ISSN (Print) 0473-453X
Discussion Paper No. 1249 ISSN (Online) 2435-0982

SMOOTH DIAGNOSTIC EXPECTATIONS

Francesco Bianchi
Cosmin llut
Hikaru Saijo

July 2024

The Institute of Social and Economic Research
Osaka University
6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan



Smooth Diagnostic Expectations®

Francesco Bianchi Cosmin Ilut Hikaru Saijo
Johns Hopkins University Duke University UC Santa Cruz
CEPR and NBER NBER

July 4, 2024

Abstract

We show that in the formalization of representativeness (Kahneman and Tversky
(1972)) developed by Gennaioli and Shleifer (2010), overreaction and confidence are
affected by uncertainty, as a news effect interacts with an uncertainty effect. In the
time series domain, this interaction emerges in a smooth version of Diagnostic Ex-
pectations (DE). Under smooth diagnosticity, agents overreact to new information.
Since new information typically changes not just the conditional mean, but also the
conditional uncertainty, changes in uncertainty surrounding current and past beliefs
affect the severity of the DE distortion and confidence. Smooth DE implies a joint
and parsimonious micro-foundation for key properties of survey data: (1) overreaction
of conditional mean to news, (2) stronger overreaction for weaker signals and longer
forecast horizons, and (3) overconfidence in subjective uncertainty. An analytical RBC
model featuring Smooth DE accounts for overreaction and overconfidence in surveys, as
well as three salient properties of the business cycle: (1) asymmetry, (2) countercyclical

micro volatility, and (3) countercyclical macro volatility.
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1 Introduction

There has been a growing interest in psychological foundations that enrich models of belief
formation in economics. A prominent example is the widely-documented “representative
heuristic” of Kahneman and Tversky (1972), which serves as the underpinning of a recent
and expanding literature on the paradigm of Diagnostic Expectations (DE). According to
this heuristic, when new information arrives, as measured with respect to a reference dis-
tribution based on past data, memory selectively recalls more vividly past events that are
more associated with, or representative of, that current news. Models of DE formalize the
details on how memory retrieval distorts the subjective probability of uncertain events away
from its objective, “kernel of truth,” frequency (see Bordalo et al. (2022) for an overview).

One immediate manifestation of the kernel of truth logic is that when the new information
completely eliminates uncertainty over the variable to be forecasted, there is objectively no
room for memory to distort conditional judgements (Gennaioli and Shleifer (2010)). While
in existing DE models this logic holds in its extreme version of no conditional uncertainty,
the literature has so far largely ignored the fact that representativeness, as formalized in
Gennaioli and Shleifer (2010) and Bordalo et al. (2016), also features a deeper and pervasive
relation between diagnosticity and uncertainty. Specifically, representativeness implies that
the distance between the subjective distorted distribution and its objective counterpart de-
pends on both the amount of information received and the precision of the revised objective
distribution. Uncertainty affects the strength of the representativeness distortion and leads
to variation in confidence, accommodating both cases of under- and overconfidence.

After illustrating the connection between representativeness and uncertainty in a simple,
static, two-state example, we argue that in the time series domain this connection man-
ifests itself as a “smoothed” version of Diagnostic Expectations, in which the severity of
the DE distortion and confidence depend on conditional uncertainty. As a result, Smooth
Diagnostic Expectations (Smooth DE) end up connecting two vastly popular branches of
Economics that have largely proceeded in parallel: the Diagnostic Expectations literature
and the Uncertainty literature (Bloom (2009, 2014), Bloom et al. (2018), Baker et al. (2024)).

Representativeness and Uncertainty. We first study the relation between uncertainty
and representiveness in a simple static two-state categorical distribution. We build on the
classic example of inferring the probability of someone having red hair. In this example,
representativeness implies that if the person of interest is revealed to be Irish, agents overreact
and tend to overstate the probability that the person has red hair. This is because red hair
is more representative of the Irish population with respect to the world population. We

use this example to emphasize that the strength of the overreaction is not monotonic, but



rather hump-shaped. This is because two channels are at work: A news channel, measured
by the distance between the current and reference distribution, and an uncertainty channel,
measured by the entropy of the current distribution.

Suppose that there are only two categories - red and non-red hair color - and that,
before any information is revealed about the particular person, the hair color red has a
low probability. As information is revealed that makes the red hair more likely (say, Irish
nationality), overreaction initially increases with the conditional probability assigned to the
color red. This is because initially the news effect and the uncertainty effect work in the same
direction: the color red is more likely and there is more uncertainty on the hair color, as an
ex-ante low-probability hair color became more likely, but not certain. However, if the new
information makes the objective probability cross the point of maximum uncertainty (50:50
in a two-state categorical distribution), the uncertainty effect starts working in the opposite
direction. There is now progressively less uncertainty on the hair color and the distance
between subjective and objective distributions declines. In the limit, when the probability
of red hair goes to 1, uncertainty is fully removed, the uncertainty channel dominates the
news channel, and the subjective and objective distribution coincide.

This interaction between the two channels also generate variation in the level of confi-
dence. For small increases in the probability of the color red, the less likely hair color, the
distorted distribution features more uncertainty than the objective distribution because, by
overreacting, agents bring the perceived distorted probability closer to the point of maxi-
mum uncertainty (50:50). Eventually, overconfidence emerges, as agents’ overreaction leads
to attribute more than .5 probability to the color red even if the objective distribution has
not crossed the point of maximum uncertainty. As the probability of the hair color red

approaches 1, the severity of overreaction starts declining and eventually goes to zero.

Smooth Diagnostic Expectations. The natural adaptation of representativeness to the
time series domain involves a “smoothed” version of Diagnostic expectations. Under Smooth
DE the severity of the DE distortion and confidence depend on conditional uncertainty, in a
way similar to what we documented for categorical distributions. Agents overreact to new
information, defined as the difference between the current information set and a previous
information set. Since new information typically changes not just the conditional mean, but
also the conditional uncertainty, changes in uncertainty surrounding current and past beliefs
affect the extent of the DE distortion.

Smooth DE stems from a minimal, but conceptually important change to the baseline DE
paradigm developed by Bordalo et al. (2018) (BGS) and it aligns well with the original “rep-
resentative heuristic” of Kahneman and Tversky (1972). In the BGS formulation of DE, the

reference distribution is centered on the conditional mean under the true density formed at



some given past time, but shares the same uncertainty as the true distribution conditional on
current information. Instead, since we condition exclusively on the past information set, the
reference distribution reflects the level of uncertainty at that past time in which expectations
were formed. This is in line with the original formalization of representativeness developed
by Gennaioli and Shleifer (2010) and Bordalo et al. (2016) for categorical distributions, in
which information sets between current and reference distributions are kept distinct.

Smooth DE is thus built on the key informational difference between conditional (or
posterior) and unconditional (prior) distribution information. In this sense, our approach
relates to recent work in Bordalo et al. (2020), which features a sampling by similarity
framework that under conditional probability assessments yields a result reminiscent of DE.
In a similar spirit to Smooth DE, in that setting it is important to keep track of the entire
prior distribution, which plays a major role in memory interference. In fact, a version of
what we label Smooth DE appears in chapter 5 of Gennaioli and Shleifer (2018). However,
despite this early appearance, the growing DE literature has focused on the simplified version
proposed in BGS. In this paper, we argue that representativeness features a fundamental
connection between memory recall and uncertainty. As a result, Smooth DE has distinctive
properties that render it an important point of contact with the uncertainty literature and
help to make sense of several stylized facts.

When the current and reference distributions are Normal, the baseline BGS formulation
delivers a distorted distribution that is also Normal, but in which only the mean is affected by
DE. In comparison, under Smooth DE we uncover two key novel properties of the distorted
distribution. First, the severity of the Smooth DE distortion decreases as the current level
of uncertainty decreases compared to past uncertainty. Put differently, we obtain a smooth
version of the logic expressed by Gennaioli and Shleifer (2010), as now an agent is less prone
to overreact to the new information the more precise the current information is with respect
to past information. In the limit, as uncertainty is fully resolved by the new information,
the distortion vanishes, as in the baseline DE. However, with Smooth DE, the extent of the
distortion varies smoothly as current uncertainty increases with respect to past uncertainty,
while the baseline DE features a discontinuity once current uncertainty goes to zero.

Second, Smooth DE delivers a disconnect between the objective and subjective level of
uncertainty. This is because under Smooth DE, not only the mean, but also the variance of
the DE distribution is distorted. When agents experience a reduction in uncertainty with
respect to the reference distribution, agents over-state the precision of their forecasts, leading
to overconfidence. In other words, in that case the DE distribution features a variance lower
than under Rational Expectations (RE). Given that typically events close in the future are

easier to predict than events far into the future, agents’ beliefs will typically feature such



overconfidence. However, the Smooth DE paradigm can also accommodate underconfidence

following an increase in uncertainty, like in response to an uncertainty shock (Bloom (2009)).

A parsimonious micro-foundation for survey evidence. As the traditional DE, Smooth
DE is characterized by a primitive stochastic environment and two parameters controlling
(i) the severity of the distortion, # > 0, and (ii) the lag of the reference distribution, J > 1.
Thus, Smooth DE makes use of no additional degree of freedom. Instead, by allowing the
reference distribution to be based only on the information set available at some given past
time, the kernel of truth logic endogenously generates predictions for the effective distortion.
Under Smooth DE, the primitive parameter # > 0 measures the severity of the DE distor-
tion for a given level of relative uncertainty, while the effective severity changes with the
relative uncertainty. These disciplined predictions allow Smooth DE to offer a parsimonious
micro-foundation for a wide range of stylized facts.

The novel property that the effective overreaction to news is stronger when relative uncer-
tainty is higher helps to account for the stylized survey fact that overreaction increases with
the horizon of the survey forecast (see for example Bordalo et al. (2019), d’Arienzo (2020),
Bordalo et al. (2020), Augenblick et al. (2021), and Bordalo et al. (2023)). For standard
stationary processes the same piece of information is less informative about horizons further
in the future. Critically, under Smooth DE this relatively smaller reduction in conditional
uncertainty leads to a relatively stronger overreaction to news for longer horizons forecasts,
consistent with the stylized findings.

The property that Smooth DE implies a disconnect between subjective and measured
uncertainty makes the proposed framework relevant for a separate literature on overconfi-
dence. Recent work documents that in survey data firms (i) overreact to news and (ii) are
overconfident in their subjective forecasts (see, Barrero (2022), Born et al. (2022), and the
reviews in Altig et al. (2020) and Born et al. (2022)). While the baseline DE model can
account for overreaction, it is silent on overconfidence. Smooth DE can instead account for
both these seemingly separate properties since it distorts both the mean and the variance of
agents’ expectations in a way to typically generate both overreaction and overconfidence.

More broadly, the overreaction and overconfidence properties have been typically stud-
ied as two distinct behavioral departures from full rationality (see Barberis (2018) for an
overview). While overreaction has been typically the focus on the standard DE literature,
a separate literature (including for example De Bondt and Thaler (1995) and Daniel et al.
(1998, 2001)) is motivated by extensive psychological evidence for overconfidence and argues
that models based on this behavioral property are promising in accounting for asset market
puzzles. Our results indicate that Smooth DE can offer a joint micro-foundation, based

on the representativeness heuristic, of these two-widely documented and studied departures



from standard Bayesian updating.

Business cycle implications. We leverage our theoretical insights to study a parsimonious
business cycle model with time-varying uncertainty to illustrate how state-dependent over-
reaction from Smooth DE generate important cyclical implications. We consider an island
economy subject to economy-wide and island-specific TFP shocks. Following Bloom et al.
(2018), we assume that the island-specific TFP shocks are subject to time-varying volatil-
ity that is negatively correlated with economy-wide TFP innovations. We show that this
parsimonious model can account for Barrero (2022)’s survey evidence on overreaction and
overconfidence, as well as three key empirical properties of the business cycle: (1) asymmetry
(recessions are deeper than expansions), (2) countercyclical micro volatility (cross-sectional
variances of microeconomic variables rise in recessions), and (3) countercyclical macro volatil-
ity (time-series variances of macroeconomic variables rise in recessions).!

First, consider the asymmetry property. A negative economy-wide TFP shock generates
higher uncertainty about the island-specific TFP shocks. Hence, agents overreact to the
economy-wide TFP shock more than usual, leading to a sharper fall in hours, consump-
tion, and output. In contrast, a positive TFP shock reduces agents’ uncertainty, and the
rise in economic activity is mild. Second, consider countercyclical micro volatility. In re-
cessions, agents face higher uncertainty, so they overreact to the island-specific TFP and
as a result, the cross-sectional variances of island-level hours, output, and consumption
increase. Conversely, during expansions, agents’ overreactions are milder, and hence the
cross-sectional dispersion decreases. Third, consider countercyclical macro volatility. The
state-dependent overreaction implies that in recessions, economic activity responds strongly
to an economy-wide shock to TFP, while in expansions the responses are more muted. As
a result, the aggregate volatility rises in recessions even when there is no change in the
volatility of economy-wide shocks. These mechanisms highlight that the micro-level uncer-
tainty and macroeconomic volatility are tightly linked through the agent’s state-dependent
overreaction. As a result, a novel policy implication emerges: a redistributive policy that re-
duces idiosyncratic uncertainty could be beneficial for macroeconomic stabilization because

it dampens this state-dependent overreaction.

!These properties have been extensively documented in the literature. For instance, Neftci (1984), Hamil-
ton (1989), Sichel (1993), McKay and Reis (2008), and Morley and Piger (2012) show macroeconomic asym-
metries using various econometric approaches. Bloom (2009), Ferndndez-Villaverde et al. (2011), Ilut et al.
(2018), Jurado et al. (2015), Basu and Bundick (2017), and Bloom et al. (2018) document that volatility or
uncertainty rise in recessions at the micro and macro levels.



2 Representativeness and Uncertainty

The building block for our Smooth DE model is the concept of representativeness. Here
we directly use the definition of representativeness introduced in recent work on selective
memory by Gennaioli and Shleifer (2010), Bordalo et al. (2016), Bordalo et al. (2020). This
definition, detailed below, captures formally Tversky and Kahneman (1975) own definition
of representativeness: “an attribute is representative of a class if it is very diagnostic; that
is, the relative frequency of this attribute is much higher in that class than in a relevant
reference class” (p. 296).

To understand how we later build on this definition in a time series dimension, we first
consider some simple examples, within a very standard probability environment that is static
and discrete. These examples illustrate how representativeness implies that overreaction to
the relative frequency is shaped by the entire distribution of attributes, both in the class of
interest and the relevant reference class, consistently with the above definition by Tversky
and Kahneman (1975). We highlight how the amount of uncertainty characterizing these
distributions is of particular importance in shaping the effective manifestation of represen-
tativeness. This focus on the role of uncertainty will allow us to draw an explicit connection

between the building block of representativeness and Smooth DE as developed in Section 3.

Representativeness. Consider a simple environment where (€2, P) is a discrete probability
space, with two random variables defined on this space: X, the trait that the agent seeks to
assess, and D, the available data. The agent looks to form the conditional probability of a
given trait ¥ € X, given a particular realized data d € D. A Bayesian agent would simply
use the conditional probability P(Z|d) = P(Z N d)/P(d). The environment here is static,
without a sense of repeated accumulation of information.

In assessing conditional probabilities, the agent subject to the representativeness heuristic
distorts the Bayesian belief. Here we follow the formalization of representativeness in Gen-
naioli and Shleifer (2010), Bordalo et al. (2016), Bordalo et al. (2020). This work explains
in detail how representativeness can be intuitively understood as the tendency to overweight
representative traits, arising due to limited memory and the fact that representative traits
are easier to recall. Formally, the representativeness of a given trait Z conditional on a par-
ticular data d compared to another conditioning data realization, d"*/ (referred to as the

reference data) is defined as the relative frequency of that trait across the two data groups:

P(zl|d)

rep(z|d,d") = PGl (1)

The conditional belief under representativeness is modelled as a weight that distorts the



underlying absolute frequency of ¥ conditional on the data d
PY(z|d,d"*") = P(Z|d)weight(z|d,d"). (2)

The weight reflects the effect of the relative frequency in equation (1), and is given by

1

. =~ refy — -~ ref 6
weight(z|d,d"™") [rep(x\d,d )] —Z(d,dmf)' (3)

where Z(d, d"®/) is a constant of integration, ensuring that the distorted probability integrates

to one:
Z(d,d) =y P(@ld) [rep(@ld, d')))” 4)

zeX

In this formal representation representativeness, the parameter 8 > 0 measures the extent
to which the relative frequency across two conditioning data groups affects judgements.
When 6 = 0, the agent’s memory retrieval is perfect and beliefs collapse to the standard
frictionless model. When 6 > 0, memory is limited and the agent’s judgments are shaped by

representativeness.

Illustrations. Our simple illustrations below let €2 be the universe of people, X be different
hair colors, and d € D take on specific Nationalities values, with one of them being a reference
drel = {World}.> We evaluate the effects of representativeness of the event Z conditional on

a specific Nationality group, compared to the reference group d’/.

2.1 Two-state distribution

Consider the case where X assume only two values, “red” or “non-red/other”, which we
denote as ¥ = R and ¥ = NR, respectively. The agent observes the nationality of an
unknown individual and assess the probability of the hair color red based on P%(Z =
R|Nationality, World) as defined in equation (2). In particular, the agent twists the under-
lying probability P(z = R|Nationality) by the weight weight (z = R|Nationality, World)
defined by equations (3) and (4).

We are interested in how the distorted probability distribution and its distance (appropri-
ately defined) from the actual conditional distribution depend on the underlying probability

distributions. We emphasize the following three qualitative properties.

2The particular numbers we will use are simply chosen to illustrate a series of key features of representa-
tiveness and are not necessarily reflecting the actual incidence of the hair colors in the world population. In
fact, we will implicitly assume that there are nationalities for which the probability of the hair color red is 1.



Figure 1: News and uncertainty in a two-states discrete distribution
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Notes: The figure displays how, as we vary the actual P(Z = R|Nationality), the following objects change:
(a.1) the distorted probability of red hair, (a.2) the distorting weight on the red hair probability, (b.1) the
news component, measured using the KL defined in equation (5), (b.2) the uncertainty component,
measured using the normalized entropy of the actual distribution in equation (6), (c.1) the overall
overreaction, measured by the KL divergence of the distorted probability distribution from the actual one,
defined in equation (7), and (c.2) the entropy of the distorted distribution relative to the entropy of the
actual distribution. We fix the reference probability of a red hair color at P(z = R|World)=0.2.

1. Overreaction. The distorted probability amplifies the relative change in frequency.
This first and most immediate characteristic of representativeness can be immediately seen
by equation (2). We show it graphically in Figure 1 (a.l), where we plot the distorted
P%@ = R|Nationality, World) for different values of P(Z = R|Nationality) and diagnostic-
ity parameter values # = 1,2, as well as # = 0 corresponding to no memory distortion. The
frequency under the reference data is P(z = R|World) = 0.2 marked by a vertical red dotted
line. When the frequency of red hair for a given Nationality is higher (lower) than under the
reference data, the distorted probability is higher (lower) than the actual frequency for that

Nationality. The magnitude of the difference is increasing in 6.

2. News and uncertainty. Representativeness is characterized by an effective degree
of overreaction that is a function of the entire shape of the distributions for the two data

groups that get compared. This property has typically been outside the main interest of



recent applied work on representativeness and diagnostic expectations. However, it will play
an important role in our development of Smooth DE.

We separate two channels that create this relation between overreaction and the amount
of information present in the conditional distributions that get compared. On the one hand,
equation (3) features a news effect. When the knowledge of the Nationality implies a larger
revision in the frequency of red hair, the representativeness rep(z = R|Nationality, World)
changes by more. Holding fixed the constant of integration Z(Nationality, World) in equa-
tion (3), the distorting weight is then larger in absolute terms, and therefore there is more
overreaction to the news. On the other hand, there is an uncertainty effect: the more the
knowledge of a given Nationality decreases the uncertainty over the hair color, the less room
there is for overreaction to effectively manifest itself. This intuitive force mathematically
appears in equation (3) through the constant of integration of equation (4). The news and
uncertainty effects are jointly determined by the shapes of distributions getting compared
through representativeness. We dissect these effects through a series of plots in Figure 1.

First, Panel (a.1) already shows that the difference between the distorted and underlying
probability is hump-shaped. This difference is largest for intermediate values between the
prior of 0.2 and the lower and upper bounds (0 and 1). By equation (2) the reason for the
hump shape is the behavior of the distorting weight (¥ = R|Nationality, World), which gets
plotted in Figure 1 (a.2). Indeed, the weight is non-monotonic in the actual frequency: the
weight is increasing from an underlying P(z = R|Nationality) = 0 to some intermediate
value between the reference frequency of 0.2 and the upper bound of 1 and then starts
decreasing. Formally, this is because the constant of integration in equation (4) becomes
larger as the frequency P(Z = R|Nationality) approaches 1. Intuitively, as the actual
frequency for a given Nationality becomes more certain towards one hair color, the room for
distortion becomes smaller as the total probability has to sum to 1.

Second, we dissect the news and uncertainty channels by using information-theoretic
measures. In Panel (b.1), we measure the size of the news component. This is captured
by the change in the distribution induced by conditioning on a Nationality as opposed to
conditioning on World, as measured by the Kullback-Leibler (KL) divergence of the two

distributions:

P(x = i|Nationalit
K L(Nationality||World) = Z P(Z = i|Nationality) In ( (fj (;51 ZWZ; d; y)) (5)
The KL divergence is U-shaped, with KL = 0 when the knowing the Nationality does not
imply any revision in the distribution.

To measure uncertainty for the objective distribution of hair colors for a given Nationality,



Panel (b.2) in Figure 1 plots the normalized entropy

2 P(@ = i[Nationality) In P(Z = i|Nationality) (6)
In(2) ’

Q(P(Nationality)) =

where the denominator ensures that the normalized entropy is between 0 and 1. This entropy
measure of uncertainty is particularly suitable to capture uncertainty in this environment of
categorical random variables. The entropy measure shows an inverted U-shape and peaks
when P(Z = R|Nationality) = 0.5, the point of maximum uncertainty in this two-state case.

To measure the extent to which overreaction distorts the perceived frequency with re-
spect to the objective frequency, Panel (c.1) reports the KL divergence between the two

distributions

P@ o, N . .
KL(P9||P) — ZPG(E — i|Nationality, World) In < (x = i|Nationality, World)) )

P(z = i|Nationality)

We can now see how the degree of overreaction shows two humps: a smaller one that peaks
at the intermediate value between 0 and reference frequency P(Z = R|World) = 0.2 and a
larger one that peaks at the intermediate value between that reference of 0.2 and the upper
bound of 1. The two humps are the result of the interaction between news and uncertainty
effects, which affect overreaction, but display opposing patterns (U- and inverted U-shape).
The particular sizes of the two humps are different because in panels (b.1) and (b.2) the

trough of the news component and the peak of the uncertainty effect do not coincide.

3. Over/under confidence. The overreaction to information also affects the amount
of uncertainty perceived by the agent compared to the actual frequency. Panel (c.2) reports
the entropy Q(P?(Nationality)) of the distorted distribution normalized with respect to
the entropy Q(P(Nationality)) of the actual frequency. A relative entropy smaller than
0 implies overconfidence; the agent is too certain about the hair color compared to the
objective distribution. The interaction between the news effect and uncertainty effect leads
to an interesting pattern.

First, there is no over- or underconfidence if there is no news (i.e. the distributions
conditional on Nationality or World coincide) or the news completely removes uncertainty
(P(z = R|Nationality) = {0,1}). Second, when the frequency of red hair is smaller for a
given Nationality than for the World, news and uncertainty effects work in the same direction,
and only over-confidence is possible. Third, when instead the relative frequency is larger, the
two effects can work in opposite directions. On the one hand, uncertainty keeps increasing

until the frequency is .5, at which point uncertainty starts decreasing again. As a result, for
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small increases in the relative frequency of red hair, over-reaction to that relative frequency
can lead to underconfidence. Eventually, the news effects starts dominating, leading to
overconfidence. However, the strength of overconfidence declines as the news starts to fully
remove uncertainty. The degree of overconfidence is more severe for an actual frequency on
the right tail (P(Z = R|Nationality) > 0.8) than on the left tail (P(Z = R|Nationality) <
0.2). This is because the news effect is larger for a frequency on the right of a small probability

event such as the one considered in this example.

2.2 Three-state distribution

Consider now an extension of the event space to three hair colors - “red,” “blond,” and
“dark,” denoted by R, B, and D, respectively. We consider a symmetric reference frequency
for R and B so that conditional on World, their frequencies are equal to 0.2, while for D it
is equal to 0.6. This three-state example is instructive because the actual frequencies of R
and B for a given Nationality jointly determine the news and uncertainty component, thus
underscoring the importance of the shape of the joint probability distribution in affecting
the degree of overreaction.

In Figure 2, we use contour plots to examine how news and uncertainty affect overreaction
as we vary P(Z = R|Nationality) and P(z = B|Nationality) when 6 = 2. To ease inter-
pretation, we mark the coordinates corresponding to the reference frequencies with white
pluses, and the coordinates representing the equal probabilities of 1/3 for all three outcomes

with red diamonds. We can recover the three properties discussed for the two-state example:

1. Overreaction. Panels (a.1) and (a.2) report the distorted probability and the weight
associated with the red hair color. As in the two-states example, the distorted probabilities
overreact to the relative frequency of red hair for the given Nationality compared to the
World. The distorting weight of the red probability peaks when P(Z = R|Nationality) takes
an intermediate value between 0.2 and 1 and P(Z = B|Nationality) takes an intermediate
value between 0 and 0.2. Similarly, Panel (b.1) and (b.2) report the distorting probability

and the weight associated with a blond hair color.

2. News and Uncertainty. The three state example is particularly useful here to see
how the shape of the distributions matter. Panel (c.1) displays the news component, mea-
sured again as the K L(Nationality||World) of equation (5). The news component increases
as the two distributions differ and peaks when either of the hair color outcomes reaches
certainty (P(Z = R|Nationality) = 1 or P(x = B|Nationality) = 1). The uncertainty
component, (Nationality), reported in Panel (c.2) peaks when the distribution for a given

Nationality assigns equal probabilities for all three outcomes.
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Figure 2: News and uncertainty in a three-states discrete distribution
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Notes: The figure displays how, as we vary the probability of red and blond hair colors for a given
Nationality, the following objects change: (a.l) the distorted probability of red hair, (a.2) the distorting
weight on the red hair probability, (b.1) the distorted probability of blond hair, (b.2) the distorting weight
on the blond hair probability, (c.1) the news component, measured using the KL defined in equation (5),
(c.2) the uncertainty component, measured using the normalized entropy of the actual distribution in
equation (6), (d.1) the overall overreaction, measured using the KL divergence of the distorted probability
distribution from the actual one, defined in equation (7), and (d.2) the entropy of the distorted probability
distribution relative to the entropy of the actual distribution. We mark the coordinates corresponding to

the reference probabilities with white pluses, and those representing equal probabilities for all three

outcomes with red diamonds.

Panel (d.1) reports the K L(P?||P) divergence of equation (7). The overreaction displays
twin peaks resembling the double humps in the two-states example. However, in the current
three-state example how the actual frequencies are split matters for the overreaction. Indeed,
the overreaction is mild as we increase both the actual probabilities of red and blond hair
simultaneously in equal proportions. This is because both hair colors are becoming more

representative for the given Nationality compared to the World.

3. Over/under confidence. Finally, Panel (d.2) reports the entropy Q(P?(Nationality))
with respect to the underlying entropy Q(P(Nationality)). The former is smaller in most

regions, indicating overconfidence, except for the neighborhood of the reference frequency
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and the coordinate representing equal probabilities for all three outcomes. Overconfidence
is most severe around the three corners of the triangle, when the actual frequency puts most
probability weights on one hair color. Intuitively, as one specific hair color becomes more
representative, the agent overestimates the probability of that hair color and becomes too
certain. As before, overconfidence eventually disappears as uncertainty is fully removed.

To summarize, both the two-and three-states example underscore a nuanced but tight

connection between news/uncertainty effects and overreaction/overconfidence.

3 Smooth Diagnostic Expectations

In this section, we show that the key principles uncovered for categorical distributions natu-
rally find their counterparts under Smooth DE, which allows for continuous distributions and
accumulation of information. In particular, in order to model the representativeness heuris-
tic into time-series, we mirror the logic of equation (1), and interpret groups as different

information sets that become available over time.

3.1 Smooth DE density: representativeness and information sets

We introduce the definition of representativeness and information sets with some generality.
Consider the filtered probability space (€2, F, (Ft)i>0, P) where (F;)¢>0 is an increasing family
of sub-o-algebras of F, with F; C F;4;1. Here the filtration (F;):>o represents the evolution of
information over time. A stochastic process (X;)u>0y on (2, F, P) is adapted to the filtration
(Fi)e>o if, for each t > 0, X, is Fi-measurable. Let the conditional density function of Xy 4,
for some horizon h > 1, given the filtration F;, be denoted by f(ziyn|F:). This function
describes the probability density of X;,;, given all the information available up to time ¢.
In our approach, the counterpart of equation (1) is obtained by defining the reference
group as a past available information set. As information flows and is accumulated, repre-

sentativeness is then defined as follows:

Definition 1 (Representativeness and information sets) Given the current infor-
mation set F; and a reference information set F;_;, formed J > 1 periods ago, the repre-

sentativeness of a random event Tyyy, for some future horizon h > 1 is defined as

I @einl Fr)

[ @qn|Fie) (8)

rep (/x\t+h|f;t7 ft—J) =

Mirroring the language of Tversky and Kahneman (1975) in Section 2, in the time-series

domain an event is representative for the current information set if the relative frequency of
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this event is higher conditional on the current information set than conditional on some past
reference information set.?

Based on this definition of the representativeness of an event, we then follow the same
construction of the distorted belief as introduced early in equation (2) in Section 2. In
particular, we build the following distorted conditional density, which we refer to as Smooth

Diagnostic Fxpectations, or in a more abbreviated form as Smooth DE.

Definition 2 (Smooth Diagnostic Expectations). In the time series domain, the con-
ditional density f% (T, in|Fy, Fi_y), distorted by representativeness as defined in Definition 1,
s constructed as follows

o 1

fe (ft+h|-7'—t,]'—t—J) =f (/x\t+h|/rt) [Tep (/ff\t+h|]'—ta-7'—zf—J)] Z (9)

where Z is a constant of integration and the parameter @ > 0 measures the distortion severity.

Our formalization of Smooth DE strongly connects to that of Diagnostic Expectations
(DE) introduced in Bordalo et al. (2018) (BGS) to incorporate representativeness in time-
series. As we detail further below, the only, but consequential difference is in the construction
of the reference group in the definition of representativeness. Given such a definition, the

functional form for the distorted density in equation (9) is identical to DE.

3.2 Smooth DE with Normal densities

In the rest of this paper we follow BGS and focus on normal densities. As we show below, this
focus leads to significant gains in tractability and in the range of possible applications. This
is because when the true conditional density is Normal, expression (9) delivers a distorted
distribution that is also Normal. However, it is important to emphasize that while this a
natural point of departure, Smooth DE can easily accommodate alternative distributions, as
illustrated in Section 2.

With Normal densities, two moments, the conditional mean 4, and conditional vari-

ance o2 || Summarize the whole conditioning information:

f @il Fs) = N (Terns tievngs: 0pipys) . for s <t
It follows that given Definition 1, the representativeness of the event 7, is evaluated as

= 2
N(Ztsn; fegn)e, Ut+h|t)

= . 2
N(ZTiin; Ht4-hlt—J, Ut+h|t,J)

rep (Tepn|Fi, Feog) = , (10)

3The approach is easily extended when the available information is incomplete or noisy - see Section E.
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capturing its relative frequency under the current information set F;, compared to some past
information set F;_;, with J > 1.
Under the representativeness characterizing normal densities in equation (10), the Smooth

DE density in equation (9) has a closed-form solution given by Proposition 1 below.

Proposition 1 Denote the ratio of variances for the current and reference groups as

Rishiti—g = Ofinpe/ Otinji—s (11)

If Rishjeg—g < (1+0) /0, the Smooth DE density 10 (Zein| Fe, Fiey) in equation (9) is Normal

with conditional mean

Riinjt—g
1+40 (1 — Rivnjis—

E? (z140) = Hihje + 0 ) (ut+h|t — ut+h\t—J) (12)

and conditional variance

Ut2+h\t
1+0 (1 - Rt+h|t,th)

ACE (13)

Proof. See Appendix. =

The condition Ryppp—y < (1+0) /60 guarantees that the variance of the resulting dis-
torted Normal distribution is finite and positive. As the ratio of conditional variances be-
tween the current and reference distribution approaches this limiting value, the variance of
the Smooth DE distribution approaches infinity and the corresponding Normal distribution
approaches a degenerate, flat distribution. Thus, the condition requires that the current
uncertainty with respect to a future event (Ut2+h\t) is not too high with respect to the past
uncertainty about the same event (Jterhlt_ ;). The condition typically holds in stationary
environments with homoskedastic innovations in which events closer into the future are eas-
ier to predict than events far into the future. However, the condition also allows for the
possibility of an increase in uncertainty, for example as a result of heteroskedasticity, as long

as the increase is not too large with respect to the DE distortion.*

4In Appendix B we discuss an approach that deals with this threshold condition by implementing an
upper bound on the Smooth DE overreaction in the conditional mean. The approach guarantees that both
the mean and variance distortions remain finite and non-decreasing as the ratio R; ;- s goes to infinity.
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3.3 Three key properties

Smooth DE is characterized by three important properties. To understand them, it is helpful

to define the effective overreaction of the conditional mean to news in equation (12) as

0 Riynje—a
1+0 (1 — Rt+h|t,th)

(14)

Qt,t—J =

Corollary 1 Assume the presence of residual uncertainty with respect to a future event:
Uf+h|t > 0. Compared to the RE forecast (6 = 0), the conditional forecast under Smooth DE

(0 > 0), characterized in Proposition 1, exhibits

1. overreaction of the conditional mean to new information, since

Orig >0 (15)

2. an effective overreaction of the conditional mean to new information that is monoton-

ically increasing in the ratio Ry ;g between current and past uncertainty

80,4
——— >0 16
ORy e i—g (16)

3. overconfidence when Ry p—y < 1, since then by equation (13)
Vf (fL‘t+h) < O-t2+h\t (17)
or underconfidence when Ryipi—y > 1, since then by equation (13)

Vi (@e4n) > Ut2+h|t- (18)

On the one hand, these properties mirror the qualitative ones for the static, discrete
state example introduced and discussed in Section 2.1 - properties labelled there ’overre-
action’, 'mews and uncertainty’, and ’over/under confidence’, respectively. The formalism
and closed-form solution of Normal densities make these properties particularly transparent.
This connection is useful, indicating that Smooth DE maintains similar insights when ex-
tending the concept or representativeness and over-reaction to new information to dynamic
models. Additionally, the tractability of the Normal distribution in the time series domain
will allow us to connect these three properties to stylized survey facts in Section 4.

The first property in Corollary 1, overreaction of the conditional mean, is an immediate
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manifestation of the amplification of the relative frequency of an event that becomes more
likely. This property is shared with the standard DE approach, as we detail further below.
The other two properties are novel and reflect the tight connection between uncertainty and
the degree of over-reaction, in line with the analysis presented in Section 2.

In particular, like in the static, discrete case, the shapes of the current and reference
densities matter for the effective degree of overreaction. In the Normal case, the shape is
summarized only by the conditional uncertainty. Indeed, Smooth DE captures formally,
by equation (16), how the severity of the mean distortion increases as the ratio Ryt
of today’s uncertainty to past uncertainty increases. Smooth DE thus micro-founds in a
time-series domain an inverse smooth link between overreaction of conditional mean to news
and the precision of the news compared to the reference distribution. This is captured by

the ratio Ryyps—s: The more the new information reduces uncertainty o compared to

t2+h|t
o’ bt the lower is the role of memory in distorting probability judgements, and thus the
lower is the effective overreaction to news. Conversely, everything else equal, the larger
today’s uncertainty, the larger the Smooth DE distortion.

Similar to the basic intuition of the static, discrete case, Smooth DE also has impor-
tant implications for the level of subjective confidence that agents express with respect to
their expectations. As summarized in Corollary 1, if agents experience a reduction of uncer-
tainty with respect to the reference distribution, so that Ry p)1+—; < 1, Smooth DE implies
overconfidence, i.e. agents overstate the precision of their expectations. Under this scenario,
independently of the direction and size of the mean distortion, agents are overconfident about
the precision of their expectations. If agents do not experience a change in uncertainty, and
Ryippei—7 = 1, we do not observe a change in confidence with respect to at2+h| ;- Finally, if
agents experience an increase in uncertainty, so that R p;,—s > 1, they will be less confident

than under the true density.

3.4 Standard DE

The standard approach to apply representativeness in the time-series domain follows the

BGS formulation, in which the representativeness of 7;,, is given by the relative frequency

s 2
N(Zeqn; Hi+hlt; Ut+h|t)

BGS (~ =
re 7 f ‘F_ = ~
P (Zernl Fe, Fies) N(Zisn; ernle—, Ofppe)

(19)

In equation (19), the reference density uses the mean conditional on the information F;_;
available J periods ago, pi4p¢—s, but the uncertainty conditional on the current information
set Fi, oyyne- The reference density can thus be understood as a mixture of information sets,

meant to keep the conditional uncertainty the same for the current and reference density.
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Instead, under Smooth DE, the reference density captures entirely and solely the role of
new information, as the difference between information sets F; and F;_;. Under Normality,
comparing the definition of representativeness in equations (10) and (19), this difference
formally manifests itself in the variance of the reference distribution.

This BGS assumption delivers the following closed form standard DE density:

Proposition 2 (BGS implementation for DE). Consider the BGS definition of represen-
tativeness in equation (19). When ‘71:2+h|t > 0, the resulting DE density f° (Tiin|Fe, Fig)

defined by equation (9) has a Normal distribution with mean:

E} (2445) = ftsnie + 0 [Mt+h|t - Mt+h|t—J] . (20)

and variance:
VY (Ten) = 07 one- (21)

When at2+h|t =0, the DE conditional mean Ef (z14) collapses to iz

Proof. See Bordalo et al. (2018). =
Smooth DE and the standard BGS formulation of DE coincide in two cases. First, in the

limit of no conditional uncertainty. In particular, in both approaches, with # > 0, there is a

2
thlt

conditional likelihood of observing any other scenario for x;,, than the one the agent is now

distortion if and only if the conditional variance o > 0. Intuitively, when o7 npe = 0, the
fully informed on has become equal to zero. As noted by Gennaioli and Shleifer (2010), the
lack of such conditional (or “residual”) uncertainty leaves no room for memory to distort
conditional forecasts. According to Proposition 1, Smooth DE formally nests that limiting
possibility, which would amount to Ry yp;¢—; = 0 and thus effectively no distortion even if
6 > 0. In the BGS formulation that limit is instead imposed through a discontinuity at
Jf+h|t = 0: in the language developed in Bordalo et al. (2018), to compute E? (z,,) the
realization x;,, constitutes its infinitely representative state (see appendix in Bordalo et al.
(2018) on Corollary 1), and the result is E (z;+) = pty4n;. Under Smooth DE the effective
overreaction @,t, s in equation (14) smoothly goes to zero as current uncertainty goes to zero.

Second, and more importantly, away from the zero conditional uncertainty case, in the
original BGS formulation the ratio R; ;- is always 1 by assumption. Thus, DE coincides
with Smooth DE if and only if the stochastic process is characterized by information sets
F; and F,_; that happen to deliver 0t2+h‘t = crtih‘t_ ;,Vt and for any given J. Indeed, if
R pjti—g = 1 in Proposition 1 the effective overreaction 6;,_; = ¢, and formulas (12) and
(13) collapse to their respective counterparts in equations (20) and (21).

In Figure 3 we use a series of illustrative examples to show the different effects at work
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Figure 3: Smooth Diagnostic Expectations and standard Diagnostic Expectations densities
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Notes: The figure is obtained using the following parameter values for the mean and variances of the
current and reference distributions: ju,yp—; = [0,0,0,0,0], peqn)e = [1,0,0,1,1], 0t2+h|t_J =[1,1,1,1,1],
and at2+h|t_J =1[1,.5,1.3,.5,1.3].

in Corollary 1.° In the first row, we report the reference, current, DE, and Smooth DE
distributions. In the second row, we report the weights that capture the belief distortion

under DE and under Smooth DE. These are computed as:

0
o 2
N(Ziqn; Hit-hlt; UHh\t) 1

~ . 2 7
N(‘Tt-i-hn Mt+h|t—]7 O-t-‘rh‘t) Z

weight (Ty1p) =

for the standard DE and

I~ . 2
. ~ N(xt+ha Htthlt Ut+h|t) 1
weight (Ty1p) = N 5 7
(‘xt—l-h; Ht+hlt—J, Ut+h|t—J>

for the Smooth DE, where the constant of integration accounts for the respective formulation.
We organize the examples to follow the three key properties presented in Section 2 and

formally characterized for the Normal distribution in Corollary 1.6

5We use the following parameter values for the mean and variances of the current and reference distribu-
tions: piyip)i—g = [0,0,0,0,0], pryqn)e = [1,0,0,1,1], at2+h|t_J =[1,1,1,1,1], and at2+h|t_J =11,.5,1.3,.5,1.3].
6 Appendix D uses these examples to further and more generally discuss how the news and uncertainty
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Overreaction of the conditional mean to new information. Consider first a case
in which the reference and current distributions only differ in terms of the mean: i 5 >
fe+hjt—s- The new information does not induce any change in uncertainty and Ry p;,—; = 1.
Smooth DE and DE lead to the same normal distribution, in which only the conditional
mean is distorted. Both the SDE and DE means are shifted to the right with respect to
the current distribution by 6(ft4nje — fte4nji—s). The lower panel in the first column shows
that the weights increase moving from left to right: The weights shift probability mass to
the right of the current density, lowering the probability assigned to events that became less
likely, and inflating the probability of events that became more likely. The weights keep
increasing as elements in the right tail of the current density became much more likely to
occur in relative terms. However, the true probability of these events goes to zero faster

than the weights increase, preserving the normality of the SDE and DE distributions.

Over/underconfidence. In the second and third columns, the reference and current
distributions only differ in terms of variance, while iy p¢ = pleni—s. In the second col-
umn the current true distribution features a lower variance, i.e 0t2+h|t < Jirh‘t_ ; and thus
Ryyppey—s < 1. This case is typical for standard stochastic processes when new information
leads to a reduction of uncertainty and more precise forecasts. Under the standard BGS
implementation of DE, the fact that events close to the mean, and the mean itself, became
more likely does not have any effect. Instead, under Smooth DE, the agent revises her be-
liefs in light of the new information. She inflates the probability of the mean and the other
events that became more representative, while further downplaying the probability of events
that became less likely. The result is an even narrower distribution than the current true
distribution. Under Smooth DE, the new information leads to overreaction in terms of the
decline in uncertainty and, as a result, to a novel implication: overconfidence.

In the third case the current distribution has a larger variance than the reference distribu-
tion, i.e. Uf+h|t > Ut2+h\th7 and thus Ryyp¢—s > 1. This situation could arise, for example, in
response to a positive uncertainty shock. Now tail events become more representative under
the revised density and receive a magnified weight under Smooth DE. The probability mass
is moved from the center to the tails, but preserving normality.” Under DE, the weights are

once again uniformly equal to 1, and the DE density coincides with the true density.

Changes in uncertainty affect the overreaction of the conditional mean. The

fourth and fifth columns combine a revision in mean with a revision in variance. The key

effects introduced in Section 2 determine the effective overreaction of the Smooth DE density.

"This example also allows us to illustrate the role of the upper bound on Ryipjti—s: As this ratio
increases, more and more probability mass is moved to the tails, flattening the normal distribution. As
Riynjt—g — (14-0)/6 , the variance of the Smooth DE density goes to infinity, as an increasing probability
mass is moved to the tails.
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observation here is illustrated by Corollary 1: under Smooth DE, a change in uncertainty
affects the degree to which the distorted revision responds to the true revision. Since changes
in information sets typically involve actual changes in both conditional moments, this is a
particularly novel and important aspect of Smooth DE.

In particular, the fourth case combines the first two, with an increase in the conditional
mean and a reduction of conditional uncertainty. As in the first case, under DE we observe
a shift of the probability mass to the right. Accordingly, the DE density moves to the right,
but with no change in shape with respect to the true density. Under Smooth DE, instead,
the agent recognizes that, despite the increase in the mean, the new information made tail
events to the right less representative. Thus, for a given 6, the Smooth DE density still shifts
to the right, but by a smaller amount, and becomes visibly narrower, as the weights take
into account the change in uncertainty.®

Finally, new information can also bring a shift in the mean, but now with more uncer-
tainty. The last column considers this case, where the shift in the mean is positive like in
the fourth column. The agent’s overreaction in terms of revisions to the conditional mean
is now stronger than under standard DE because tail events have become more likely under
the current distribution. Thus, the weights determine an even more significant shift of prob-
ability mass to the right (the scale for the SDE weights is on the left). In terms of distorted
conditional uncertainty, in this case, we observe underconfidence. This is again in itself a
form of overreaction, as the agent magnifies the increase in uncertainty as this appears large

compared to the reference uncertainty.

3.5 AR(1) process

The Smooth DE density can be easily applied for a standard AR(1) process. For a simpler
exposition we focus on the one-step-ahead horizon (h = 1) and recent past (J = 1). We

extend this to the more general h and J in Section 4.1. Consider
Tip1 = pTy + €41, 41 ~ N(0,07)
where p < 1 and 02 > 0. The true conditional density is simply

f @l F) =N (/ft+1§P1't>02) .

8As the current conditional uncertainty becomes continuously smaller and converges to zero, the shift
in the distorted conditional mean also smoothly converges to zero. In contrast, under standard DE, there

. . . 2
would be a discrete jump in the extreme case of O3t hjt=0"
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while the reference density is
f @ |Fimr) =N (fﬂ\tﬂs P, (1 + PQ> ‘72)

As a result, R ;1 defined in Proposition 2 takes the form

o? 1

1+p2)02:1+p2

Rij1jee-1 = ( (22)

The Smooth DE density f? (Z;,1) in Proposition 1 is then Normal, with a conditional mean

E? = i — plx, 23
¢ (T11) pxy + T 21 50) (pzy — p°wes) (23)
and conditional distorted variance
) o?
Vi(zen) = ——— (24)
I+ 5 +p2¢9

This AR(1) example further illustrates some of the general principles behind Smooth DE.
First, equation (23) implies that, as long as § > 0, Smooth DE exhibits effective overreaction
of the conditional mean to news. Second, given o2, a higher persistence parameter p implies
that the new information determines a larger reduction in current uncertainty about the
variable of interest ;1 compared to the reference density. This lower variance ratio Ry,
leaves less room for memory to distort probability judgements which makes the effective
overreaction in equation (23) decrease in the persistence parameter p. Third, since new
information at time ¢ lowers the conditional uncertainty from (1 + p?)o? to o2, the ratio
Rii1pt¢—1 < 1linequation (22). Thus, the distorted density is characterized by overconfidence,

so that V¢ (z,,,) < 02, as seen in equation (24).

4 A parsimonious micro-foundation for survey evidence

Like in existing work on DE, we take the underlying # > 0 and J > 1 as primitive parameters
characterizing the decision’s maker limited memory and the effect that the representativeness
heuristic has on agent’s judgments. As discussed in Section 3, given 6 and J, the Smooth
DE density does not introduce any further degrees of freedom. Nevertheless, by allowing
the density for the representative group to reflect the time ¢t — J conditional uncertainty, we
find that Smooth DE can offer a joint and parsimonious micro-foundation for a range of

observable implications consistent with survey data. These implications refer to the broad
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properties of Smooth DE emphasized and collected by Corollary 1.

At its core, Smooth DE captures the intuition that new information that significantly
reduces current uncertainty over the variable of interest leaves less room for memory and
representativeness to distort judgements. As we discuss below, this implication of a stronger
(weaker) effective overreaction of the conditional mean to new information that reduces less

(more) current uncertainty helps to account for two sets of stylized survey facts.

4.1 Stronger overreaction for longer forecast horizons

The first set of over-identifying restrictions on our theory of overreaction relates to the
model’s implications for short- versus long-horizon forecasts. A strand of literature using
survey data argues that overreaction appears to be increasing with the horizon of the fore-
cast. For example, Bordalo et al. (2019) and Bordalo et al. (2023) point to such stronger
overreaction for equity analysts’ forecasts of long-term earnings growth and emphasize the
potential for this type of overreaction to account for stock market volatility. Using pro-
fessional forecasters’ forecasts of interest rates, other contributions, including for example
Bordalo et al. (2020), d’Arienzo (2020), find evidence of significant overreaction for expec-
tations of long-term interest rates, but not for expectations of short-term interest rates.
Augenblick et al. (2021) use field data from betting and financial markets to argue that
compared to the Bayesian forecast there is relatively stronger overreaction to signals with a
longer (shorter) time-to-resolution, conceptually similar to longer (shorter) forecast horizons.

Smooth DE is consistent with such evidence as it predicts that overreaction increases with
the horizon of the forecast. The basic intuition appears in Section 3. Smooth DE formalizes
an inverse relation between the informativeness of the new piece of information obtained
by the decision-maker and the overreaction of her conditional forecasts (see for example
equation (16) in Corollary 1). In the context of forecasting at different horizons, the same
piece of information is less informative about horizons further in the future, leading to a
smaller reduction in uncertainty and a stronger overreaction. Thus, Smooth DE naturally
predicts that overreaction is relatively stronger for long-horizon forecasts.

The simplest environment to showcase this basic insight is the AR(1) process introduced
with equation (3.5) in Section 3. For an horizon h > 1 and a J— lagged reference distribution
(J > 1), the conditional mean for the Smooth DE density f? (Z;.,) is

EY (zp4n) = pl'ae + (ﬂgvt,th (p "z — p" 7w y) (25)
where the effective severity @,t_ s of DE distortion is given in equation (14).

Given the AR(1) process in equation (3.5), the ratio Ry ypj¢s—s of conditional variances,

23



defined in Proposition 1, takes the particular form

17p2h 2
_ Vi [xtJrh] _ | =@ when p* <1
Rijhjip—g = 5——— = N 9
thJ [xtJrh] I when p- = 1

Proposition 3 The ratio Ryip—; increases in the forecast horizon h. Thus, the effective

overreaction 5157,5,J of BY (z441,) in equation (25) is stronger for longer forecast horizons.

For a given lag J in the reference distribution, as the forecast horizon h increases, the
effective horizon of the current RE forecast (h), and the effective horizon of the reference
RE forecast (h 4+ J) become increasingly similar. As a result, the levels of uncertainty
associated with the two forecasts also become increasingly similar because the information
set is implicitly more similar. Intuitively, the uncertainty around the two forecasts reflects
a larger and larger number of the same shocks. In relative terms, the current information
set is less and less informative for the variable that the agent is trying to predict. Given
that under Smooth DE overreaction is increasing in the level of relative uncertainty, as h

increases, so does the amount of overreaction to a given revision of the RE forecasts.

4.2 Overreaction and overconfidence

A recent literature studying the properties of survey responses, including Barrero (2022),
Born et al. (2022), and the reviews in Altig et al. (2020) and Born et al. (2022), documents
that while firms’ forecasts are unconditionally unbiased, i.e forecast errors are on average
not significantly different from zero, firms make conditionally predictable forecast errors. In
particular, firms overreact to news and are overconfident in their subjective forecasts.

These stylized facts provide a challenge for models featuring standard rational belief
updating. As a result, the overreaction and overconfidence empirical properties have been
typically addressed in existing models through two distinct behavioral primitive assumptions
that do not distort unconditional forecasts. Overreaction of conditional forecasts has been
explained as an outcome of DE, modelled according to the original BGS formulation. Under
DE, agents overreact only in presence of new information and in a symmetric way, preserving
unbiased unconditional forecasts, but failing to account for overconfidence. Thus, the finding
of overconfidence has been typically addressed with an additional overconfidence bias. An
example of this approach is Barrero (2022), who uses both distinct features to account for
the three survey facts.

Smooth DE can instead account for all three stylized facts. Consider for example the
Gaussian environment of Section 3 where a firm’s fundamental (eg. productivity) follows a

simple AR(1) process. Or, the arguably more empirically plausible extension, where those

24



fundamentals are not directly observed, but firms can learn about their realizations from
noisy signals, like in the simple state-space model described in Section E. In either case,
Corollary 1 and Proposition 10, respectively, describe how forecasts made under Smooth
DE are characterized by precisely these two key properties: overreaction to news and over-
confidence. Moreover, as in the RE case (f = 0), forecasts under DE are nevertheless
unconditionally unbiased, being on average driven by the underlying rational forecasts.

The discussion and formalism in Section 3 indicate that, in contrast to the generality
of the overreaction of the conditional mean, overconfidence is not a universal property of
Smooth DE. However, we view it as a ’typical’ property, because the necessary condition
for overconfidence is simply that new information reduces uncertainty. This condition is
ubiquitous as it holds in stationary, homoskedastic environments, where events closer into
the future are naturally easier to predict than events far into the future. At the same time,
the condition might not hold if new information entails a sufficiently large and unexpected
increase in uncertainty, as indicated by some of our examples in Figure 3.

Finally, we further note the broader context of a large literature on overconfidence (eg.
De Bondt and Thaler (1995) and Daniel et al. (1998, 2001)). This work has been motivated
by extensive psychological evidence for overconfidence and argues that models based on this
behavioral property are promising in accounting for asset market puzzles. Our key insight
here is that Smooth DE emerges as a potential parsimonious micro-foundation, based on the
representativeness heuristic, for overreaction and overconfidence, two behavioral features

argued as important in understanding a variety of economic outcomes.’

5 Business cycle implications

We illustrate the business cycle implications of Smooth DE in a parsimonious RBC model
with time-varying uncertainty. We argue that Smooth DE emerges as a novel behavioral
propagation and amplification mechanism for time-varying uncertainty. We first show that
the model replicates, without relying on additional frictions, several salient features of the
data thanks to the state-dependent overreaction: (1) asymmetry (recessions are deeper than
expansions), (2) countercyclical micro volatility (cross-sectional variances of microeconomic
variables rise in recessions), and (3) countercyclical macro volatility (time-series variances of

macroeconomic variables rise in recessions).!® We also show that, the perceived increase of

9See further Barberis (2018) for a review of these two-widely documented, but typically studied separately,
departures from standard Bayesian updating.

10As described in the Introduction, these properties have strong empirical support in the literature. The
concept of asymmetries have a long tradition in macroeconomics, including Neftci (1984), Hamilton (1989),
Sichel (1993), and more recently McKay and Reis (2008) and Morley and Piger (2012). The extensive
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uncertainty in recessions is more than three times larger than the actual uncertainty increase.
We then discuss a novel policy implication: a redistributive policy that reduces idiosyncratic
uncertainty could be beneficial for macroeconomic stabilization because it dampens the state-

dependent overreaction.

5.1 The model

To isolate the role of Smooth DE as a propagation mechanism, we keep the model simple and
abstract from conventional frictions in the uncertainty shock literature, such as adjustment
costs (Bloom (2009), Bloom et al. (2018)) and sticky prices (Basu and Bundick (2017),
Ferndndez-Villaverde et al. (2015), and Bianchi et al. (2023a)). The economy consists of a

continuum of islands ¢ € [0, 1]. In each island 4, an agent has the per-period utility function

1— 1+
U(cig, hiy) = Ci’tv - p hi’tn .
A

where ¢;; is consumption, h,; is the amount of hours worked, 7y is the coefficient of relative
risk aversion, and 7 is the inverse of the Frisch labor elasticity. We simplify the algebra
below by multiplying the disutility of labor by the discount factor 5.

Output in each island is produced according to
Yir = zighit—1. (26)

The t — 1 subscript on hours reflects the assumption that the labor input is chosen before

the random realization of productivity z;, is known. The island resource constraint is
Cit = Yit- (27)
We obtain aggregate variables by simply adding up variables of all islands:
1 1 1
H, = / hi,tdi, Y, = / yi,tdi7 Cy = / Ci,tdi
0 0 0
The island productivity z; ;41 is the sum of aggregate and idiosyncratic components:

In 211 = A1 + @it

literature of the macroeconomics of time-varying uncertainty, including Bloom (2009), Ferndndez-Villaverde
et al. (2011), Ilut et al. (2018), Jurado et al. (2015), Basu and Bundick (2017), and Bloom et al. (2018)
confirm that volatility or uncertainty is countercyclical at both micro and macro levels.
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The economy-wide TFP shock A;,; is common across all islands and follows the process
At+1 = PAAt + uA’t+1, UA7t+1 ~ ZZdN(O, 0'124)

The idiosyncratic TFP a; 1 is instead specific to island ¢, and it is composed of a predictable
component s;; ~ i.i.d.N (0, 02), known one-period-in-advance, and an unpredictable compo-
nent uq g1 ~ 4.0.d.N(0,07,) realized at t + 1: @411 = Siy + Uazer1. Following Bloom
et al. (2018), we assume the volatility o, is time-varying and negatively correlated with the
economy-wide TEFP. In particular, as we describe in Section 5.4, 0, increases when there is
a negative innovation to the economy-wide TFP, and vice versa. We use o,,; to denote the
volatility of the period t+1 innovation to reflect the assumption that the volatility of the next
period’s innovation is known one-period-in-advance. We also assume that the volatility of
the predictable component, s;,, is constant. This implies that the cross-sectional dispersion
of labor is driven only by the news effect of the uncertainty shock. If we were to relax the
assumption of constant volatility of s;;, the cross-sectional dispersion would also depend on
its realized volatility, but none of the main qualitative properties of the model would change.

The mean and variance of a;;4; conditional on the predictable component s;; are

E;+ [ai,t—‘rl] = Sit, Vi [ai,t—i—l] = Ug,t'

We can define the residual uncertainty (posterior variance relative to ex-ante uncertainty)

as in David et al. (2016) as 02,/(0? 4 07 ,), which is increasing in o7 ,. Intuitively, in times

2
a,t?

of low aggregate TFP and higher uncertainty o ,, the predictable component s;; serves as

a weaker signal in forecasting a; 41 relative to times of lower uncertainty.

5.2 Rational Expectations solution

We first characterize the equilibrium under RE. The island ¢ agent’s Bellman equation is
V(hi,t—la Zi,t) = f%iX{U(Ci,t, hi,t) + BEq, [V(hi,t, Zi,t—i—l)]} .
Combining the first order condition for labor with the envelope condition, we obtain
(hig)" = By [(Cipr1) " Zig] - (28)

The optimality condition equates the current marginal disutility of working with its expected
benefit. The latter is given by the marginal product of labor weighted by the marginal

utility of consumption. We log-linearize the condition and use the method of undetermined
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coefficients to obtain the RE solution. Hats denote log-deviations from steady state.
Proposition 4 The equilibrium under RE is given as follows:

1. Indwidual hours worked are given by

o~

hit = €[pads + siz,

where € = 717;—1 Equilibrium output and consumption follow immediately as

Yip = A+ iy + hig1 = Ciy.

2. Equilibrium aggregate variables are given by
ﬁt = epady, 2 = A+ ]/—\It—l = at

Proof. See Appendix. =

The response of individual and aggregate hours to news about expected economy-wide
productivity psA; and island-specific productivity s;, is affected by the intertemporal elas-
ticity of consumption (IES), which here also equals the inverse of the coefficient of relative
risk aversion. When the IES is large enough, so that y~! > 1 and thus ¢ > 0, an increase
in expected productivity raises hours. In that case the intertemporal substitution effect
dominates the wealth effect that would lower hours through the effect on marginal utility.

The next proposition characterizes the cross-sectional variance under RE.

Proposition 5 The cross-sectional variance of hours worked is given by

1 2 1 ~72
/ (hzi7t - Ht) d'l - |:—7:| 0‘3,
0 n+v
and 1is constant over the business cycle. The cross-sectional variances of output y;, and

consumption c¢;; are increasing in the volatility o—g,H of the idiosyncratic TFP.

Proof. See Appendix. m

Under RE, the cross-sectional variance of hours stays constant over the business cycle.
This is because once the model is linearized, the news effect of changes in uncertainty is muted
under RE. The cross-sectional variances of output and consumption are instead mechanically

affected by o—g’H because of the change in realized volatility.

28



5.3 Smooth DE solution

We now solve the model under Smooth DE. We consider the case of distant memory, meaning
that agents’ memory recall is based on a more distant past, rather than just the immediate
past. This means that the reference group is based on the information set available J > 1
periods ago. Bianchi et al. (2024) find that in standard models, distant memory can account
for salient features of data, such as persistence and repeated boom-bust cycles. Under
distant memory, a time-inconsistency problem arises due to the failure of the law of iterated
expectations. Bianchi et al. (2024) address this issue by adopting the naiveté approach
(O’Donoghue and Rabin (1999)), which we follow here. Under this approach, the agent fails
to take into account that her preferences are time-inconsistent and thinks that in the future
she will make choices under perfect memory recall, or RE. However, when the future arrives,
the agent ends up changing behavior and be again subject to her imperfect memory recall.*!
Let #-superscripts and R E-superscripts denote equilibrium Smooth DE choices and choices

under a RE policy function, respectively. The island ¢ agent’s Bellman equation is

max {U(Cz"g,ta h?,t) + 5E?,t [V(h’zta Zigr1)] b

hi .

subject to y¢, = z;:h¢, | and ¢, = y¢,. The continuation value is given by

V(e 2i0) = max {U (e hEE) + BBiy V(R zi000)] }

subject to yﬁE = Zi,th?,t_l and cftE = yﬁE .
Similar to the RE problem, the agent optimally equates the marginal disutility of labor
with its expected benefit, except that the benefit is evaluated under Smooth DE:

(H)" = EL, [(cf50) "z (29)
Proposition 6 The equilibrium under Smooth DE is given as follows:

1. Indwidual hours worked are given by

/ﬁ?,t =c[padi + si4l
0o (30)

+ =
n+ (1 + 9t,t—J> Y

€ [paNt_ gt [Ad] + si4]

UBianchi et al. (2024) further argue that the naiveté approach is psychologically coherent and consistent
with the underlying foundation of diagnostic beliefs as a heuristic and a mental short-cut.
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where ¢ is given in Proposition 4 and Ny_;; [A] = Ay — Ei_j [As] represents the news

in Ay, compared to past expectation. Equilibrium output and consumption follow as

Z/Jzt = A+ a;, + h?,t—l = Ezet (31)

2. The effective diagnosticity parameter gt’t, J s given by

~ R _j0
Ori-g = SR , (32)
1+ (1= Rysajee—v) 0
where ok
R Vi (—702‘,1;+1 + Avi1 + aigr) (33)
1t =T = = .
! Vi (—705”&1 + A1 + ai,t+1)
3. Equilibrium aggregate variables are given by
-~ O
HY = epsA; + ti=J1 epaN;_ st [A] (34)

n+ (1 + @,u) v
20 = At + ﬁteil — af

Proof. See Appendix. =

First, consider the policy function for individual hours hf,. The first line of (30) is iden-
tical to the RE policy function. The second line captures the overreaction to news, i.e.
surprises.'? Consider, for instance, a positive surprise to an economy-wide TFP A,. Smooth
diagnostic agents are over-influenced by this surprise and become over-optimistic about the

future benefit of working, and hence work more (if € > 0). The coefficient on this overre-
9~t,t:J77

77+(1+0t,t7‘1)'7

output and consumption also overreact when individual hours overreact. Second, the effec-

action, , 18 increasing in the effective diagnosticity 5t¢, 7. From (31) individual
tive diagnosticity @,t, 7 is positively related to Ryi1—y, given by (33): the ratio between
the current uncertainty about the marginal benefit of labor and the uncertainty perceived
at period t — J. Third, aggregate hours, output, and consumption also feature overreaction,
controlled by gt,t, J, to news about economy-wide shocks.

The expressions (32) and (33) in Proposition 6 suggest that an increase in uncertainty
about future idiosyncratic productivity could raise gt,t_ s and, in turn, the overreaction to

news.'® The Proposition below indeed confirms that this is the case.

12Note that, for S4,¢, since it is i.i.d., the surprise is s; ¢ itself.

13In the current model, we must take a stance on how agents deal with time-varying volatility when
forming expectations. There are two approaches to compute the conditional variance at ¢t — J in (33)
that preserve normality of the Smooth DE density. The first approach consists of making an “anticipated
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Proposition 7 An increase in the volatility ag’t of idosyncratic TFP raises the effective

diagnosticity parameter /Hvtﬁt_‘;.

Proof. See Appendix. =

There are two important implications of this proposition. First, the business cycle is
asymmetric, even if the underlying shocks are symmetric. A positive TFP shock would
lower uncertainty and, as result, overreaction. In contrast, a negative TFP shock would
raise uncertainty and, as result, overreaction. Thus, a drop in economic activity in response
to a negative shock would be sharper, while an expansion in response to a symmetric pos-
itive shock would be milder, generating asymmetric fluctuations. Second, macroeconomic
volatility 1s countercyclical. During expansions uncertainty and overreaction are low while
in recessions agents overreact more to economy-wide shocks.

State-dependent overreaction also implies that micro-level volatility is countercyclical:

Proposition 8 The cross-sectional variance of hours worked is given by

- 2
L. N2 _
/ (h?,t _ Hf) di = (1 + et,t—JZ(l '7) Ug,
0 N+ (L+0i)y

and is increasing in é/t’t_‘] and, thus, in the wvolatility ait of the idiosyncratic TFP. The
cross-sectional variances of output y;,; and consumption c;; are similarly increasing in the

volatility ait_l of the idiosyncratic TFP.
Proof. See Appendix. =

As uncertainty increases, the overreactions to the predictable component of idiosyncratic

TFP and the future benefit of labor, captured in the % ’ term, rise. Hence,
an increase in uncertainty about idiosyncratic TFP raises the cross-sectional variances of
individual actions.

Our theory has an important policy implication. As we saw above, the micro-level volatil-
ity and macroeconomic volatility are tightly linked through the state-dependent overreaction
controlled by gt,t, 7. Thus, a policy that reduces microeconomic uncertainty through, for in-
stance, a redistributive tax policy can also be effective in stabilizing the macroeconomy. To
fix ideas, consider a progressive income tax and subsidy scheme where the individual rate

Ti+ 1s increasing in the realized idiosyncratic productivity level 7;; = 7a;;, where 7 > 0 is a

utility” assumption (Kreps (1998)). In this case, agents’ uncertainty depends on the volatility at the time
of the forecast, disregarding the possibility of volatility changes. The second approach consists of assuming
that agents take into account the possibility of volatility changes, but that memory retrieves a Normal
approximation of the resulting mixture of Normal’s. We adopt the first approach, as it is arguably more
consistent with the naiveté assumption and the general motivation of DE as a mental heuristics.
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parameter that controls the progressivity. The island resource constraint is

Cit + TiglWit = Yirt,

so the agent pays a tax (7;; > 0) if the realized TFP shock is positive (a;; > 0) and receives

a transfer (7;; < 0) otherwise. The scheme is budget neutral.

Proposition 9 A higher progressivity T is associated with a smaller increase in the effective
diagnosticity parameter ’th,t,J when the volatility ait of idiosyncratic TFP rises.
Proof. See Appendix. m

Intuitively, redistribution dampens the state-dependent overreaction by reducing cross-
sectional uncertainty about the future benefit of labor. Thus, the government can stabilize
the macroeconomy by using the tax policy to reduce the increase in uncertainty and overreac-
tion. For instance, in times of low aggregate TFP and high uncertainty, the government can
implement the tax policy or increase its progressivity. These interventions would dampen

the overreaction and make the downturn less severe.

5.4 Calibrated example

We illustrate the quantitative potential of the Smooth DE mechanism in the context of the
parsimonious RBC model presented above by examining its dynamics.

Calibration. We calibrate the model to a quarterly frequency. We set the discount
factor 8 = 0.99, the IES v~! = 0.257!, and n = 0.4, which implies a Frisch elasticity of labor
supply of 2.5.1 For the economy-wide TFP shock, we set p4 = 0.95 and o4 = 0.7/100. The
calibration satisfies the condition y~! > 1, so labor increases in response to an increase in
expected TFP.

Consider the time-varying standard deviation o, of the idiosyncratic TFP shocks. Using
Census micro data, Bloom et al. (2018) and Ilut et al. (2018) find that, during recessions,
the dispersion of TFP shocks increases by 13% and 7%, respectively. Motivated by these
findings, we assume that a negative innovation to economy-wide TFP larger or equal than
one standard deviation is associated with a 10% increase in the standard deviation o,, of
the idiosyncratic TFP shocks relative to the steady-state standard deviation o,. Conversely,
a positive economy-wide TFP innovation of the same magnitude is associated with a 10%

decrease in the standard deviation o, of the idiosyncratic TFP shocks.

4 These values of IES and Frisch elasticity allow us to generate realistic labor volatility. Our calibrated
model generates the time-series standard deviation of aggregate hours worked of 1.67%. In the data, the
standard deviation of total hours worked in the nonfarm business sector (1983:Q1-2019:Q4) is 1.66%.
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Table 1: Internally calibrated parameters and targeted moments

Parameters Targeted moments

Data Model
o, 0.022  Realized absolute forecast error 0.143  0.143
os 0.027  Residual uncertainty 0.41 0.41
0 1.547  Skewness of aggregate hours —-0.21 —-0.21

Notes: The table reports the parameters and their calibrated values as well as the targeted moments. o, is
the steady-state standard deviation of unpredictable component of the idiosyncratic TFP shock, o, is the
standard deviation of the predictable component of the idiosyncratic TFP shock, and 0 is the long-run
average effective diagnosticity implied by the calibrated value of §. The realized absolute forecast error is
reported in Barrero (2022) using survey data on US managers, calculated from realized forecast errors of
sales growth between ¢ to ¢t 4+ 4, with observations employment-weighted. The residual uncertainty from
David et al. (2016) captures the amount of posterior uncertainty relative to the ex-ante uncertainty. The
skewness of aggregate hours is calculated using total hours worked in the nonfarm business sector
(1983:QQ1-2019:Q4). The model moments are calculated using simulated data from the Smooth DE model.

We assume that the agent’s comparison group is the expectation formed J = 5 periods
ago. The parameter J mainly determines the persistence of overreaction and the value is
consistent with Bianchi et al. (2024), who find that in an estimated structural model the
memory weights center around five- and six-quarters-ago expectations.

There are three remaining parameters: the steady-state standard deviation of the un-
predictable component of the idiosyncratic TFP shock o,, the standard deviation of the
predictable component of the idiosyncratic TFP shock oy, and the diagnosticity parameter
6. We calibrate these parameters so that the model matches the three empirical moments
summarized in Table 1.1> While multiple model parameters jointly affect these moments, we
select the moments so that each moment is informative about a parameter of interest.

The first empirical moment, the mean of realized absolute forecast errors, is from Bar-
rero (2022) who uses survey data (Atlanta Fed/Chicago-Booth/Stanford Survey of Business
Uncertainty (SBU)) on US managers. Forecast errors are computed by subtracting realized
sales growth between ¢ to ¢ +4 from managers’ forecasts. The model counterpart is obtained
by calculating the mean absolute forecast error on the simulated distribution of the real-

ized forecast error EY, [FF,] — 9¢,.,.'® This moment is informative about the steady-state

I5We choose the parameters so that the squared-sum of distance between the data moments and the
model-implied moments is minimized.

16Specifically, we generate 100 replications of 7" = 200 time series with n = 500 islands. The number of
islands roughly matches the the number of firms surveyed in the SBU data in Barrero (2022).
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standard deviation of the unpredictable component of idiosyncratic TFP.

The second moment, residual uncertainty, captures the amount of posterior uncertainty
relative to the ex-ante uncertainty. David et al. (2016) estimate the residual uncertainty to
be 41%. The model counterpart is given by ¢2/(c2 + ¢2). This moment is useful to pin down
the standard deviation o, of the predictable component of idiosyncratic TFP.

Finally, the third moment is the skewness of total hours worked in the nonfarm busi-
ness sector (1983:Q1-2019:Q4).17 The negative skewness (—0.21) reflects macroeconomic

asymmetry: drops in hours worked are steeper than increases. In our model, a negative

2

2, and, in turn, the effective overre-

economy-wide TFP innovation increases uncertainty o
action 5757,5_ 7. A positive TFP innovation, in contrast, reduces overreaction. Under Smooth
DE, the diagnosticity parameter 6 governs the strength of this mechanism to generate asym-
metry. Under RE model and the standard DE model where the overreaction is constant,
there is no asymmetry, and the skewness is zero.

The model moments match the empirical moments perfectly. The calibrated o, and o,
imply the predictable and unpredictable components’ variances are about the same in steady
state. The long-run average effective diagnosticity parameter 5, implied by the calibrated
value of 6, is 1.54. This value is somewhat larger than Bordalo et al. (2018), Bordalo
et al. (2019), and d’Arienzo (2020), which tend to estimate the standard DE diagnosticity

parameter around 1, but smaller than the estimate of 1.97 in Bianchi et al. (2024).'®

Implications for untargeted survey moments. We examine to what extent our
theory can explain untargeted survey evidence on overreaction and overconfidence. We use
Barrero (2022)’s survey moments as an external validation because the study shows both
overreaction and overconfidence based on a single dataset (SBU). The first column of Table
2 reports the coefficient from a panel regression where managers’ time ¢ forecast of t+4 sales
growth minus the realization is regressed on the sales growth between quarter £ —1 to t. The
coefficient is positive, meaning that managers’ forecasts tend to be excessively optimistic
during high growth period. The second column is the realized mean absolute forecast error,
reported in Table 1, and is shown here again to facilitate comparison. The third column is
the subjective mean absolute forecast error, where the hypothetical realizations are drawn
from the managers’ subjective probability distributions. The subjective absolute forecast

error is only 16% the size of the empirical errors (fourth column), indicating overconfidence:

1"The empirical skewness of hours increases significantly to —1.75 when we extend the sample until 2022:Q1
to include the 2020 Covid-19 recession. We use the simulated data to compute the skewness of aggregate
hours worked in the model. Both simulated and actual time series are HP-filtered with A = 1600.

18 ike Bianchi et al. (2024), our current model features distant memory (J > 1). Bianchi et al. (2024) notes
that existing estimates are based primarily on models where imperfect memory is assumed to be driven only
by the immediate past (J = 1), and this assumption changes inference about the diagnosticity parameter.
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Table 2: Untargeted survey moments: overreaction and overconfidence

(1) (2) (3) (4)

Fy(AYs prap) — AYspyap Absolute forecast error
on Ay 4ji—1 Realized Subjective (Subjective)/(Realized)
Data 0.173 0.143 0.023 0.16
(0.059) (0.012) (0.002)
Model 0.095 0.143 0.017 0.12

Notes: The table reports the coefficient on overextrapolation and realized and subjective mean absolute
forecast errors. The data moments are computed by Barrero (2022) using survey data on US managers,
with observations employment-weighted and standard errors in parentheses. The first column reports the
coefficient from a panel regression where managers’ time ¢ forecast of ¢t + 4 sales growth minus the
realization is regressed on the sales growth between quarter ¢ — 1 to ¢. The second column is the realized
mean absolute forecast error, calculated using realized forecast errors of sales growth between ¢ to t + 4.
The realized mean absolute forecast error is used in the calibration as a target, but is included in this table
to facilitate comparison. The third column is the subjective mean absolute forecast error, where the
hypothetical realizations are drawn from managers’ subjective probability distributions. The fourth column
is the ratio of the subjective absolute forecast error to the realized error. The model moments are

calculated using the simulated data from the Smooth DE model.

managers overestimate the precision of their forecasts.

The model moments are computed by simulating the model under Smooth DE. First,
consider the overextrapolation regression coefficient. The model counterpart is the coeffi-
cient on pooled OLS where we regress the Smooth DE four-quarters-ahead forecast error,
E?, [@%24] — 3,14, o0 output growth, [ﬂft -7 +—1], which proxies for news. The coefficient
is positive, but smaller than in the data. The reason why the calibrated model understates
this coefficient relative to the data is as follows. In our model, economy-wide shocks are
persistent while island-specific shocks are i.i.d. In contrast to persistent shocks, when shocks
are i.i.d., the Smooth DE forecasts are orthogonal to news, so the idiosyncratic shocks push
the coefficient toward zero.! While we specified idiosyncratic TFP shocks to be i.i.d. for
tractability, allowing for persistence would increase the overextrapolation coefficient. Thus,
our model provides a conservative lower bound on the macroeconomic effects of Smooth DE.

Next, consider the mean absolute forecast errors. The subjective error (third column) is

19This need not be the case when agents forecast endogenous variables in models with slow-moving en-
dogenous states, such as capital. See Bianchi et al. (2024) for details.
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Table 3: Countercyclical cross-sectional standard deviation of labor growth

(1) (2) 3) (4)
Data Smooth DE DE RE
(Recessions)/(Expansions) 1.16 1.12 1 1

Notes: The table reports the ratio of the cross-sectional standard deviation of labor growth during
recessions to the cross-sectional standard deviation during expansions. The first column shows the ratio in
the data, reported by Ilut et al. (2018), where recessions and expansions are defined as NBER recessions
and NBER expansions, respectively. The second, third, and fourth columns report the model-implied ratios
for the Smooth DE, DE, and RE models, respectively.

obtained first by calculating the Smooth DE variance of output growth

Vig [0574]
I+ (1 — Rt-i—l\ut—J) 6’

Vi [Bi5a) = (35)
and then leverage the normality of the RE output growth so that the subjective absolute
forecast error is given by \/2/_7r (Vgt [@%’24})% . The model closely matches the subjective
forecast error. The size of the absolute subjective error is 12% of the size of the realized fore-
cast error (fourth column), in line with the survey data’s 16%. According to (35), the Smooth
DE variance Vf,t [Qﬁil] would be lower than the econometrician’s variance V; [th +4] due
to two factors. The first factor is that, under naiveté, (Smooth) DE agents perceive future
output to follow the RE law of motion 7/, instead of the equilibrium law of motion ¢, .
The second factor is the Smooth DE effect (the denominator in (35)) on uncertainty, accord-
ing to which a reduction of uncertainty contributes to overconfidence about the precision of
expectations. To disentangle these two factors, we calculate the subjective mean absolute
forecast error without the Smooth DE effect. We obtain /2/7 (V;, [§EE,] )% = 0.053, which
is 37% of the size of the realized errors. This ratio is more than double the values recovered
by the data (16%) and implied by the baseline model (12%). We conclude that the Smooth
DE effect is important to account for overconfidence as observed in survey data.
Countercyclical micro and macro volatility. We now study the model’s ability to
generate countercyclical micro and macro volatility. First, consider the micro volatility. In
Table 3, we report the ratio of the cross-sectional standard deviation of labor growth during
recessions to the cross-sectional standard deviation during expansions. The first column
shows this ratio from the data, as reported by Ilut et al. (2018), where recessions and
expansions are defined as NBER recessions and NBER expansions, respectively. The cross-

sectional dispersion is countercyclical: in recessions, it is 16% higher than during expansions.
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Table 4: Countercyclical volatility of aggregate labor growth

(1) (2) 3) (4)
Data Smooth DE DE RE
(Recessions)/(Expansions)  1.23 1.22 1 1

Notes: The table reports the ratio of the rolling standard deviation of aggregate labor growth during
recessions to the rolling standard deviation during expansions. The first column shows the ratio in the data
for the period 1983:Q1-2019:QQ4, where recessions and expansions are defined as NBER recessions and
NBER expansions, respectively. The second, third, and fourth columns report the model-implied ratios for
the Smooth DE, DE, and RE models, respectively.

The second column reports the ratio in our model, where we define recessions and expansions
as periods when there are one-standard-deviation negative and positive innovations to the
economy-wide TFP, respectively. Under Smooth DE the cross-sectional standard deviation
of labor growth is 12% higher during recessions than in expansions, so the model explains
75% of the empirical countercyclicality of micro volatility. In the model, a negative aggregate
TFP innovation triggers an increase in idiosyncratic TFP uncertainty o,;. As a result, the
overreaction gt,t_ s to the predictable component s;; of idiosyncratic TFP rises, so the cross-
sectional dispersion of actions such as labor increases. As shown in the third and the fourth
columns, the cross-sectional dispersion is constant over the business cycle under the standard
DE model, where the overreaction is constant, and the RE model, where we have 6 = 0.
Next, consider macro volatility. In our model, in times of low TFP and high idiosyncratic
uncertainty o, ¢, aggregate labor responds more to economy-wide shocks because the overre-
action is stronger. Table 4 examines to what extent this countercyclical macro volatility is
consistent with the data. To measure time-varying volatility of aggregate hours worked in

the data, similar to Ilut et al. (2018), we compute the rolling window standard deviation as

(nw—1)/2

=\t D (AlnHyy — A Hy), (36)

ke=—(nw—1)/2

where Aln H; . is the log change of total hours worked in the nonfarm business sector from
a quarter t+k—1tot+kand Aln H, = (1/n,) Zgl:w:(&/il)/z Aln Hy . We set the window
size n,, = 3 and consider the sample 1983:QQ1-2019:Q4. The first column of Table 4 reports
the measured oy, during NBER recessions relative to oy, during NBER expansions. The
measured volatility of aggregate labor growth is 23% higher in recessions than in expansions.

We then compute the same rolling standard deviation (36) on the simulated data from
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the model. We define recessions and expansions as periods when there are larger-than-or-
equal-to one-standard-deviation negative and positive innovations to the economy-wide TFP,
respectively. The second column shows that in the Smooth DE model, the aggregate labor
growth volatility o is 22% higher in recessions than in expansions. Thus, the Smooth DE
model generates the countercyclical macro volatility that is quantitatively in line with the
data, even though the volatility of economy-wide shocks is constant. DE and RE models, in

contrast, do not generate such countercyclical volatility (third and fourth columns).

Perceived vs. actual increase in uncertainty. Discussions of Corollary 1 and Figure
3 indicate that, in our model, agents would overestimate the increase in uncertainty in
recessions. This is because tail events become more representative when uncertainty rises. To
quantify how much the agent’s perceived uncertainty rises relative to the actual uncertainty,

we compute the Smooth DE variance of the future marginal benefit of labor,

~RE
Vi (7€ + A + airpa)

VO (—~elE 4+ A+ a; =
it ( YCit+1 t41 ,t+1) 1+ 0(1 — Rt+1|t,t—J)

(37)
We are interested in (37) because it controls the labor-supply decision in response to an uncer-
tainty increase. We find that, under our calibration, a 10% rise in o, raises the perceived un-
certainty (37) by 69%. In contrast, actual uncertainty, given by Vi, (=¢%, 1 + A1 + i)
rises only by 19%. Thus, the perceived rise in uncertainty is more than three times larger

than the actual uncertainty increase in recessions.?’

6 Conclusions

We developed a tractable and structural bridge from the representativeness heuristic of
Kahneman and Tversky (1972) to the time-series domain. We built on the formalization
of representativeness by Gennaioli and Shleifer (2010) and of diagnostic expectations (DE)
by Bordalo et al. (2018) to allow for what we call “smooth diagnosticity.” Under Smooth
DE new information is defined as the difference between the current information set and a
previous information set. A critical consequence of this basic approach is that current and
past uncertainty interact to determine the intensity of the DE overreaction, but also create
the preconditions for novel properties such as over- and under- confidence.

After formally characterizing Smooth DE and its key properties, we leveraged its insights

20Since we linearize our model, the increase in uncertainty affects first-order economic outcomes through
the state-dependent overreaction and not through the conventional risk channel. The risk adjusted log-
linearization method as in Bianchi et al. (2023b) would allow us to capture the impact of perceived increase
in uncertainty while preserving tractability.
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along two substantive directions. First, we embedded the Smooth DE framework in a stan-
dard signal extraction problem and showed that Smooth DE can account for recent evidence
indicating that overreaction is stronger for weaker signals and for longer horizon forecasts.
Second, we embedded Smooth DE in a parsimonious RBC model with time-varying uncer-
tainty. This model can account for survey data on overreaction and overconfidence as well
as three salient properties of the business cycle: (1) asymmetry, (2) countercyclical micro
volatility, and (3) countercyclical macro volatility. We uncovered a novel policy implica-
tion: a redistributive policy that reduces idiosyncratic uncertainty could be beneficial for

macroeconomic stabilization because it dampens the state-dependent overreaction.
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Appendix

A Proof of Proposition 1

Expression (9) can be written as:

0
2
1 exp [_ 2021 ($t+1 - Mt+1|t) } 1
0/~ 2 1t
I{ (Tig1) o exp B — (th+1 - ,ut-l-l\t) =
2Ut+h|t 1 2 Z
eXP | — 552 ($t+1 - Mt+1|t—J)

Ttt1)t—J

Collecting the terms in the exponents, we get:

2

. 1 2 Ot 2| | 1
fte (Ti11) o< exp T 9,2 (1+6) ($t+1 - Ht+1|t) - 2t+ lt 0 ($t+1 - Mt+1\t—J) 7
Tyt Tiift—

Developing the squared terms and keeping track of the terms involving x;.1, we obtain:

o2
2021 (1 + ‘9 - UZH—Ht 9)

t+1|t t+1[t—J

O’2 -1 0'2
[xfﬂ — 2%441 (1 +6— zH—llte) (Mt+1|t (1+0)— ol 9/Lt+1|t—J)]

1

ftg @t+1) X €xp

T r1lt—J Tet1lt—J
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where the remaining terms are absorbed in the constant of integration.

Tt

Define: Rijyj14-g = = . If Ryyapie—g > (14 0)/6, the expression above corresponds

t+1)t—J
to the kernel of a normal with mean:

Ut2+1|t - 0t2+1|t
E! (2141) = (1 +0—— 9) [,ut-i—lt (1+0)— 2—9Mt+1|t—J]

Otift— Tiilt—

Riy1ye,e-40
I+ (1 - Rt+1|t,t—J) 0

= [Mt+1t + (,ut+1\t - Mt+1|t—J)]

and variance:

02 -
V? <l’t+1) = 0t2+1|t (1 + 0 — 2t+1|t 0)

Tt1jt—J

_ Uz€2+1|t
I+ (1 - Rt+1|t,t—J) 0

This gives us the result stated in Proposition 2.

B Upper bound on DE distortion

Suppose that we are interested in imposing an upper bound on the Smooth DE distortion.
Imposing such upper bound on the overreaction in the mean guarantees that both distortions
remain finite and non-decreasing as the ratio Ry p ¢~ goes to infinity. Thus, we propose
the following approach.

Let 0 be the desired upper bound of effective overreaction in conditional mean. By
effective overreaction we refer to the object defined in equation (14). As a first step, we
exploit the fact that the size of the distortion is increasing in [2;4 ¢ ,—s to find the threshold
value R, such that, for a given 6, for each Ritnje—g > R, the overreaction in the mean would

be larger than 0:

RO =
1+0(1-R)

It follows that the upper threshold in terms of Ry pje s is

— 1
R0 _L1+0

1+0 ¢
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Whenever Ry -y > R, we thus replace 8 with 6p, the value of @ such that the overre-

action in the mean is equal to 0. Thus, we solve:

Riinjte—i0r _ 7
1+ 0 (1= Repnjee—r)

and obtain:

0
Riynjes—g — 5(1 — Rysnje—s)

Plugging in Ay in the formulas for the overreaction in mean and variance, we obtain:

Or =

Rt+h\t,t—J
1+0gr (1 — Riynje—g

Ef (Tern) = tosne +0r ) (Mt+h|t - Nt+h\t—J)

Ef (Te4n) = fegnp +0 (,Ut+h\t - ,ut+h|t7J)

and

1
1+0gr (1 — Riynjte—g

= 1
V] (2e4n) = {1 +0 (1 —)} OFehli

Ryt hjei—g

Vg (Te4n) )Ut2+ht

Note that while the overreaction in the mean remains constant once Ryyp;,—s > R, the
overreaction in the variance keeps growing as relative uncertainty increases, but it converges

to a finite value: B
lim V? ($t+h) = |:1 + 0i| 0-t2+h|t

Ry h|t,t—g—00

C Overreaction to new information and Smooth DE

To further understand Smooth DE, we rewrite the distorted conditional mean and variance

in Proposition 1 as a function of the revised information, as follows.

Corollary 2 (A revision representation). The Smooth DE density of Proposition 1 can be
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represented as distorting the RE revisions in conditional mean and variance, as follows:

EE? (Teqn) — ftnjt—g = (ttesnge — fresne—g) (1+6) [14+60 (1 — Regnpee—s)] -

N /H,—/\

Vo ' Vv
Smooth DE revision RE revision BGS effect Smooth DE effect
0 o2
Vi (@e1n) t+hlt 1
2 - 2 [1 +0 (1 - Rt+h\t1t—J)]
O snlt—g Oishft—g ~ d
N—— N—— Smooth DE effect
Smooth DE revision RE revision

This representation indicates how the revision in conditional moments under Smooth DE
can be decomposed as having three parts: (1) the RE revision, (2) an overreaction effect
from representativeness as assumed in the standard BGS implementation of DE, and (3) a

separate and novel effect stemming from Smooth DE.

D News and uncertainty effects for the Normal density

In Figure 4, we study how news and uncertainty effects determine the overreaction of the
Smooth DE density relative to the true current distribution. To facilitate comparison with
Figure 3, we mark the coordinates corresponding to the reference mean and variance with
white pluses, and the coordinates corresponding to the current means and variances of each
scenario in Figure 3 with red circles. Panels (a) and (b) visually illustrate how the Smooth
DE mean and variance change as the posterior mean and variance change and confirm our
results in Corollary 1: Panel (a) shows larger overreactions for higher current variances and
Panel (b) highlights overconfidence for current variances lower than the reference variance
and underconfidence for current variances higher than the reference variance. Panel (c)
shows the news effect, measured in terms of the KL divergence of the current distribution
from the reference distribution. Interestingly, the KL divergence is large when the current
variance is low and there is a large shift in the mean. The news effect is large in that case
because we are moving probability masses of tail events under the reference distribution. In
contrast, the uncertainty effect is large when the current variance is high (Panel (d)). Panel
(e) shows that the uncertainty effect of higher current variance dominates the news effect,
so the overreaction of the Smooth DE density (measured in terms of the KL divergence of
the Smooth DE density to current density) is largest when there is a large shift in the mean

and an increase in variance.
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Figure 4: News and uncertainty in a Normal distribution
(e) Overreaction:

(a) SDE Mean  (c) News: KL divergence of posterior from prior (d) Uncertainty: Variance of posterior KL divergence of SDE from posterior
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Notes: The figure displays how, as we vary the posterior mean and variance, the following objects change:
(a) the Smooth DE mean, (b) the Smooth DE variance, (¢) the news component, measured using the KL
divergence of the posterior distribution from the prior distribution, (d) the uncertainty component,
measured using the posterior variance, and (e) the overall overreaction, measured using the KL divergence
of the Smooth DE distribution from the posterior distribution. We mark the coordinates corresponding to
the prior mean and variance with white pluses, and the coordinates corresponding to the posterior means

and variances of each scenario in Figure 3 with red circles.

E Signal extraction under Smooth DE

An important class of models emphasizing changes in subjective uncertainty belongs to the
large literature on Bayesian learning. In what follows, we show that Smooth DE can be
easily extended to this class of models.

Let us start with some more general notation, which connects to the one used in Definition
1. Consider the same probability space (€2, F, (Ft)i>0, P) introduced in Section 3.1. But
now allow for noisy information. In particular, let the information available up to time ¢
be represented by another filtration (G;);>0, generated by an observed process s;. Then let
f(z111]G:) be the conditional density function of X, based on the information available in
G; from the imperfect observations.

Like in Definitions 1 and 2, the representativeness of an event would then become

[ (Ze10]Gr)

7 GrenlGe) (38)

rep (/ft+h|gt, gt—J)
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while the conditional density distorted by representativeness is

12 (@en1Ge, Gimg) = | (@esn|G) [rep FinlGer Gion))” Z7 (39)

where Z is a constant of integration and the parameter > 0.
Smooth Diagnostic Kalman filter. To derive closed form solutions, we focus on a
standard Gaussian case of noisy information and maintain J = 1. In particular, consider a

standard state-space representation. The observation equation is:
s = 1y + &4, gr ~ N(0,02)
and the state transition equation for the unobserved x; is
Ty = PTe_1 + Uy, uy ~ N(0,02)

The Kalman Filter gives the Bayesian forecast, and its derivation is standard. The one-
step-ahead prediction from the period ¢ —1 estimate Z;_;;—; and its associated error variance

Yi—11—1 are given by
~ o ~ . E S 22 2
Tjt—1 = PLp—1|t—13 2utft—1 = P 2p—1ft—1 + Oy

Then, the estimates are updated according to

Ty = Ty + Ko(5¢ — Typ—a), K; =

0_2
S = {—} Srje-1- (40)

In this environment, we now derive the version of Kalman filter used by agents subject
to Smooth DE. This connects and extends the diagnostic Kalman Filter derived within the
standard BGS formulation in earlier work like Bordalo et al. (2019) and Bordalo et al. (2020).

Let f(x¢|G;) be the probability density of the rational, or Bayesian, period t estimate of
the current underlying state x; based on the Kalman Filter derived above. Intuitively, by
equation (38), a state x; is more representative if it becomes more likely relative to the ¢t — 1
forecast. As in our discussion of equation (9), the key feature with respect to the original

BGS formulation is to condition on the whole past information set, and as a result, to take
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into account the associated uncertainty.

Let the ratio of current to prior estimation uncertainty under RE be denoted as
Rt\t,tfl = Et|t/2t|t71-

We derive the following result.

Proposition 10 (Smooth DE Kalman Filter.) The density f° (z:|Gi, Gi_1) in equation (39)

has a Normal distribution with mean

Ryjp 10
1+ (1 - Rt\t,t—l) 0

Ef (l‘t) = jt\t + (jt\t - i‘t\tfl) ) (41)

and variance

(42)

Proof. Re-writing the expression (39):

1 ~ 2
1 exp [_mm (0 — ye) ] 1

- :
224t exp [— 223‘%1 (2 — jtlt—l)Q] Z

12 () o< exp {—

Collecting the terms in the exponents, we get:

1 N2 X - 2| 1
O (z,) xe {— [1—1—9 Ty — T — 0 (xy — Ty ”—
fi () Xp 251 ( )( t tlt) S ( t tlt 1) 7

Developing the squared terms and keeping track of the terms involving z;, we obtain:

_ 1 _ P
2844 (1 +0 Zt\t—10> 1

f2 (z) o exp -1 - -
! {xf — 2y <1 +6— %9) ((1 +0) Ty — zji‘t 93:“_1>] 4

where the remaining terms are absorbed in the constant of integration. The one above is
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the kernel of a normal with mean:

y -1 )
EY (z;) = <1 40— E—t'te) ((1 +0) i~ 5 te ezﬂt_l)

tlt—1 tlt—1
~ Rt\tt—19 ~ ~
= Tyt + : Tyl — Telt—
t|t 1+ (1 — Rt|t,t71) 9 ( tt tt 1)
~ Rt|tt—19 ~ ~
=Ty + [ 1+ 2 — Ty
Ttjt—1 < 1t (1 _ Rt|t,t71) 0 (iUt\t Tyt 1)
- Rt|tt—19 ~
=T+ | 1+ : Ki(sy — Zy—1),
tlt—1 < 1+ (1 — Rt|t,t71) 9 t( t tlt 1)

where Ry ;-1 = Xy¢/2y¢—1 and in the fourth line we used (E), and variance:

This gives us the result stated in Proposition 10. m

Like in our earlier general discussion, we observe overreaction of the conditional mean
when 6 > 0 and the new information does not fully resolve uncertainty, i.e. when ¢ > 0.
Furthermore, similarly to the earlier AR(1) example, this environment is also characterized
by a conditional reduction in uncertainty, and therefore by overconfidence. Indeed, as long
as o2 is finite, by equation (40) estimation uncertainty decreases over time, as the new signal
is at least partly informative. It follows that the ratio R;;,—; < 1,V? and that given equation

(42), subjective uncertainty is lower than Bayesian estimation uncertainty, i.e. V¢ (z;) < Sy

F Proofs for the business cycle model

F.1 Proof of Proposition 4

First, consider the equilibrium individual policy functions. To characterize dynamics we use
a log-linear approximation of decision rules around the steady state. We take logs of the

optimality condition with respect to hours in (28) and constraints (26) and (27):

nhit = Ei¢ [=7C 41 + Zits] s

Vit = Zig + hir—1 = Ciy.
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Substitute the constraints into the labor supply condition:

77hi,t = Ei,t [—’Y/C\i,tﬂ + /Z\z’,tﬂ]
=K, [—7 (/Z\z‘,t—i-l + hi,t) + 2¢,t+1]

hi,t = mEi,t [Zi,tJrl]
1—v

= m [PAAt + Ziz‘,t+1\t]

1—7
= — Ap + 84 .
1 ’Y[pA t ,t]

Equating the coefficients we obtain the equilibrium elasticities.

Next, consider aggregate variables. Note we have

1 1 1
/ Siﬂgdi == 0, / /Z\i’tdl’ == At + / a@tdz’ = At,
0 0 0

by law of large numbers. Then

1 1
Ht = / hz‘7td'l. = EpAAt + 5/ Si7td/l.
0 0

= epa
R 1 1 1
}/; :/ ?Ji,tdi :/ /Z\i,tdi +/ hi7t_1d'i
0 0 0
=A+ Hi,
- 6,5.

F.2 Proof of Proposition 5

Note we have

1 1 1 1
2 -2 2 2 2 - 27, 2 2
/ Si,tdZ =0, / ua,i,tdZ = Ogt—1> / ai,tdl - / (Si,tfl + U’a,i,t) di = oy + Oat—1-
0 0 0 0

Then
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which is constant. Next consider the cross-sectional variance of output:

/01 <§i’t - 1/}t)Q di = /01 <<At +a;t "‘ﬁi,t—l) — <At + ﬁt—1)>2 di
= / 1 (s +e8i4-1)" di
0

1

2 .

= / (Sit—1 + Uqip +€Sip—1) di
0

1 1

=(1 +5)2/ sitldi—i—/ ul; di
0 0

=(1+ 5)2 ‘73 + Ug,t—lv

2

which is increasing in o7, ;. It follows that the cross-sectional variance of consumption:

1 2
~ ~ : 2 2 2
/ (Cz’,t - Ct) di=1+¢e)" o +0,, 1,
0
is increasing in o2, _; as well.

F.3 Proof of Proposition 6

First, consider the equilibrium individual policy functions. As in the RE solution, to charac-
terize dynamics we use a log-linear approximation of decision rules around the steady state.
We take logs of the optimality condition with respect to hours in (29) and constraints (26)
and (27):

70 __ o ~RE ~
nhiy =Eiy [—WCz’,tH + Zz‘,t+1}

~ _ = 70 9
Yig = Zig + hi,t—l = Ciy
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Substitute the constraints into the labor supply condition:

nh” =1+ as,th)Ez’,t [—’Ygfgﬂ + /Z\i,t+1} - gt,thEi,th [—’Y/C\ft]i + g\i,tﬂ}
nhzt =(1+ @,t—J)Ez‘,t [_7 (Z‘,tﬂ + Eft) + /Z\i,t+1i|
— et,t—JEi,t—J [ ¥ <Zz t+1 T h ) + /Z\z‘,t-i-l]
[77 + (1 + @,td) ’Y] h?t (1+ t9tt 7)1 =7)Eiy [Zi441] — é/t,th (1= E;—y [Zi1] + é;,thW]Ei,th [ﬁfﬂ
[ (1 B ) 9] B = (14 Bug) (1= 9) Ioad + s:]
) Pix
(1-

oy (1 =) pit Ay + 0y [ep T A )]

~ 146, 140, ) (1—
h?,t: (1+64—g) )pAAt+( + Ot JZ( 7)8“
n-+ (1 + 91&,th) Y n—+ (1 + 91&,th) Y
0, 1—
- i in { fq P,{;—HAt—J,
77‘|‘<1+9t,t—J>’7 n+y

where the effective diagnosticity parameter @,t, s is given by (32). Equating the coefficients
we obtain the equilibrium elasticities. Asin the RE economy, we obtain equilibrium aggregate

variables by simply aggregating the individual policy functions.

F.4 Proof of Proposition 7
Consider Ry 14— s:
Vit (—’YEZI-?EH + /Z\i,tJrl)
Vii—g (—V/C\ftﬁ1 + 31‘,t+1)
Vit (—’Y </Z\i,t+1 +/ﬁ?,t> + /Z\z’,t+1>
N Vit (—’Y </Z\i,t+1 +EﬁE> + 2i,z&+1>
Vit ((1 =) Zigr1 — VE?,t)
Vigs (1= 7) Fivr —1BEF)

Riy1jt—g =

where the numerator is

~

Vit ((1 — ) [pads + a1 + Sip + Uagpr1) — Vh?,t> =(1-7)?(c% + o2)

which is increasing in 0 . Thus R4 1~y and in turn 9“ J are increasing in 02
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F.5 Proof of Proposition 8

: . . : . 146, 7)(1—
First consider the cross-sectional variance of hours. Defining £?, = %, we have
’ n tit—J)Y

1, 2 1 ) , [
/ <hf}t—Hf> di = / (% si0) " di = (2,) / 52,di
0 0 0

_ (1+5t,t—J)(1_7) 2
n+ (1 + et,tﬂi> Y

which is increasing in 6;;_;. Next consider the cross-sectional variance of output:

1 N2
| -7y
7
1 — ~ 2
:/ ((Actase+ 1) = (Ac+ 7IL,)) ai
0

1
9 2 .
= / (Sz‘,t—1 + Uiz + €S,t_18i,t—1) di
0
2

(1+§t,t—J)(1_'Y) 2 2

1 + ~ Os + Ua,t—l
n+ (1 + Qt,t—J) Y

which is increasing in 6,, ; and o2, ;. It follows that the cross-sectional variance of con-

sumption:

2

! o\ 2 140, 5) (1 -
/ (5191,/ - Cf) di | 1+ L Jl( 2) o} + Ug,t—1
0 n+ (1 + 9t,t—J> Y

is increasing in 0;;_; and o2, ;| as well.

F.6 Proof of Proposition 9

First, we solve for the log-linearized RE decision rules under the tax policy. The optimality

conditions are

n/ﬁi,t =K [—7Cits1 + Atp1 + (1 — T)a; 141
Vit = Zit + Ei,t—l

Cig + Tt = Yig-
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Substitute the constraints into labor supply conditions:

nhiy = Ei [ + A + (1 — 7)ag 41]
=E;, [—7 (At+1 + (1 —7T)ai41 + ﬁzt) + A+ (1 —7)aie

> L=~ I -~
hiy = mEz ¢ [Aia] + m(l —7)E; s [a41]
1 —
= T 7 [pAAt + (1 = 7)1y
1—
= A+ (1 —1)s;
1 + ~ [PA ¢+ ( )Sit]

Equilibrium output and consumption follow immediately as

/y\it:/z\it"f'ﬁit—l:At_’_ait"'/fzi,t—h (43)
Cit =Yz — Ty = A+ (1 —T)a;; + ﬁi,t—l- (44)

Next, consider the log-linearized SDE decision rules under the tax policy. To characterize
dynamics we use a log-linear approximation of decision rules around the steady state. The

optimality conditions are

= Eft [ 1t+1 + A1+ (1= T)aigs]
yzt - th + hzt 1

E?,t +Tai = /y\ft
Substitute the constraints into the labor supply condition:

77h2 =0+ a,th)Ei,t [—vﬁfﬁl + Appr + (1= T)age] — gt,tf.IEi,th [—’YEE”EA 4+ Apr + (1= 7)ag 1]
nhl, = (1+60p—1)Ei [—7 (At+1 + (1= T7)ai +/ﬁ?,t> + A1+ (1 - T)ai,tJrl}
— 9t,t—JEi,t—J {*’Y (At+1 + (1 —=7)ai 41 +?lf%tE) + A+ (1 T)ai,t+1]
[+ (14 8 ) ] By = (14 Bram) (1= ) B [Agga + (1= Paiaa]
- gt,tﬂl (1= E;1—g[At1 + (1 — T)aj 1] + et,th'VEi,th {ﬁﬁf}
[+ (1 B ) 1] B = (U4 B s) (L= ) [oads + (1= 7)si]
— Oy (1—7) AT A+ gt,th’Yf?P;{;HAth
70 _ (14 00—5) (1 —7) (1+§t,t—J)(1*’Y)(1
it = = b~
+ <1+9t,t—J)7 + (1+0t,t—J) v

0.4 1—
bt ~J77 2 P]JrlAth,
T A
77+<1+9t,t—J)’Y Ul

paA: + —T)Sit

o4



where the effective diagnosticity parameter 5,5775_ s is given by (32).

Consider Ryq1)44—7:
Vi (=7C8E + A + (1= T)aisa)
Viges (—7veEE + Apr + (1= 7)ai 1)
Vi <—’Y (At+1 + (1= 7)ai41 +/H?,t> + Appr + (1 = T>ai,t+1>
- Viig <—7 (At+1 + (1 = T)ai1 +ﬁftE) + Ap + (1 — T)ai,t+1>
Vi <(1 =) (A + (1 = 7)aie4) — V/fzf,t>
Vi (U= ) (e + (1= Dages) —1AEF)

Rt+1\t,th =

where the numerator is

Via ((1=9) lpads + waper + (1= Psia + (1= Daioer] =70, )

= (1= (3 +(1-7)02,).

which is increasing in o2, but also a change in ¢2, have a smaller impact when the pro-
gressivity 7 is higher. Thus a higher 7 is associated with a smaller increase in ;41— and

9t,th-
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