify the effect of the cost of e = 1:

C =
c1 − c0

{gs2(ω2)− gs1(ω2)} {q1(s2)− q0(s2)}
− (θ4 − θ3). (34)

As seen, C measures the difference between the marginal cost of e = 1 (c1− c0, adjusted
by the probabilities) and the maximum wage differential (θ4 − θ3) when the agent has
the high type s2. The following proposition describes a sufficient condition in terms
of C for the feasibility of an effort-inducing mechanism. In line with our intuition
developed in the previous sections, the number of pooling messages required under the
optimal mechanism is related to the number of incentive conditions faced by the agent.
Since (32) places one additional constraint compared with the baseline 2 × 2 model, it
follows that the optimal mechanism entails at most two pooling messages as shown in
the following proposition.

Proposition 12 Suppose that the talent function θ is submodular (∆ > 0) and that
(θ, p) satisfies either one of (25), (26), and (27) of Proposition 7. Furthermore, suppose
that C satisfies

C ≤ p1(θ3−θ1)
p1+p3

,

C ≤ p2|θ3−θ2|
p2+p3

if θ2 ̸= θ3,
C ≤ p2(θ4−θ3)(θ3−θ2)

(p3−p2)(θ3−θ2)+(p2+p3)(θ2−θ1)
if θ2 < θ3 and p2 < p3.

(35)

Then there exists an optimal effort-inducing disclosure rule (Z, f) with at most two
pooling messages:

Z = V ∪ {z1, z2} for z1, z2 /∈ V .

The support of each pooling message is binary and the combination of the support of z1
and z2 is given by(

supp(z1), supp(z2)
)
∈
{
({1, 2}, {1, 3}), ({1, 2}, {2, 3}), ({1, 3}, {2, 3})

}
.

9 Conclusion
We have formulated a model in which an agent with career concerns reports his private
type to a principal and then performs a task assigned to him. The analysis highlights the
intricacy of managing the agent’s incentive and minimizing the loss in such a framework.
We show that whether the talent function is supermodular or not determines if any pool-
ing is required under optimal disclosure. It is interesting to note that the conclusion is
independent of whether the two components of the agent’s talent – his private type and
performance – are complements or substitutes. While the model is one of information
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20 1

Figure 6: Profile of the minimized loss L∗

The graph depicts L∗ along the vertical line segment β = 1 (⇔ θ2 = θ3) in Figure 4.

L∗ =

{
γ(1− γ)q∆(θ2 − θ1) if q ≤ 1

2
,

γ(1−γ)q(1−q)
γq+(1−γ)(1−q)

∆(θ3 − θ1) if q ≥ 1
2
.

design in the sense that the principal commits to a disclosure rule, the standard concavi-
fication argument cannot be applied because of the presence of the incentive constraints
required for truthful reporting by the agent. To see this, redefine a disclosure rule to be
a probability distribution of posteriors: τ ∈ ∆(∆(V )) satisfying

∑
ζ τ(ζ) ζ = p, where p

is the prior over the set V of profiles v = (s, ω). Take two priors p and p̃ over V , and let
τ and τ̃ be implementable disclosure rules for p and p̃, respectively. The concavification
argument would hold if their convex combination (1 − η) τ + η τ̃ (η ∈ (0, 1)) is also an
implementable disclosure rule. Unfortunately, this does not hold. Figure 6 illustrates
this point by depicting the quadratic loss under the optimal disclosure rule in the 2× 2
example of Section 6.1 corresponding to Figure 4. Since the principal’s objective is to
minimize the loss, cancavification in the current context would imply a convex function.
This however is clearly not the case: Full disclosure is optimal and hence entails no loss
at both ends (q = Pr(s1) = 0, 1) since the agent’s type is unique at these points and
submodularity is irrelevant. On the other hand, full disclosure is not implementable at
interior points where submodularity creates an incentive issue.

One key assumption of the present model is that the firm as an employer of the
agent does not directly observe the task assigned to the agent. It is rather the object
of disclosure by the principal since the task assignment reflects the agent’s private type.
Requiring the principal to fully disclose the task assignment amounts to considering the
subset of disclosure rules where no two profiles can be pooled when they correspond to
different tasks. This alternative assumption hence leads to a simpler characterization of
the optimal disclosure. In the 2 × 2 environment, for example, the optimal rule under
the requirement is one that partially pools profiles v1 = (s1, ω1) and v2 = (s1, ω2) as in
Example 5 (Figure 3).

One main lesson from the career concerns models is that even if an agent chooses
his effort in private, the market forms an expectation of his talent correctly anticipating
his effort choice. Despite this, we assume away moral hazard in our model: Introducing
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moral hazard creates a major complication when the principal does not necessarily dis-
close the task assignment. In such a case, the expectation is a function of how tasks of
different difficulty levels are pooled in disclosure, and the disclosure rule must take into
account its impact on both the market expectation and the agent’s incentive.

We suppose that the principal is concerned only with the quadratic difference between
the agent’s true talent and the expected talent of the agent conditional on the disclosed
information. This yields the key observation that his objective function can be expressed
as a linear function of the variable x, which is the transformation of the probabilities
of the pooling messages. One may want to model a situation where the principal has
additional objectives. For example, he may profit from the agent’s high performance. If
the agent’s objective continues to be the maximization of his expected wage, his incentive
constraints are the same as in the present model and a disclosure rule is implementable
if and only if the interim expected wage function H is cyclically supermodular. Since
implementability then is expressed as a system of linear inequalities of x, the conclusion
of the paper would continue to hold if the principal’s objective function is linear, or more
generally convex, in the variable x. The problem then would reduce to verifying when
the principal’s objective can be expressed as a convex function of x.

This paper focuses on a model without any formal contract with monetary transfer.
Alternatively, we may assume that the principal sells information to the firm and also
compensates the agent for his participation in the mechanism. Examining such a frame-
work, encompassing formal contracts between the agent and principal and between the
firm and the principal, along with informal contracts between the agent and firm, could
be an interesting avenue for future research.
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Appendix A Proofs
Proof of Lemma 1. When n = 2, (5) holds under supermodularity since

H(s1, s1)−H(s1, s2) +H(s2, s2)−H(s2, s1) ≥ 0.

As an induction hypothesis, suppose that supermodularity implies (5) for n = m − 1.
Suppose that n = m, and assume without loss of generality that km > maxi<m ki. Then,

m∑
i=1

{H(ski , ski)−H(ski , ski+1
)}

=
m−1∑
i=1

{H(ski , ski)−H(ski , ski+1
)}+H(skm , skm)−H(skm , sk1)

≥
m−1∑
i=1

{H(ski , ski)−H(ski , ski+1
)}+H(skm−1 , skm)−H(skm−1 , sk1)

=

m−2∑
i=1

{H(ski , ski)−H(ski , ski+1
)}+H(skm−1 , skm−1)−H(skm−1 , sk1)

=

m−1∑
i=1

{H(ski , ski)−H(ski , ski+1
)}

≥ 0,

where the first inequality follows from the supermodularity of H and the second inequal-
ity from the induction hypothesis.

Proof of Proposition 2. When the agent with true type sk reports sℓ, we have from
the (IC) conditions (3),

y(sk)− y(sℓ) ≤ H(sk, sk)−H(sk, sℓ). (36)

For k, ℓ = 1, . . . ,K such that k ̸= ℓ, let akℓ = (ak,ℓi )Ki=1 be a K-dimensional row vector
such that

ak(k, ℓ) = 1, aℓ(k, ℓ) = −1, and aj(k, ℓ) = 0 for j ̸= k, ℓ,
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and define A to be an K(K − 1)×K matrix such that

A =


a(1, 2)
a(2, 1)

...
a(K − 1,K)
a(K,K − 1)

 =


1 −1 · · · 0 0
−1 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 −1
0 0 · · · −1 1

 .

We also define y to be an K-dimensional column vector, and α to be an K(K − 1)-
dimensional column vector such that

y =

 y(s1)...
y(sK)

 , and α =


H(s1, s1)−H(s1, s2)
H(s2, s2)−H(s2, s1)

...
H(sK−1, sK−1)−H(sK−1, sK)
H(sK , sK)−H(sK , sK−1)

 .

The incentive conditions (36) for every k, ℓ ∈ {1, . . . ,K} with k ̸= ℓ can be expressed in
matrix form as:

Ay ≤ α. (37)

It follows that a disclosure rule (Z, f) is implementable if and only if (37) has a solution
y. By the theorem of the alternatives (Theorem 22.2, p.198, Rockafellar, 1997), (37) has
a solution if and only if for any K(K − 1)-dimensional row vector

λ = (λ1,2, λ2,1, . . . , λK−1,K , λK,K−1),

λ ≥ 0 and λA = 0 ⇒ λ · α ≥ 0. (38)

For any m ∈ {2, . . . ,K}, consider the set of ordered pairs of indices

{(k1, ℓ1), . . . , (km, ℓm)}.

We say that such a set is cyclical if k1, . . . , km are all distinct, and there exists a permu-
tation π over {1, . . . ,m} such that

k1 = ℓπ(1), k2 = ℓπ(2), …, km = ℓπ(m).

For example, the sets {(1, 2), (2, 1)}, {(1, 2), (2, 3), (3, 1)}, {(1, 3), (3, 2), (2, 1)} are all
cyclical. A K(K − 1)-dimensional vector λ = (λ1,2, λ2,1, . . . , λK−1,K , λK,K−1) is cyclical
if λk,ℓ ∈ {0, 1} for every (k, ℓ), and

{(k, ℓ) : λk,ℓ = 1} is cyclical.
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It can be readily verified that λA = 0 if λ is cyclical. For example, if {(k, ℓ) : λk,ℓ =
1} = {(1, 2), (2, 1)}, then the first two rows of A cancel out each other so that λA =
a(1, 2) + a(2, 1) = 0, and if {(k, ℓ) : λk,ℓ = 1} = {(1, 2), (2, 3), (3, 1)}, then λA =
a(1, 2)+a(2, 3)+a(3, 1) = 0. Let Λ = {λc1 , . . . , λcN } be the set of all cyclical vectors.We
can then show that any non-negative solution of λA = 0 is expressed as a positive
combination of λc1 , . . . , λcN as shown by Lemma 13 below. It follows that (38) holds if

λcn · α ≥ 0 for n = 1, . . . , N ,

which is equivalent to (5) by the definition of α.
We now show that if there exists y such that Γ = (y, Z, f) is incentive compatible,

then there exists a cost assignment rule ŷ for which (ŷ, Z, f) is both incentive compatible
and individually rational. Specifically, let y be a cost assignment rule such that Γ =
(y, Z, f) is incentive compatible, and denote by U(sk) the interim expected utility of
each type under Γ:

U(sk) = H(sk, sk)− y(sk) for k = 1, . . . ,K.

If U ≡ mink U(sk) ≥ 0, then Γ = (y, Z, f) is individually rational. If U < 0, then define
an alternative cost assignment rule ŷ : S → R by

ŷ(sk) = y(sk)− U.

Since shifting the cost by a constant does not affect the agent’s incentive in the reporting
stage, it is clear that (ŷ, Z, f) is both incentive compatible and individually rational.

Lemma 13 Suppose λ ≥ 0. Then

λA = 0 ⇔ λ =
n∑

j=1

δjλ
cj for some δ = (δj)

n
j=1 ≥ 0.

Proof. (⇐) This readily follows from the discussion above.
(⇒) We show that µA ̸= 0 if µ is not a positive combination of λcj ’s. Without loss of
generality, we can take µ to be such that

J ≡ {(k, ℓ) : µk,ℓ > 0} is not a superset of any cyclical set. (39)

since if the set J is a superset of some cyclical set C, then for the cyclical vector λC such
that {(k, ℓ) : λCk,ℓ = 1} = C,

µ′ ≡ µ− λC min {µk,ℓ : (k, ℓ) ∈ C}

is not a positive combination of λcj ’s either. Denote

J = {(k1, ℓ1), . . . , (kn, ℓn)}.
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Figure 7: Illustration of the proof of Lemma 13

If k1 /∈ {ℓ1, ℓ2, . . . , ℓn}, then we have µA ̸= 0. Otherwise, since k1 ̸= ℓ1 by definition,
suppose without loss of generality that k1 = ℓ2. If k2 /∈ {ℓ1, . . . , ℓn}, then µA ̸= 0.
Otherwise, k2 ̸= ℓ2 by definition and also k2 ̸= ℓ1 since k2 = ℓ1 would imply the violation
of (39): {(k1, ℓ1), (k2, ℓ2)} = {(k1, ℓ1), (ℓ1, k1)} is cyclical. Suppose then without loss of
generality that k2 = ℓ3. We cannot have k3 = ℓ1 or k3 = ℓ2 since either of them
would imply the violation of (39): k3 = ℓ1 would imply that {(k1, ℓ1), (k2, ℓ2), (k3, ℓ3)} =
{(k1, ℓ1), (k2, k1), (ℓ1, k2)} is cyclical, and k3 = ℓ2 would imply that {(k2, ℓ2), (k3, ℓ3)} =
{(k2, ℓ2), (ℓ2, k2)} is cyclical. Continuing in the same way, we have either µA ̸= 0 or
kn−1 = ℓn (Figure 7). Since we have a violation of (39) if kn ∈ {ℓ1, . . . , ℓn−1} and also
kn ̸= ℓn by definition, kn /∈ {ℓ1, . . . , ℓn} so that µA ̸= 0.

Proof of Proposition 3.
We first show that Γ is incentive compatible. Take any k and ℓ such that k < ℓ.

Since (7) implies that

y(sℓ)− y(sk) =

ℓ−1∑
m=k

{
H(sm, sm+1)−H(sm, sm)

}
,

neither type sk nor type sℓ has incentive to misrepresent himself as the other type if and
only if

H(sk, sℓ)−H(sk, sk) ≤
ℓ−1∑
m=k

{
H(sm, sm+1)−H(sm, sm)

}
≤ H(sℓ, sℓ)−H(sℓ, sk).

The right inequality is implied by the cyclical supermodularity of H, and hence by
the supermodularity of H. We can use an induction argument to show that the left-
inequality is also implied by the supermodularity of H: When ℓ = k + 1, the inequality
reduces to

H(sk, sk+1)−H(sk, sk) ≤ H(sk, sk+1)−H(sk, sk),

which always holds. As an induction hypothesis, suppose that the inequality holds for
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some ℓ. Then
ℓ∑

m=k

{
H(sm, sm+1)−H(sm, sm)

}
=

ℓ−1∑
m=k

{
H(sm, sm+1)−H(sm, sm)

}
+
{
H(sℓ, sℓ+1)−H(sℓ, sℓ)

}
≥

{
H(sk, sℓ)−H(sk, sk)

}
+
{
H(sk, sℓ+1)−H(sk, sℓ)

}
= H(sk, sℓ+1)−H(sk, sk),

where the inequality follows from the induction hypothesis and from the supermodularity
of H. This shows that the inequality holds for ℓ+ 1.

We next show that Γ is individually rational. Since y(s1) = 0, H(s1, s1)− y(s1) ≥ 0.
As an induction hypothesis, suppose that H(sℓ, sℓ)− y(sℓ) ≥ 0. Then

H(sℓ+1, sℓ+1)− y(sℓ+1) = H(sℓ+1, sℓ+1)− {H(sℓ, sℓ+1)−H(sℓ, sℓ)} − y(sℓ)

≥ H(sℓ+1, sℓ+1)− {H(sℓ+1, sℓ+1)−H(sℓ+1, sℓ)} − y(sℓ)

= H(sℓ+1, sℓ)− y(sℓ),

where the inequality follows from supermodularity. However, since stochastic dominance
of gsℓ+1

over gsℓ implies

H(sℓ+1, sℓ) =
∑
ω

gsℓ+1
(ω)ϕ(sℓ, ω) ≥ gsℓ(ω)ϕ(sℓ, ω) = H(sℓ, sℓ),

we have by the induction hypothesis,

H(sℓ+1, sℓ+1)− y(sℓ+1) ≥ H(sℓ+1, sℓ)− y(sℓ) ≥ H(sℓ, sℓ)− y(sℓ) ≥ 0.

This advances the induction step.
Proof of Proposition 5. Let (Z, f) be the full disclosure rule so that ϕ(s, ω) = θ(s, ω)
for every (s, ω). We then have

H(s, t) =
∑
ω∈Ω

gs(ω) θ(t, ω).

Take any s, ŝ, t, and t̂ ∈ S such that s < ŝ and t < t̂. Since θ is supermodular,
θ(t̂, ω)− θ(t, ω) is an increasing function of ω, and since gŝ(ω) (first-order) stochastically
dominates gs(ω) by (1),

H(ŝ, t̂)−H(ŝ, t) =
∑
ω∈Ω

gŝ(ω) {θ(t̂, ω)− θ(t, ω)}

≥
∑
ω∈Ω

gs(ω) {θ(t̂, ω)− θ(t, ω)}

= H(s, t̂)−H(s, t).
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It follows that H is supermodular, and hence is cyclically supermodular by Lemma 1.
It follows that (Z, f) is implementable by Proposition 2.

Proof of Lemma 4. It suffices to show that (5) ⇔ (8).
(5) ⇒ (8). When m = 2, sk1 = s and sk2 = t, (5) is written as:

H(s, t)−H(s, s) ≤ H(t, t)−H(t, s),

which is equivalent to∑
ω

gs(ω) {ϕ(t, ω)− ϕ(s, ω)} ≤
∑
ω

gt(ω) {ϕ(t, ω)− ϕ(s, ω)}. (40)

Substituting gs(ω1) = 1 − gs(ω2) and gt(ω1) = 1 − gt(ω2) and then simplifying, we see
that (40) is equivalent to

{gt(ω2)− gs(ω2)}
{
ϕ(t, ω2)− ϕ(s, ω2)− ϕ(t, ω1) + ϕ(s, ω1)

}
≥ 0.

When s < t, gt(ω2)− gs(ω2) > 0 by stochastic dominance (1) so that (8) holds.
(8) ⇒ (5). Take any s, ŝ, t, t̂ ∈ S such that s < ŝ and t < t̂. By (8), ϕ(t̂, ω)− ϕ(t, ω) is
an increasing function of ω. Since gŝ stochastically dominates gs by (1), we have∑

ω

gs(ω) {ϕ(t̂, ω)− ϕ(t, ω)} ≤
∑
ω

gŝ(ω) {ϕ(t̂, ω)− ϕ(t, ω)}.

By the definition of H, this is equivalent to

H(s, t̂)−H(s, t) ≤ H(ŝ, t̂)−H(ŝ, t),

which shows that H is supermodular. It then follows from Lemma 1 that H is cyclically
supermodular (5).

We next show (9) ⇒ (8) since the implication (8) ⇒ (9) is clear. Take any sm, sn ∈ S
with m < n. Since (9) holds for k = m, . . . , n− 1, we have

ϕ(sn, ω2)− ϕ(sn, ω1) ≥ ϕ(sn−1, ω2)− ϕ(sn−1, ω1)

≥ · · ·
≥ ϕ(sm+1, ω2)− ϕ(sm+1, ω1)

≥ ϕ(sm, ω2)− ϕ(sm, ω1),

which implies (8).

37



Proof of Lemma 6. For any s ∈ S and ω ∈ Ω,

ϕ(s, ω) =
∑
r

f(z | s, ω)Eθ[θ | zr]

= f(vsω | vsω) θsω +
∑
r

f(zr | vsω)µr

=
(
1−

∑
r

αr
sω

)
θsω +

∑
r

αr
sω µr

= θsω +
∑
r

αr
sω

(∑
v pvα

r
vθv

σr
− θsω

)
= θsω +

∑
r

αr
sω

σr

(∑
v

pvα
r
v (θv − θsω)

)
= θsω +

∑
v

pv xv,sω (−1)1{v≺sω} ,

and hence for any s, t ∈ S,

H(s, t) =
∑
ω

gs(ω)ϕ(t, ω)

=
∑
ω

gs(ω)
[
θtω +

∑
v

pv xv,tω (−1)1{v≺tω}
]
.

The loss function is given by

L(Γ) =
∑
v∈V

pv
∑
r

αr
v (µr − θv)

2.

Substitution of (18) and (19) into L yields

L(Γ) =
∑
r

∑
v

pv α
r
v

{
µ2r − 2µrθv + θ2v

}
=

∑
r

{
µ2r

∑
v

pv α
r
v − 2µr

∑
v

pv α
r
v θv +

∑
v

pv α
r
v θ

2
v

}
=

∑
r

{
− 1

σr
(∑

v

pv α
r
v θv

)2
+
∑
v

pv α
r
v θ

2
v

}
=

∑
r

1

σr

{
−
(∑

v

pv α
r
v θv

)2
+
(∑

v

pv α
r
v

) (∑
v

pv α
r
v θ

2
v

)}
=

∑
r

∑
{(v,w): v≺w}

αr
vα

r
w

σr
pvpw(θw − θv)

2

=
∑

{(v,w): v≺w}

pvpwxvw |θw − θv|

Substituting the definition of xvw in (19), we obtain (22).
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Proof of Proposition 7. Let (Z, f) be any disclosure rule as described in (17). By
Lemma 4, (Z, f) is implementable if and only if ϕ is supermodular:

ϕ1 + ϕ4 − ϕ2 − ϕ3 ≥ 0. (41)

Using Lemma 6, we can rewrite (41) as∑
v

pvxv1 (−1)1{v≺1} +
∑
v

pvxv4 (−1)1{v≺4}

−
∑
v

pvxv2 (−1)1{v≺2} −
∑
v

pvxv3 (−1)1{v≺3} ≥ ∆,

where ∆ is as defined in (12) and ∆ > 0 when θ is submodular. Collecting terms while
noting 1 ≺ 2, 1 ≺ 3, 1 ≺ 4, 2 ≺ 4, and 3 ≺ 4, we obtain

x12 (p1 + p2) + x13 (p1 + p3)− x24 (p2 + p4)− x34 (p3 + p4)

+ x14 (p4 − p1)− (−1)1{2≺3}x23 (p2 − p3) ≥ ∆.
(42)

To summarize, the principal’s problem is to minimize the objective function (22) with
respect to x = (xmn)m≺n subject to (42). Suppose for the moment that each xmn can
take any non-negative values. Since both the objective function and the constraint are
linear in x, there exists an optimal solution x∗ such that x∗mn > 0 for a unique pair
(m,n) (m ≺ n) and x∗mn = 0 for any other pair. Furthermore, x∗24 = x∗34 = 0 since their
coefficients in (42) are unambiguously negative. It follows that the optimal solution x∗ to
this linear problem and the corresponding optimum L∗ are given by one of the following:

i) x∗12 =
∆

p1+p2
⇒ L∗

12 =
p1p2
p1+p2

∆(θ2 − θ1).
ii) x∗13 =

∆
p1+p3

⇒ L∗
13 =

p1p3
p1+p3

∆(θ3 − θ1).
iii) x∗23 =

∆
|p2−p3| ⇒ L∗

23 =
p2p3
p2−p3

∆(θ3 − θ2) if (p2 − p3)(θ3 − θ2) > 0.
iv) x∗14 =

∆
p4−p1

⇒ L∗
14 =

p1p4
p4−p1

∆(θ4 − θ1) if p4 > p1.

Among these, we see that case (iv) is dominated by case (i): L∗
14 < L∗

12 for any
(θ, p).30 We proceed by separately considering conditions (25)-(27).

1. (θ, p) satisfies (25): Since case (iii) is irrelevant in this case, either case (i) or case
(ii) is optimal. We note that L∗

12 ≤ L∗
13 if and only if

p2
p1 + p2

(θ2 − θ1) ≤
p3

p1 + p3
(θ3 − θ1) ⇔ θ2 − θ1

θ3 − θ1
≤ p3(p1 + p2)

p2(p1 + p3)
.

2. (θ, p) satisfies (26): (p2 − p3)
(
θ2−θ1
θ3−θ1

− p3(p1+p2)
p2(p1+p3)

)
≤ 0.31 We first show that (26) is

equivalent to both

L∗
12 ≤ L∗

23 and L∗
13 ≤ L∗

23.

30When p4 > p1, p1p2
p1+p2

∆(θ2 − θ1) <
p1p4
p4−p1

∆(θ4 − θ1).
31Note that (26) implies (p2 − p3)(θ3 − θ2) > 0.
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Suppose that p2 − p3 > 0. From cases (i) and (iii), we see that L∗
12 ≤ L∗

23 if and
only if

p3
p2 − p3

(θ3 − θ2) ≥
p1

p1 + p2
(θ2 − θ1)

⇔ p3(p1 + p2) (θ3 − θ2) ≥ p1(p2 − p3) (θ2 − θ1)

⇔ p3(p1 + p2) (θ3 − θ1) ≥ p2(p1 + p3) (θ2 − θ1)

⇔ θ2 − θ1
θ3 − θ1

≤ p3(p1 + p2)

p2(p1 + p3)
.

Likewise, from cases (ii) and (iii), we see that L∗
13 ≤ L∗

23 if and only if
p2

p2 − p3
(θ3 − θ2) ≥

p1
p1 + p3

(θ3 − θ1)

⇔ p2(p1 + p3) (θ3 − θ2) ≥ p1(p2 − p3) (θ3 − θ1)

⇔ p3(p1 + p2) (θ3 − θ1) ≥ p2(p1 + p3) (θ2 − θ1)

⇔ θ2 − θ1
θ3 − θ1

≤ p3(p1 + p2)

p2(p1 + p3)
.

When p2 − p3 < 0, we can likewise show that both L∗
12 ≤ L∗

23 and L∗
13 ≤ L∗

23 are
equivalent to

θ2 − θ1
θ3 − θ1

≥ p3(p1 + p2)

p2(p1 + p3)
.

When p2 − p3 = 0, (26) always holds and so do L∗
12 ≤ L∗

23 and L∗
13 ≤ L∗

23.
We next show that in each of case (i) and case (ii), there exists α = (αr

m)m,r that
generates x∗. In case (i), let

R = 1, and α1
m =

{
∆

θ2−θ1
if m = 1 or 2,

0 otherwise.

α then satisfies α1
1 = α1

2 ∈ (0, 1) since ∆
θ2−θ1

< 1, and generates from (19) x∗ in
case (i): x∗mn = 0 for any (m,n) ̸= (1, 2) and

x∗12 =
∆

p1 + p2
.

In case (ii), let

R = 1, and α1
m =

{
∆

θ3−θ1
if m = 1 or 3,

0 otherwise.

α then satisfies α1
1 = α1

3 ∈ (0, 1) since ∆
θ3−θ1

< 1, and generates from (19) x∗ in
case (ii): x∗mn = 0 for any (m,n) ̸= (1, 3) and

x∗13 =
∆

p1 + p3
.
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3. (θ, p) satisfies (27) but violates (26).
Since (27) implies (p2 − p3)(θ3 − θ2) > 0, case (iii) is relevant, and indeed optimal
since the violation of (26) is equivalent to L∗

23 < L∗
12 and L∗

23 < L∗
13 as seen above.

Let

R = 1, and α1
m =

{
(p2+p3)∆

(p2−p3)(θ3−θ2)
if m = 2 or 3,

0 otherwise.

α then satisfies α1
2 = α1

3 ∈ (0, 1) by (27), and generates x∗ in case (iii): x∗mn = 0
for any (m,n) ̸= (2, 3), and

x∗23 =
α1
2α

1
3

p2α1
2 + p3α1

3

|θ3 − θ2| =
∆

|p2 − p3|
.

It follows that L∗ = L∗
23.

This completes the proof.
Proof of Corollary 8. The conclusion is immediate if (θ, p) satisfies the sufficient
condition (26) of Proposition 7. Suppose then that (θ, p) violates (26). This implies that
(p2 − p3)(θ3 − θ2) > 0. Since θ is ε-linear, we have

∆ = 2
(θ3 − θ1

2
− θ4 − θ2

2

)
≤ 2

(
(h+ ε)− (h− ε)

)
= 4ε.

Hence, for ε as given, θ ∈ Θ≽,η implies

∆ ≤ 4ε ≤ η
|p2 − p3|
p2 + p3

<
(p2 − p3)(θ3 − θ2)

p2 + p3
,

which again shows that the sufficient condition (27) of Proposition 7 holds.
Proof of Proposition 9. Since θ is assumed to be submodular,

∆k ≡ θk2 + θk+1,1 − θk1 − θk+1,2 > 0 for k = 1, . . . ,K − 1.

Note that ϕ is supermodular if and only if

ϕk1 + ϕk+1,2 − ϕk2 − ϕk+1,1 ≥ 0 for k = 1, . . . ,K − 1. (43)

Using (20), we can rewrite (43) as∑
v

pv
[
xv,skω1 (−1)1{v≺k1} + xv,sk+1ω2 (−1)1{v≺k+1,2}

−xv,skω2 (−1)1{v≺k2} − xv,sk+1ω1 (−1)1{v≺k+1,1}
]
≥ ∆k

for k = 1, . . . ,K − 1.

(44)

When θ is ε-linear, ∆k < 4ε so that ∆k → 0 for each k as ε → 0. We proceed in the
following steps. In step 1, we consider minimization of L with respect to x, and show
that there exists a solution x∗ which has at most K − 1 positive entries. In step 2, we
show that when ∆ is small, the solution x∗ is close to 0. In step 3, we show that when x∗
is small, there exists α that generates it, and corresponds to K − 1 imperfect messages
each with support consisting of two profiles.
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1. Consider minimizing (22) with respect to x = (xvw)v≺w subject to (44) as well as
the non-negativity constraints xvw ≥ 0. The set of solutions is non-empty since x
that corresponds to the implementable disclosure rule in Example 6 satisfies the
feasibility constraints. Let q =

(
2K
2

)
denote the dimension of x = (xvw)v≺w. Since

(44) involves K − 1 inequalities, if we denote by A the (K − 1) × q matrix of
coefficients on x, then (44) can be expressed in matrix form as

Ax ≥ ∆ ≡

 ∆1
...

∆K−1

 .
The optimization problem with respect to x is hence written as:

min
∑

{(v,w): v≺w}

pvpw xvw |θw − θv|

subject to: x ∈ P ≡ {x : Ax ≥ ∆, x ≥ 0}.
(45)

Since the objective function is also linear in x, there exists a solution x∗ to (45)
which is an extreme point of the polyhedron P . Let J = {j : j = (v, w), x∗vw > 0}
be the indices of strictly positive entries of x∗.
We will show that |J | ≤ K − 1. Suppose to the contrary that |J | ≥ K, and
consider the collection (ej)j∈J , where ej is the jth unit vector, which has 1 in
the jth entry and zero in all other entries. Denote also by (ζi)

d
i=1 the base of the

null space of A: {x : Ax = 0}. Since the dimension d of this null space satisfies
d = q−rank(A) ≥ q−(K−1), the collection of d+|J | ≥ q−K+1+K = q+1 vectors
((ej)j∈J , (ζi)

d
i=1) is linearly dependent. There then exist (λi)

d
i=1 and (µj)j∈J such

that
∑

i λiζi +
∑

j µjej = 0, where λi’s are not all equal to zero, and µj ’s are not
all equal to zero. For κ > 0, consider x̂ ≡ x∗ + κ

∑
i λiζi and x̃ ≡ x∗ − κ

∑
i λiζi.

Since Aζ1 = · · · = Aζd = 0,

Ax̂ = Ax̃ = Ax∗.

Furthermore, since
∑

i λiζi = −
∑

j µjej , if x∗vw = 0 for any (v, w) (i.e., j =
(v, w) /∈ J), then x̂vw = x̃vw = 0 as well. It follows that both x̂ and x̃ belong to
the polyhedron P provided that κ is sufficiently small. Since x∗ = (x̂+ x̃)/2, this
contradicts the fact that x∗ is an extreme point of P .

2. When ∆ = 0, it is clear that (45) has a solution x = 0. We show that when ∆ is
small, any solution to (45) is close to zero using the theorem of the maximum. For
this, take B > 0 large enough and consider the following maximization problem:

max
x

(−1)
∑

{(v,w): v≺w}

pvpw xvw |θw − θv|

subject to x ∈ Λ(δ),

(46)
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where
Λ(δ) = {x = (xvw)v≺w : Ax ≥ δ, 0 ≤ x ≤ (B, . . . , B)}.

The objective function is linear in x and hence continuous. Note also that the
matrix A in the constraints is a function only of p and ≽, and is independent of
the choice of θ ∈ Θ≽,η.
The correspondence Λ : RK−1

+ → Rq is continuous at δ = 0 and compact-valued:
To see that it is upper hemi-continuous at δ = 0, note that for any open set G ⊃
Λ(0) and any δ ≥ 0, Λ(0) ⊃ Λ(δ) so that there exists a neighborhood U ⊂ RK−1

+ of
δ = 0 such that δ ∈ U implies Λ(δ) ⊂ G. To see that Λ is lower hemi-continuous at
δ = 0, take any open set G ⊂ Rq such that G∩Λ(0) ̸= ∅. Let x0 be an element of
this intersection, and x̄ ≥ 0 be the value of x corresponding to the disclosure rule
in Example 6 for some fixed ∆ = ∆̄ ≫ 0 so that Ax̄ ≥ ∆̄. Take ε > 0 small enough
so that εx̄ + (1 − ε)x0 ∈ G, and take U = [0, ε∆̄) ⊂ RK−1

+ as a neighborhood of
0 ∈ RK−1

+ . Then for any δ ∈ U , we have

A
(
εx̄+ (1− ε)x0

)
≥ εAx̄ ≥ ε∆̄ ≫ δ,

and hence εx̄+ (1− ε)x0 ∈ Λ(δ). It follows that δ ∈ U implies that G ∩ Λ(δ) ̸= ∅,
showing that Λ is lower hemi-continuous at δ = 0.
We note that the original optimization problem is equivalent to (46) for δ = ∆ since
the upper bound B on xvw can be ignored if B is taken large enough. Define G∗(δ)
to be the set of solutions to (46) for each δ ≥ 0. Note that G∗(0) = {0} since x = 0
is the unique solution to (46) when δ = 0. If we take an open ball around 0 of radius

η
K−1 , then G∗(0) = {0} ⊂ O. Since the correspondence G∗ : RK−1

+ → Rq is upper
hemi-continuous by Berge’s theorem of the maximum, there exists a neighborhood
U ⊂ RK−1

+ of δ = 0 such that δ ∈ U implies G(δ) ⊂ O, or equivalently, δ ∈ U
implies x∗vw(δ) < η

K−1 for every (v, w) with v ≺ w.
3. Take δ > 0 as above and write x∗ ≡ x∗(δ). Let J be the set of indices of non-zero

entries of x∗. By Step 1, |J | ≤ K − 1. We show that when x∗vw < η
K−1 for every

v ≺ w, there exist the set of imperfect messages {z1, . . . , zR} and their probabilities
α = (αr

v)v,r that replicate x∗. First, let R = |J | and define

{z1, . . . , zR} = {vw : v ≺ w and x∗vw > 0}.

For each (v, w) with v ≺ w, define α by

αvw
v̂ =

{
pv+pw
|θw−θv | x

∗
vw if v̂ ∈ {v, w},

0 otherwise.
(47)

In other words, the imperfect message z = vw is sent only when either v or w is
realized. To see that α are well-defined probabilities, note that x∗vw > 0 for at most
K − 1 pairs (v, w) with v ≺ w and x∗vw ≤ η

K−1 for any such pair. Hence, for each
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v ∈ V , the sum of probabilities that imperfect messages is sent at v is given by∑
w∈V
v≺w

αvw
v +

∑
w∈V
v≻w

αwv
v =

∑
w∈V
v≺w

x∗
vw>0

αvw
v +

∑
w∈V
w≺v

x∗
wv>0

αwv
v

=
∑
w∈V
v≺w

x∗
vw>0

pv + pw
|θw − θv|

x∗vw +
∑
w∈V
w≺v

x∗
wv>0

pv + pw
|θv − θw|

x∗wv

≤ 1

η

{∑
w∈V
v≺w

x∗vw +
∑
w∈V
w≺v

x∗wv

}
≤ 1.

Finally, α replicates x∗ since for the imperfect message z = vw,

|θw − θv|
αvw
v αvw

w∑
v̂ α

vw
v̂

= |θw − θv|
αvw
v αvw

w

pvαvw
v + pwαvw

w

=
|θw − θv|αvw

v

pv + pw
= x∗vw for any (v, w) with v ≺ w.

We finally show that

{v : f(zr | v) > 0} ̸= {v12, vK2} and {vK1, vK2} for any r = 1, . . . , R.

Note that these are equivalent to x∗12,K2 = x∗K1,K2 = 0. First, x12,K2 = x12,sKω2

(or xK2,12 = xsKω2,12) appears when k = 1 and when k = K − 1 in (44), and ap-
pears once in each of them: When k = 1 and v = sKω2, the coefficient of xv,s1ω2 is
−pv(−1)1{v≺12} = −pv, and when k = K − 1 and v = s1ω2, the coefficient of xv,sKω2

is pv(−1)1{v≺K2} = −pv. Since both coefficients are negative, and the optimal solution
must have x∗12,K2 = 0. Next, xK1,K2 = xsKω1,sKω2 (or xK2,K1 = xsKω2,sKω1) appears
only when k = K − 1 in (44), and appears twice in it: When v = sKω1, the coefficient
of xv,sKω2 is pv(−1)1{v≺K2} = −pv, and when v = sKω2, the coefficient of xv,sKω1 is
−pv(−1)1{v≺K1} = −pv. Again, both coefficients are negative and the optimal solution
must have x∗K1,K2 = 0.
Proof of Proposition 10.

Recall from (21) that we can express the function H in terms of x defined in (19) as

H(s, t) =
∑
ω

gs(ω)
[
θtω +

∑
v

pvxv,tω (−1)1{v≺tω}
]
.

The conditions (5) for cyclical supermodularity is then given by
n∑

i=1

{∑
ω

gski (ω)
[
θskiω +

∑
v

pvxv,skiω (−1)
1{v≺ski

ω}
]

−
∑
ω

gski (ω)
[
θski+1

ω +
∑
v

pvxv,ski+1
ω (−1)

1{v≺ski+1
ω}
]}

≥ 0,
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which can be rewritten as
n∑

i=1

∑
ω

gski (ω)
[∑

v

pvxv,skiω (−1)
1{v≺ski

ω}

−
∑
v

pvxv,ski+1
ω (−1)

1{v≺ski+1
ω}
]

≥
n∑

i=1

∑
ω

gski (ω)
(
θski+1

ω − θskiω

)
for (k1, . . . , kn) and n = 2, . . . ,K.

(48)

As noted in (6), (48) is a collection of N =
∑K

n=2

(
K
n

)
(n − 1)! inequalities which are

linear in x = (xvw)v≺w. Since x is itself
(
KL
2

)
-dimensional, we can express (48) in matrix

form as

Ax ≥ ∆,

where ∆ is an N -dimensional vector whose entries are indexed by (k1, . . . , kn) for n =
2, . . . ,K and given by the right-hand side of (48):

∆(k1,...,kn) =

n∑
i=1

∑
ω

gski (ω)
(
θski+1

ω − θskiω
)
.

For any h > 0, when the talent function θ is ε-linear, we see that ∆(k1,...,kn) → 0 as
ε→ 0 since by the definition of (k1, . . . , kn),

n∑
i=1

(
ki+1 − ki

)
= 0.

Note also that the matrix A is again a function only of p and ≽, and independent of the
particular choice of θ ∈ Θ≽,η. Consider now the following optimization problem with
respect to x:

min L(Γ) =
∑

{(v,w): v≺w}

xvw pvpw |θw − θv|

subject to: Ax ≥ ∆, x ≥ 0.

(49)

This problem is identical to the problem (45) in the proof of Proposition 9 for the
K×2 case except for the number of inequalities in the constraint set. It follows that the
conclusion of the proposition follows if we repeat the argument in the proof of Proposition
9 once we note that the existence of x̄ ≥ 0 with Ax̄ ≥ ∆̄ is now given by Example 7.

Proof of Proposition 12. By Lemma 11, incentive compatibility of a task-assignment
mechanism is independent of the agent’s action choice e. When the private type is binary,
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the mechanism Γ = (y, Z, f) is incentive compatible if and only if∑
ω

{
ϕ(s2, ω)− ϕ(s1, ω)

}
gs1(ω) ≤ y(s2)− y(s1)

≤
∑
ω

{
ϕ(s2, ω)− ϕ(s1, ω)

}
gs2(ω).

(50)

It follows that an incentive compatible effort-inducing mechanism Γ = (y, Z, f) exists if
and only if (33) and (50) hold, or equivalently, ϕ is supermodular, and∑

ω

{
ϕ(s2, ω)− ϕ(s1, ω)

}
gs1(ω)

≤
∑
ω

{
ϕ(s2, ω) gs2(ω)− ϕ(s1, ω) gs1(ω)

}
− c1 − c0
q1(s2)− q0(s2)

.
(51)

Simplifying (51) using Lemma 6 as well as the fact that the performance signal ω is
binary, we see that the disclosure rule (Z, f) is effort-inducing if and only if

x12 (p1 + p2) + x13 (p1 + p3)− x24 (p2 + p4)− x34 (p3 + p4)

+ x14 (p4 − p1)− (−1)1{2≺3}x23 (p2 − p3) ≥ ∆.
(52)

and

−p1x14 − p2x24 − (p3 + p4)x34 + p1x13 − (−1)1{2≺3} p2x23 ≥ C, (53)

where C is as defined in (34).32

Let x∗ denote the optimal solution. Clearly, x∗24 = x∗34 = 0 since their coefficients are
negative in both (52) and (53). It follows that only x∗12, x∗13, x∗14, and x∗23 can be strictly
positive, and by the same logic as in the proof of Proposition 9, we can take x∗ so that
at most two of them are strictly positive.

We begin by showing that x∗14 = 0. Suppose to the contrary that p4 − p1 > 0 and
x∗14 > 0. For (53) to hold, it must be the case that either x∗13 > 0 or x∗23 > 0. If x∗14 > 0,
then, x∗vw > 0 for two coordinates (v, w). We can then assume that x∗ satisfies both
(52) and (53) with equality since otherwise, there would exist a solution x∗ such that
x∗vw > 0 only for a single coordinate (v, w).

• x∗13 > 0, x∗14 > 0, and x∗vw = 0 for (v, w) ̸= (1, 3), (1, 4).
Let x̂ and x̃ be such that

x̂13 =
∆

p1+p3
, and x̂vw = 0 for (v, w) ̸= (1, 3),

x̃14 =
∆

p4−p1
, and x̃vw = 0 for (v, w) ̸= (1, 4).

32Note that (52) is identical to (42) in the proof of Proposition 7.
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Note that both x̂ and x̃ satisfy (52) with equality. Since x∗ also satisfies (52)
with equality, x∗ is a linear combination of x̂ and x̃. Furthermore, (p4 − p1)x

∗
14 =

∆− (p1 + p3)x
∗
13 > 0 so that x∗13 < ∆

p1+p3
, which implies that

p1x̂13 − p1x̂14 = p1
∆

p1 + p3
> p1x

∗
13 − p1x

∗
14 = C.

In other words, x̂ satisfies (53). The inequalities p3
p1+p3

< p4
p4−p1

and θ3 < θ4
together imply

p1p3 (θ3 − θ1) x̂13 = p1p3 (θ3 − θ1)
∆

p1 + p3

< p1p4 (θ4 − θ1)
∆

p4 − p1

= p1p4 (θ4 − θ1) x̃14,

and hence L(x̂) < L(x̃). Since x∗ is a convex combination of x̂ and x̃ as noted
above and since L is linear, L(x∗) is also a convex combination of L(x̂) and L(x̃),
and satisfies L(x∗) > L(x̂). Given that x̂ satisfies both (52) and (53), this is a
contradiction to the optimality of x∗.

• x∗14 > 0, x∗23 > 0, and x∗vw = 0 for (v, w) ̸= (2, 3), (1, 4).
Let x̂ be such that x̂13 = p4−p1

p1+p3
x∗14, x̂14 = 0, and x̂vw = x∗vw for (v, w) ̸= (1, 3),

(1, 4). x̂ then satisfies both (52) and (53). Since p3
p1+p3

< p4
p4−p1

and θ3 < θ4, we
have

p1p3(θ3 − θ1) x̂13 = p1p3(θ3 − θ1)
p4 − p1
p1 + p3

x∗14 < p1p4(θ4 − θ1)x
∗
14,

which leads to the contradiction that L(x̂) < L(x∗).

We hence conclude that at most two of x∗12, x∗13, and x∗23 can be strictly positive, and
proceed by examining the following three cases separately.

1) If x∗12 = 0, then (52) and (53) reduce to

x∗13 (p1 + p3)− (−1)1{2≺3}x∗23 (p2 − p3) ≥ ∆, (54)
p1x

∗
13 − (−1)1{2≺3}p2x

∗
23 ≥ C. (55)

At least one of these two inequalities with equality.

(a) Suppose first that (55) holds with equality.
• If 2 ≺ 3 (⇔ θ2 < θ3), then (55) becomes

p1x
∗
13 + p2x

∗
23 = C.
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By (35), both (x13, x23) = ( C
p1
, 0) and (x13, x23) = (0, C

p2
) satisfy

p1 + p3
θ3 − θ1

x13 +
p2 + p3
|θ3 − θ2|

x23 ≤ 1. (56)

(x∗13, x
∗
23) is a convex combination of these two points, and hence satisfies

(56) as well.
• If 2 ≽ 3 (⇔ θ2 ≥ θ3), then (55) becomes

p1x
∗
13 − p2x

∗
23 = C.

If p2 ≥ p3 so that (25) holds, then x∗23 = 0 and x∗13 = max { C
p1
, ∆
p1+p3

}.
By (35), x∗ satisfies (56). Assume then in what follows that (25) does
not hold so that θ2 > θ3 and p2 < p3. If x∗ satisfies (54) with strict
inequality, then (x∗13, x

∗
23) = ( C

p1
, 0), which satisfies (56) by (35). On the

other hand, suppose x∗ satisfies (54) also with inequality. If (26) holds,
then (x∗13, x

∗
23) = ( ∆

p1+p3
, 0), which satisfies (56). If (26) does not hold,

then (27) holds by assumption. Note that x∗ in this case is a convex
combination of (x13, x23) = ( ∆

p1+p3
, 0) and (x13, x23) = (0, ∆

p3−p2
), both of

which satisfy (56) under (27). It follows that x∗ also satisfies (56).
(b) If (55) holds with strict inequality, then x∗ is identical to the optimal solution

in the proof of Proposition 7, and satisfies (56) under (25), (26) or (27).

Take the number of pooling messages R = 2 and let the probability αr
v = f(zr | v)

of message zr given profile v ∈ V (r = 1, 2 and v = 1, 2, 3) be defined by

α1
2 = 0, α1

1 = α1
3 =

p1 + p3
θ3 − θ1

x∗13, and α2
1 = 0, α2

2 = α2
3 =

p2 + p3
θ3 − θ2

x∗23.

Then αr
v is well-defined since α1

3+α
2
3 ≤ 1 by (56), and hence also α1

1+α
2
1, α1

2+α
2
2 ≤

1. Furthermore, it replicates x∗ since

2∑
r=1

αr
1α

r
3

p1αr
1 + p3αr

3

=
α1
1

p1 + p3
= x∗13,

2∑
r=1

αr
2α

r
3

p2αr
2 + p3αr

3

=
α2
2

p2 + p3
= x∗23.

2) If x∗13 = 0, then (52) and (53) reduce to

x∗12 (p1 + p2)− (−1)1{2≺3}x∗23 (p2 − p3) ≥ ∆, (57)
− (−1)1{2≺3}p2x

∗
23 ≥ C. (58)

Again, at least one of these two inequalities with equality. Note that (58) requires
that 2 ≺ 3 (⇔ θ2 < θ3).

(a) Suppose first that (58) holds with equality:

p2x
∗
23 = C.
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If (57) holds with strict inequality, then (x∗12, x
∗
23) = (0, C

p2
). By (35), x∗

satisfies
p1 + p2
θ2 − θ1

x∗12 +
p2 + p3
|θ3 − θ2|

x∗23 ≤ 1. (59)

Suppose now that (57) also holds with equality.
• p2 > p3. In this case, (25) does not hold. If (26) holds, then (x∗12, x

∗
23) =

( ∆
p1+p2

, 0). If (26) does not hold either, then (27) holds by assumption
and (x∗12, x

∗
23) is a convex combination of (x12, x23) = (0, ∆

p2−p3
) and

(x12, x23) = ( ∆
p1+p2

, 0), and satisfies (56) since both these points satisfy
(59) under (27).

• p2 ≤ p3. In this case,

(x∗12, x
∗
23) =

( 1

p1 + p2

{
∆+

p3 − p2
p2

C
}
,
C

p2

)
.

x∗ then satisfies (59) because of the third condition in (35).
(b) If (58) holds with strict inequality, then x∗ is identical to the optimal solution

in the proof of Proposition 7 and satisfies (59) under (25), (26) or (27).

If we let R = 2 and define αr
v = f(zr | v) (r = 1 ,2) by

α1
3 = 0, α1

1 = α1
2 =

p1 + p2
θ2 − θ1

x∗12, and α2
1 = 0, α2

2 = α2
3 =

p2 + p3
|θ3 − θ2|

x∗23,

then αr
v is a well-defined probability by (59) and replicates x∗ as above.

3) If x∗23 = 0, then (52) and (53) reduce to

x∗12 (p1 + p2) + x∗13 (p1 + p3) ≥ ∆, (60)
p1x

∗
13 ≥ C. (61)

Again, the optimal x = x∗ satisfies at least one of these two inequalities with
equality.

(a) If (61) holds with equality and (60) holds with strict inequality, then (x∗12, x
∗
13) =

(0, C
p1
). By (35), x∗ satisfies

p1 + p2
θ2 − θ1

x∗12 +
p1 + p3
θ3 − θ1

x∗13 ≤ 1. (62)

(b) If x∗ satisfies both (61) and (60) with equality, then it satisfies (62) because it
is a convex combination of (x12, x13) = ( ∆

p1+p2
, 0) and (x12, x13) = (0, ∆

p1+p3
),

both of which satisfy (62).
(c) If x∗ satisfies (61) with strict inequality, then x∗ is identical to the optimal

solution in the proof of Proposition 7 and satisfies (62) under (25), (26) or
(27).
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If we let R = 2 and define αr
v = f(zr | v) (r = 1, 2) by

α1
3 = 0, α1

1 = α1
2 =

p1 + p2
θ2 − θ1

x∗12, and α2
2 = 0, α2

1 = α2
3 =

p1 + p3
θ3 − θ1

x∗13,

then αr
v is a well-defined probability by (62) and replicates x∗ as above.

In all the three cases above, hence, we can take R = 2 and αr
v to be positive for at

most two profiles for each r. This completes the proof.
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