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Abstract

We show that in the formalization of representativeness (Kahneman and Tversky

(1972)) developed by Gennaioli and Shleifer (2010), overreaction and confidence are

affected by uncertainty, as a news effect interacts with an uncertainty effect. In the

time series domain, this interaction emerges in a smooth version of Diagnostic Ex-

pectations (DE). Under smooth diagnosticity, agents overreact to new information.

Since new information typically changes not just the conditional mean, but also the

conditional uncertainty, changes in uncertainty surrounding current and past beliefs

affect the severity of the DE distortion and confidence. Smooth DE implies a joint

and parsimonious micro-foundation for key properties of survey data: (1) overreaction

of conditional mean to news, (2) stronger overreaction for weaker signals and longer

forecast horizons, and (3) overconfidence in subjective uncertainty. An analytical RBC

model featuring Smooth DE accounts for overreaction and overconfidence in surveys, as

well as three salient properties of the business cycle: (1) asymmetry, (2) countercyclical

micro volatility, and (3) countercyclical macro volatility.
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1 Introduction

There has been a growing interest in psychological foundations that enrich models of belief

formation in economics. A prominent example is the widely-documented “representative

heuristic” of Kahneman and Tversky (1972), which serves as the underpinning of a recent

and expanding literature on the paradigm of Diagnostic Expectations (DE). According to

this heuristic, when new information arrives, as measured with respect to a reference dis-

tribution based on past data, memory selectively recalls more vividly past events that are

more associated with, or representative of, that current news. Models of DE formalize the

details on how memory retrieval distorts the subjective probability of uncertain events away

from its objective, “kernel of truth,” frequency (see Bordalo et al. (2022) for an overview).

One immediate manifestation of the kernel of truth logic is that when the new information

completely eliminates uncertainty over the variable to be forecasted, there is objectively no

room for memory to distort conditional judgements (Gennaioli and Shleifer (2010)). While

in existing DE models this logic holds in its extreme version of no conditional uncertainty,

the literature has so far largely ignored the fact that representativeness, as formalized in

Gennaioli and Shleifer (2010) and Bordalo et al. (2016), also features a deeper and pervasive

relation between diagnosticity and uncertainty. Specifically, representativeness implies that

the distance between the subjective distorted distribution and its objective counterpart de-

pends on both the amount of information received and the precision of the revised objective

distribution. Uncertainty affects the strength of the representativeness distortion and leads

to variation in confidence, accommodating both cases of under- and overconfidence.

After illustrating the connection between representativeness and uncertainty in a simple,

static, two-state example, we argue that in the time series domain this connection man-

ifests itself as a “smoothed” version of Diagnostic Expectations, in which the severity of

the DE distortion and confidence depend on conditional uncertainty. As a result, Smooth

Diagnostic Expectations (Smooth DE) end up connecting two vastly popular branches of

Economics that have largely proceeded in parallel: the Diagnostic Expectations literature

and the Uncertainty literature (Bloom (2009, 2014), Bloom et al. (2018), Baker et al. (2024)).

Representativeness and Uncertainty. We first study the relation between uncertainty

and representiveness in a simple static two-state categorical distribution. We build on the

classic example of inferring the probability of someone having red hair. In this example,

representativeness implies that if the person of interest is revealed to be Irish, agents overreact

and tend to overstate the probability that the person has red hair. This is because red hair

is more representative of the Irish population with respect to the world population. We

use this example to emphasize that the strength of the overreaction is not monotonic, but
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rather hump-shaped. This is because two channels are at work: A news channel, measured

by the distance between the current and reference distribution, and an uncertainty channel,

measured by the entropy of the current distribution.

Suppose that there are only two categories - red and non-red hair color - and that,

before any information is revealed about the particular person, the hair color red has a

low probability. As information is revealed that makes the red hair more likely (say, Irish

nationality), overreaction initially increases with the conditional probability assigned to the

color red. This is because initially the news effect and the uncertainty effect work in the same

direction: the color red is more likely and there is more uncertainty on the hair color, as an

ex-ante low-probability hair color became more likely, but not certain. However, if the new

information makes the objective probability cross the point of maximum uncertainty (50:50

in a two-state categorical distribution), the uncertainty effect starts working in the opposite

direction. There is now progressively less uncertainty on the hair color and the distance

between subjective and objective distributions declines. In the limit, when the probability

of red hair goes to 1, uncertainty is fully removed, the uncertainty channel dominates the

news channel, and the subjective and objective distribution coincide.

This interaction between the two channels also generate variation in the level of confi-

dence. For small increases in the probability of the color red, the less likely hair color, the

distorted distribution features more uncertainty than the objective distribution because, by

overreacting, agents bring the perceived distorted probability closer to the point of maxi-

mum uncertainty (50:50). Eventually, overconfidence emerges, as agents’ overreaction leads

to attribute more than .5 probability to the color red even if the objective distribution has

not crossed the point of maximum uncertainty. As the probability of the hair color red

approaches 1, the severity of overreaction starts declining and eventually goes to zero.

Smooth Diagnostic Expectations. The natural adaptation of representativeness to the

time series domain involves a “smoothed” version of Diagnostic expectations. Under Smooth

DE the severity of the DE distortion and confidence depend on conditional uncertainty, in a

way similar to what we documented for categorical distributions. Agents overreact to new

information, defined as the difference between the current information set and a previous

information set. Since new information typically changes not just the conditional mean, but

also the conditional uncertainty, changes in uncertainty surrounding current and past beliefs

affect the extent of the DE distortion.

Smooth DE stems from a minimal, but conceptually important change to the baseline DE

paradigm developed by Bordalo et al. (2018) (BGS) and it aligns well with the original “rep-

resentative heuristic” of Kahneman and Tversky (1972). In the BGS formulation of DE, the

reference distribution is centered on the conditional mean under the true density formed at
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some given past time, but shares the same uncertainty as the true distribution conditional on

current information. Instead, since we condition exclusively on the past information set, the

reference distribution reflects the level of uncertainty at that past time in which expectations

were formed. This is in line with the original formalization of representativeness developed

by Gennaioli and Shleifer (2010) and Bordalo et al. (2016) for categorical distributions, in

which information sets between current and reference distributions are kept distinct.

Smooth DE is thus built on the key informational difference between conditional (or

posterior) and unconditional (prior) distribution information. In this sense, our approach

relates to recent work in Bordalo et al. (2020), which features a sampling by similarity

framework that under conditional probability assessments yields a result reminiscent of DE.

In a similar spirit to Smooth DE, in that setting it is important to keep track of the entire

prior distribution, which plays a major role in memory interference. In fact, a version of

what we label Smooth DE appears in chapter 5 of Gennaioli and Shleifer (2018). However,

despite this early appearance, the growing DE literature has focused on the simplified version

proposed in BGS. In this paper, we argue that representativeness features a fundamental

connection between memory recall and uncertainty. As a result, Smooth DE has distinctive

properties that render it an important point of contact with the uncertainty literature and

help to make sense of several stylized facts.

When the current and reference distributions are Normal, the baseline BGS formulation

delivers a distorted distribution that is also Normal, but in which only the mean is affected by

DE. In comparison, under Smooth DE we uncover two key novel properties of the distorted

distribution. First, the severity of the Smooth DE distortion decreases as the current level

of uncertainty decreases compared to past uncertainty. Put differently, we obtain a smooth

version of the logic expressed by Gennaioli and Shleifer (2010), as now an agent is less prone

to overreact to the new information the more precise the current information is with respect

to past information. In the limit, as uncertainty is fully resolved by the new information,

the distortion vanishes, as in the baseline DE. However, with Smooth DE, the extent of the

distortion varies smoothly as current uncertainty increases with respect to past uncertainty,

while the baseline DE features a discontinuity once current uncertainty goes to zero.

Second, Smooth DE delivers a disconnect between the objective and subjective level of

uncertainty. This is because under Smooth DE, not only the mean, but also the variance of

the DE distribution is distorted. When agents experience a reduction in uncertainty with

respect to the reference distribution, agents over-state the precision of their forecasts, leading

to overconfidence. In other words, in that case the DE distribution features a variance lower

than under Rational Expectations (RE). Given that typically events close in the future are

easier to predict than events far into the future, agents’ beliefs will typically feature such
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overconfidence. However, the Smooth DE paradigm can also accommodate underconfidence

following an increase in uncertainty, like in response to an uncertainty shock (Bloom (2009)).

A parsimonious micro-foundation for survey evidence. As the traditional DE, Smooth

DE is characterized by a primitive stochastic environment and two parameters controlling

(i) the severity of the distortion, θ > 0, and (ii) the lag of the reference distribution, J ≥ 1.

Thus, Smooth DE makes use of no additional degree of freedom. Instead, by allowing the

reference distribution to be based only on the information set available at some given past

time, the kernel of truth logic endogenously generates predictions for the effective distortion.

Under Smooth DE, the primitive parameter θ > 0 measures the severity of the DE distor-

tion for a given level of relative uncertainty, while the effective severity changes with the

relative uncertainty. These disciplined predictions allow Smooth DE to offer a parsimonious

micro-foundation for a wide range of stylized facts.

The novel property that the effective overreaction to news is stronger when relative uncer-

tainty is higher helps to account for the stylized survey fact that overreaction increases with

the horizon of the survey forecast (see for example Bordalo et al. (2019), d’Arienzo (2020),

Bordalo et al. (2020), Augenblick et al. (2021), and Bordalo et al. (2023)). For standard

stationary processes the same piece of information is less informative about horizons further

in the future. Critically, under Smooth DE this relatively smaller reduction in conditional

uncertainty leads to a relatively stronger overreaction to news for longer horizons forecasts,

consistent with the stylized findings.

The property that Smooth DE implies a disconnect between subjective and measured

uncertainty makes the proposed framework relevant for a separate literature on overconfi-

dence. Recent work documents that in survey data firms (i) overreact to news and (ii) are

overconfident in their subjective forecasts (see, Barrero (2022), Born et al. (2022), and the

reviews in Altig et al. (2020) and Born et al. (2022)). While the baseline DE model can

account for overreaction, it is silent on overconfidence. Smooth DE can instead account for

both these seemingly separate properties since it distorts both the mean and the variance of

agents’ expectations in a way to typically generate both overreaction and overconfidence.

More broadly, the overreaction and overconfidence properties have been typically stud-

ied as two distinct behavioral departures from full rationality (see Barberis (2018) for an

overview). While overreaction has been typically the focus on the standard DE literature,

a separate literature (including for example De Bondt and Thaler (1995) and Daniel et al.

(1998, 2001)) is motivated by extensive psychological evidence for overconfidence and argues

that models based on this behavioral property are promising in accounting for asset market

puzzles. Our results indicate that Smooth DE can offer a joint micro-foundation, based

on the representativeness heuristic, of these two-widely documented and studied departures

4



from standard Bayesian updating.

Business cycle implications. We leverage our theoretical insights to study a parsimonious

business cycle model with time-varying uncertainty to illustrate how state-dependent over-

reaction from Smooth DE generate important cyclical implications. We consider an island

economy subject to economy-wide and island-specific TFP shocks. Following Bloom et al.

(2018), we assume that the island-specific TFP shocks are subject to time-varying volatil-

ity that is negatively correlated with economy-wide TFP innovations. We show that this

parsimonious model can account for Barrero (2022)’s survey evidence on overreaction and

overconfidence, as well as three key empirical properties of the business cycle: (1) asymmetry

(recessions are deeper than expansions), (2) countercyclical micro volatility (cross-sectional

variances of microeconomic variables rise in recessions), and (3) countercyclical macro volatil-

ity (time-series variances of macroeconomic variables rise in recessions).1

First, consider the asymmetry property. A negative economy-wide TFP shock generates

higher uncertainty about the island-specific TFP shocks. Hence, agents overreact to the

economy-wide TFP shock more than usual, leading to a sharper fall in hours, consump-

tion, and output. In contrast, a positive TFP shock reduces agents’ uncertainty, and the

rise in economic activity is mild. Second, consider countercyclical micro volatility. In re-

cessions, agents face higher uncertainty, so they overreact to the island-specific TFP and

as a result, the cross-sectional variances of island-level hours, output, and consumption

increase. Conversely, during expansions, agents’ overreactions are milder, and hence the

cross-sectional dispersion decreases. Third, consider countercyclical macro volatility. The

state-dependent overreaction implies that in recessions, economic activity responds strongly

to an economy-wide shock to TFP, while in expansions the responses are more muted. As

a result, the aggregate volatility rises in recessions even when there is no change in the

volatility of economy-wide shocks. These mechanisms highlight that the micro-level uncer-

tainty and macroeconomic volatility are tightly linked through the agent’s state-dependent

overreaction. As a result, a novel policy implication emerges: a redistributive policy that re-

duces idiosyncratic uncertainty could be beneficial for macroeconomic stabilization because

it dampens this state-dependent overreaction.

1These properties have been extensively documented in the literature. For instance, Neftci (1984), Hamil-
ton (1989), Sichel (1993), McKay and Reis (2008), and Morley and Piger (2012) show macroeconomic asym-
metries using various econometric approaches. Bloom (2009), Fernández-Villaverde et al. (2011), Ilut et al.
(2018), Jurado et al. (2015), Basu and Bundick (2017), and Bloom et al. (2018) document that volatility or
uncertainty rise in recessions at the micro and macro levels.
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2 Representativeness and Uncertainty

The building block for our Smooth DE model is the concept of representativeness. Here

we directly use the definition of representativeness introduced in recent work on selective

memory by Gennaioli and Shleifer (2010), Bordalo et al. (2016), Bordalo et al. (2020). This

definition, detailed below, captures formally Tversky and Kahneman (1975) own definition

of representativeness: “an attribute is representative of a class if it is very diagnostic; that

is, the relative frequency of this attribute is much higher in that class than in a relevant

reference class” (p. 296).

To understand how we later build on this definition in a time series dimension, we first

consider some simple examples, within a very standard probability environment that is static

and discrete. These examples illustrate how representativeness implies that overreaction to

the relative frequency is shaped by the entire distribution of attributes, both in the class of

interest and the relevant reference class, consistently with the above definition by Tversky

and Kahneman (1975). We highlight how the amount of uncertainty characterizing these

distributions is of particular importance in shaping the effective manifestation of represen-

tativeness. This focus on the role of uncertainty will allow us to draw an explicit connection

between the building block of representativeness and Smooth DE as developed in Section 3.

Representativeness. Consider a simple environment where (Ω, P ) is a discrete probability

space, with two random variables defined on this space: X, the trait that the agent seeks to

assess, and D, the available data. The agent looks to form the conditional probability of a

given trait x̂ ∈ X, given a particular realized data d ∈ D. A Bayesian agent would simply

use the conditional probability P (x̂|d) = P (x̂ ∩ d)/P (d). The environment here is static,

without a sense of repeated accumulation of information.

In assessing conditional probabilities, the agent subject to the representativeness heuristic

distorts the Bayesian belief. Here we follow the formalization of representativeness in Gen-

naioli and Shleifer (2010), Bordalo et al. (2016), Bordalo et al. (2020). This work explains

in detail how representativeness can be intuitively understood as the tendency to overweight

representative traits, arising due to limited memory and the fact that representative traits

are easier to recall. Formally, the representativeness of a given trait x̂ conditional on a par-

ticular data d compared to another conditioning data realization, dref (referred to as the

reference data) is defined as the relative frequency of that trait across the two data groups:

rep(x̂|d, dref ) ≡ P (x̂|d)
P (x̂|dref )

(1)

The conditional belief under representativeness is modelled as a weight that distorts the
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underlying absolute frequency of x̂ conditional on the data d

P θ(x̂|d, dref ) = P (x̂|d)weight(x̂|d, dref ). (2)

The weight reflects the effect of the relative frequency in equation (1), and is given by

weight(x̂|d, dref ) =
[
rep(x̂|d, dref )

]θ 1

Z(d, dref )
. (3)

where Z(d, dref ) is a constant of integration, ensuring that the distorted probability integrates

to one:

Z(d, dref ) =
∑
x̂∈X

P (x̂|d)
[
rep(x̂|d, dref )

]θ
(4)

In this formal representation representativeness, the parameter θ ≥ 0 measures the extent

to which the relative frequency across two conditioning data groups affects judgements.

When θ = 0, the agent’s memory retrieval is perfect and beliefs collapse to the standard

frictionless model. When θ > 0, memory is limited and the agent’s judgments are shaped by

representativeness.

Illustrations. Our simple illustrations below let Ω be the universe of people, X be different

hair colors, and d ∈ D take on specific Nationalities values, with one of them being a reference

dref = {World}.2 We evaluate the effects of representativeness of the event x̂ conditional on

a specific Nationality group, compared to the reference group dref .

2.1 Two-state distribution

Consider the case where X assume only two values, “red” or “non-red/other”, which we

denote as x̂ = R and x̂ = NR, respectively. The agent observes the nationality of an

unknown individual and assess the probability of the hair color red based on P θ(x̂ =

R|Nationality,World) as defined in equation (2). In particular, the agent twists the under-

lying probability P (x̂ = R|Nationality) by the weight weight (x̂ = R|Nationality,World)

defined by equations (3) and (4).

We are interested in how the distorted probability distribution and its distance (appropri-

ately defined) from the actual conditional distribution depend on the underlying probability

distributions. We emphasize the following three qualitative properties.

2The particular numbers we will use are simply chosen to illustrate a series of key features of representa-
tiveness and are not necessarily reflecting the actual incidence of the hair colors in the world population. In
fact, we will implicitly assume that there are nationalities for which the probability of the hair color red is 1.
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Figure 1: News and uncertainty in a two-states discrete distribution

Notes: The figure displays how, as we vary the actual P (x̂ = R|Nationality), the following objects change:

(a.1) the distorted probability of red hair, (a.2) the distorting weight on the red hair probability, (b.1) the

news component, measured using the KL defined in equation (5), (b.2) the uncertainty component,

measured using the normalized entropy of the actual distribution in equation (6), (c.1) the overall

overreaction, measured by the KL divergence of the distorted probability distribution from the actual one,

defined in equation (7), and (c.2) the entropy of the distorted distribution relative to the entropy of the

actual distribution. We fix the reference probability of a red hair color at P (x̂ = R|World)=0.2.

1. Overreaction. The distorted probability amplifies the relative change in frequency.

This first and most immediate characteristic of representativeness can be immediately seen

by equation (2). We show it graphically in Figure 1 (a.1), where we plot the distorted

P θ(x̂ = R|Nationality,World) for different values of P (x̂ = R|Nationality) and diagnostic-

ity parameter values θ = 1, 2, as well as θ = 0 corresponding to no memory distortion. The

frequency under the reference data is P (x̂ = R|World) = 0.2 marked by a vertical red dotted

line. When the frequency of red hair for a given Nationality is higher (lower) than under the

reference data, the distorted probability is higher (lower) than the actual frequency for that

Nationality. The magnitude of the difference is increasing in θ.

2. News and uncertainty. Representativeness is characterized by an effective degree

of overreaction that is a function of the entire shape of the distributions for the two data

groups that get compared. This property has typically been outside the main interest of

8



recent applied work on representativeness and diagnostic expectations. However, it will play

an important role in our development of Smooth DE.

We separate two channels that create this relation between overreaction and the amount

of information present in the conditional distributions that get compared. On the one hand,

equation (3) features a news effect. When the knowledge of the Nationality implies a larger

revision in the frequency of red hair, the representativeness rep(x̂ = R|Nationality,World)

changes by more. Holding fixed the constant of integration Z(Nationality,World) in equa-

tion (3), the distorting weight is then larger in absolute terms, and therefore there is more

overreaction to the news. On the other hand, there is an uncertainty effect : the more the

knowledge of a given Nationality decreases the uncertainty over the hair color, the less room

there is for overreaction to effectively manifest itself. This intuitive force mathematically

appears in equation (3) through the constant of integration of equation (4). The news and

uncertainty effects are jointly determined by the shapes of distributions getting compared

through representativeness. We dissect these effects through a series of plots in Figure 1.

First, Panel (a.1) already shows that the difference between the distorted and underlying

probability is hump-shaped. This difference is largest for intermediate values between the

prior of 0.2 and the lower and upper bounds (0 and 1). By equation (2) the reason for the

hump shape is the behavior of the distorting weight (x̂ = R|Nationality,World), which gets

plotted in Figure 1 (a.2). Indeed, the weight is non-monotonic in the actual frequency: the

weight is increasing from an underlying P (x̂ = R|Nationality) = 0 to some intermediate

value between the reference frequency of 0.2 and the upper bound of 1 and then starts

decreasing. Formally, this is because the constant of integration in equation (4) becomes

larger as the frequency P (x̂ = R|Nationality) approaches 1. Intuitively, as the actual

frequency for a given Nationality becomes more certain towards one hair color, the room for

distortion becomes smaller as the total probability has to sum to 1.

Second, we dissect the news and uncertainty channels by using information-theoretic

measures. In Panel (b.1), we measure the size of the news component. This is captured

by the change in the distribution induced by conditioning on a Nationality as opposed to

conditioning on World, as measured by the Kullback-Leibler (KL) divergence of the two

distributions:

KL(Nationality||World) =
∑
i

P (x̂ = i|Nationality) ln

(
P (x̂ = i|Nationality)

P (x̂ = i|World)

)
. (5)

The KL divergence is U-shaped, with KL = 0 when the knowing the Nationality does not

imply any revision in the distribution.

To measure uncertainty for the objective distribution of hair colors for a given Nationality,
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Panel (b.2) in Figure 1 plots the normalized entropy

Ω(P (Nationality)) = −
∑

i P (x̂ = i|Nationality) lnP (x̂ = i|Nationality)

ln(2)
, (6)

where the denominator ensures that the normalized entropy is between 0 and 1. This entropy

measure of uncertainty is particularly suitable to capture uncertainty in this environment of

categorical random variables. The entropy measure shows an inverted U-shape and peaks

when P (x̂ = R|Nationality) = 0.5, the point of maximum uncertainty in this two-state case.

To measure the extent to which overreaction distorts the perceived frequency with re-

spect to the objective frequency, Panel (c.1) reports the KL divergence between the two

distributions

KL(P θ||P ) =
∑
i

P θ(x̂ = i|Nationality,World) ln

(
P θ(x̂ = i|Nationality,World)

P (x̂ = i|Nationality)

)
(7)

We can now see how the degree of overreaction shows two humps: a smaller one that peaks

at the intermediate value between 0 and reference frequency P (x̂ = R|World) = 0.2 and a

larger one that peaks at the intermediate value between that reference of 0.2 and the upper

bound of 1. The two humps are the result of the interaction between news and uncertainty

effects, which affect overreaction, but display opposing patterns (U- and inverted U-shape).

The particular sizes of the two humps are different because in panels (b.1) and (b.2) the

trough of the news component and the peak of the uncertainty effect do not coincide.

3. Over/under confidence. The overreaction to information also affects the amount

of uncertainty perceived by the agent compared to the actual frequency. Panel (c.2) reports

the entropy Ω(P θ(Nationality)) of the distorted distribution normalized with respect to

the entropy Ω(P (Nationality)) of the actual frequency. A relative entropy smaller than

0 implies overconfidence; the agent is too certain about the hair color compared to the

objective distribution. The interaction between the news effect and uncertainty effect leads

to an interesting pattern.

First, there is no over- or underconfidence if there is no news (i.e. the distributions

conditional on Nationality or World coincide) or the news completely removes uncertainty

(P (x̂ = R|Nationality) = {0, 1}). Second, when the frequency of red hair is smaller for a

given Nationality than for the World, news and uncertainty effects work in the same direction,

and only over-confidence is possible. Third, when instead the relative frequency is larger, the

two effects can work in opposite directions. On the one hand, uncertainty keeps increasing

until the frequency is .5, at which point uncertainty starts decreasing again. As a result, for
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small increases in the relative frequency of red hair, over-reaction to that relative frequency

can lead to underconfidence. Eventually, the news effects starts dominating, leading to

overconfidence. However, the strength of overconfidence declines as the news starts to fully

remove uncertainty. The degree of overconfidence is more severe for an actual frequency on

the right tail (P (x̂ = R|Nationality) > 0.8) than on the left tail (P (x̂ = R|Nationality) <

0.2). This is because the news effect is larger for a frequency on the right of a small probability

event such as the one considered in this example.

2.2 Three-state distribution

Consider now an extension of the event space to three hair colors - “red,” “blond,” and

“dark,” denoted by R, B, and D, respectively. We consider a symmetric reference frequency

for R and B so that conditional on World, their frequencies are equal to 0.2, while for D it

is equal to 0.6. This three-state example is instructive because the actual frequencies of R

and B for a given Nationality jointly determine the news and uncertainty component, thus

underscoring the importance of the shape of the joint probability distribution in affecting

the degree of overreaction.

In Figure 2, we use contour plots to examine how news and uncertainty affect overreaction

as we vary P (x̂ = R|Nationality) and P (x̂ = B|Nationality) when θ = 2. To ease inter-

pretation, we mark the coordinates corresponding to the reference frequencies with white

pluses, and the coordinates representing the equal probabilities of 1/3 for all three outcomes

with red diamonds. We can recover the three properties discussed for the two-state example:

1. Overreaction. Panels (a.1) and (a.2) report the distorted probability and the weight

associated with the red hair color. As in the two-states example, the distorted probabilities

overreact to the relative frequency of red hair for the given Nationality compared to the

World. The distorting weight of the red probability peaks when P (x̂ = R|Nationality) takes

an intermediate value between 0.2 and 1 and P (x̂ = B|Nationality) takes an intermediate

value between 0 and 0.2. Similarly, Panel (b.1) and (b.2) report the distorting probability

and the weight associated with a blond hair color.

2. News and Uncertainty. The three state example is particularly useful here to see

how the shape of the distributions matter. Panel (c.1) displays the news component, mea-

sured again as the KL(Nationality||World) of equation (5). The news component increases

as the two distributions differ and peaks when either of the hair color outcomes reaches

certainty (P (x̂ = R|Nationality) = 1 or P (x̂ = B|Nationality) = 1). The uncertainty

component, Ω(Nationality), reported in Panel (c.2) peaks when the distribution for a given

Nationality assigns equal probabilities for all three outcomes.
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Figure 2: News and uncertainty in a three-states discrete distribution

Notes: The figure displays how, as we vary the probability of red and blond hair colors for a given

Nationality, the following objects change: (a.1) the distorted probability of red hair, (a.2) the distorting

weight on the red hair probability, (b.1) the distorted probability of blond hair, (b.2) the distorting weight

on the blond hair probability, (c.1) the news component, measured using the KL defined in equation (5),

(c.2) the uncertainty component, measured using the normalized entropy of the actual distribution in

equation (6), (d.1) the overall overreaction, measured using the KL divergence of the distorted probability

distribution from the actual one, defined in equation (7), and (d.2) the entropy of the distorted probability

distribution relative to the entropy of the actual distribution. We mark the coordinates corresponding to

the reference probabilities with white pluses, and those representing equal probabilities for all three

outcomes with red diamonds.

Panel (d.1) reports the KL(P θ||P) divergence of equation (7). The overreaction displays

twin peaks resembling the double humps in the two-states example. However, in the current

three-state example how the actual frequencies are split matters for the overreaction. Indeed,

the overreaction is mild as we increase both the actual probabilities of red and blond hair

simultaneously in equal proportions. This is because both hair colors are becoming more

representative for the given Nationality compared to the World.

3. Over/under confidence. Finally, Panel (d.2) reports the entropy Ω(P θ(Nationality))

with respect to the underlying entropy Ω(P (Nationality)). The former is smaller in most

regions, indicating overconfidence, except for the neighborhood of the reference frequency
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and the coordinate representing equal probabilities for all three outcomes. Overconfidence

is most severe around the three corners of the triangle, when the actual frequency puts most

probability weights on one hair color. Intuitively, as one specific hair color becomes more

representative, the agent overestimates the probability of that hair color and becomes too

certain. As before, overconfidence eventually disappears as uncertainty is fully removed.

To summarize, both the two-and three-states example underscore a nuanced but tight

connection between news/uncertainty effects and overreaction/overconfidence.

3 Smooth Diagnostic Expectations

In this section, we show that the key principles uncovered for categorical distributions natu-

rally find their counterparts under Smooth DE, which allows for continuous distributions and

accumulation of information. In particular, in order to model the representativeness heuris-

tic into time-series, we mirror the logic of equation (1), and interpret groups as different

information sets that become available over time.

3.1 Smooth DE density: representativeness and information sets

We introduce the definition of representativeness and information sets with some generality.

Consider the filtered probability space (Ω,F , (Ft)t≥0, P ) where (Ft)t≥0 is an increasing family

of sub-σ-algebras of F , with Ft ⊂ Ft+1. Here the filtration (Ft)t≥0 represents the evolution of

information over time. A stochastic process (Xt)(t≥0) on (Ω,F , P ) is adapted to the filtration

(Ft)t≥0 if, for each t ≥ 0, Xt is Ft-measurable. Let the conditional density function of Xt+h,

for some horizon h ≥ 1, given the filtration Ft, be denoted by f(xt+h|Ft). This function

describes the probability density of Xt+h, given all the information available up to time t.

In our approach, the counterpart of equation (1) is obtained by defining the reference

group as a past available information set. As information flows and is accumulated, repre-

sentativeness is then defined as follows:

Definition 1 (Representativeness and information sets) Given the current infor-

mation set Ft and a reference information set Ft−J , formed J ≥ 1 periods ago, the repre-

sentativeness of a random event x̂t+h for some future horizon h ≥ 1 is defined as

rep (x̂t+h|Ft,Ft−J) ≡
f (x̂t+h|Ft)

f (x̂t+h|Ft−J)
(8)

Mirroring the language of Tversky and Kahneman (1975) in Section 2, in the time-series

domain an event is representative for the current information set if the relative frequency of
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this event is higher conditional on the current information set than conditional on some past

reference information set.3

Based on this definition of the representativeness of an event, we then follow the same

construction of the distorted belief as introduced early in equation (2) in Section 2. In

particular, we build the following distorted conditional density, which we refer to as Smooth

Diagnostic Expectations, or in a more abbreviated form as Smooth DE.

Definition 2 (Smooth Diagnostic Expectations). In the time series domain, the con-

ditional density f θ (x̂t+h|Ft,Ft−J), distorted by representativeness as defined in Definition 1,

is constructed as follows

f θ (x̂t+h|Ft,Ft−J) = f (x̂t+h|Ft) [rep (x̂t+h|Ft,Ft−J)]
θ 1

Z
(9)

where Z is a constant of integration and the parameter θ ≥ 0 measures the distortion severity.

Our formalization of Smooth DE strongly connects to that of Diagnostic Expectations

(DE) introduced in Bordalo et al. (2018) (BGS) to incorporate representativeness in time-

series. As we detail further below, the only, but consequential difference is in the construction

of the reference group in the definition of representativeness. Given such a definition, the

functional form for the distorted density in equation (9) is identical to DE.

3.2 Smooth DE with Normal densities

In the rest of this paper we follow BGS and focus on normal densities. As we show below, this

focus leads to significant gains in tractability and in the range of possible applications. This

is because when the true conditional density is Normal, expression (9) delivers a distorted

distribution that is also Normal. However, it is important to emphasize that while this a

natural point of departure, Smooth DE can easily accommodate alternative distributions, as

illustrated in Section 2.

With Normal densities, two moments, the conditional mean µt+h|s and conditional vari-

ance σ2
t+h|s, summarize the whole conditioning information:

f (x̂t+h|Fs) = N
(
x̂t+h;µt+h|s, σ

2
t+h|s

)
, for s ≤ t

It follows that given Definition 1, the representativeness of the event x̂t+h is evaluated as

rep (x̂t+h|Ft,Ft−J) =
N(x̂t+h;µt+h|t, σ

2
t+h|t)

N(x̂t+h;µt+h|t−J , σ
2
t+h|t−J)

, (10)

3The approach is easily extended when the available information is incomplete or noisy - see Section E.
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capturing its relative frequency under the current information set Ft, compared to some past

information set Ft−J , with J ≥ 1.

Under the representativeness characterizing normal densities in equation (10), the Smooth

DE density in equation (9) has a closed-form solution given by Proposition 1 below.

Proposition 1 Denote the ratio of variances for the current and reference groups as

Rt+h|t,t−J ≡ σ2
t+h|t/σ

2
t+h|t−J (11)

If Rt+h|t,t−J < (1 + θ) /θ, the Smooth DE density f θ (x̂t+h|Ft,Ft−J) in equation (9) is Normal

with conditional mean

Eθ
t (xt+h) = µt+h|t + θ

Rt+h|t,t−J

1 + θ
(
1−Rt+h|t,t−J

) (µt+h|t − µt+h|t−J

)
(12)

and conditional variance

Vθ
t (xt+h) =

σ2
t+h|t

1 + θ
(
1−Rt+h|t,t−J

) (13)

Proof. See Appendix.

The condition Rt+h|t,t−J < (1 + θ) /θ guarantees that the variance of the resulting dis-

torted Normal distribution is finite and positive. As the ratio of conditional variances be-

tween the current and reference distribution approaches this limiting value, the variance of

the Smooth DE distribution approaches infinity and the corresponding Normal distribution

approaches a degenerate, flat distribution. Thus, the condition requires that the current

uncertainty with respect to a future event (σ2
t+h|t) is not too high with respect to the past

uncertainty about the same event (σ2
t+h|t−J). The condition typically holds in stationary

environments with homoskedastic innovations in which events closer into the future are eas-

ier to predict than events far into the future. However, the condition also allows for the

possibility of an increase in uncertainty, for example as a result of heteroskedasticity, as long

as the increase is not too large with respect to the DE distortion.4

4In Appendix B we discuss an approach that deals with this threshold condition by implementing an
upper bound on the Smooth DE overreaction in the conditional mean. The approach guarantees that both
the mean and variance distortions remain finite and non-decreasing as the ratio Rt+h|t,t−J goes to infinity.
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3.3 Three key properties

Smooth DE is characterized by three important properties. To understand them, it is helpful

to define the effective overreaction of the conditional mean to news in equation (12) as

θ̃t,t−J ≡ θ
Rt+h|t,t−J

1 + θ
(
1−Rt+h|t,t−J

) . (14)

Corollary 1 Assume the presence of residual uncertainty with respect to a future event:

σ2
t+h|t > 0. Compared to the RE forecast (θ = 0), the conditional forecast under Smooth DE

(θ > 0), characterized in Proposition 1, exhibits

1. overreaction of the conditional mean to new information, since

θ̃t,t−J > 0 (15)

2. an effective overreaction of the conditional mean to new information that is monoton-

ically increasing in the ratio Rt+h|t,t−J between current and past uncertainty

∂θ̃t,t−J

∂Rt+h|t,t−J

> 0 (16)

3. overconfidence when Rt+h|t,t−J < 1, since then by equation (13)

Vθ
t (xt+h) < σ2

t+h|t (17)

or underconfidence when Rt+h|t,t−J > 1, since then by equation (13)

Vθ
t (xt+h) > σ2

t+h|t. (18)

On the one hand, these properties mirror the qualitative ones for the static, discrete

state example introduced and discussed in Section 2.1 - properties labelled there ’overre-

action’, ’news and uncertainty’, and ’over/under confidence’, respectively. The formalism

and closed-form solution of Normal densities make these properties particularly transparent.

This connection is useful, indicating that Smooth DE maintains similar insights when ex-

tending the concept or representativeness and over-reaction to new information to dynamic

models. Additionally, the tractability of the Normal distribution in the time series domain

will allow us to connect these three properties to stylized survey facts in Section 4.

The first property in Corollary 1, overreaction of the conditional mean, is an immediate
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manifestation of the amplification of the relative frequency of an event that becomes more

likely. This property is shared with the standard DE approach, as we detail further below.

The other two properties are novel and reflect the tight connection between uncertainty and

the degree of over-reaction, in line with the analysis presented in Section 2.

In particular, like in the static, discrete case, the shapes of the current and reference

densities matter for the effective degree of overreaction. In the Normal case, the shape is

summarized only by the conditional uncertainty. Indeed, Smooth DE captures formally,

by equation (16), how the severity of the mean distortion increases as the ratio Rt+h|t,t−J

of today’s uncertainty to past uncertainty increases. Smooth DE thus micro-founds in a

time-series domain an inverse smooth link between overreaction of conditional mean to news

and the precision of the news compared to the reference distribution. This is captured by

the ratio Rt+h|t,t−J : The more the new information reduces uncertainty σ2
t+h|t compared to

σ2
t+h|t−J , the lower is the role of memory in distorting probability judgements, and thus the

lower is the effective overreaction to news. Conversely, everything else equal, the larger

today’s uncertainty, the larger the Smooth DE distortion.

Similar to the basic intuition of the static, discrete case, Smooth DE also has impor-

tant implications for the level of subjective confidence that agents express with respect to

their expectations. As summarized in Corollary 1, if agents experience a reduction of uncer-

tainty with respect to the reference distribution, so that Rt+h|t,t−J < 1, Smooth DE implies

overconfidence, i.e. agents overstate the precision of their expectations. Under this scenario,

independently of the direction and size of the mean distortion, agents are overconfident about

the precision of their expectations. If agents do not experience a change in uncertainty, and

Rt+h|t,t−J = 1, we do not observe a change in confidence with respect to σ2
t+h|t. Finally, if

agents experience an increase in uncertainty, so that Rt+h|t,t−J > 1, they will be less confident

than under the true density.

3.4 Standard DE

The standard approach to apply representativeness in the time-series domain follows the

BGS formulation, in which the representativeness of x̂t+h is given by the relative frequency

repBGS (x̂t+h|Ft,Ft−J) ≡
N(x̂t+h;µt+h|t, σ

2
t+h|t)

N(x̂t+h;µt+h|t−J , σ
2
t+h|t)

, (19)

In equation (19), the reference density uses the mean conditional on the information Ft−J

available J periods ago, µt+h|t−J , but the uncertainty conditional on the current information

set Ft, σt+h|t. The reference density can thus be understood as a mixture of information sets,

meant to keep the conditional uncertainty the same for the current and reference density.
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Instead, under Smooth DE, the reference density captures entirely and solely the role of

new information, as the difference between information sets Ft and Ft−J . Under Normality,

comparing the definition of representativeness in equations (10) and (19), this difference

formally manifests itself in the variance of the reference distribution.

This BGS assumption delivers the following closed form standard DE density:

Proposition 2 (BGS implementation for DE). Consider the BGS definition of represen-

tativeness in equation (19). When σ2
t+h|t > 0, the resulting DE density f θ (x̂t+h|Ft,Ft−J)

defined by equation (9) has a Normal distribution with mean:

Eθ
t (xt+h) = µt+h|t + θ

[
µt+h|t − µt+h|t−J

]
. (20)

and variance:

Vθ
t (xt+h) = σ2

t+h|t. (21)

When σ2
t+h|t = 0, the DE conditional mean Eθ

t (xt+h) collapses to µt+h|t.

Proof. See Bordalo et al. (2018).

Smooth DE and the standard BGS formulation of DE coincide in two cases. First, in the

limit of no conditional uncertainty. In particular, in both approaches, with θ > 0, there is a

distortion if and only if the conditional variance σ2
t+h|t > 0. Intuitively, when σ2

t+h|t = 0, the

conditional likelihood of observing any other scenario for xt+h than the one the agent is now

fully informed on has become equal to zero. As noted by Gennaioli and Shleifer (2010), the

lack of such conditional (or “residual”) uncertainty leaves no room for memory to distort

conditional forecasts. According to Proposition 1, Smooth DE formally nests that limiting

possibility, which would amount to Rt+h|t,t−J = 0 and thus effectively no distortion even if

θ > 0. In the BGS formulation that limit is instead imposed through a discontinuity at

σ2
t+h|t = 0: in the language developed in Bordalo et al. (2018), to compute Eθ

t (xt+h) the

realization xt+h constitutes its infinitely representative state (see appendix in Bordalo et al.

(2018) on Corollary 1), and the result is Eθ
t (xt+h) = µt+h|t. Under Smooth DE the effective

overreaction θ̃t,t−J in equation (14) smoothly goes to zero as current uncertainty goes to zero.

Second, and more importantly, away from the zero conditional uncertainty case, in the

original BGS formulation the ratio Rt+h|t,t−J is always 1 by assumption. Thus, DE coincides

with Smooth DE if and only if the stochastic process is characterized by information sets

Ft and Ft−J that happen to deliver σ2
t+h|t = σ2

t+h|t−J ,∀t and for any given J . Indeed, if

Rt+h|t,t−J = 1 in Proposition 1 the effective overreaction θ̃t,t−J = θ, and formulas (12) and

(13) collapse to their respective counterparts in equations (20) and (21).

In Figure 3 we use a series of illustrative examples to show the different effects at work
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Figure 3: Smooth Diagnostic Expectations and standard Diagnostic Expectations densities

Notes: The figure is obtained using the following parameter values for the mean and variances of the

current and reference distributions: µt+h|t−J = [0, 0, 0, 0, 0], µt+h|t = [1, 0, 0, 1, 1], σ2
t+h|t−J = [1, 1, 1, 1, 1],

and σ2
t+h|t−J = [1, .5, 1.3, .5, 1.3].

in Corollary 1.5 In the first row, we report the reference, current, DE, and Smooth DE

distributions. In the second row, we report the weights that capture the belief distortion

under DE and under Smooth DE. These are computed as:

weight (x̂t+h) ≡

(
N(x̂t+h;µt+h|t, σ

2
t+h|t)

N(x̂t+h;µt+h|t−J , σ
2
t+h|t)

)θ
1

Z
,

for the standard DE and

weight (x̂t+h) =

(
N(x̂t+h;µt+h|t, σ

2
t+h|t)

N(x̂t+h;µt+h|t−J , σ
2
t+h|t−J)

)θ
1

Z
,

for the Smooth DE, where the constant of integration accounts for the respective formulation.

We organize the examples to follow the three key properties presented in Section 2 and

formally characterized for the Normal distribution in Corollary 1.6

5We use the following parameter values for the mean and variances of the current and reference distribu-
tions: µt+h|t−J = [0, 0, 0, 0, 0], µt+h|t = [1, 0, 0, 1, 1], σ2

t+h|t−J = [1, 1, 1, 1, 1], and σ2
t+h|t−J = [1, .5, 1.3, .5, 1.3].

6Appendix D uses these examples to further and more generally discuss how the news and uncertainty
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Overreaction of the conditional mean to new information. Consider first a case

in which the reference and current distributions only differ in terms of the mean: µt+h|t >

µt+h|t−J . The new information does not induce any change in uncertainty and Rt+h|t,t−J = 1.

Smooth DE and DE lead to the same normal distribution, in which only the conditional

mean is distorted. Both the SDE and DE means are shifted to the right with respect to

the current distribution by θ(µt+h|t − µt+h|t−J). The lower panel in the first column shows

that the weights increase moving from left to right: The weights shift probability mass to

the right of the current density, lowering the probability assigned to events that became less

likely, and inflating the probability of events that became more likely. The weights keep

increasing as elements in the right tail of the current density became much more likely to

occur in relative terms. However, the true probability of these events goes to zero faster

than the weights increase, preserving the normality of the SDE and DE distributions.

Over/underconfidence. In the second and third columns, the reference and current

distributions only differ in terms of variance, while µt+h|t = µt+h|t−J . In the second col-

umn the current true distribution features a lower variance, i.e σ2
t+h|t < σ2

t+h|t−J and thus

Rt+h|t,t−J < 1. This case is typical for standard stochastic processes when new information

leads to a reduction of uncertainty and more precise forecasts. Under the standard BGS

implementation of DE, the fact that events close to the mean, and the mean itself, became

more likely does not have any effect. Instead, under Smooth DE, the agent revises her be-

liefs in light of the new information. She inflates the probability of the mean and the other

events that became more representative, while further downplaying the probability of events

that became less likely. The result is an even narrower distribution than the current true

distribution. Under Smooth DE, the new information leads to overreaction in terms of the

decline in uncertainty and, as a result, to a novel implication: overconfidence.

In the third case the current distribution has a larger variance than the reference distribu-

tion, i.e. σ2
t+h|t > σ2

t+h|t−J , and thus Rt+h|t,t−J > 1. This situation could arise, for example, in

response to a positive uncertainty shock. Now tail events become more representative under

the revised density and receive a magnified weight under Smooth DE. The probability mass

is moved from the center to the tails, but preserving normality.7 Under DE, the weights are

once again uniformly equal to 1, and the DE density coincides with the true density.

Changes in uncertainty affect the overreaction of the conditional mean. The

fourth and fifth columns combine a revision in mean with a revision in variance. The key

effects introduced in Section 2 determine the effective overreaction of the Smooth DE density.
7This example also allows us to illustrate the role of the upper bound on Rt+h|t,t−J : As this ratio

increases, more and more probability mass is moved to the tails, flattening the normal distribution. As
Rt+h|t,t−J → (1+ θ)/θ , the variance of the Smooth DE density goes to infinity, as an increasing probability
mass is moved to the tails.
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observation here is illustrated by Corollary 1: under Smooth DE, a change in uncertainty

affects the degree to which the distorted revision responds to the true revision. Since changes

in information sets typically involve actual changes in both conditional moments, this is a

particularly novel and important aspect of Smooth DE.

In particular, the fourth case combines the first two, with an increase in the conditional

mean and a reduction of conditional uncertainty. As in the first case, under DE we observe

a shift of the probability mass to the right. Accordingly, the DE density moves to the right,

but with no change in shape with respect to the true density. Under Smooth DE, instead,

the agent recognizes that, despite the increase in the mean, the new information made tail

events to the right less representative. Thus, for a given θ, the Smooth DE density still shifts

to the right, but by a smaller amount, and becomes visibly narrower, as the weights take

into account the change in uncertainty.8

Finally, new information can also bring a shift in the mean, but now with more uncer-

tainty. The last column considers this case, where the shift in the mean is positive like in

the fourth column. The agent’s overreaction in terms of revisions to the conditional mean

is now stronger than under standard DE because tail events have become more likely under

the current distribution. Thus, the weights determine an even more significant shift of prob-

ability mass to the right (the scale for the SDE weights is on the left). In terms of distorted

conditional uncertainty, in this case, we observe underconfidence. This is again in itself a

form of overreaction, as the agent magnifies the increase in uncertainty as this appears large

compared to the reference uncertainty.

3.5 AR(1) process

The Smooth DE density can be easily applied for a standard AR(1) process. For a simpler

exposition we focus on the one-step-ahead horizon (h = 1) and recent past (J = 1). We

extend this to the more general h and J in Section 4.1. Consider

xt+1 = ρxt + εt+1, εt+1 ∼ N (0, σ2)

where ρ ≤ 1 and σ2 > 0. The true conditional density is simply

f (x̂t+1|Ft) = N
(
x̂t+1; ρxt, σ

2
)
.

8As the current conditional uncertainty becomes continuously smaller and converges to zero, the shift
in the distorted conditional mean also smoothly converges to zero. In contrast, under standard DE, there
would be a discrete jump in the extreme case of σ2

t+h|t=0.
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while the reference density is

f (x̂t+1|Ft−1) = N
(
x̂t+1; ρ

2xt−1,
(
1 + ρ2

)
σ2
)

As a result, Rt+1|t,t−1 defined in Proposition 2 takes the form

Rt+1|t,t−1 =
σ2

(1 + ρ2)σ2
=

1

1 + ρ2
(22)

The Smooth DE density f θ (x̂t+1) in Proposition 1 is then Normal, with a conditional mean

Eθ
t (xt+1) = ρxt +

θ

1 + ρ2(1 + θ)

(
ρxt − ρ2xt−1

)
(23)

and conditional distorted variance

Vθ
t (xt+1) =

σ2

1 + ρ2

1+ρ2
θ

(24)

This AR(1) example further illustrates some of the general principles behind Smooth DE.

First, equation (23) implies that, as long as θ > 0, Smooth DE exhibits effective overreaction

of the conditional mean to news. Second, given σ2, a higher persistence parameter ρ implies

that the new information determines a larger reduction in current uncertainty about the

variable of interest xt+1 compared to the reference density. This lower variance ratio Rt+1|t,t−1

leaves less room for memory to distort probability judgements which makes the effective

overreaction in equation (23) decrease in the persistence parameter ρ. Third, since new

information at time t lowers the conditional uncertainty from (1 + ρ2)σ2 to σ2, the ratio

Rt+1|t,t−1 < 1 in equation (22). Thus, the distorted density is characterized by overconfidence,

so that Vθ
t (xt+1) < σ2, as seen in equation (24).

4 A parsimonious micro-foundation for survey evidence

Like in existing work on DE, we take the underlying θ ≥ 0 and J ≥ 1 as primitive parameters

characterizing the decision’s maker limited memory and the effect that the representativeness

heuristic has on agent’s judgments. As discussed in Section 3, given θ and J, the Smooth

DE density does not introduce any further degrees of freedom. Nevertheless, by allowing

the density for the representative group to reflect the time t− J conditional uncertainty, we

find that Smooth DE can offer a joint and parsimonious micro-foundation for a range of

observable implications consistent with survey data. These implications refer to the broad

22



properties of Smooth DE emphasized and collected by Corollary 1.

At its core, Smooth DE captures the intuition that new information that significantly

reduces current uncertainty over the variable of interest leaves less room for memory and

representativeness to distort judgements. As we discuss below, this implication of a stronger

(weaker) effective overreaction of the conditional mean to new information that reduces less

(more) current uncertainty helps to account for two sets of stylized survey facts.

4.1 Stronger overreaction for longer forecast horizons

The first set of over-identifying restrictions on our theory of overreaction relates to the

model’s implications for short- versus long-horizon forecasts. A strand of literature using

survey data argues that overreaction appears to be increasing with the horizon of the fore-

cast. For example, Bordalo et al. (2019) and Bordalo et al. (2023) point to such stronger

overreaction for equity analysts’ forecasts of long-term earnings growth and emphasize the

potential for this type of overreaction to account for stock market volatility. Using pro-

fessional forecasters’ forecasts of interest rates, other contributions, including for example

Bordalo et al. (2020), d’Arienzo (2020), find evidence of significant overreaction for expec-

tations of long-term interest rates, but not for expectations of short-term interest rates.

Augenblick et al. (2021) use field data from betting and financial markets to argue that

compared to the Bayesian forecast there is relatively stronger overreaction to signals with a

longer (shorter) time-to-resolution, conceptually similar to longer (shorter) forecast horizons.

Smooth DE is consistent with such evidence as it predicts that overreaction increases with

the horizon of the forecast. The basic intuition appears in Section 3. Smooth DE formalizes

an inverse relation between the informativeness of the new piece of information obtained

by the decision-maker and the overreaction of her conditional forecasts (see for example

equation (16) in Corollary 1). In the context of forecasting at different horizons, the same

piece of information is less informative about horizons further in the future, leading to a

smaller reduction in uncertainty and a stronger overreaction. Thus, Smooth DE naturally

predicts that overreaction is relatively stronger for long-horizon forecasts.

The simplest environment to showcase this basic insight is the AR(1) process introduced

with equation (3.5) in Section 3. For an horizon h ≥ 1 and a J− lagged reference distribution

(J ≥ 1), the conditional mean for the Smooth DE density f θ (x̂t+h) is

Eθ
t (xt+h) = ρhxt + θ̃t,t−J

(
ρhxt − ρh+Jxt−J

)
(25)

where the effective severity θ̃t,t−J of DE distortion is given in equation (14).

Given the AR(1) process in equation (3.5), the ratio Rt+h|t,t−J of conditional variances,
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defined in Proposition 1, takes the particular form

Rt+h|t,t−J =
Vt [xt+h]

Vt−J [xt+h]
=

[
1−ρ2h

1−ρ2(h+J) when ρ2 < 1
h

h+J
when ρ2 = 1

]

Proposition 3 The ratio Rt+h|t,t−J increases in the forecast horizon h. Thus, the effective

overreaction θ̃t,t−J of Eθ
t (xt+h) in equation (25) is stronger for longer forecast horizons.

For a given lag J in the reference distribution, as the forecast horizon h increases, the

effective horizon of the current RE forecast (h), and the effective horizon of the reference

RE forecast (h + J) become increasingly similar. As a result, the levels of uncertainty

associated with the two forecasts also become increasingly similar because the information

set is implicitly more similar. Intuitively, the uncertainty around the two forecasts reflects

a larger and larger number of the same shocks. In relative terms, the current information

set is less and less informative for the variable that the agent is trying to predict. Given

that under Smooth DE overreaction is increasing in the level of relative uncertainty, as h

increases, so does the amount of overreaction to a given revision of the RE forecasts.

4.2 Overreaction and overconfidence

A recent literature studying the properties of survey responses, including Barrero (2022),

Born et al. (2022), and the reviews in Altig et al. (2020) and Born et al. (2022), documents

that while firms’ forecasts are unconditionally unbiased, i.e forecast errors are on average

not significantly different from zero, firms make conditionally predictable forecast errors. In

particular, firms overreact to news and are overconfident in their subjective forecasts.

These stylized facts provide a challenge for models featuring standard rational belief

updating. As a result, the overreaction and overconfidence empirical properties have been

typically addressed in existing models through two distinct behavioral primitive assumptions

that do not distort unconditional forecasts. Overreaction of conditional forecasts has been

explained as an outcome of DE, modelled according to the original BGS formulation. Under

DE, agents overreact only in presence of new information and in a symmetric way, preserving

unbiased unconditional forecasts, but failing to account for overconfidence. Thus, the finding

of overconfidence has been typically addressed with an additional overconfidence bias. An

example of this approach is Barrero (2022), who uses both distinct features to account for

the three survey facts.

Smooth DE can instead account for all three stylized facts. Consider for example the

Gaussian environment of Section 3 where a firm’s fundamental (eg. productivity) follows a

simple AR(1) process. Or, the arguably more empirically plausible extension, where those
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fundamentals are not directly observed, but firms can learn about their realizations from

noisy signals, like in the simple state-space model described in Section E. In either case,

Corollary 1 and Proposition 10, respectively, describe how forecasts made under Smooth

DE are characterized by precisely these two key properties: overreaction to news and over-

confidence. Moreover, as in the RE case (θ = 0), forecasts under DE are nevertheless

unconditionally unbiased, being on average driven by the underlying rational forecasts.

The discussion and formalism in Section 3 indicate that, in contrast to the generality

of the overreaction of the conditional mean, overconfidence is not a universal property of

Smooth DE. However, we view it as a ’typical’ property, because the necessary condition

for overconfidence is simply that new information reduces uncertainty. This condition is

ubiquitous as it holds in stationary, homoskedastic environments, where events closer into

the future are naturally easier to predict than events far into the future. At the same time,

the condition might not hold if new information entails a sufficiently large and unexpected

increase in uncertainty, as indicated by some of our examples in Figure 3.

Finally, we further note the broader context of a large literature on overconfidence (eg.

De Bondt and Thaler (1995) and Daniel et al. (1998, 2001)). This work has been motivated

by extensive psychological evidence for overconfidence and argues that models based on this

behavioral property are promising in accounting for asset market puzzles. Our key insight

here is that Smooth DE emerges as a potential parsimonious micro-foundation, based on the

representativeness heuristic, for overreaction and overconfidence, two behavioral features

argued as important in understanding a variety of economic outcomes.9

5 Business cycle implications

We illustrate the business cycle implications of Smooth DE in a parsimonious RBC model

with time-varying uncertainty. We argue that Smooth DE emerges as a novel behavioral

propagation and amplification mechanism for time-varying uncertainty. We first show that

the model replicates, without relying on additional frictions, several salient features of the

data thanks to the state-dependent overreaction: (1) asymmetry (recessions are deeper than

expansions), (2) countercyclical micro volatility (cross-sectional variances of microeconomic

variables rise in recessions), and (3) countercyclical macro volatility (time-series variances of

macroeconomic variables rise in recessions).10 We also show that, the perceived increase of

9See further Barberis (2018) for a review of these two-widely documented, but typically studied separately,
departures from standard Bayesian updating.

10As described in the Introduction, these properties have strong empirical support in the literature. The
concept of asymmetries have a long tradition in macroeconomics, including Neftci (1984), Hamilton (1989),
Sichel (1993), and more recently McKay and Reis (2008) and Morley and Piger (2012). The extensive
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uncertainty in recessions is more than three times larger than the actual uncertainty increase.

We then discuss a novel policy implication: a redistributive policy that reduces idiosyncratic

uncertainty could be beneficial for macroeconomic stabilization because it dampens the state-

dependent overreaction.

5.1 The model

To isolate the role of Smooth DE as a propagation mechanism, we keep the model simple and

abstract from conventional frictions in the uncertainty shock literature, such as adjustment

costs (Bloom (2009), Bloom et al. (2018)) and sticky prices (Basu and Bundick (2017),

Fernández-Villaverde et al. (2015), and Bianchi et al. (2023a)). The economy consists of a

continuum of islands i ∈ [0, 1]. In each island i, an agent has the per-period utility function

U(ci,t, hi,t) =
c1−γ
i,t

1− γ
− β

h1+η
i,t

1 + η
.

where ci,t is consumption, hi,t is the amount of hours worked, γ is the coefficient of relative

risk aversion, and η is the inverse of the Frisch labor elasticity. We simplify the algebra

below by multiplying the disutility of labor by the discount factor β.

Output in each island is produced according to

yi,t = zi,thi,t−1. (26)

The t − 1 subscript on hours reflects the assumption that the labor input is chosen before

the random realization of productivity zi,t is known. The island resource constraint is

ci,t = yi,t. (27)

We obtain aggregate variables by simply adding up variables of all islands:

Ht =

∫ 1

0

hi,tdi, Yt =

∫ 1

0

yi,tdi, Ct =

∫ 1

0

ci,tdi

The island productivity zi,t+1 is the sum of aggregate and idiosyncratic components:

ln zi,t+1 = At+1 + ai,t+1,

literature of the macroeconomics of time-varying uncertainty, including Bloom (2009), Fernández-Villaverde
et al. (2011), Ilut et al. (2018), Jurado et al. (2015), Basu and Bundick (2017), and Bloom et al. (2018)
confirm that volatility or uncertainty is countercyclical at both micro and macro levels.
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The economy-wide TFP shock At+1 is common across all islands and follows the process

At+1 = ρAAt + uA,t+1, uA,t+1 ∼ i.i.d.N(0, σ2
A).

The idiosyncratic TFP ai,t+1 is instead specific to island i, and it is composed of a predictable

component si,t ∼ i.i.d.N(0, σ2
s), known one-period-in-advance, and an unpredictable compo-

nent ua,i,t+1 ∼ i.i.d.N(0, σ2
a,t) realized at t + 1: ai,t+1 = si,t + ua,i,t+1. Following Bloom

et al. (2018), we assume the volatility σa,t is time-varying and negatively correlated with the

economy-wide TFP. In particular, as we describe in Section 5.4, σa,t increases when there is

a negative innovation to the economy-wide TFP, and vice versa. We use σa,t to denote the

volatility of the period t+1 innovation to reflect the assumption that the volatility of the next

period’s innovation is known one-period-in-advance. We also assume that the volatility of

the predictable component, si,t, is constant. This implies that the cross-sectional dispersion

of labor is driven only by the news effect of the uncertainty shock. If we were to relax the

assumption of constant volatility of si,t, the cross-sectional dispersion would also depend on

its realized volatility, but none of the main qualitative properties of the model would change.

The mean and variance of ai,t+1 conditional on the predictable component si,t are

Ei,t [ai,t+1] = si,t, Vi,t [ai,t+1] = σ2
a,t.

We can define the residual uncertainty (posterior variance relative to ex-ante uncertainty)

as in David et al. (2016) as σ2
a,t/(σ

2
s + σ2

a,t), which is increasing in σ2
a,t. Intuitively, in times

of low aggregate TFP and higher uncertainty σ2
a,t, the predictable component si,t serves as

a weaker signal in forecasting ai,t+1 relative to times of lower uncertainty.

5.2 Rational Expectations solution

We first characterize the equilibrium under RE. The island i agent’s Bellman equation is

V(hi,t−1, zi,t) = max
hi,t

{U(ci,t, hi,t) + βEi,t [V(hi,t, zi,t+1)]} .

Combining the first order condition for labor with the envelope condition, we obtain

(hi,t)
η = Ei,t

[
(ci,t+1)

−γ zi,t+1

]
. (28)

The optimality condition equates the current marginal disutility of working with its expected

benefit. The latter is given by the marginal product of labor weighted by the marginal

utility of consumption. We log-linearize the condition and use the method of undetermined
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coefficients to obtain the RE solution. Hats denote log-deviations from steady state.

Proposition 4 The equilibrium under RE is given as follows:

1. Individual hours worked are given by

ĥi,t = ε [ρAAt + si,t] ,

where ε = 1−γ
η+γ

. Equilibrium output and consumption follow immediately as

ŷi,t = At + ai,t + ĥi,t−1 = ĉi,t.

2. Equilibrium aggregate variables are given by

Ĥt = ερAAt, Ŷt = At + Ĥt−1 = Ĉt

Proof. See Appendix.

The response of individual and aggregate hours to news about expected economy-wide

productivity ρAAt and island-specific productivity si,t is affected by the intertemporal elas-

ticity of consumption (IES), which here also equals the inverse of the coefficient of relative

risk aversion. When the IES is large enough, so that γ−1 > 1 and thus ε > 0, an increase

in expected productivity raises hours. In that case the intertemporal substitution effect

dominates the wealth effect that would lower hours through the effect on marginal utility.

The next proposition characterizes the cross-sectional variance under RE.

Proposition 5 The cross-sectional variance of hours worked is given by∫ 1

0

(
ĥi,t − Ĥt

)2
di =

[
1− γ

η + γ

]2
σ2
s ,

and is constant over the business cycle. The cross-sectional variances of output yi,t and

consumption ci,t are increasing in the volatility σ2
a,t−1 of the idiosyncratic TFP.

Proof. See Appendix.

Under RE, the cross-sectional variance of hours stays constant over the business cycle.

This is because once the model is linearized, the news effect of changes in uncertainty is muted

under RE. The cross-sectional variances of output and consumption are instead mechanically

affected by σ2
a,t−1 because of the change in realized volatility.
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5.3 Smooth DE solution

We now solve the model under Smooth DE. We consider the case of distant memory, meaning

that agents’ memory recall is based on a more distant past, rather than just the immediate

past. This means that the reference group is based on the information set available J > 1

periods ago. Bianchi et al. (2024) find that in standard models, distant memory can account

for salient features of data, such as persistence and repeated boom-bust cycles. Under

distant memory, a time-inconsistency problem arises due to the failure of the law of iterated

expectations. Bianchi et al. (2024) address this issue by adopting the näıveté approach

(O’Donoghue and Rabin (1999)), which we follow here. Under this approach, the agent fails

to take into account that her preferences are time-inconsistent and thinks that in the future

she will make choices under perfect memory recall, or RE. However, when the future arrives,

the agent ends up changing behavior and be again subject to her imperfect memory recall.11

Let θ-superscripts andRE-superscripts denote equilibrium Smooth DE choices and choices

under a RE policy function, respectively. The island i agent’s Bellman equation is

max
hθ
i,t

{
U(cθi,t, h

θ
i,t) + βEθ

i,t

[
V(hθ

i,t, zi,t+1)
]}

,

subject to yθi,t = zi,th
θ
i,t−1 and cθi,t = yθi,t. The continuation value is given by

V(hθ
i,t−1, zi,t) = max

hRE
i,t

{
U(cRE

i,t , h
RE
i,t ) + βEi,t

[
V(hRE

i,t , zi,t+1)
]}

,

subject to yRE
i,t = zi,th

θ
i,t−1 and cRE

i,t = yRE
i,t .

Similar to the RE problem, the agent optimally equates the marginal disutility of labor

with its expected benefit, except that the benefit is evaluated under Smooth DE:

(
hθ
i,t

)η
= Eθ

i,t

[(
cRE
i,t+1

)−γ
zi,t+1

]
. (29)

Proposition 6 The equilibrium under Smooth DE is given as follows:

1. Individual hours worked are given by

ĥθ
i,t = ε [ρAAt + si,t]

+
θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ
ε [ρANt−J,t [At] + si,t] ,

(30)

11Bianchi et al. (2024) further argue that the näıveté approach is psychologically coherent and consistent
with the underlying foundation of diagnostic beliefs as a heuristic and a mental short-cut.
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where ε is given in Proposition 4 and Nt−J,t [At] ≡ At − Et−J [At] represents the news

in At, compared to past expectation. Equilibrium output and consumption follow as

ŷθi,t = At + ai,t + ĥθ
i,t−1 = ĉθi,t. (31)

2. The effective diagnosticity parameter θ̃t,t−J is given by

θ̃t,t−J =
Rt+1|t,t−Jθ

1 +
(
1−Rt+1|t,t−J

)
θ
, (32)

where

Rt+1|t,t−J =
Vi,t

(
−γĉRE

i,t+1 + At+1 + ai,t+1

)
Vi,t−J

(
−γĉRE

i,t+1 + At+1 + ai,t+1

) . (33)

3. Equilibrium aggregate variables are given by

Ĥθ
t = ερAAt +

θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ
ερANt−J,t [At] (34)

Ŷ θ
t = At + Ĥθ

t−1 = Ĉθ
t

Proof. See Appendix.

First, consider the policy function for individual hours hθ
i,t. The first line of (30) is iden-

tical to the RE policy function. The second line captures the overreaction to news, i.e.

surprises.12 Consider, for instance, a positive surprise to an economy-wide TFP At. Smooth

diagnostic agents are over-influenced by this surprise and become over-optimistic about the

future benefit of working, and hence work more (if ε > 0). The coefficient on this overre-

action,
θ̃t,t−Jη

η+(1+θ̃t,t−J)γ
, is increasing in the effective diagnosticity θ̃t,t−J . From (31) individual

output and consumption also overreact when individual hours overreact. Second, the effec-

tive diagnosticity θ̃t,t−J is positively related to Rt+1|t−J , given by (33): the ratio between

the current uncertainty about the marginal benefit of labor and the uncertainty perceived

at period t− J . Third, aggregate hours, output, and consumption also feature overreaction,

controlled by θ̃t,t−J , to news about economy-wide shocks.

The expressions (32) and (33) in Proposition 6 suggest that an increase in uncertainty

about future idiosyncratic productivity could raise θ̃t,t−J and, in turn, the overreaction to

news.13 The Proposition below indeed confirms that this is the case.

12Note that, for si,t, since it is i.i.d., the surprise is si,t itself.
13In the current model, we must take a stance on how agents deal with time-varying volatility when

forming expectations. There are two approaches to compute the conditional variance at t − J in (33)
that preserve normality of the Smooth DE density. The first approach consists of making an “anticipated
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Proposition 7 An increase in the volatility σ2
a,t of idosyncratic TFP raises the effective

diagnosticity parameter θ̃t,t−J .

Proof. See Appendix.

There are two important implications of this proposition. First, the business cycle is

asymmetric, even if the underlying shocks are symmetric. A positive TFP shock would

lower uncertainty and, as result, overreaction. In contrast, a negative TFP shock would

raise uncertainty and, as result, overreaction. Thus, a drop in economic activity in response

to a negative shock would be sharper, while an expansion in response to a symmetric pos-

itive shock would be milder, generating asymmetric fluctuations. Second, macroeconomic

volatility is countercyclical. During expansions uncertainty and overreaction are low while

in recessions agents overreact more to economy-wide shocks.

State-dependent overreaction also implies that micro-level volatility is countercyclical:

Proposition 8 The cross-sectional variance of hours worked is given by

∫ 1

0

(
ĥθ
i,t − Ĥθ

t

)2
di =

[
(1 + θ̃t,t−J)(1− γ)

η + (1 + θ̃t,t−J)γ

]2
σ2
s ,

and is increasing in θ̃t,t−J and, thus, in the volatility σ2
a,t of the idiosyncratic TFP. The

cross-sectional variances of output yi,t and consumption ci,t are similarly increasing in the

volatility σ2
a,t−1 of the idiosyncratic TFP.

Proof. See Appendix.

As uncertainty increases, the overreactions to the predictable component of idiosyncratic

TFP and the future benefit of labor, captured in the
[
(1+θ̃t,t−J )(1−γ)

η+(1+θ̃t,t−J )γ

]2
term, rise. Hence,

an increase in uncertainty about idiosyncratic TFP raises the cross-sectional variances of

individual actions.

Our theory has an important policy implication. As we saw above, the micro-level volatil-

ity and macroeconomic volatility are tightly linked through the state-dependent overreaction

controlled by θ̃t,t−J . Thus, a policy that reduces microeconomic uncertainty through, for in-

stance, a redistributive tax policy can also be effective in stabilizing the macroeconomy. To

fix ideas, consider a progressive income tax and subsidy scheme where the individual rate

τi,t is increasing in the realized idiosyncratic productivity level τi,t = τai,t, where τ ≥ 0 is a

utility” assumption (Kreps (1998)). In this case, agents’ uncertainty depends on the volatility at the time
of the forecast, disregarding the possibility of volatility changes. The second approach consists of assuming
that agents take into account the possibility of volatility changes, but that memory retrieves a Normal
approximation of the resulting mixture of Normal’s. We adopt the first approach, as it is arguably more
consistent with the näıveté assumption and the general motivation of DE as a mental heuristics.
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parameter that controls the progressivity. The island resource constraint is

ci,t + τi,tyi,t = yi,t,

so the agent pays a tax (τi,t > 0) if the realized TFP shock is positive (ai,t > 0) and receives

a transfer (τi,t < 0) otherwise. The scheme is budget neutral.

Proposition 9 A higher progressivity τ is associated with a smaller increase in the effective

diagnosticity parameter θ̃t,t−J when the volatility σ2
a,t of idiosyncratic TFP rises.

Proof. See Appendix.

Intuitively, redistribution dampens the state-dependent overreaction by reducing cross-

sectional uncertainty about the future benefit of labor. Thus, the government can stabilize

the macroeconomy by using the tax policy to reduce the increase in uncertainty and overreac-

tion. For instance, in times of low aggregate TFP and high uncertainty, the government can

implement the tax policy or increase its progressivity. These interventions would dampen

the overreaction and make the downturn less severe.

5.4 Calibrated example

We illustrate the quantitative potential of the Smooth DE mechanism in the context of the

parsimonious RBC model presented above by examining its dynamics.

Calibration. We calibrate the model to a quarterly frequency. We set the discount

factor β = 0.99, the IES γ−1 = 0.25−1, and η = 0.4, which implies a Frisch elasticity of labor

supply of 2.5.14 For the economy-wide TFP shock, we set ρA = 0.95 and σA = 0.7/100. The

calibration satisfies the condition γ−1 > 1, so labor increases in response to an increase in

expected TFP.

Consider the time-varying standard deviation σa,t of the idiosyncratic TFP shocks. Using

Census micro data, Bloom et al. (2018) and Ilut et al. (2018) find that, during recessions,

the dispersion of TFP shocks increases by 13% and 7%, respectively. Motivated by these

findings, we assume that a negative innovation to economy-wide TFP larger or equal than

one standard deviation is associated with a 10% increase in the standard deviation σa,t of

the idiosyncratic TFP shocks relative to the steady-state standard deviation σa. Conversely,

a positive economy-wide TFP innovation of the same magnitude is associated with a 10%

decrease in the standard deviation σa,t of the idiosyncratic TFP shocks.

14These values of IES and Frisch elasticity allow us to generate realistic labor volatility. Our calibrated
model generates the time-series standard deviation of aggregate hours worked of 1.67%. In the data, the
standard deviation of total hours worked in the nonfarm business sector (1983:Q1–2019:Q4) is 1.66%.
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Table 1: Internally calibrated parameters and targeted moments

Parameters Targeted moments

Data Model

σa 0.022 Realized absolute forecast error 0.143 0.143
σs 0.027 Residual uncertainty 0.41 0.41

θ̃ 1.547 Skewness of aggregate hours −0.21 −0.21

Notes: The table reports the parameters and their calibrated values as well as the targeted moments. σa is

the steady-state standard deviation of unpredictable component of the idiosyncratic TFP shock, σs is the

standard deviation of the predictable component of the idiosyncratic TFP shock, and θ̃ is the long-run

average effective diagnosticity implied by the calibrated value of θ. The realized absolute forecast error is

reported in Barrero (2022) using survey data on US managers, calculated from realized forecast errors of

sales growth between t to t+ 4, with observations employment-weighted. The residual uncertainty from

David et al. (2016) captures the amount of posterior uncertainty relative to the ex-ante uncertainty. The

skewness of aggregate hours is calculated using total hours worked in the nonfarm business sector

(1983:Q1–2019:Q4). The model moments are calculated using simulated data from the Smooth DE model.

We assume that the agent’s comparison group is the expectation formed J = 5 periods

ago. The parameter J mainly determines the persistence of overreaction and the value is

consistent with Bianchi et al. (2024), who find that in an estimated structural model the

memory weights center around five- and six-quarters-ago expectations.

There are three remaining parameters: the steady-state standard deviation of the un-

predictable component of the idiosyncratic TFP shock σa, the standard deviation of the

predictable component of the idiosyncratic TFP shock σs, and the diagnosticity parameter

θ. We calibrate these parameters so that the model matches the three empirical moments

summarized in Table 1.15 While multiple model parameters jointly affect these moments, we

select the moments so that each moment is informative about a parameter of interest.

The first empirical moment, the mean of realized absolute forecast errors, is from Bar-

rero (2022) who uses survey data (Atlanta Fed/Chicago-Booth/Stanford Survey of Business

Uncertainty (SBU)) on US managers. Forecast errors are computed by subtracting realized

sales growth between t to t+4 from managers’ forecasts. The model counterpart is obtained

by calculating the mean absolute forecast error on the simulated distribution of the real-

ized forecast error Eθ
i,t

[
ŷRE
i,t+4

]
− ŷθi,t+4.

16 This moment is informative about the steady-state

15We choose the parameters so that the squared-sum of distance between the data moments and the
model-implied moments is minimized.

16Specifically, we generate 100 replications of T = 200 time series with n = 500 islands. The number of
islands roughly matches the the number of firms surveyed in the SBU data in Barrero (2022).
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standard deviation of the unpredictable component of idiosyncratic TFP.

The second moment, residual uncertainty, captures the amount of posterior uncertainty

relative to the ex-ante uncertainty. David et al. (2016) estimate the residual uncertainty to

be 41%. The model counterpart is given by σ2
a/(σ

2
s +σ2

a). This moment is useful to pin down

the standard deviation σs of the predictable component of idiosyncratic TFP.

Finally, the third moment is the skewness of total hours worked in the nonfarm busi-

ness sector (1983:Q1–2019:Q4).17 The negative skewness (−0.21) reflects macroeconomic

asymmetry: drops in hours worked are steeper than increases. In our model, a negative

economy-wide TFP innovation increases uncertainty σ2
a,t and, in turn, the effective overre-

action θ̃t,t−J . A positive TFP innovation, in contrast, reduces overreaction. Under Smooth

DE, the diagnosticity parameter θ governs the strength of this mechanism to generate asym-

metry. Under RE model and the standard DE model where the overreaction is constant,

there is no asymmetry, and the skewness is zero.

The model moments match the empirical moments perfectly. The calibrated σa and σs

imply the predictable and unpredictable components’ variances are about the same in steady

state. The long-run average effective diagnosticity parameter θ̃, implied by the calibrated

value of θ, is 1.54. This value is somewhat larger than Bordalo et al. (2018), Bordalo

et al. (2019), and d’Arienzo (2020), which tend to estimate the standard DE diagnosticity

parameter around 1, but smaller than the estimate of 1.97 in Bianchi et al. (2024).18

Implications for untargeted survey moments. We examine to what extent our

theory can explain untargeted survey evidence on overreaction and overconfidence. We use

Barrero (2022)’s survey moments as an external validation because the study shows both

overreaction and overconfidence based on a single dataset (SBU). The first column of Table

2 reports the coefficient from a panel regression where managers’ time t forecast of t+4 sales

growth minus the realization is regressed on the sales growth between quarter t−1 to t. The

coefficient is positive, meaning that managers’ forecasts tend to be excessively optimistic

during high growth period. The second column is the realized mean absolute forecast error,

reported in Table 1, and is shown here again to facilitate comparison. The third column is

the subjective mean absolute forecast error, where the hypothetical realizations are drawn

from the managers’ subjective probability distributions. The subjective absolute forecast

error is only 16% the size of the empirical errors (fourth column), indicating overconfidence:

17The empirical skewness of hours increases significantly to −1.75 when we extend the sample until 2022:Q1
to include the 2020 Covid-19 recession. We use the simulated data to compute the skewness of aggregate
hours worked in the model. Both simulated and actual time series are HP-filtered with λ = 1600.

18Like Bianchi et al. (2024), our current model features distant memory (J > 1). Bianchi et al. (2024) notes
that existing estimates are based primarily on models where imperfect memory is assumed to be driven only
by the immediate past (J = 1), and this assumption changes inference about the diagnosticity parameter.
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Table 2: Untargeted survey moments: overreaction and overconfidence

(1) (2) (3) (4)
Ft(∆yi,t+4|t)−∆yi,t+4|t Absolute forecast error

on ∆yi,t|t−1 Realized Subjective (Subjective)/(Realized)
Data 0.173 0.143 0.023 0.16

(0.059) (0.012) (0.002)

Model 0.095 0.143 0.017 0.12

Notes: The table reports the coefficient on overextrapolation and realized and subjective mean absolute

forecast errors. The data moments are computed by Barrero (2022) using survey data on US managers,

with observations employment-weighted and standard errors in parentheses. The first column reports the

coefficient from a panel regression where managers’ time t forecast of t+ 4 sales growth minus the

realization is regressed on the sales growth between quarter t− 1 to t. The second column is the realized

mean absolute forecast error, calculated using realized forecast errors of sales growth between t to t+ 4.

The realized mean absolute forecast error is used in the calibration as a target, but is included in this table

to facilitate comparison. The third column is the subjective mean absolute forecast error, where the

hypothetical realizations are drawn from managers’ subjective probability distributions. The fourth column

is the ratio of the subjective absolute forecast error to the realized error. The model moments are

calculated using the simulated data from the Smooth DE model.

managers overestimate the precision of their forecasts.

The model moments are computed by simulating the model under Smooth DE. First,

consider the overextrapolation regression coefficient. The model counterpart is the coeffi-

cient on pooled OLS where we regress the Smooth DE four-quarters-ahead forecast error,

Eθ
i,t

[
ŷRE
i,t+4

]
− ŷθi,t+4, on output growth,

[
ŷθi,t − ŷθi,t−1

]
, which proxies for news. The coefficient

is positive, but smaller than in the data. The reason why the calibrated model understates

this coefficient relative to the data is as follows. In our model, economy-wide shocks are

persistent while island-specific shocks are i.i.d. In contrast to persistent shocks, when shocks

are i.i.d., the Smooth DE forecasts are orthogonal to news, so the idiosyncratic shocks push

the coefficient toward zero.19 While we specified idiosyncratic TFP shocks to be i.i.d. for

tractability, allowing for persistence would increase the overextrapolation coefficient. Thus,

our model provides a conservative lower bound on the macroeconomic effects of Smooth DE.

Next, consider the mean absolute forecast errors. The subjective error (third column) is

19This need not be the case when agents forecast endogenous variables in models with slow-moving en-
dogenous states, such as capital. See Bianchi et al. (2024) for details.
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Table 3: Countercyclical cross-sectional standard deviation of labor growth

(1) (2) (3) (4)
Data Smooth DE DE RE

(Recessions)/(Expansions) 1.16 1.12 1 1

Notes: The table reports the ratio of the cross-sectional standard deviation of labor growth during

recessions to the cross-sectional standard deviation during expansions. The first column shows the ratio in

the data, reported by Ilut et al. (2018), where recessions and expansions are defined as NBER recessions

and NBER expansions, respectively. The second, third, and fourth columns report the model-implied ratios

for the Smooth DE, DE, and RE models, respectively.

obtained first by calculating the Smooth DE variance of output growth

Vθ
i,t

[
ŷRE
i,t+4

]
=

Vi,t

[
ŷRE
i,t+4

]
1 +

(
1−Rt+1|t,t−J

)
θ
, (35)

and then leverage the normality of the RE output growth so that the subjective absolute

forecast error is given by
√
2/π

(
Vθ

i,t

[
ŷRE
i,t+4

]) 1
2 . The model closely matches the subjective

forecast error. The size of the absolute subjective error is 12% of the size of the realized fore-

cast error (fourth column), in line with the survey data’s 16%. According to (35), the Smooth

DE variance Vθ
i,t

[
ŷRE
i,t+4

]
would be lower than the econometrician’s variance Vi,t

[
ŷθi,t+4

]
due

to two factors. The first factor is that, under näıveté, (Smooth) DE agents perceive future

output to follow the RE law of motion ŷRE
i,t+4 instead of the equilibrium law of motion ŷθi,t+4.

The second factor is the Smooth DE effect (the denominator in (35)) on uncertainty, accord-

ing to which a reduction of uncertainty contributes to overconfidence about the precision of

expectations. To disentangle these two factors, we calculate the subjective mean absolute

forecast error without the Smooth DE effect. We obtain
√
2/π

(
Vi,t

[
ŷRE
i,t+4

]) 1
2 = 0.053, which

is 37% of the size of the realized errors. This ratio is more than double the values recovered

by the data (16%) and implied by the baseline model (12%). We conclude that the Smooth

DE effect is important to account for overconfidence as observed in survey data.

Countercyclical micro and macro volatility. We now study the model’s ability to

generate countercyclical micro and macro volatility. First, consider the micro volatility. In

Table 3, we report the ratio of the cross-sectional standard deviation of labor growth during

recessions to the cross-sectional standard deviation during expansions. The first column

shows this ratio from the data, as reported by Ilut et al. (2018), where recessions and

expansions are defined as NBER recessions and NBER expansions, respectively. The cross-

sectional dispersion is countercyclical: in recessions, it is 16% higher than during expansions.
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Table 4: Countercyclical volatility of aggregate labor growth

(1) (2) (3) (4)
Data Smooth DE DE RE

(Recessions)/(Expansions) 1.23 1.22 1 1

Notes: The table reports the ratio of the rolling standard deviation of aggregate labor growth during

recessions to the rolling standard deviation during expansions. The first column shows the ratio in the data

for the period 1983:Q1-2019:Q4, where recessions and expansions are defined as NBER recessions and

NBER expansions, respectively. The second, third, and fourth columns report the model-implied ratios for

the Smooth DE, DE, and RE models, respectively.

The second column reports the ratio in our model, where we define recessions and expansions

as periods when there are one-standard-deviation negative and positive innovations to the

economy-wide TFP, respectively. Under Smooth DE the cross-sectional standard deviation

of labor growth is 12% higher during recessions than in expansions, so the model explains

75% of the empirical countercyclicality of micro volatility. In the model, a negative aggregate

TFP innovation triggers an increase in idiosyncratic TFP uncertainty σa,t. As a result, the

overreaction θ̃t,t−J to the predictable component si,t of idiosyncratic TFP rises, so the cross-

sectional dispersion of actions such as labor increases. As shown in the third and the fourth

columns, the cross-sectional dispersion is constant over the business cycle under the standard

DE model, where the overreaction is constant, and the RE model, where we have θ = 0.

Next, consider macro volatility. In our model, in times of low TFP and high idiosyncratic

uncertainty σa,t, aggregate labor responds more to economy-wide shocks because the overre-

action is stronger. Table 4 examines to what extent this countercyclical macro volatility is

consistent with the data. To measure time-varying volatility of aggregate hours worked in

the data, similar to Ilut et al. (2018), we compute the rolling window standard deviation as

σH,t =

√√√√ 1

nw − 1

(nw−1)/2∑
k=−(nw−1)/2

(
∆ lnHt+k −∆ lnHt

)2
, (36)

where ∆ lnHt+k is the log change of total hours worked in the nonfarm business sector from

a quarter t+k−1 to t+k and ∆ lnHt ≡ (1/nw)
∑(nw−1)/2

k=−(nw−1)/2∆ lnHt+k. We set the window

size nw = 3 and consider the sample 1983:Q1-2019:Q4. The first column of Table 4 reports

the measured σH,t during NBER recessions relative to σH,t during NBER expansions. The

measured volatility of aggregate labor growth is 23% higher in recessions than in expansions.

We then compute the same rolling standard deviation (36) on the simulated data from
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the model. We define recessions and expansions as periods when there are larger-than-or-

equal-to one-standard-deviation negative and positive innovations to the economy-wide TFP,

respectively. The second column shows that in the Smooth DE model, the aggregate labor

growth volatility σH,t is 22% higher in recessions than in expansions. Thus, the Smooth DE

model generates the countercyclical macro volatility that is quantitatively in line with the

data, even though the volatility of economy-wide shocks is constant. DE and RE models, in

contrast, do not generate such countercyclical volatility (third and fourth columns).

Perceived vs. actual increase in uncertainty. Discussions of Corollary 1 and Figure

3 indicate that, in our model, agents would overestimate the increase in uncertainty in

recessions. This is because tail events become more representative when uncertainty rises. To

quantify how much the agent’s perceived uncertainty rises relative to the actual uncertainty,

we compute the Smooth DE variance of the future marginal benefit of labor,

Vθ
i,t

(
−γĉRE

i,t+1 + At+1 + ai,t+1

)
=

Vi,t

(
−γĉRE

i,t+1 + At+1 + ai,t+1

)
1 + θ(1−Rt+1|t,t−J)

. (37)

We are interested in (37) because it controls the labor-supply decision in response to an uncer-

tainty increase. We find that, under our calibration, a 10% rise in σa,t raises the perceived un-

certainty (37) by 69%. In contrast, actual uncertainty, given by Vi,t

(
−γĉθi,t+1 + At+1 + ai,t+1

)
rises only by 19%. Thus, the perceived rise in uncertainty is more than three times larger

than the actual uncertainty increase in recessions.20

6 Conclusions

We developed a tractable and structural bridge from the representativeness heuristic of

Kahneman and Tversky (1972) to the time-series domain. We built on the formalization

of representativeness by Gennaioli and Shleifer (2010) and of diagnostic expectations (DE)

by Bordalo et al. (2018) to allow for what we call “smooth diagnosticity.” Under Smooth

DE new information is defined as the difference between the current information set and a

previous information set. A critical consequence of this basic approach is that current and

past uncertainty interact to determine the intensity of the DE overreaction, but also create

the preconditions for novel properties such as over- and under- confidence.

After formally characterizing Smooth DE and its key properties, we leveraged its insights

20Since we linearize our model, the increase in uncertainty affects first-order economic outcomes through
the state-dependent overreaction and not through the conventional risk channel. The risk adjusted log-
linearization method as in Bianchi et al. (2023b) would allow us to capture the impact of perceived increase
in uncertainty while preserving tractability.
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along two substantive directions. First, we embedded the Smooth DE framework in a stan-

dard signal extraction problem and showed that Smooth DE can account for recent evidence

indicating that overreaction is stronger for weaker signals and for longer horizon forecasts.

Second, we embedded Smooth DE in a parsimonious RBC model with time-varying uncer-

tainty. This model can account for survey data on overreaction and overconfidence as well

as three salient properties of the business cycle: (1) asymmetry, (2) countercyclical micro

volatility, and (3) countercyclical macro volatility. We uncovered a novel policy implica-

tion: a redistributive policy that reduces idiosyncratic uncertainty could be beneficial for

macroeconomic stabilization because it dampens the state-dependent overreaction.
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Appendix

A Proof of Proposition 1

Expression (9) can be written as:

f θ
t (x̂t+1) ∝ exp

[
− 1

2σ2
t+h|t

(
xt+1 − µt+1|t

)2]
 exp

[
− 1

2σ2
t+1|t

(
xt+1 − µt+1|t

)2]
exp

[
− 1

2σ2
t+1|t−J

(
xt+1 − µt+1|t−J

)2]


θ

1

Z

Collecting the terms in the exponents, we get:

f θ
t (x̂t+1) ∝ exp

[
− 1

2σ2
t+1|t

[
(1 + θ)

(
xt+1 − µt+1|t

)2 − σ2
t+1|t

σ2
t+1|t−J

θ
(
xt+1 − µt+1|t−J

)2]] 1

Z

Developing the squared terms and keeping track of the terms involving xt+1, we obtain:

f θ
t (x̂t+1) ∝ exp


− 1

2σ2
t+1|t

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)
[
x2
t+1 − 2xt+1

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)−1(
µt+1|t (1 + θ)−

σ2
t+1|t

σ2
t+1|t−J

θµt+1|t−J

)]
 1

Z
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where the remaining terms are absorbed in the constant of integration.

Define: Rt+1|t,t−J ≡
σ2
t+1|t

σ2
t+1|t−J

. If Rt+1|t,t−J > (1 + θ)/θ, the expression above corresponds

to the kernel of a normal with mean:

Eθ
t (xt+1) =

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)−1 [
µt+1|t (1 + θ)−

σ2
t+1|t

σ2
t+1|t−J

θµt+1|t−J

]

=

[
µt+1|t +

Rt+1|t,t−Jθ

1 +
(
1−Rt+1|t,t−J

)
θ

(
µt+1|t − µt+1|t−J

)]

and variance:

Vθ
t (xt+1) = σ2

t+1|t

(
1 + θ −

σ2
t+1|t

σ2
t+1|t−J

θ

)−1

=
σ2
t+1|t

1 +
(
1−Rt+1|t,t−J

)
θ
.

This gives us the result stated in Proposition 2.

B Upper bound on DE distortion

Suppose that we are interested in imposing an upper bound on the Smooth DE distortion.

Imposing such upper bound on the overreaction in the mean guarantees that both distortions

remain finite and non-decreasing as the ratio Rt+h|t,t−J goes to infinity. Thus, we propose

the following approach.

Let θ̃ be the desired upper bound of effective overreaction in conditional mean. By

effective overreaction we refer to the object defined in equation (14). As a first step, we

exploit the fact that the size of the distortion is increasing in Rt+h|t,t−J to find the threshold

value R, such that, for a given θ, for each Rt+h|t,t−J > R, the overreaction in the mean would

be larger than θ̃:

Rθ

1 + θ
(
1−R

) = θ̃

It follows that the upper threshold in terms of Rt+h|t,t−J is

R =
θ̃

1 + θ̃

1 + θ

θ
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Whenever Rt+h|t,t−J > R, we thus replace θ with θR, the value of θ such that the overre-

action in the mean is equal to θ̃. Thus, we solve:

Rt+h|t,t−JθR

1 + θR
(
1−Rt+h|t,t−J

) = θ̃

and obtain:

θR =
θ̃

Rt+h|t,t−J − θ̃
(
1−Rt+h|t,t−J

)
Plugging in θR in the formulas for the overreaction in mean and variance, we obtain:

Eθ
t (xt+h) = µt+h|t + θR

Rt+h|t,t−J

1 + θR
(
1−Rt+h|t,t−J

) (µt+h|t − µt+h|t−J

)
Eθ

t (xt+h) = µt+h|t + θ̃
(
µt+h|t − µt+h|t−J

)
and

Vθ
t (xt+h) =

1

1 + θR
(
1−Rt+h|t,t−J

)σ2
t+h|t

Vθ
t (xt+h) =

[
1 + θ̃

(
1− 1

Rt+h|t,t−J

)]
σ2
t+h|t

Note that while the overreaction in the mean remains constant once Rt+h|t,t−J > R, the

overreaction in the variance keeps growing as relative uncertainty increases, but it converges

to a finite value:

lim
Rt+h|t,t−J→∞

Vθ
t (xt+h) =

[
1 + θ̃

]
σ2
t+h|t

C Overreaction to new information and Smooth DE

To further understand Smooth DE, we rewrite the distorted conditional mean and variance

in Proposition 1 as a function of the revised information, as follows.

Corollary 2 (A revision representation). The Smooth DE density of Proposition 1 can be
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represented as distorting the RE revisions in conditional mean and variance, as follows:

Eθ
t (xt+h)− µt+h|t−J︸ ︷︷ ︸
Smooth DE revision

=
(
µt+h|t − µt+h|t−J

)︸ ︷︷ ︸
RE revision

(1 + θ)︸ ︷︷ ︸
BGS effect

[
1 + θ

(
1−Rt+h|t,t−J

)]−1︸ ︷︷ ︸
Smooth DE effect

Vθ
t (xt+h)

σ2
t+h|t−J︸ ︷︷ ︸

Smooth DE revision

=
σ2
t+h|t

σ2
t+h|t−J︸ ︷︷ ︸

RE revision

[
1 + θ

(
1−Rt+h|t,t−J

)]−1︸ ︷︷ ︸
Smooth DE effect

This representation indicates how the revision in conditional moments under Smooth DE

can be decomposed as having three parts: (1) the RE revision, (2) an overreaction effect

from representativeness as assumed in the standard BGS implementation of DE, and (3) a

separate and novel effect stemming from Smooth DE.

D News and uncertainty effects for the Normal density

In Figure 4, we study how news and uncertainty effects determine the overreaction of the

Smooth DE density relative to the true current distribution. To facilitate comparison with

Figure 3, we mark the coordinates corresponding to the reference mean and variance with

white pluses, and the coordinates corresponding to the current means and variances of each

scenario in Figure 3 with red circles. Panels (a) and (b) visually illustrate how the Smooth

DE mean and variance change as the posterior mean and variance change and confirm our

results in Corollary 1: Panel (a) shows larger overreactions for higher current variances and

Panel (b) highlights overconfidence for current variances lower than the reference variance

and underconfidence for current variances higher than the reference variance. Panel (c)

shows the news effect, measured in terms of the KL divergence of the current distribution

from the reference distribution. Interestingly, the KL divergence is large when the current

variance is low and there is a large shift in the mean. The news effect is large in that case

because we are moving probability masses of tail events under the reference distribution. In

contrast, the uncertainty effect is large when the current variance is high (Panel (d)). Panel

(e) shows that the uncertainty effect of higher current variance dominates the news effect,

so the overreaction of the Smooth DE density (measured in terms of the KL divergence of

the Smooth DE density to current density) is largest when there is a large shift in the mean

and an increase in variance.
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Figure 4: News and uncertainty in a Normal distribution

Notes: The figure displays how, as we vary the posterior mean and variance, the following objects change:

(a) the Smooth DE mean, (b) the Smooth DE variance, (c) the news component, measured using the KL

divergence of the posterior distribution from the prior distribution, (d) the uncertainty component,

measured using the posterior variance, and (e) the overall overreaction, measured using the KL divergence

of the Smooth DE distribution from the posterior distribution. We mark the coordinates corresponding to

the prior mean and variance with white pluses, and the coordinates corresponding to the posterior means

and variances of each scenario in Figure 3 with red circles.

E Signal extraction under Smooth DE

An important class of models emphasizing changes in subjective uncertainty belongs to the

large literature on Bayesian learning. In what follows, we show that Smooth DE can be

easily extended to this class of models.

Let us start with some more general notation, which connects to the one used in Definition

1. Consider the same probability space (Ω,F , (Ft)t≥0, P ) introduced in Section 3.1. But

now allow for noisy information. In particular, let the information available up to time t

be represented by another filtration (Gt)t≥0, generated by an observed process st. Then let

f(xt+h|Gt) be the conditional density function of Xt+h based on the information available in

Gt from the imperfect observations.

Like in Definitions 1 and 2, the representativeness of an event would then become

rep (x̂t+h|Gt,Gt−J) ≡
f (x̂t+h|Gt)

f (x̂t+h|Gt−J)
(38)

46



while the conditional density distorted by representativeness is

f θ (x̂t+h|Gt,Gt−J) = f (x̂t+h|Gt) [rep (x̂t+h|Gt,Gt−J)]
θ Z−1 (39)

where Z is a constant of integration and the parameter θ ≥ 0.

Smooth Diagnostic Kalman filter. To derive closed form solutions, we focus on a

standard Gaussian case of noisy information and maintain J = 1. In particular, consider a

standard state-space representation. The observation equation is:

st = xt + εt, εt ∼ N(0, σ2
ε)

and the state transition equation for the unobserved xt is

xt = ρxt−1 + ut, ut ∼ N(0, σ2
u)

The Kalman Filter gives the Bayesian forecast, and its derivation is standard. The one-

step-ahead prediction from the period t−1 estimate x̃t−1|t−1 and its associated error variance

Σt−1|t−1 are given by

x̃t|t−1 = ρx̃t−1|t−1; Σt|t−1 = ρ2Σt−1|t−1 + σ2
u.

Then, the estimates are updated according to

x̃t|t = x̃t|t−1 +Kt(st − x̃t|t−1), Kt =
Σt|t−1

Σt|t−1 + σ2
ε

,

where Kt is the Kalman gain and the updating rule for the variance is

Σt|t =

[
σ2
ε

Σt|t−1 + σ2
ε

]
Σt|t−1. (40)

In this environment, we now derive the version of Kalman filter used by agents subject

to Smooth DE. This connects and extends the diagnostic Kalman Filter derived within the

standard BGS formulation in earlier work like Bordalo et al. (2019) and Bordalo et al. (2020).

Let f(xt|Gt) be the probability density of the rational, or Bayesian, period t estimate of

the current underlying state xt based on the Kalman Filter derived above. Intuitively, by

equation (38), a state xt is more representative if it becomes more likely relative to the t− 1

forecast. As in our discussion of equation (9), the key feature with respect to the original

BGS formulation is to condition on the whole past information set, and as a result, to take
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into account the associated uncertainty.

Let the ratio of current to prior estimation uncertainty under RE be denoted as

Rt|t,t−1 ≡ Σt|t/Σt|t−1.

We derive the following result.

Proposition 10 (Smooth DE Kalman Filter.) The density f θ (x̂t|Gt,Gt−1) in equation (39)

has a Normal distribution with mean

Eθ
t (xt) = x̃t|t +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

(
x̃t|t − x̃t|t−1

)
, (41)

and variance

Vθ
t (xt) =

Σt|t

1 +
(
1−Rt|t,t−1

)
θ

(42)

Proof. Re-writing the expression (39):

f θ
t (xt) ∝ exp

[
− 1

2Σt|t

(
xt − x̃t|t

)2] exp
[
− 1

2Σt|t

(
xt − x̃t|t

)2]
exp

[
− 1

2Σt|t−1

(
xt − x̃t|t−1

)2]
θ

1

Z

Collecting the terms in the exponents, we get:

f θ
t (xt) ∝ exp

[
− 1

2Σt|t

[
(1 + θ)

(
xt − x̃t|t

)2 − Σt|t

Σt|t−1

θ
(
xt − x̃t|t−1

)2]] 1

Z

Developing the squared terms and keeping track of the terms involving xt, we obtain:

f θ
t (xt) ∝ exp

 − 1
2Σt|t

(
1 + θ − Σt|t

Σt|t−1
θ
)[

x2
t − 2xt

(
1 + θ − Σt|t

Σt|t−1
θ
)−1 (

(1 + θ) x̃t|t −
Σt|t

Σt|t−1
θx̃t|t−1

)]
 1

Z

where the remaining terms are absorbed in the constant of integration. The one above is
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the kernel of a normal with mean:

Eθ
t (xt) =

(
1 + θ −

Σt|t

Σt|t−1

θ

)−1(
(1 + θ) x̃t|t −

Σt|t

Σt|t−1

θx̃t|t−1

)
= x̃t|t +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

(
x̃t|t − x̃t|t−1

)
= x̃t|t−1 +

(
1 +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

)(
x̃t|t − x̃t|t−1

)
= x̃t|t−1 +

(
1 +

Rt|t,t−1θ

1 +
(
1−Rt|t,t−1

)
θ

)
Kt(st − x̃t|t−1),

where Rt|t,t−1 ≡ Σt|t/Σt|t−1 and in the fourth line we used (E), and variance:

Vθ
t (xt) = Σt|t

(
1 + θ −

Σt|t

Σt|t−1

θ

)−1

=
Σt|t

1 +
(
1−Rt|t,t−1

)
θ
.

This gives us the result stated in Proposition 10.

Like in our earlier general discussion, we observe overreaction of the conditional mean

when θ > 0 and the new information does not fully resolve uncertainty, i.e. when σ2
ε > 0.

Furthermore, similarly to the earlier AR(1) example, this environment is also characterized

by a conditional reduction in uncertainty, and therefore by overconfidence. Indeed, as long

as σ2
ε is finite, by equation (40) estimation uncertainty decreases over time, as the new signal

is at least partly informative. It follows that the ratio Rt|t,t−1 < 1,∀t and that given equation

(42), subjective uncertainty is lower than Bayesian estimation uncertainty, i.e. Vθ
t (xt) < Σt|t.

F Proofs for the business cycle model

F.1 Proof of Proposition 4

First, consider the equilibrium individual policy functions. To characterize dynamics we use

a log-linear approximation of decision rules around the steady state. We take logs of the

optimality condition with respect to hours in (28) and constraints (26) and (27):

ηĥi,t = Ei,t [−γĉi,t+1 + ẑi,t+1] ,

ŷi,t = ẑi,t + ĥi,t−1 = ĉi,t.
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Substitute the constraints into the labor supply condition:

ηĥi,t = Ei,t [−γĉi,t+1 + ẑi,t+1]

= Ei,t

[
−γ
(
ẑi,t+1 + ĥi,t

)
+ ẑi,t+1

]
ĥi,t =

1− γ

η + γ
Ei,t [ẑi,t+1]

=
1− γ

η + γ

[
ρAAt + ãi,t+1|t

]
=

1− γ

η + γ
[ρAAt + si,t] .

Equating the coefficients we obtain the equilibrium elasticities.

Next, consider aggregate variables. Note we have∫ 1

0

si,tdi = 0,

∫ 1

0

ẑi,tdi = At +

∫ 1

0

ai,tdi = At,

by law of large numbers. Then

Ĥt =

∫ 1

0

ĥi,tdi = ερAAt + ε

∫ 1

0

si,tdi

= ερAAt

Ŷt =

∫ 1

0

ŷi,tdi =

∫ 1

0

ẑi,tdi+

∫ 1

0

ĥi,t−1di

= At + Ĥt−1

= Ĉt.

F.2 Proof of Proposition 5

Note we have∫ 1

0

s2i,tdi = σ2
s ,

∫ 1

0

u2
a,i,tdi = σ2

a,t−1,

∫ 1

0

a2i,tdi =

∫ 1

0

(si,t−1 + ua,i,t)
2di = σ2

s + σ2
a,t−1.

Then ∫ 1

0

(
ĥi,t − Ĥt

)2
di =

∫ 1

0

(εsi,t)
2 di = (ε)2

∫ 1

0

s2i,tdi

= (ε)2 σ2
s ,
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which is constant. Next consider the cross-sectional variance of output:∫ 1

0

(
ŷi,t − Ŷt

)2
di =

∫ 1

0

((
At + ai,t + ĥi,t−1

)
−
(
At + Ĥt−1

))2
di

=

∫ 1

0

(ai,t + εsi,t−1)
2 di

=

∫ 1

0

(si,t−1 + ua,i,t + εsi,t−1)
2 di

= (1 + ε)2
∫ 1

0

s2i,t−1di+

∫ 1

0

u2
a,i,tdi

= (1 + ε)2 σ2
s + σ2

a,t−1,

which is increasing in σ2
a,t−1. It follows that the cross-sectional variance of consumption:

∫ 1

0

(
ĉi,t − Ĉt

)2
di = (1 + ε)2 σ2

s + σ2
a,t−1,

is increasing in σ2
a,t−1 as well.

F.3 Proof of Proposition 6

First, consider the equilibrium individual policy functions. As in the RE solution, to charac-

terize dynamics we use a log-linear approximation of decision rules around the steady state.

We take logs of the optimality condition with respect to hours in (29) and constraints (26)

and (27):

ηĥθ
i,t = Eθ

i,t

[
−γĉRE

i,t+1 + ẑi,t+1

]
ŷθi,t = ẑi,t + ĥθ

i,t−1 = ĉθi,t.
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Substitute the constraints into the labor supply condition:

ηĥθ
i,t = (1 + θ̃t,t−J)Ei,t

[
−γĉRE

i,t+1 + ẑi,t+1

]
− θ̃t,t−JEi,t−J

[
−γĉRE

i,t+1 + ẑi,t+1

]
ηĥθ

i,t = (1 + θ̃t,t−J)Ei,t

[
−γ
(
ẑi,t+1 + ĥθ

i,t

)
+ ẑi,t+1

]
− θ̃t,t−JEi,t−J

[
−γ
(
ẑi,t+1 + ĥRE

i,t

)
+ ẑi,t+1

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ)Ei,t [ẑi,t+1]− θ̃t,t−J (1− γ)Ei,t−J [ẑi,t+1] + θ̃t,t−JγEi,t−J

[
ĥRE
i,t

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ) [ρAAt + si,t]

− θ̃t,t−J (1− γ) ρJ+1
A At−J + θ̃t,t−Jγ

[
ερJ+1

A At−J

]
ĥθ
i,t =

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
ρAAt +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
si,t

− θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ

[
1− γ

η + γ

]
ρJ+1
A At−J ,

where the effective diagnosticity parameter θ̃t,t−J is given by (32). Equating the coefficients

we obtain the equilibrium elasticities. As in the RE economy, we obtain equilibrium aggregate

variables by simply aggregating the individual policy functions.

F.4 Proof of Proposition 7

Consider Rt+1|t,t−J :

Rt+1|t,t−J =
Vi,t

(
−γĉRE

i,t+1 + ẑi,t+1

)
Vi,t−J

(
−γĉRE

i,t+1 + ẑi,t+1

)
=

Vi,t

(
−γ
(
ẑi,t+1 + ĥθ

i,t

)
+ ẑi,t+1

)
Vi,t−J

(
−γ
(
ẑi,t+1 + ĥRE

i,t

)
+ ẑi,t+1

)
=

Vi,t

(
(1− γ) ẑi,t+1 − γĥθ

i,t

)
Vi,t−J

(
(1− γ) ẑi,t+1 − γĥRE

i,t

) ,
where the numerator is

Vi,t

(
(1− γ) [ρAAt + uA,t+1 + si,t + ua,i,t+1]− γĥθ

i,t

)
= (1− γ)2

(
σ2
A + σ2

a,t

)
,

which is increasing in σ2
a,t. Thus Rt+1|t,t−J and in turn θ̃t,t−J are increasing in σ2

a,t.
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F.5 Proof of Proposition 8

First consider the cross-sectional variance of hours. Defining εθs,t ≡
(1+θ̃t,t−J )(1−γ)

η+(1+θ̃t,t−J )γ
, we have

∫ 1

0

(
ĥθ
i,t − Ĥθ

t

)2
di =

∫ 1

0

(
εθs,tsi,t

)2
di =

(
εθs,t
)2 ∫ 1

0

s2i,tdi

=

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ

2

σ2
s ,

which is increasing in θ̃t,t−J . Next consider the cross-sectional variance of output:∫ 1

0

(
ŷθi,t − Ŷ θ

t

)2
di

=

∫ 1

0

((
At + ai,t + ĥθ

i,t−1

)
−
(
At + Ĥθ

t−1

))2
di

=

∫ 1

0

(
si,t−1 + ua,i,t + εθs,t−1si,t−1

)2
di

=

1 +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ

2

σ2
s + σ2

a,t−1

which is increasing in θ̃t,t−J and σ2
a,t−1. It follows that the cross-sectional variance of con-

sumption:

∫ 1

0

(
ĉθi,t − Ĉθ

t

)2
di

1 +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ

2

σ2
s + σ2

a,t−1

is increasing in θ̃t,t−J and σ2
a,t−1 as well.

F.6 Proof of Proposition 9

First, we solve for the log-linearized RE decision rules under the tax policy. The optimality

conditions are

ηĥi,t = Ei,t [−γĉi,t+1 + At+1 + (1− τ)ai,t+1]

ŷi,t = ẑi,t + ĥi,t−1

ĉi,t + τai,t = ŷi,t.

53



Substitute the constraints into labor supply conditions:

ηĥi,t = Ei,t [−γĉi,t+1 + At+1 + (1− τ)ai,t+1]

= Ei,t

[
−γ
(
At+1 + (1− τ)ai,t+1 + ĥi,t

)
+ At+1 + (1− τ)ai,t+1

]
ĥi,t =

1− γ

η + γ
Ei,t [Ai,t+1] +

1− γ

η + γ
(1− τ)Ei,t [ai,t+1]

=
1− γ

η + γ

[
ρAAt + (1− τ)ãi,t+1|t

]
=

1− γ

η + γ
[ρAAt + (1− τ)si,t]

Equilibrium output and consumption follow immediately as

ŷi,t = ẑi,t + ĥi,t−1 = At + ai,t + ĥi,t−1, (43)

ĉi,t = ŷi,t − τai,t = At + (1− τ)ai,t + ĥi,t−1. (44)

Next, consider the log-linearized SDE decision rules under the tax policy. To characterize

dynamics we use a log-linear approximation of decision rules around the steady state. The

optimality conditions are

ηĥθ
i,t = Eθ

i,t

[
−γĉRE

i,t+1 + At+1 + (1− τ)ai,t+1

]
,

ŷθi,t = ẑi,t + ĥθ
i,t−1,

ĉθi,t + τai,t = ŷθi,t.

Substitute the constraints into the labor supply condition:

ηĥθ
i,t = (1 + θ̃t,t−J)Ei,t

[
−γĉRE

i,t+1 +At+1 + (1− τ)ai,t+1

]
− θ̃t,t−JEi,t−J

[
−γĉRE

i,t+1 +At+1 + (1− τ)ai,t+1

]
ηĥθ

i,t = (1 + θ̃t,t−J)Ei,t

[
−γ
(
At+1 + (1− τ)ai,t+1 + ĥθ

i,t

)
+At+1 + (1− τ)ai,t+1

]
− θ̃t,t−JEi,t−J

[
−γ
(
At+1 + (1− τ)ai,t+1 + ĥRE

i,t

)
+At+1 + (1− τ)ai,t+1

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ)Ei,t [At+1 + (1− τ)ai,t+1]

− θ̃t,t−J (1− γ)Ei,t−J [At+1 + (1− τ)ai,t+1] + θ̃t,t−JγEi,t−J

[
ĥRE
i,t

]
[
η +

(
1 + θ̃t,t−J

)
γ
]
ĥθ
i,t = (1 + θ̃t,t−J) (1− γ) [ρAAt + (1− τ)si,t]

− θ̃t,t−J (1− γ) ρJ+1
A At−J + θ̃t,t−Jγερ

J+1
A At−J

ĥθ
i,t =

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
ρAAt +

(1 + θ̃t,t−J) (1− γ)

η +
(
1 + θ̃t,t−J

)
γ
(1− τ)si,t

− θ̃t,t−Jη

η +
(
1 + θ̃t,t−J

)
γ

[
1− γ

η + γ

]
ρJ+1
A At−J ,
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where the effective diagnosticity parameter θ̃t,t−J is given by (32).

Consider Rt+1|t,t−J :

Rt+1|t,t−J =
Vi,t

(
−γĉRE

i,t+1 + At+1 + (1− τ)ai,t+1

)
Vi,t−J

(
−γĉRE

i,t+1 + At+1 + (1− τ)ai,t+1

)
=

Vi,t

(
−γ
(
At+1 + (1− τ)ai,t+1 + ĥθ

i,t

)
+ At+1 + (1− τ)ai,t+1

)
Vi,t−J

(
−γ
(
At+1 + (1− τ)ai,t+1 + ĥRE

i,t

)
+ At+1 + (1− τ)ai,t+1

)
=

Vi,t

(
(1− γ) (At+1 + (1− τ)ai,t+1)− γĥθ

i,t

)
Vi,t−J

(
(1− γ) (At+1 + (1− τ)ai,t+1)− γĥRE

i,t

)
where the numerator is

Vi,t

(
(1− γ) [ρAAt + uA,t+1 + (1− τ)si,t + (1− τ)ua,i,t+1]− γĥθ

i,t

)
= (1− γ)

2 (
σ2
A + (1− τ)2σ2

a,t

)
,

which is increasing in σ2
a,t but also a change in σ2

a,t have a smaller impact when the pro-

gressivity τ is higher. Thus a higher τ is associated with a smaller increase in Rt+1|t,t−J and

θ̃t,t−J .
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