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Abstract

Recent years witnessed a sharp rise in robot stock and industrial patents, in

contrast to the reduction in fertility in many countries. To properly investigate these

developments in the long run, we build a two-sector Diamond-type Overlapping

Generations Model (OLG) with endogenous R&D-based growth, fertility, education,

and skill differentials. Our paper contributes to the literature by (1) incorporating

capital-complimentary technological change and education quality assessment to the

OLG, (2) highlighting the significance of spillover effects from the high-skilled to

the low-skilled sector, and (3) explaining the potential U-shape of skill premium.

The model predicts fertility tends to decline further because parents must race with

smarter machines by spending more on children’s education; skill premium tends to

rise to reward high-skilled workers, while the ratio of truly high-skilled individuals

may decline in the near future. Our simulation exercise for the Japanese economy

(from 1975) can confirm these trends with reality. Furthermore, depending on the

strength of the spillovers, different states of equilibrium are realized, with high or low

growth and high or low skill premium. An important implication from the paper

is that policymakers should focus on enhancing the spillover effects by providing

training to the low-skilled sector amid the rise of technology.
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1 Introduction

Recent developments in automation technologies have transformed the production pro-

cess and how people work. Machines are now replacing many repetitive tasks in man-

ufacturing factories (Schwab, 2017). Society also has fewer people performing those

tasks, necessitating the R&D in industrial robots that can replace humans (Acemoglu

and Restrepo, 2022). In many industrialized countries, the increased stock of robots

has moved in sync with the decrease in fertility rate, as depicted in Fig. 1. We be-

lieve this trend results from a reciprocal relationship between machines and fertility. In

particular, in order to help their children win the race against the machines, parents

tend to increase spending on education, which would be more affordable by having fewer

babies. Consequently, the economy experiences less human labor, which necessitates the

demand for more machines in production. The rise in education spending also increases

the proportion of high-skilled labor, which can be used to create more intelligent robots

with a broader range of variety. While it is true that machines are gradually replacing

manual labor in many tasks, it is also important to acknowledge that people can adapt.

In other words, while being suppressed by robots or machines, people can switch jobs

to industries that have not been automated; or train themselves to use new technologies

to improve their earnings. This paper looks into this possibility where a portion of

technology can be transferred from the high-skilled to the low-skilled. The transfer can

be understood in 2 mechanisms. The first is on the intensive margin, where technology

spillovers increase workers’ productivity. For example, thanks to the availability of the

internet and smartphones (inventions of the high-tech sector), people can look for infor-

mation, learn and train themselves, regardless of skills. The second is on the extensive

margin, where technology generates new jobs in the low-skilled sector simultaneously

with the jobs or tasks newly created in the high-skilled sector.

Figure 1: Operational Stock of Industrial Robots (Source: IFR) and Total Fertility Rate
(Source: WB)

It is important to note that automation processes, machine learning, or the Internet

of Things (IoT) have only been developed and applied in the last 10 to 15 years. There-
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fore, it is difficult to predict precisely how technological advancement will affect the

distribution of wealth in the long run. There are two missing elements in the current

literature that require further investigation. First, due to the particular short-run of

data, most seminal papers concerning the effects of automation on skill-induced income

differentials work almost exclusively with the production function, such as Krusell et al.

(2000), Acemoglu and Autor (2011), Lankisch et al. (2019), Acemoglu and Restrepo

(2022). We think including a micro foundation in this framework is essential to explore

long-run effects. Second, it is natural that production will become more skill-biased

(Acemoglu and Restrepo, 2018) because people need to learn more sophisticated abili-

ties to master or control the new machines/technologies. In this way, high-skill workers,

mainly those with a university degree or higher, tend to gain certain benefits because

they have more exposure and adaptability to these new skills. Low-skill workers, espe-

cially those without a college degree, on the other hand, can only perform manual tasks,

and most of them do not have enough necessary skill sets to compete with high-skilled

workers. As a result, as more machines are adopted more rapidly, the real wage of

low-skill workers will be suppressed because these machines are naturally skill-biased,

leading to a rise in the skill premium.

That being said, empirical studies show that interpreting the movement of skill

premium can be tricky as it varies across countries (Parro, 2013). In the same period

from 1990 to 2005, some countries, such as the US (Acemoglu and Restrepo, 2021), and

the UK (Dupuy, 2007) experienced a surge in the skill premium, whereas others saw a

reverse course, such as Japan (Hara et al., 2014; Kawauchi and Mori, 2014), France (de la

Croix and Docquier, 2007), or South Korea (Lee, 2017). While litigation, unionization,

and employment protection play decisive roles in affecting the skill premium, there is

a possibility that such disparities among countries are the result of to which extent

low-skilled workers benefit from technological advancements created in the high-skilled

sector.

First, as shown in Lee and Clarke (2019), the high-tech sector has a positive job

multiplier, where each of ten new high-skilled jobs generates around six non-tradeable

service jobs that go to low-skilled workers. The new service jobs often include raw data

inputters, janitors, construction workers, and security guards that do not require de-

cent education and rely heavily on human-to-human interactions or situational adapt-

ability (Autor and Dorn, 2013). Even inside high R&D intensive firms, low-skilled

services are still needed and see their wage improved (Aghion et al., 2018). Second,

many self-employed jobs nowadays, such as e-commerce retailers, video streamers, or

influencers (grouped by the term “unincorporated entrepreneurship”) require only in-

expensive equipment such as a smartphone, a computer, and specialized software, of

which prices are often free or reasonably low thanks to competition. One prime ex-

ample is Japan. As depicted in Fig.2, the prices of information and technology-related

commodities have decreased dramatically in Japan since the 1980s. Therefore, it is

reasonable to assume that substantial spillovers can be expected because electronic and
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smart devices have become more affordable. As a result, in the risk of AI, it is easier

for individuals to adapt and use these digital tools to improve job security Fossen and

Sorgner (2018, 2022). Overall, in the presence of a trickle-down effect of technology, if

knowledge transfer is viable and low-skilled workers know how to exploit the spillover

effect from technology, they can improve their productivity and earnings, although by

a smaller margin compared to the high-skilled individuals.
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Figure 2: Price Indices of IT-related goods in Japan (Source: Statistics Bureau of Japan)

Note: Recreational durable goods include: computers, tablets, cameras, TV sets, etc. Communication
includes mobile phones and related services. Price indices are 2020-based.

To explore the possibility of technology spillover and analyze the long-term effects

of automation where machines complement high-skilled labor more than low-skilled, we

build a modified Diamond (1965)-type OLG model. Household education and fertility

choices are endogenized based on the frameworks from Galor and Weil (2000); de la

Croix and Doepke (2003); Hirazawa and Yakita (2017). To account for the skill dif-

ferentials, we use the two-skill type canonical model in de la Croix (2012). However,

the original model does not include an evaluation of education quality, which is crucial

since acquiring advanced skills is becoming more important in a highly-automated so-

ciety. Our contribution to this line of literature is to introduce a technology-discounted

education, where the quality of any educational expenses is subject to the state of ma-

chine intelligence at that time. Regarding intergenerational transfer, our model assumes

that parents’ expenditure is the sole source of education funding, determining whether

an individual will become high-skilled or low-skilled. This result is theoretically and

empirically supported by Anger and Heineck (2010); Becker et al. (2018).

For the production function, it is essential to acknowledge the existence of two litera-

ture trends. The first is the skill-biased technological change led by Autor et al. (1998);

Acemoglu (2002) where capital tends to substitute labor (in a task-based approach),

which reduces the demand for low-skill labor and, in effect, raises relative demand for

skilled labor. The second trend is the capital-complimentary technological change where

Krusell et al. (2000) argues that the skill premium rises because capital favors those with
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high skills, shifting the demand for high-skill workers directly. We based our assumptions

on the latter, where capital complements high-skilled labor more than low-skilled labor,

similar to Kimura and Yasui (2007); Chen (2010)1. In the end, the rise of machines and

sophisticated software should benefit those who can exploit them by way of program-

ming and be able to perform skills-demanding tasks. In this regard, our framework is

similar to Lankisch et al. (2019); Gasteiger and Prettner (2022). However, to account

for the adaptability and technology spillovers in the low-skilled sector, we use a 2-sector

production function in an endogenous-growth OLG framework similar to Eicher (1999);

Kitagawa and Shibata (2005); Sachs et al. (2015). It still preserves the capital-skill

complementary aspect as in Lankisch et al. (2019) but allows for a more accessible and

tractable analysis. Finally, since a high-skilled population also affects the progression of

machines’ evolution, we endogenize growth by integrating an R&D sector that develops

new varieties of machines (Romer, 1990; Jones, 1995). This endogenous growth feature

has been implemented in an OLG framework, notably Chou and Shy (1991); Hashimoto

and Tabata (2016); Futagami and Konishi (2019); Prettner and Strulik (2020) where

past technology and researchers are the engines of innovation. The bottom line is that

our model captures the integrated and endogenous effects of fertility, innovation, and

skill differentials while considering their long-term implications on growth.

The contributions of our paper are as follows. First, the model presented here is

one of a few attempts to capture a rich economic environment with 2-sector endogenous

growth, fertility, and education decisions inside an overlapping generations framework.

Second, we contribute to the current line of literature by considering an evaluation

of education investment (where quality education is reflected by a race with the rise

in machine variety) and spillover effects from the high-skilled sector to the low-skilled

sector. By doing so, interesting dynamics during convergence to the steady state emerges

that are worth examining. Third, the model captures Japan’s economic and demographic

development reasonably well. As a result, we can draw some important implications for

the progression of Japanese society in the future.

Similar to the unified growth framework (Galor, 2005), our results highlight that en-

dogenous fertility and education are essential to capture the long-run effects of technolo-

gies because households adjust their demographic choices, even more so in an environ-

ment where machines compete with low-skilled individuals. Furthermore, the spillover

effect from the high to low-skilled sector plays an important role. An economy with high

spillovers generates a higher growth rate and wealth, narrowing the gap between high-

skilled and low-skilled. In contrast, a low-spillover economy keeps widening the skill

premium by allowing no technology advancement to be tricked down to the low-skilled

sector. Consequently, when fertility and education are considered, such an environment

is more likely to hamper growth in the long run since there will be substantial shortages

in the supply of high-skilled individuals (of which a portion comes from low-skilled fami-

lies) and in the supply of capital (since low-skilled workers’ low savings cannot contribute

1A comparable production function of this type has been used by Galor and Weil (1996)
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sufficiently to the stock of capital input).

The paper proceeds as follows. In the next section, we present the theoretical frame-

work for the model. Section 3 analyzes the equilibrium dynamics and long-run steady

states for variables of interest. In section 4, we perform numerical simulations to high-

light the results. The benchmark model is calibrated to the Japanese economy, followed

by counterfactual simulations to investigate the influence of technological spillovers.

Finally, section 5 concludes, discusses the important implications of the model, and

suggests future extensions.

2 The Model

2.1 Final Good Sector

Production is akin to Eicher (1999), Chen (2010), and Sachs et al. (2015). There are

two final goods, Y L
t , which uses primitive technology requiring only low-skilled labor L,

and the high-tech good Y H
t , which uses high-skilled labor HY

t augmented by machines

X and advanced technology A. Here, the technology is represented by an expansion of

machine variety. The production function for each sector is

Y L
t = Aν

t−1θLt, (1)

Y H
t = (HY

t )1−α

∫ At

0
(Xi

t)
αdi, (2)

where θ indicates how effectively the primitive sector can utilize Aν
t−1. We called this

“degree of absorption”, which is also helpful during the simulation process. Another

innovation of the paper is to consider a spillover of technologies, or ideas, from the

high-tech to the primitive sector, represented byAν
t−1. Due to obsolescence, only At−1,

the latest technology that can be competitively produced, is available for free use. This

assumption is natural because monopolistic power in the high-tech sector tends to evap-

orate after one period, effectively making it a public good thanks to competition. The

parameter ν ∈ [0, 1], on the other hand, represents the “degree of spillover” – to what

extent the technology used by the high-tech sector can be educated to the low-skilled

sector. If ν = 1, all the latest competitively produced ideas can be transferred to the

low-skilled sector. A ν = 0 indicates that no technological progress will be available to

the lower sector, or a negative ν implies a negative spillover effect on this sector. To

keep the model simple, ν is assumed to be 1 for the remainder of the analysis. We will

briefly relax this assumption in the numerical simulation section to see its implications.

On the other hand, the high-tech sector uses high-skilled labor Ht with a continuum

of machine-making firms Xi
t , indexed from 0 to At. This treatment is similar to the

intermediate-good sector often seen in the endogenous growth framework. Unlike its

primitive counterpart, this sector can immediately exploit and gain beneficial produc-

tivity from the latest technological developments.
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The aggregate production function is simply

Yt = Y L
t + Y H

t , (3)

which exhibits constant returns to scale. Assume that the two goods have the same

price and are normalized to 1; the profit of the final good sector is:

πY
t = Yt − wH

t HY
t − wL

t Lt −
∫ At

0
pitX

i
tdi.

Input prices are determined as

wH
t =

∂πY
t

∂HY
t

= (1− α)(HY
t )−α

∫ At

0
(Xi

t)
αdi, (4)

wL
t = Aν

t−1θ, (5)

pit = α(HY
t )1−α(Xi

t)
α−1. (6)

This specification assumes that when the variety of machines increases, technologies

mainly benefit high-skilled workers first, as the wage for high-skilled (4) increases with

machines’ variety. In contrast, low-skilled workers must wait until such technologies

are readily available to the masses under perfect competition to utilize them – a “low-

hanging fruit” problem (Cowen, 2011). In other words, technological advancement is

complementary to high-skilled labor. This implication, therefore, still preserves the

qualitative importance similar to Prettner and Strulik (2020), without too many com-

plications in the production function.

2.2 Machine Sector

For simplicity, we assume that all capital is used to make machines. The machine-making

sector is comprised of competitive vintage firms and monopolistic novel firms. Every

period, several novel firms arise with new types of machines that augment high-skilled

labor, and by doing so, they gain a monopolistic profit temporarily. The structure of an

OLG model allows us to assume that a firm can only retain its monopolistic power for

one period (approximately 25 – 30 years). After that, the product can be competitively

produced and earn zero profit. This is particularly true given that new ideas (especially

in software development) can be replicated given enough time after the products are

first introduced on the market. The production is linear so that one unit of machine

requires one unit of capital i where

Xi
t = Ki

t , (7)

so the profit function of producing machine i is

πi
t = pitX

i
t −RtK

i
t . (8)
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where Ki
t is the amount of capital needed to produce Xi

t , p
i
t is the price of selling Xi

t

units of machine i, and Rt is the capital rental rate firms pay to the capital owner.

For vintage firm i ∈ [0, At−1], machines are competitively produced such that profit

earned is zero where

pit = Rt for i ∈ [0, At−1].

Equating (6) to Rt yields the output of these firms as

Xi
t = HY

t

(
α

Rt

) 1
1−α

for i ∈ [0, At−1]. (9)

For novel firms, i ∈ (At−1, At], machines are monopolistically produced such that their

inventors earn some monopolistic profit, obtained by plugging (8) into (6)

πi
t = α(HY

t )1−α(Xi
t)

α −RtXt. (10)

Maximizing profit implies the FOC

∂πi
t

∂Xi
t

= 0 ⇔ α2(HY
t )1−α(Xi

t)
α−1 = Rt,

so their price and output are set as

pit =
Rt

α
, Xi

t = HY
t

(
α2

Rt

) 1
1−α

for i ∈ (At−1, At]. (11)

Thus, profit per invention is obtained by plugging (11) into (10)

πi
t =

(
Rt

α
−Rt

)
Xi

t = (1− α)α
1

1−α

(
α

Rt

) α
1−α

HY
t . (12)

The total profit of this sector is

πt = △At−1(1− α)α
1

1−α

(
α

Rt

) α
1−α

HY
t ,

where △At−1 = At − At−1. All profits will be transferred in the form of dividends to

the capital owners (the old and retired individuals) to fund innovation.

2.3 R&D sector

We assume that the R&D sector innovates and creates new varieties of machines by

employing researchers (Romer, 1990). To achieve an analytical result, we use Jones

(1995)’s specification, assuming that the production of new machine variety follows

△At−1 = At −At−1 = δAϕ
t−1H

R
t , (13)
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where ϕ ∈ [0, 1] represents the past research’s externality. As is common, we assume

that ϕ < 1 captures the duplication of effort (new knowledge does not necessarily add

substantial improvement to the existing stock) and eliminates the scale effects from past

research ideas. The profit gained from selling inventions of the R&D sector are

πA
t = △At−1πt − wR

t H
R
t . (14)

Substituting (13) into (14), we have the problem for an innovator

max
HR

t

πA
t := δAϕ

t−1H
R
t (1− α)α

1
1−α

(
α

Rt

) α
1−α

HY
t − wR

t H
R
t . (15)

s.t. HR
t ≥ 0 (16)

Assuming that δ, At−1 is large enough such that the solution for HR
t is interior and

πA
t > 0, the optimal choice of researchers is taken by differentiating (15) with respect

to HR
t and set it to zero so that

δAϕ
t−1(1− α)α

1
1−α

(
α

Rt

) α
1−α

HY
t = wR

t ,

which implies that

HY
t =

wR
t

δ(1− α)α1/(1−α)Aϕ
t−1

(
α
Rt

) α
1−α

. (17)

In this case, the variable HR does not appear in the first-order condition, which means

that the optimal value HR does not directly depend on nor affect the condition for

profit maximization. So long as the number of research labor is positively employed,

any additional units of such research labor will contribute to the maximization of the

innovator’s profit. The productivity of HY is non-linear, but HR is, while the wage

paid to high-skilled workers is the same, so at first, it is optimal to employ HY rather

than employing the first unit of research labor. Until the marginal productivity of HY

is equal to wage (in other words, the amount of HY demanded by equation (17)), then

the rest of the high-skilled labor will be allocated to research labor. For the rest of

the analysis in this paper, we set initial conditions of δ, At−1 high enough so that the

high-skilled labor will be allocated to both final good production and research activities.

As HY and HR are both drawn from the pool of high-skilled labor H, Eq.(17) will help

us first determine the optimal allocation of HY
t ; then we can derive the research labor

HR
t given Ht at any given time.

2.4 Household

Following a simplified version of de la Croix (2012), we assume that there are two types

of agents, low-skilled (L) and high-skilled (H) indexed by j so that j ∈ {L,H}. Parents
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care about the number of children (quantity) and their educational level (quality). An

agent lives for three periods: childhood, adulthood, and old age. All decisions are

made during adulthood when they optimize their consumption path and the quality

and quantity of children. During childhood, agents receive educational investment from

parents, which will decide the type of worker they become. Savings during adulthood

will be spent to finance consumption of old age since they do not work in this period.

The time structure of an agent born in time t follows Table 1.

Table 1: The model’s time structure

Generation i &
Period t t=1 2 3 → . . . t = ∞

i=0 old
1 adults + kids old
2 adults + kids old
3 adults + kids old
...

...
...

...
...

↓
...

...
...

...

An agent of type j maximizes the following utility function

max
cjt ,e

j
t ,n

j
t

U j
t = ln(cjt ) + β ln(djt+1) + γ ln(Πj

t · n
j
t ), (18)

where cjt , d
j
t+1 are consumptions of parents of type j when young and old. The parame-

ters β and γ are subjective discount factors weighting consumption and having children

(altruism), nj
t is the number of children, and Πj

t denotes the probability that a child

becomes a high-skilled worker. Given a level of education investment ejt received from

parents, that probability is determined by

Πj
t = µj

(
ejt + ē

At

)η

, (19)

where ē is the default education available from the society so that a child still receives at

least some certain amount of education even if there is no investment from parents. The

parameter µ represents the intergenerational transmission of human capital, specifically

µH > µL. Intuitively, children of high-skilled parents will be more likely to become high-

skilled than children from low-skilled families. One innovation in this paper is that the

value of education is weighted by the number of robots’ variety At. This specification

is important because when robots become more capable of doing jobs that used to be

done by humans, workers must learn more skills to stay ahead. Intuitively, it reflects

the quality of education expenses. Finally, parameter η ∈ (0, 1) governs the curvature

of the skill conversion.
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Household budget when young is

wj
t (1− ρnj

t ) = cjt + sjt + ejtn
j
t + εnj

t , (20)

where wj
t , c

j
t , s

j
t , n

j
t are the wage rate, consumption, saving, the number of children, ε

and ejt are the good cost of childrearing and education cost per child of a parent of type

j. The parameter ρ ∈ [0, 1] is the time cost of having children. The budget during old

age is

djt+1 = Rt+1s
j
t . (21)

The problem for a household of type j is to maximize (18) subject to (19), (20), (21)

by choosing the optimal sjt , n
j
t , e

j
t . The solutions are summarized as follows.

Proposition 1 (Household problem). The optimal decisions for an agent of type j are

cjt =
1

1 + β + γ
wj
t , (22)

sjt =
β

1 + β + γ
wj
t , (23)

djt+1 =
β

1 + β + γ
Rt+1w

j
t . (24)

If wj
t ≤

ē− ηε

ηρ

ejt = 0, (25)

nj
t =

γwj
t

(1 + β + γ)(ρwj
t + ε)

. (26)

Otherwise, if wj
t >

ē− ηε

ηρ

ejt =
η(ρwj

t + ε)− ē

1− η
, (27)

nj
t =

(1− η)γwj
t

(1 + β + γ)(ρwj
t − ē+ ε)

. (28)

Proof. See Appendix A. ■

The results are standard compared to other endogenous fertility and education mod-

els. For parents with sufficient income, education expenses will increase with earnings.

On the other hand, for parents with low enough income, it is optimal to not spend at

all on their children’s education. Regarding fertility, we can state the following result.

Proposition 2. For sufficiently high-income parents, fertility is negatively affected by

income if 0 < ε < ē, and if parents’ income is below the threshold level, fertility increases

with income.
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w = e

fertility - parents' income

wt

e t

w = e

education - parents' income

Figure 3: Children quantity-quality trade-off

Proof. Differentiating (28) with respect to wj
t for wj

t >
ē− ηε

ηρ
yields

∂nj
t

∂wj
t

=
(1− η)γ

(1 + β + γ)
· ε− ē

(ρwj
t + ε− ē)2

< 0 as long as ε < ē.

Differentiating (26) with respect to wj
t for wj

t ≤
ē− ηε

ηρ
yields

∂nj
t

∂wj
t

=
γ

(1 + β + γ)
· ε

(ρwj
t + ε)2

> 0 as long as ε > 0.

■

We impose the following condition on parameters to ensure the qualitative result of

Proposition 2.

Assumption 1. The good cost of children is positive and smaller than the default edu-

cation 0 < ε < ē.

Assumption 1 is essential to guarantee that the model exhibits the children’s quality-

quantity trade-off for parents with sufficiently high income, as depicted in figure 3. Under

a low enough wage rate, the choice of education is at the corner (et = 0), and there is

a positive relationship between fertility and income. Very low-income parents cannot

afford childcare and tend to have fewer children. As earning improves, so long as they

do not have to spend on education, parents can finance the childcare cost to have more

children. This part of the result is qualitatively similar to Galor (2005). However, such

a relationship is reversed after the income level surpasses a certain threshold where the

education choice is an interior solution (et > 0). The child quantity-quality trade-off

begins. Parents sacrifice to have fewer children in order to spend more education on

each one of them. For parents in this income range, the portion of time forgone to raise

children is relatively more expensive than for lower-income parents. Such opportunity
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costs and pressure from education expenses create an inverted relationship between

income and fertility for high-earning parents. This result, in general, is qualitatively

consistent with Doepke (2004); Strulik et al. (2013).

From here, it is convenient and easy to show that the fertility choice is always

bounded from above.

Lemma 1. For high-income parents, the maximum fertility choice is

nH
max = lim

wH
t →w̄

=
γ

(1 + β + γ)ρ

(
1− η

ε

ē

)
,

and the minimum fertility choice is

nH
min = lim

wH
t →∞

=
γ

(1 + β + γ)ρ
(1− η).

By Assumption 1, it is guaranteed that nH
min < nH

max.

3 Equilibrium

3.1 Intertemporal Equilibrium

To determine the allocation of high-skilled (which proportion goes to final-good produc-

tion, which proportion goes to R&D), we impose a non-arbitrage condition across wages

for high-skilled

wR
t = wH

t . (29)

The labor market clears where

Lt = (1− ρnL
t )N

L
t , (30)

Ht = (1− ρnH
t )NH

t . (31)

The high-skilled labor market clears such that

HY
t +HR

t = Ht. (32)

And the capital market clears as∫ At

0
Xi

tdi =

∫ At−1

0
Xi

tdi+

∫ At

At−1

Xi
tdi = Kt. (33)

Let us solve the capital market clearing condition first. Using (9) and (11), we can

write (33) as

HY
t

(
α

Rt

) 1
1−α [

At−1 +△At−1α
1

1−α

]
= Kt. (34)
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From here, we obtain the endogenized interest rate as

Rt = α

 Kt

HY
t

(
At−1 +△At−1α

1
1−α

)
α−1

. (35)

Similarly, the total output from the intermediate sector is derived as∫ At

0
(Xi

t)
αdi = (HY

t )α
(

α

Rt

) α
1−α [

At−1 +△At−1α
α

1−α

]
. (36)

We now solve the labor market. First, the non-arbitrage condition implies that

wR
t = wH

t = (1− α)(HY
t )−α

∫ At

0
(Xi

t)
αdi.

Using the result from (36), the wage for high-skilled becomes

wH
t = (1− α)

(
α

Rt

) α
1−α [

At−1 +△At−1α
α

1−α

]
. (37)

We apply this result to (17) to obtain the allocation of high-skilled labor in the final-good

production as

HY
t =

[
At−1 +△At−1α

α
1−α

]
α

1
1−α δAϕ

t−1

. (38)

The skilled-labor market clearing conditions (32) implies that

HR
t = Ht −

[
At−1 +△At−1α

α
1−α

]
α

1
1−α δAϕ

t−1

. (39)

The final missing piece is the labor market, where Ht must be determined. Assuming

wH
t >

ē− ηε

ηρ
from now on, plugging (28) into (31) yields

Ht = NH
t

[
1− (1− η)ργwH

t

(1 + β + γ)(ρwH
t − ē+ ε)

]
. (40)

Inserting the wage rate at (37), we have

Ht = NH
t

1− ξ

ρ− ē−ε

(1−α)
(

α
Rt

) α
1−α

[
At−1+△At−1α

α
1−α

]
 , (41)

where ξ =
(1− η)ργ

1 + β + γ
.

Substituting (41) into (39), the rate of innovation at (13) can be characterized by

14



the following nonlinear difference equation

△At−1 = δAϕ
t−1

NH
t

1− ξ

ρ− ē−ε

(1−α)
(

α
Rt

) α
1−α

[
At−1+△At−1α

α
1−α

]
−

[
At−1 +△At−1α

α
1−α

]
α

1
1−α δAϕ

t−1

 .

(42)

Using (35), we can rewrite (42) as an implicit function Ψ such that

△At−1 = δAϕ
t−1

NH
t

1− ξ

ρ−
(ē−ε)α

α
1−α

(
At−1+△At−1α

1
1−α

)α

(1−α)Kα
t Aαϕ

t−1

[
At−1+△At−1α

α
1−α

]1−α

−

[
At−1 +△At−1α

α
1−α

]
α

1
1−α δAϕ

t−1


= Ψ(△At−1, At−1,Kt, N

H
t ), (43)

which depends only on the last available state of technology At−1, capital Kt, and the

high-skilled population NH
t . The values of these variables are all known at the beginning

of each period.

Proposition 3. Given initial At−1, Kt, N
H
t > 0, and appropriate parameters, (43)

admits 1 unique positive solution for △At.

Proof. See Appendix B. ■

Solving for △At−1 will help us determine the values of other variables in the rest of

the model at time t. We proceed to work out the dynamics for the subsequent period.

Assuming full capital depreciation after one period, which is reasonable as one period

in an OLG model is normally equivalent to 25 to 30 years, the capital accumulates

according to the following

Kt+1 = sLt N
L
t + sHt NH

t . (44)

Using the saving decision at (23), it can be written as

Kt+1 =
β

1 + β + γ

(
wL
t N

L
t + wH

t NH
t

)
.

The wage for low-skilled is determined by (5) and wage for high-skilled labor is deter-

mined by (37), therefore we have

Kt+1 =
β

1 + β + γ

(
At−1θN

L
t + (1− α)

(
α

Rt

) α
1−α [

At−1 +△At−1α
α

1−α

]
NH

t

)
. (45)

Given the necessary information available at the beginning of time t, such as population

NL
t , N

H
t , technology At−1 and the capital stock Kt, we can solve the model at t and
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work out the capital available for the period t+ 1. The population for the next period

shall be determined by the following

NL
t+1 = (1−ΠH

t )nH
t NH

t + (1−ΠL
t )n

L
t N

L
t , (46)

NH
t+1 = ΠH

t nH
t NH

t +ΠL
t n

L
t N

L
t (47)

where all variables on the RHS are solved and already determined at t. We are then

entitled to state the dynamics of the intertemporal equilibrium of the model.

Definition 1 (Intertemporal Equilibrium). Let time begin at t = 1 where A0 is known.

Given the initial stock of low-skilled population NL
1 , high-skilled population NH

1 , cap-

ital stock K1, a competitive equilibrium is a sequence of {△At−1}∞t=1, factor prices

{wL
t , w

H
t , Rt}∞t=1, household choices {cLt , cHt , sLt , s

H
t , dLt+1, d

H
t+1, n

H
t , nL

t , e
H
t , eLt }∞t=1, and

inputs {Kt, Lt, H
Y
t , HR

t }∞t=1 such that

1. At each t, {△At−1} solves (42), which decides At and HY
t .

2. Then, the factor prices {wL
t , w

H
t , Rt} are decided following Eqs. (4), (5), and (35).

3. Given At and factor prices, {Kt, Lt, H
Y
t , HR

t }∞t=1 solve the problems for the final

good sector and machine sector.

4. Given the factor prices, {cLt , cHt , sLt , s
H
t , dLt+1, d

H
t+1, n

H
t , nL

t , e
H
t , eLt }∞t=1 solve the house-

holds’ problem according to (22), (23), (24), (25), (27).

5. Given the education inputs and At, whether a child becomes high-skilled or low-

skilled will be determined by ΠL
t ,Π

H
t at (19).

6. Given {sLt , sHt , nH
t , nL

t , P iLt ,Π
H
t }, the population and capital accumulation in the

next period evolve according to (46), (47) and (45).

The following section presents some main results when we look at the economy in

the long run.

3.2 Steady States

For reasons we will elaborate on later, the following assumption is necessary to guarantee

a non-trivial steady-state equilibrium.

Assumption 2. The long-run population growth is zero. In other words, nj
t → 1 for

j ∈ {L,H} as t → ∞.

3.2.1 Long run Education and Fertility

First, since fertility is endogenized, it is necessary to investigate the population dynam-

ics. By definition, the young population evolves according to

Nt+1 = nL
t N

L
t + nH

t NH
t .
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Assume that

wH
t > wL

t = At−1θ >
ē− ηε

ηρ
∀t.

so that the choice of education is an interior solution. We want to characterize the

dynamics of the rest of the model.

Proposition 4. In the economy where technological advancement has full spillover

effects ν = 1, the long-run fertility rates of both high-skilled and low-skilled populations

will converge to the same value where

nH = nL =
(1− η)γ

(1 + β + γ)ρ
.

Proof. We first look at the low-skilled parents’ choices of fertility.

nL
t =

(1− η)γAt−1θ

(1 + β + γ)(ρAt−1θ + ε− ē)
,

eLt =
η(ρAt−1θ + ε)− ē

1− η
=

ηρAt−1θ

1− η
+

ηε− ē

1− η
,

ΠL
t = µL

(
eL + ē

At

)η

.

One can see that when At increases, it will be more and more difficult for children of

low-skilled parents to become high-skilled. Using the last two equations, we have

eLt
At

=
ηρθ

1− η
· At−1

At
+

ηε− ē

(1− η)At

=
ηρθ

1− η
·

(
1

1 + △At−1

At−1

)
+

ηε− ē

(1− η)At
.

By letting technology At → ∞, the benefits of default education vanish, and the possi-

bility for a child from low-skilled parents to become high-skilled converges to

ΠL = µL

(
ηρθ

1− η
·
(

1

1 + gA

))η

> 0, (48)

where gA ≡ △At−1

At−1
. The fertility decision converges to

nL =
(1− η)γ

(1 + β + γ)ρ
> 0. (49)

Moving on to the high-skilled labor, which matters the most for growth, the high-
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skilled parents’ choices are

eHt =
ηρ

1− η
(1− α)

(
α

Rt

) α
1−α [

At−1 +△At−1α
α

1−α

]
+

ηε− ē

1− η
,

nH
t =

(1− η)γ

(1 + β + γ)(ρ+ ε−ē
wH

t
)
,

ΠH
t = µL

(
eHt
At

+
ē

At

)η

Similar to low-skilled parents, as At increases over time, the weight of ē/At gradually

disappears. However, for high-skilled, eHt increases with the current technology. To see

the trajectory of eHt /At, we formulate it as

eHt
At

=
ηρ(1− α)

1− η

(
α

Rt

) α
1−α

[
At−1 +△At−1α

α
1−α

]
At

+
ηε− ē

(1− η)At
(50)

By definition, At = At−1 +△At−1, therefore

At−1 +△At−1α
α

1−α = At − (1− α
α

1−α )△At−1

Thus, one can write (50) as

eHt
At

=
ηρ(1− α)

1− η

(
α

Rt

) α
1−α

[
1− △At−1

At−1
(1− α

α
1−α )

]
+

ηε− ē

(1− η)At

Since 0 < α < 1, the term in the square bracket tends to be constant once the economy

reaches its balanced growth path. In fact, on the balanced growth path, we can derive

ΠH = µH

[
ηρ(1− α)

1− η

(
α

Rt

) α
1−α (

1− gA(1− α
α

1−α )
)]η

> 0, (51)

where the interest rate reaches its steady state Rt → R∗ as the capital-effective labor

ratio reaches its steady state. Since wH
t grows perpetually with At, the fertility of

high-skilled workers also converges to

nH =
(1− η)γ

(1 + β + γ)ρ
= nL. (52)

Thus, it is implied that in the long run, the fertility rates of low-skilled and high-skilled

parents will asymptotically be the same. ■

The implication is that since our income threshold is parameterized, the existence

of a spillover effect can improve low-skilled individuals’ income that will get higher than

the threshold. A weaker degree of spillover only slows down the improvement in wages,

which limits the speed of convergence in terms of fertility rates but does not affect the

overall trend. Due to this feature, the population growth will stop at some point and
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reaches its steady-state value of 1. Without additional new research labor, R&D will

stop, and the machine technology attains its maximum value Amax < ∞, which also

guarantees the steady state of ΠL,ΠH .

3.2.2 Long run population composition

Using the system (46) and (47), let us investigate the population ratio to check if the

economy has a long-run equilibrium of population composition. Define

xt =
NL

t

NH
t

. (53)

then the population ratio respects the following dynamics

xt+1 =
NL

t+1

NH
t+1

=
nL
t (1−ΠL

t )xt + nH
t (1−ΠH

t )

nL
t Π

L
t xt + nH

t ΠH
t

= Γ(xt).

By the assumption that ΠH
t > ΠL

t ∀t, we have the following results

Γ′(0) =
1−ΠH

t

ΠH
t

> 0,

Γ′(xt) =
nL
t n

H
t (ΠH

t −ΠL
t )

(nL
t Π

L
t xt + nH

t ΠH
t )2

> 0,

Γ′′(xt) = −2 · nL
t n

H
t (ΠH

t −ΠL
t )

(nL
t Π

L
t xt + nH

t ΠH
t )3

· nL
t Π

L
t < 0.

The function Γ is concave and increasing in xt. To find that steady state, we let xt+1 =

xt = x∗ and obtain a positive solution

x∗ =
(1−ΠL)nL −ΠHnH +

√
(ΠHnH − (1−ΠH)nL)2 + 4ΠLnLnH(1−ΠH)

2ΠLnL
. (54)

In the long run, when fertility and education decision reach their steady states, (54)

reaches its steady state, which can be calculated by using (48), (49), (51), (52) so the

time subscript can be omitted. An important implication from this result is its reliance

on ν – the spillover effects for the low-skilled sector. The closer it is to 1, the more

the low-skilled sector gain from the high-tech sector’s advancements in technological

development. However, in an extreme case where ν = 0, as there are no spillover effects,

earnings for low-skilled parents do not improve, which makes them unable to increase

education expenses. Investment in children’s education is discounted by At, which leads

to a monotonic reduction in educational investment quality. As a result, if At is large

enough, ΠL will asymptotically be zero, implying that there is zero chance for a child

from a low-skilled family to become a high-skilled in the future. Eq. (54) thus indicates

that the economy will have an asymptotically infinitesimal portion of high-skilled in the

long run. Therefore, a positive and large enough ν must be guaranteed for the model to

have a long-run stable population ratio. Furthermore, since innovation increases with
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population, fertility must reach its replacement level at some finite point At in time so

that A stops growing and let ΠL reach its steady state.

3.2.3 Long run capital-effective labor ratio

From (35) and (38), we have

(
α

Rt

) α
1−α

=

[
Kt

HY
t (At−1 +△At−1α

1
1−α )

]α
. (55)

We can define the capital-effective labor ratio as

k̃t =
Kt

At(Lt +Ht)
.

Using (30) and (31), knowing that in the long run, fertility rates for low-skilled and

high-skilled are uniform, we can obtain

Lt

Ht
=

NL
t (1− ρn∗)

NH
t (1− ρn∗)

=
NL

t

NH
t

= xt.

Thus, we can express the capital-effective labor ratio as

k̃t =
Kt

(xt + 1)AtHt
. (56)

The law of motion for capital (45) can now be expressed as follows

Kt+1 =
β

1 + β + γ

[
At−1θxtN

H
t + (1− α)

Kα
t (At−1 +△At−1α

α
1−α )NH

t

[HY
t (At−1 +△At−1α

1
1−α )]α

]
.

Dividing both sides to (xt+1 + 1)At+1Ht+1 and change NH
t = Ht/(1− ρn∗) to obtain

k̃t+1 =
β

1 + β + γ

[
At−1θxt

(1 + xt+1)n∗At+1(1− ρn∗)

+ (1− α)k̃αt

(
Ht

HY
t

)α (1 + xt)
αAα

t (At−1 +△At−1α
α

1−α )

(1 + xt+1)n∗At+1(1− ρn∗)(At−1 +△At−1α
α

1−α )

]
.

Grouping common terms yields

k̃t+1 =
β

(1 + β + γ)(1 + xt+1)n∗(1− ρn∗)(1 + gAt )

[
θxt

(1 + gAt )
+ (1− α)k̃αt

(
Ht

HY
t

)α

Θt

]
.

(57)

where

Θt =
(1 + xt)

αAα
t (At−1 +△At−1α

α
1−α )

At(At−1 +△At−1α
1

1−α )α
≥ 0.
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Note that for 0 < ν < 1, the dynamics of capital-effective labor ratio is

k̃t+1 =
β

(1 + β + γ)(1 + xt+1)n∗(1− ρn∗)(1 + gAt )

[
θxtA

ν−1
t−1

(1 + gAt )
+ (1− α)k̃αt

(
Ht

HY
t

)α

Θt

]
.

(58)

Although it is impossible to pin down the closed-form solution for the steady-state

capital-effective labor ratio, its existence can be studied. For that purpose, we use

Proposition 5 from Galor and Ryder (1989).

Proposition 5. The dynamics converge to a non-trivial steady-state equilibrium if and

only if population growth stops at some finite A < ∞. In other words, Assumption 2

must hold. As a result, NH
t → NH < ∞, Ht → H < ∞.

Proof. This is directly seen by taking the limits of Θt as At → ∞

lim
At→∞

Θt = lim
At→∞

(1 + xt)
α (At−1 +△At−1α

α
1−α )

At(At−1 +△At−1α
1

1−α )α
Aα−1

t = 0.

And since gAt grows with population growth, unless the population stops growing at a

finite A (in other words, n = 1 in the long run), the dynamics will converge to k̃∗ = 0. ■

As a result, to obtain a non-trivial steady state, it is necessary to impose the condition

that the population stays stable (zero growth) in the long run. This assumption is

natural, considering the fertility rates will be just as large as the reproduction level (de

la Croix, 2012). For this reason, the model can be classified as a semi-endogenous type.

After this phase, the dynamics follow the traditional Diamond-type OLG.

Proposition 6. The model admits a unique and globally stable non-trivial steady-state

equilibrium so long as Assumption 2 holds.

Proof. Eq.(57) can be rewritten as k̃t+1 = ϕ(k̃t). Plugging (36) and (55) into the

production function (3), then using the intensive form (56), the output-effective labor

ratio can be written as

ỹt =
Yt

(1 + xt)AtHt
=

θxt

(1 + xt)(1 + gAt )
+

Θt

Ht

(
Ht

HY
t

)α

k̃αt = f(k̃t).

We can easily see that

lim
k̃t→∞

f ′(k̃t) = 0.

and we can impose parameters to restrict nmax such that the slope of ϕ(k̃t) is steeper than

the 45-degree line at the origin when k̃t → 0. Notice the presence of a negative scale effect

in f(k̃t) (the term Θt/Ht), which necessitates the condition of zero population growth.

Otherwise, ỹ will decrease to zero as Ht gets higher with NH
t in the case of positive
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long-run population growth. Furthermore, assuming that k̃0 > 0, since 0 < α < 1, it is

easy to see that

ϕ′(k̃t) = (1− α)

(
Ht

HY
t

)α

Θtαk̃
α−1
t > 0 ∀kt > 0,

ϕ′′(k̃t) = (1− α)

(
Ht

HY
t

)α

Θtα(1− α)k̃α−2
t < 0 ∀kt > 0.

so that the dynamics of k̃ exhibits concavity and thus guarantees the existence of a

fixed point k̃∗ = k̃t = k̃t+1 and is globally stable. Nevertheless, the trajectory can be

non-monotonic due to our assumptions of a spillover effect of technology, endogenous

fertility, and R&D-based endogenous growth. In fact, as Galor and Ryder (1989) have

pointed out, multiple equilibria may exist despite the concavity of both the production

and utility function. Our model falls into this category. ■

Proposition 7. The steady-state k̃∗ is increasing in the strength of the technological

spillover effect ν.

Proof. To show this, it is sufficient to show that (i) equation (58) is higher than (57)

for all values of kt, which is obvious since Aν−1
t−1 > 0 ∀t; and (ii) kt+1 is an increasing

function of ν, which is true since

∂k̃t+1

∂ν
= ΩAν−1

t−1 ln(At−1) > 0

where Ω ≡ βθxt

(1+β+γ)(1+xt+1)n∗(1−ρn∗)(1+gAt )2
> 0. ■

It is necessary to note that as income rises with the increase in technology, population

growth will approach zero (that is, one child per person). Furthermore, as is well known

in the endogenous growth literature where ϕ < 1, which represents the “standing-on-

shoulders” effect, is strong but not enough to guarantee sustained growth, and therefore

the variety growth rate, in the long run, should be zero (Growiec, 2006). Nevertheless,

convergence to zero growth is very slow. Hence, the economy still exhibits an asymptotic

balanced growth path where gAt grows with the rate of the population. At the same time,

the ratio of researcher labor service over total high-skilled labor approaches a constant.

We provide a numerical illustration to show the convergence of the capital-effective labor

ratio in Fig. 4.

Initially, fertility rates are high thanks to improvement in earnings of the low-skill

cohorts, who enjoy the technological spillovers. Furthermore, as the stock of knowledge

is sufficiently low, education spending is productive enough to allow children to become

high-skilled. As a result, we see a surge in the high-skilled population ratio. The

increase in the high-skilled population means that the R&D sector also has more research

labor, which enhances the machine variety growth mechanism. Technological growth and

capital accumulation (savings) are strong enough to overcome population growth.
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Figure 4: Numerical Simulation with k̃0 < k̃∗.

However, after an intense growth period, the economy enters a phase where it be-

comes more difficult for the general population to keep up with technological progress.

First, the high-skilled population ratio reduction implies that the labor market gets more

competitive. As machines become more intelligent and capable of doing more tasks,

parents’ education spending and intergenerational transmission become more critical.

Consequently, households (whether rich or poor) must sacrifice their children’s quan-

tity to spend on their education, which leads to a gradual decrease in fertility rates,

which means that future generations continue to have fewer high-skilled individuals (es-

pecially in R& D) and therefore, growth slows down. Second, since machine variety (or

the state of technology) augments labor productivity, individuals earn a higher income,

which raises the opportunity cost of childbearing, causing them to give birth to fewer

babies. Third, it is essential to note that the wage rate paid to researchers resembles

what is paid to the final-good manufacturing high-skilled workers, so it increases with

technology. As a result, when the supply of high-skilled labor decreases, researchers are

getting more expensive. In contrast, their productivity decreases over time due to the

“standing-on-shoulders” effect, which forces innovators to hire fewer researchers, thus

inducing lower machine variety growth. On the demand side, the R&D sector’s profit

also relies on the market scale (in this case, the population), so when the population

decreases, the profit from new inventions is lowered. Hence firms have fewer incentives

to innovate.

As the growth rate of machines variety and population growth approach their re-
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spective steady states, capital per effective labor also slows down. We can see a sharp

increase in the capital-effective labor ratio at the beginning when population and vari-

ety growth rates are high. After that, however, growth becomes slower as population

growth approaches zero. Interestingly, there is a prolonged period of overshooting where

the capital-effective labor ratio stays at a higher equilibrium state. Here, innovators’

profit is still marginally positive, incentivizing them to hire research labor, thus mak-

ing the ratio Ht/H
Y
t > 1. When variety growth gAt and innovation profit πA

t tend to

zero at the asymptote, the Ht/H
Y
t ratio tends to 1, and the capital-effective labor ratio

gradually converges to the lower (but more stable) steady state. Intuitively, since the

variety growth function exhibits increasing return to scale, so long as there is a pro-

portion of the population hired as researchers in R&D, the economy generates a large

enough labor augmenting productivity to stay at a high steady state. However, as this

“extra growth” phases down when all growth variables reach zero growth asymptotes,

the capital-effective labor ratio returns to the zero-growth equilibrium state. Further-

more, other distortable dynamics, such as those related to the skill-based population

ratio (xt), can contribute to the non-monotonic convergence of the capital-effective la-

bor ratio towards its steady state.

4 Numerical Simulations for Japan

4.1 Empirical Evidence

Before performing simulations, as a way to concretize our theoretical framework, let us

look at the empirical evidence for Japan. We focus mainly on fertility rates, skill premi-

ums, and the increasing stock of robots. There are many reasons why we chose Japan as

a case study. First, it is one of the leading pioneer countries in robotic development, and

the data cover a relatively long period from 1980 until today. Second, Japanese society

is experiencing rapid aging and a reduction in the birth rate, putting it at the forefront

of other developed countries. Therefore, studying and understanding the changes in the

past years in Japanese society during the wake of robots and artificial intelligence can

bring about a lot of valuable lessons. Finally, we found that the movement of the skill

premium in Japan has been peculiar (Hara et al., 2014). Noticeably, the gap between

high-skilled and low-skilled labor has been on a narrowing trend from the 1980s to 2005,

only to pick up a rising trend in recent years. For comparison, in the US, robotic pro-

duction and birth rate declines resemble Japan’s trends (albeit to a lesser magnitude).

Still, the skill premium has kept widening during the same time frame. It implies that

the spillover effects of technological advances in the US may not be that strong.

Figure 5 plots the relationship among our four main variables of interest: the birth

rates (per 1000 people), log of the stock of industrial robots per worker (called robot

density), log of annual income for a household, and the university enrollment rate (which

is a proxy to measure the high/low-skilled labor ratio), using annual data from 1980 to

2015. Table 3 reports the detailed regression results.
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Figure 5: Birth rates, robot stock, income & skill-labor ratio for Japan. Dashed lines
are fitted trends.

Although the observations are not so large, we can confirm significant correlations

among these variables. Specifically, the birth rate tends to decrease with a rise in robots

per worker, household income, and the high-skilled population ratio. As laid out in the

theoretical analysis, the correlation between reducing the birth rate and robot stock can

be reciprocal. The economy produces more (and smarter) machines to encounter the

labor shortage and take advantage of capital stock. At the same time, a rise in robot

stock increases productivity and labor income, which results in a further decline in

fertility. As we discussed, this effect results from the children’s quantity-quality trade-

off, which is confirmed by a negative correlation between birth rate and income per

household. Furthermore, during this period, Japanese society also observed a transition

in terms of human capital, where more and more children progressed to university and

pursued higher education. The increased portion of skilled workers also contributed

immensely to the rise of industrial robot design and production. Nevertheless, the more

interesting character lies in the dynamics of skill premium with respect to robot density,

as it appears to exhibit a U shape.

We know that industrial robot production and density in Japan have been increasing

yearly, similar to many advanced economies. However, unlike many other countries

(such as the US or UK), skill premiums in Japan fell during the 80s and 90s, only

to rise in recent years. This is perhaps due to substantial spillover and absorption

effects. As documented by Hollanders and Ter Weel (2002), during this period, a positive

change in R&D employment leads to positive changes in both high-skilled and low-skilled

workers, representing a spillover effect. Furthermore, among other OECD countries at
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the time, Japan observed the second largest percentage increase in labor skills (Table 1

in Colecchia and Papaconstantinou (1996) ), which highlights a strong absorption effect

where labor employed in the low-skilled sector can learn and utilize a significant portion

of the technology spillover. A rise in the supply of high-skilled workers also contributes to

the decline in skill premiums during this period. That was when the number of machines

competing with human labor was still relatively small, and education was able to ensure

quality. As time progresses, when the stock of machine and their capability increases,

and the availability of (higher) education opportunity, the competition among children

get tighter, while the returns to higher education start to decrease. This can result in a

situation where there are lower savings to fuel capital growth Horii et al. (2008), and it

is more difficult to become a high-skilled worker. In other words, the truly high-skilled

individuals become scarcer. At the same time, more university graduates might end

up working in the low-skilled sector, which results in a gradual increase in the skill

premium.

4.2 Parameters

In this section, we calibrate the parameters to match Japan’s labor and demographic

development from 1975 forward, assuming that one period of the model is equivalent

to 30 years in real life. The choice of the starting time is due to the availability of

data and the fact that the application of industrial robots marked a boom in the 1980s,

both in the US (Acemoglu and Restrepo, 2018) and Japan (Kumaresan and Miyazaki,

1999). Since the focus of this paper is to investigate the relations among fertility, skill

premium, and the progression of automation technologies, we calibrate the parameters

in a way to match the developments of the following key variables: the graduates share

NH
t /Nt (used as a proxy to measure skilled population), the machine sector growth gAt ,

population growth, and skill premium.

First, let us focus on some specific data on Japan. For skill premium, we use the

Annual Earnings by Educational Background published by MEXT in the Survey on

Wage Structure. The skill premium is calculated as the ratio of the annual wage rate

earned by males with a university degree or higher versus people with only a high school

diploma or less, average for different age cohorts. The initial ratio of high-skilled over

the population is calibrated based on the Percentage of high-school graduates who pro-

ceed to university or college, published by the Statistic Bureau of Japan. The data on

robot production is taken from the “domestic use (units) of industrial robots”, reported

by Japan Robot Association’s Annual Report (JARA) dating back to 1989. Further-

more, since At is regarded as machines’ variety, we consider the most relevant data for

calibration is the Industrial Design Patent Applications for Japan (both Residents and

Non-Residents), published by World Intellectual Property Organization (WIPO). Since

the model assumes a spillover affects ϕ on past inventions, we calculate that the number

of new patents applied yearly only adds (1 − ϕ) of its value to the stock of existing

patents.
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We now turn to the calibration of demographic factors. To get a reasonable fertility

rate, we rely on the maximum fertility differential induced by the model without the

child-rearing cost, which can be calculated to be (nL
t /n

H
t )max = 1/(1 − η). This indi-

cation for Japan is calibrated based on data provided by Uchikoshi (2018), where the

mean fertility was 1.96 with a standard deviation of 0.86. Thus, we assume that the

maximum differential is around two standard deviations, equivalent to around 2.5636.

Using this number, the value for η is 0.6099. In addition, the parameter γ governs the

decision of fertility. We assume zero population growth in the long run, so the long-run

fertility rate is set at 1. This is also necessary for the model’s stability. As a result, the

parameter γ is calibrated to be 0.3093.

Finally, we select some standard parameters. The child-rearing time cost is calibrated

based on Guryan et al. (2008) to set it at 0.075. The subjective discount is set at .99120,

giving us a saving rate of around 20%. The default education ē is based on de la Croix

(2012) and is set at 0.012. Since the good cost of child-rearing ε needs to be smaller

than ē for the model to be meaningful, we set it arbitrarily at 0.01. These parameters

matter most initially and do not affect the long-run fertility decision. The capital share

α is set at 0.3, as in the literature. The data for other standard variables such as GDP

per capita, fertility rates, and population follow internationally recognized statistics.

To start the economy, we need to set the initial values. We normalize the high-skilled

population to 1 and accordingly select the low-skilled individuals to around 2, making

the high-skilled population represent approximately 1/3 of the population. This is set

to match the proportion of high-school graduates advancing to college or university in

1975. For technology, the initial stock is set to 1 (to avoid complications if ν < 1), the

knowledge spillover from past research ϕ is 0.7 (Prettner and Strulik, 2020), whereas

the productivity of research sector δ is set to 0.5. The spillover effects of technologies on

the low-skilled sector ν is set at 0.7, while the degree of absorption of such technologies

is set to be 0.55. Calibration for the initial stock of capital k̃0 is more tricky as skill

premium is sensitive to this value. To reproduce the declining skill premium trend in

Japan following the late 1980s, we have to assume that the initial capital-effective labor

ratio k̃0 is higher than the long-run steady state. The detailed calibration of parameters

and initial conditions is summarized in Table. 2.

4.3 Benchmark Simulations

The main results are shown in Fig. 6. Based on the first movement of the model, its real-

ization fits the data very well. Overall, the model predicts that technology (represented

by the number of patents filed) and the stock of industrial robots will rise and accel-

erate in the latter half of the century. The proportion of the high-skilled population is

expected to rise, which follows the data, where more than 50% of high school graduates

will proceed to the university. However, as the robot stock increases, the proportion of

the skilled population is expected to decrease and finally settle at 35.67% in the long

run. This trend is because the probability of becoming high-skilled is decreasing in both
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Figure 6: Benchmark Simulation Results for Japan.
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cohorts. This reflects the race between education and machine. The high-skilled wage

equation has the term At−1+△At−1α
α

1−α < At−1+△At−1 = At, implying that the wage

paid for high-skilled increases with technology but the amount gained is smaller. Our

formulation asserts that the quality of education spending tends to lag behind techno-

logical progress. Putting differently, even though the ratio of university graduates may

increase in the future, as households keep education expenses high, the number of those

who truly win the race against the machines will be lower.

We now turn to skill premiums. As documented in Japanese data, the model verifies

that skill premium will decrease initially. This is explained by a surge in the high-skilled

population, which dragged the wage for high-skilled down due to congestion. On the

other hand, low-skilled workers enjoy technological spillover and see their productivity

increase. With that picture, the wage gap improved. However, after the first period,

the capital-skill complementary effect dominates once the high-skilled population set-

tles down to the balanced growth path. The model predicts that the skill premium may

rise again, with a steady-state value of around 1.87. Our simulation shows that at the

beginning, during the transition period, and when the robot stock (as well as technol-

ogy) was sufficiently low, the wage growth in the low-skilled sector can be higher than

that of the high-skilled sector. However, over time, the spillover effects weaken, driving

down the wage improvement in the intensive margin for the low-skilled sector. Mean-

while, the high-skilled population becomes scarcer, getting more rewards from robotic

development, so the skill premium is more likely to widen.

We now turn to the individuals’ side of the story. To compensate for the education

expenses, we can expect a monotonic decrease in the fertility rate. The last graph

shows that as society races against machines, the burden of education is heavier for

households with lower skills, where educational expense takes up a higher proportion of

their income. The absolute number required for education is the same across cohorts.

Still, due to the income disparity, education is more expensive for poorer households,

and one alleviation is to give birth to fewer children. The overall birth rate per woman

in Japan from 1975–2005 was 1.58 children and will keep on decreasing, which was also

predicted by the model. The declining population also shrinks the demand for new

products, making technological advances less explosive than before.

Overall, the model’s dynamics so far are consistent with the data in Japan. The

simulation result implies that the spillover effect from the high to the low-skilled sector in

Japan is considerably high, perhaps due to the culture of on-the-job training and lifetime

employment (Hashimoto, 1979), even in labor-intensive sectors. However, technological

advancement may tighten the strength of spillover effects as the number of necessary

skills accumulates. Furthermore, in the future, the demand for high-skilled individuals

will increase in order to manage more sophisticated technologies. There will be tighter

competition between university graduates (reflected by the decreasing ΠH) so that being

a college/university graduate will see fewer chances of becoming a high-skilled. Although

the skill premium has remained the same since the beginning of the twenty-first century,
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it may increase again as companies need to pay more for the genuinely high-skilled and

the spillover weakens. According to a MEXT dataset, we have observed that such a

trend is being materialized in Japan. Fertility is expected to continue declining, which

necessitates robot production. On the other hand, due to lower population growth,

both the demand and supply for scientific research may see lower growth in the future.

At least, thanks to robotic development, we expect the Japanese economy will grow

considerably.

4.4 Counterfactual Simulations: Spillover Effects
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Figure 7: Counterfactual Simulations

The novel contribution of this paper lies in the assumption of spillover effects on

the low-skilled sector, which is different from other papers such as Prettner and Strulik
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(2020), where there is no trickle-down effect from the high-skilled sector to the lower-

skilled sector and skill premium is predicted to rise indefinitely. As a result, we simulate

two more scenarios in addition to the benchmark case, a high spillover (ν = 0.95) and a

low (almost no) spillover ν = 0.05, then compare their dynamics.

First, we examine the case of low ν. We observe that, in a low spillover economy,

without substantial improvement in wage or productivity for the low-skilled sector,

these workers are left behind significantly, and it is impossible for them to increase

educational investment for their children. With technology advancing, the chance for

the generations of these low-skilled parents to become high-skilled and compete with

machines is getting slimmer. Since educational expense cannot be improved, the low-

skilled family compensate for the altruistic taste by having more children, further driving

down the skilled population of the whole society. In this economy, high-skilled people

benefit the most from technological progress. The fact that skill premium rises steadily

in this economy shows that the high-skilled population captures most of the wealth from

the economy. It is also essential to pay attention to the stock of robots. Since machines

are produced using only capital, their availability determines how many robots can be

made. With K accumulated from savings of both low-skilled and high-skilled cohorts,

the low-spillover economy fails to utilize savings from low-skilled parents and therefore

exhibits very slow growth in the robot sector. Furthermore, since children from low-

skilled families are likely to be stuck at that level due to inadequate education investment

from the parents, this economy sees a sharp decline in the high-skilled population ratio.

As a result, the research service ratio declines, further contributing to this stagnancy.

On the other hand, the economy with a high spillover effect shows a brighter picture.

Thanks to the spillover of technology from the high-skilled sector, the low-skilled sector

sees significant wage improvement, enabling them to spend more on children’s education

than in other cases. As a result, the probability of their children becoming high-skilled

also gradually increases, contributing significantly to the high-skilled population counts.

Skill premium is also kept low since the difference in skills between high-skilled and

low-skilled is closing down thanks to high spillovers of technology. We can see a positive

cycle where the rise in robots and patents fosters growth and innovation, which can be

transferred even to the low-skilled sector, albeit one period slower. In turn, children from

low-skilled parents are more likely to proceed to become high-skilled workers. Increased

savings generated by low-skilled parents help fuel more robotic development and so on.

In general, an economy with high spillover effects benefits social welfare and economic

growth in many aspects more than those with limited spillovers. It is also essential for

the survival of the economy since the source of savings comes from both low-skilled and

high-skilled cohorts, and if the high-skilled population captures more and more wealth

in the economy, savings from the low-skilled cannot contribute to sustainable growth.

In other words, wage inequality due to a sufficiently low spillover effect can constrain

economic growth. Although we did not discuss government interventions in this model,

it is natural to suggest that governments should deliver policies that can strengthen
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the technological spillover effects. This support or subsidies can be in the form of skills

upgrading (learning or training). In such a way, low-skilled workers have the opportunity

to take advantage of the inexpensively available spillover technologies to improve not

only their own lives but also the lives of their future generations.

5 Conclusion

In this paper, we use a Diamond-type OLG model with endogenous R&D growth to

analyze the relationship between fertility, machines development, and their implications

on skill premium. Unlike other papers where the low-skilled sector is assumed to be

idle – that is, they gain nothing from the technological process – we consider a model

with spillover effects from the high-skilled sector. This assumption is reasonable in

that most technological advances are concentrated in the semiconductive industries,

which fuels both robotic development and smart devices, of which prices have decreased

dramatically and become more assessable and affordable to all persons, regardless of skill

type. Given that most software can be used and learned freely online, we think allowing

technological spillovers holds substantial merits. Such effects, however, are discounted

and governed by parameters controlling the degree of absorption and the strength of

spillover. Interesting results emerge from this setup. Our framework is also rich enough

to include endogenous fertility and education expenses. We deem these features essential

because individuals react to substantial changes in robot development. Parents tend to

have fewer babies to invest more human capital in their children, who must compete

with machines. On the other hand, fertility rates decide the progression of technological

growth by determining the skilled population ratio and how much research labor service

can be put into robot development.

To demonstrate these interactions, we calibrate appropriate parameters tailored to

the Japanese economy. The simulations’ dynamics are consistent with the development

of Japanese demographics and other important indicators. It predicts that with the rise

of robotic and smart machines, the labor market will get more competitive, and it will

be more challenging for an individual to become a high-skilled worker. With decreasing

population, a large stock of capital, and patents, the model agrees that Japan’s supply

of industrial robots and machines will continue to rise rapidly. As a result, the skill pre-

mium tends to rise again after a fall due to congestion from a large intake of high-skilled

when the stock of knowledge is still sufficiently low. In the race between machines and

education, fertility rates are expected to continue falling so parents can spend more on

their children’s education. Furthermore, we also emphasize the importance of consider-

ing spillover effects. A high spillover effect – or high knowledge transfer – helps close

the gap between high-skilled and low-skilled, improving low-skilled workers’ productiv-

ity, which can generate more savings and high-skilled workers to fuel economic growth.

On the other hand, a low spillover effect forbids the knowledge generated in research to

be tricked down to the low-skilled sector. Without any productivity improvements, the

low-skilled sector falls behind, skill premium increases, and the issue of “low-hanging
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fruits” exacerbates. In this economy, machine production is also hampered due to a

shortage of high-skilled population and capital stock, and we end up with substantially

slower growth.

Several extensions are possible. Since fertility and spillover effects play important

roles in our model, a natural extension is to incorporate some government policies that

can affect fertility decisions (Fanti and Gori, 2014) or subsidize innovation in the case of

high spillover while taxing innovation in the case of low spillover (Jones and Williams,

2000). Another potential extension often seen in an OLG framework is to incorporate the

model in the context of population aging. Tran (2022) shows that education is essential

in determining old workers’ productivity. Since education is endogenized in our paper, it

will be interesting to see how education and fertility affect workers’ retirement decisions

once we allow individuals to work in their second period of life, which may affect growth

in the long run. This possibility can be well incorporated with Irmen (2021), where

the author explores the relationship between aging and automation. Another extension

concerns the innovation process. We can consider a gestation lags akin to Kitagawa and

Shibata (2005) where innovation takes time (more than one period) to incubate and

reach maturity, or a longer duration of patent-holding (Chou and Shy, 1993). In our

model, in exchange for ease in analysis, innovation mechanically takes only one period

to realize, and monopolistic power from such an invention also mechanically vanishes

after one period, thus may exhibit some restrictions. Finally, in our model, parents are

assumed to have decisive power over children’s education. One can relax this assumption

by incorporating endogenous school or occupation decisions, such as Kimura and Yasui

(2007) or Prettner and Strulik (2020) where the authors consider college choice (to be

a high-skilled worker) of either 1 or 0 where the pursuit of higher education causes a

disutility for individuals. It is also reasonable to consider a skill acquiring opportunity

costs for individuals who want to pursue higher education as in Morimoto and Tabata

(2020).
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A Household’s Problem

Rewrite the problem as

max
sjt ,n

j
t ,e

j
t

U j
t = ln(wj

t (1− ρnj
t )− sjt − ejtn

j
t − εnj

t ) + β ln(Rt+1s
j
t ) + γ ln

(
µj

(
ejt + ē

At

)η

nj
t

)
.

The First order conditions (FOCs) are

(sjt ) :−
1

cjt
+

β

sjt
= 0 ⇔ sjt = βcjt ,

(nj
t ) :−

ρwj
t + ejt + ε

cjt
+

γ

nj
t

= 0 ⇔ nj
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γcjt

ρwj
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,

(ejt ) :−
nj
t

cjt
+

γη

ejt + ē
= 0 ⇔ ejt =

γηcjt

nj
t

− ē.

From the last 2

nj
t

cjt
=

γ

ρwj
t + ejt + ε

=
γη

ejt + ē
,

ejt =
η(ρwj

t + ε)− ē

1− η
.

Observe that

ejt = 0 ⇔ wj
t ≤

ē− ηε

ηρ
.

Plugging back to the FOC of nj
t yields

nj
t =


γ(1− η)

ρwj
t + ε− ē

cjt for ejt > 0 ,

γ

ρwj
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cjt for ejt = 0

The optimal decisions for an agent of type j are

cjt =
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1 + β + γ
wj
t ,

sjt =
β

1 + β + γ
wj
t ,

djt+1 =
β

1 + β + γ
Rt+1w
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If wj
t ≤

ē− ηε

ηρ
,

ejt = 0,

nj
t =

γwj
t

(1 + β + γ)(ρwj
t + ε)

.

If wj
t >

ē− ηε

ηρ
,
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η(ρwj

t + ε)− ē

1− η
,

nj
t =

(1− η)γwj
t

(1 + β + γ)(ρwj
t + ε− ē)

.

Since the constraint is nonlinear (due to the existence of the nj
te

j
t term), we need to

check the definiteness of the second-order Hessian matrix for sufficient conditions.

Sufficient Conditions

The Jacobian of the First-order derivatives of U j
t w.r.t sjt , n
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t , e
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t is
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We can construct a second-order Hessian matrix as follows
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where

cjt = wj
t (1− ρnj

t )− sjt − ejtn
j
t − εnj

t .

Exploiting the FOCs, the Hessian can be reduced to
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where

Φ ≡ 1 + β + γ.

Evaluating the three leading principal minors leads to

|H1| = −(1 + β)Φ2
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2
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Since the three leading principal minors of H alternate in signs, starting with H1 < 0,

the second-order Hessian matrix H is negative definite. The set of solutions obtained

at the FOCs is indeed a maximizer.
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B Proof of Proposition 3

Proof. Eq. (43) can also be written simply as

△At−1 = δAϕ
t−1

[
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t (1− ρnH
t )
]
−
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α
1−α

]
α

1
1−α δAϕ

t−1

. (59)
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1−α , we can rewrite (59) as a continuous function of Jt
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By (37), wH
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)
, the RHS of (60) has nH

t determined, and it can be

solved explicitly for Jt given At−1, thus yields a unique value of △At−1.
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Figure 8: Illustration for Appendix B.
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C Parameter Calibration

Table 2: Calibration for the Japanese economy.

Parameters Value Meaning

T 30 Period’s length
α 0.3 Capital share
δ 0.5 Research productivity shifter
ϕ 0.7 Past inventions’ spillover
β 0.99120 Consumption weight
γ 0.3093 Altruistic weight
ρ 0.075 Child-rearing time cost
ε 0.01 Child-rearing good cost
ē 0.012 Default education
η 0.6099 Return to education
µL 3 Low-skilled’s human capital transmission
µH 5 High-skilled’s human capital transmission
ν 0.7 Spillover effect to low-skilled sector
θ 0.55 Degree of absorption

Initial Conditions

A0 1 Initial stock of machines’ variety
K0 0.5 Initial stock of capital
NL

0 2 Initial low-skilled population
NH

0 1 Initial high-skilled population
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D Regression Results

Table 3: Correlation Testing for Figure 5

Dependent variable:

birth rate skill premium

(1) (2)

log(robots per worker) −1.165∗∗∗

(0.085)

log income −1.228∗∗

(0.461)

enrollment rate −4.580∗∗∗

(0.678)

std robots per worker2 0.075∗∗∗

(0.006)

std robots per worker −0.295∗∗∗

(0.018)

Constant 38.653∗∗∗ 1.670∗∗∗

(5.580) (0.012)

Observations 36 36
R2 0.993 0.917
Adjusted R2 0.993 0.912
Residual Std. Error 0.145 (df = 32) 0.027 (df = 33)
F Statistic 1,567.013∗∗∗ (df = 3; 32) 181.539∗∗∗ (df = 2; 33)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
std robots per worker is the positive standardization of robot density.
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