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Abstract

This paper investigates some structural properties of a family of GARCH
processes. A simple sufficient condition for the existence of the αδ-order sta-
tionary solution of the processes is derived, where α ∈ (0, 1] and δ > 0. The
solution is strictly stationary and ergodic, and the causal expansion of the
family of GARCH processes is also established. Furthermore, the necessary
and sufficient condition for the existence of the moments is obtained. The
technique used in this paper for the moment conditions is different to that
used in He and Terasvirta (1999a), and avoids the assumption that the process
started at some finite value infinitely many periods ago. Moreover, the condi-
tions for the strict stationarity of the model and the existence of its moments
are simple to check and should prove useful in practice.
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1 Introduction

He and Terasvirta (1999a) defined the following general class of GARCH(1, 1) model:

εt = ztht, h
δ
t = g(zt−1) + c(zt−1)h

δ
t−1, (1.1)

where Pr{hδt > 0} = 1, δ > 0, zt is a sequence of i.i.d. random variables with mean

zero and variance 1, and g(x) and z(x) are nonegative functions. As indicated by

these authors, this family of GARCH processes includes the GARCH(1,1) model of

Engle (1982) and Bollerslev(1986), the absolute value GARCH (1,1) model of Taylor

(1986) and Schwert (1989), the asymmetric GJR-GARCH (1,1) model of Glosten

et al. (1993) (which seems to be the most widely used specification for asymmet-

ric time-varying volatility), the nonlinear GARCH(1,1) model of Engle (1990), the

volatility switching GARCH (1,1) model of Fornari and Mele (1997), the thresh-

old GARCH (1,1) model of Zakoian (1994), the fourth-order nonlinear generalized

moving-average conditional heteroskedasticity (4NLGMACH(1,1)) model of Yang

and Bewley (1995), and the generalized quadratic ARCH (1,1) model of Sentana

(1995).

It was argued by He and Terasvirta (1999a) that the necessary and sufficient

condition for the mδth unconditional moment of model (1.1) to exist is

E[c(zt)]
m < 1, (1.2)

where m is a positive integer and δ = 1 or 2. As in Engle (1982) and much of the

subsequent literature, He and Terasvirta’s (1999a) result in their Theorem 1 was

derived under the following assumption:

Model (1.1) started at some finite value infinitely many periods ago. (1.3)

Even though He and Terasvirta (1999a) restrict attention to the two integers δ = 1, 2,

their proofs actually hold for any δ > 0. Furthermore, He and Terasvirta (1999b)

derived the fourth moment condition for the higher-order GARCH (p, q) model of
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Bollerslev (1996) (see also Karanasos (1999) for a related result). Ling and McAleer

(1999) established the necessity and sufficiency of the condition for the existence of

the fourth and higher moments for the GARCH (p, q) model.

The results in He and Terasvirta (1999a, b) are useful. However, two problems

in their family of GARCH(1, 1) processes have not yet been resolved. First, the

condition under which model (1.1) is strictly stationary has not been established.

Second, assumption (1.3) is impossible to check in practice, so that it is an axiom

rather than an assumption. The purpose of this paper is to resolve these two prob-

lems. Without using assumption (1.3), we provide a simple sufficient condition for

the strict stationarity of model (1.1), and establish the necessary and sufficient con-

dition for the existence of its moments. These conditions are simple to check and

should prove useful in practice.

2 Main Results

Theorem 2.1. If E|zt|αδ < ∞, E[g(zt)]α < ∞ and E[c(zt)]
α < 1 for some α ∈

(0, 1], then there exists a unique αδ-order stationary solution to (1.1). The solution

is strictly stationary and ergodic, and has the following causal expansion:

εt = ztht, h
δ
t = g(zt−1) +

∞X
k=0

kY
j=0

c(zt−1−j)g(zt−1−k),

where the infinite sum converges almost surely (a.s.).

Remark. Theorem 2.1 makes clear that the model given in (1.1) did, in fact,

start infinitely many periods ago. However, this is a consequence of the existence of

the unique stationary solution and is not an assumption.

When g(zt−1) ≡ α0 > 0 and c(zt−1) = αz2t−1+β, namely Bollerslev’s GARCH(1,1)

model, the condition E[c(zt)]
α < 1 for some α ∈ (0, 1] is equivalent to ln[c(zt)] < 0,

which is the necessary and sufficient condition given in Nelson (1990) and Bougerol

and Picard (1992).

Theorem 2.2. If E|zt|mδ < ∞ and E[g(zt)]
mδ < ∞, then the necessary and
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sufficient condition for the existence of the mδth moment of the solution {εt} in
Theorem 2.1 is

E[c(zt)]
mδ < 1.

where m is a positive integer.

Note that, without strict stationarity, Ehkmt = Ehkmt−n is used in (A.3) in He

and Terasvirta (1999a), which means that the authors proved the necessity of the

condition but not sufficiency. He and Terasvirta’s (1999a) proof of necessity uses

assumption (1.3), whereas the proof of necessity in this paper does not require this

assumption. The proof of sufficiency in this paper uses the concept of Markov chains

and Tweedie’s (1988) criterion.

In general, the results in Theorem 2.2 cannot be easily extended to higher orders

of the family of GARCH processes given in (1.1). However, for some special cases,

such as the GARCH (p,q) model in Bollerslev (1986), the sufficient condition for

the existence of moments is established in Chen and An (1998) and Ling (1999) (see

Ling and McAleer (1999) for the proof of necessity). Ling and McAleer (1999) also

established the necessary and sufficient conditions for the existence of moments for

an asymmetric power GARCH (p,q) model in Ding et al. (1993), a special case of

which is the widely used asymmetric GARCH (1,1) model of Glosten et al. (1993)

(this special case of model (1.1) is considered in Example 2.1 below).

In the following, we give two examples of the second and fourth moment condi-

tions.

Example 2.1. In model (1.1), let δ = 2, g(zt−1) ≡ α0, and c(zt−1) = β + (α +

ωI(zt−1))z2t−1, with I(zt−1) = 1 if zt−1 < 0, and I(zt−1) = 0 otherwise, which is the

asymmetric GJR-GARCH(1,1) model of Glosten et al. (1993).

(i) For this model, E[c(zt−1)] = β + α + ωb, where b = E[I(zt−1)z2t−1]. When

zt follows a symmetric distribution, b = 1/2 by direct calculation. In this case, the

second moment condition for the asymmetric GJR-GARCH(1,1) model, which is
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simple to check, is given by

β + α+
1

2
ω < 1. (2.1)

When ω = 0, condition (2.1) reduces to the well-known second moment condition

for the GARCH(1,1) model. Condition (2.1) means that the admissible region of

(α,β) for second-order stationarity of the asymmetric GJR-GARCH(1,1) model is

smaller than that for the symmetric GARCH(1,1) model, as the asymmetry of the

model increases its uncertainty.

(ii) Furthermore, if zt ∼ N(0, 1), the fourth moment condition for the asymmetric
GJR-GARCH(1,1) model is given by

β2 + 2βα + 3α2 + βω + 3αω +
3

2
ω2 < 1. (2.2)

When ω = 0, condition (2.2) reduces to the well-known fourth moment condition

for the GARCH(1,1) model.

(iii) If zt ∼ t(ν) with ν ≥ 5, the fourth moment condition is given by

β2 + 2βα + sα2 + βω +
s

2
(2αω + ω2) < 1, (2.3)

where s = 3(ν − 2)/(ν − 4). When ν → ∞, condition (2.3) reduces to condition
(2.2).

Example 2.2. In model (1.1), let δ = 2, g(zt−1) ≡ α0, and c(zt−1) = β +

α[1 − 2ηsgn(zt−1) + η2]z2t−1, namely the nonlinear GARCH(1,1) model of Engle

(1990), which is a special case of the asymmetric power GARCH model of Ding et

al. (1993).

(i) For this model, E[c(zt−1)] = β+α+αη2− 2αηb, where b = E[sgn(zt−1)z2t−1].
When zt follows a symmetric distribution, b = 0 and, in this case, the second moment

condition for the nonlinear GARCH(1,1) model is given by

β + α+ αη2 < 1. (2.4)

When η = 0, condition (2.4) reduces to that for GARCH (1,1).
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(ii) Furthermore, if zt ∼ N(0, 1), the fourth moment condition for the nonlinear
GARCH(1,1) model is given by

β2 + 2βα(1 + η2) + 3α2[(1 + η2)2 + 4η2] < 1. (2.5)

When η = 0, condition (2.5) reduces to the fourth moment condition for GARCH(1,1).

(iii) If zt ∼ t(ν) with ν ≥ 5, the fourth moment condition is given by

β2 + 2βα(1 + η2) + sα2[(1 + η2)2 + 4η2] < 1, (2.6)

where s = 3ν2/[(ν − 4)(ν − 2)]. When ν → ∞, condition (2.6) reduces to condi-
tion (2.5). The comments in Example 2.1 relating to the reason for the increased

uncertainty arising from asymmetry remain valid for the nonlinear GARCH(1,1)

model.

3 Proofs of the Main Results

Proof of Theorem 2.1. Let Sn = g(zt−1) +
Pn
k=0

Qk
j=0 c(zt−1−j)g(zt−1−k). Then

E( lim
n→∞Sn)

α ≤ E{[g(zt−1)]α +
∞X
k=1

[
kY
j=1

c(zt−1−j)g(zt−1−k)]α}

= E[g(zt−1)]α +
∞X
k=1

E[
kY
j=1

c(zt−1−j)]αE[g(zt−1−k)]α

= E[g(zt−1)]α[1 +
∞X
k=0

{E[c(zt−1)]α}k+1]

= E[g(zt−1)]α[1− E[c(zt−1)]α]−1 <∞,

so that Sn converges a.s. under the given assumptions. Denote the limit of Sn by

hδt , that is,

ht = [g(zt−1) +
∞X
k=0

kY
j=0

c(zt−1−j)g(zt−1−k)]1/δ. (3.1)

It is easy to verify that ht is a solution of (1.1) and Eh
αδ
t <∞. From (3.1), ht is a

fixed functional of a sequence of i.i.d. random variables, and hence is also strictly

stationary and ergodic, in which case so is εt.
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To prove uniqueness, let h1t be another αδth-order stationary solution of model

(1.1). Then

E|hδt − hδ1t|α = E[c(zt−1)]αE|hδt−1 − hδ1t−1|α

≤ {E[c(zt−1)]α}k(Ehαδt−k + Ehαδ1t−k)→ 0,

as k →∞. Thus, ht = h1t a.s.. This completes the proof. 2

Proof of the necessity of Theorem 2.2. It is easy to show that

Ehδmt ≥ E[g(zt−1)]m + E[c(zt−1)]mEhδmt−1

≥ E[g(zt−1)]m[1 +
kX
i=0

{E[c(zt−1)]m}i].

Since Ehδmt <∞, the above inequality holds only if E[g(zt−1)]m <∞ and E[c(zt−1)

]m < 1. This completes the proof. 2

The proof of the sufficiency of Theorem 2.2 needs the concept of Markov chains

and Tweedie’s (1988) criterion. Let {Xt; t = 1, 2, · · ·} be a temporally homogeneous
Markov chain with a locally compact completely separable metric state space (S,B).
The transition probability is P (x,A) = Pr(Xn ∈ A|Xn−1 = x), where x ∈ S and
A ∈ B. Tweedie’s criterion is given in the following lemma.
Lemma 3.1. (Tweedie, 1988, Theorem 2) Suppose that {Xt} is a Feller chain.

(1) If there exists, for some compact set A ∈ B, a non-negative function f and ε > 0

satisfying Z
Ac
P (x, dy)f(y) ≤ f(x)− ε, x ∈ Ac, (3.2)

then there exists a σ-finite invariant measure µ for P with 0 < µ(A) <∞; (2)Fur-
thermore, if Z

A
µ(dx)[

Z
Ac
P (x, dy)f(y)] <∞, (3.3)

then µ is finite, and hence π = µ/µ(S) is an invariant probability; (3) Furthermore,

if Z
Ac
P (x, dy)f(y) ≤ f(x)− g(x), x ∈ Ac, (3.4)
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then µ admits a finite g-moment, that is,Z
S
µ(dy)g(y) <∞. (3.5)

It is clear that any solution hδt of model (1.1) is a Markov chain with state space

R0 = (0,∞). Tweedie’s criterion can be used to find the sufficient condition for the
existence of a stationary and finite g−moment solution of model (1.1). Now we give
a lemma that is used in the proof of the sufficiency of Theorem 2.2.

Lemma 3.2. There exists an interval A = (0, K) such that the function f

defined by

f(x) = 1 + xm

satisfies

E[f(hδt )|hδt−1 = x] ≤ ∆, x ∈ A

and

E[f(hδt )|hδt−1 = x] ≤ (1− τ)f(x), x ∈ Ac,

where Ac = [K,∞), ∆ is a positive constant, and τ and K are constants not de-

pending on x.

Proof. From the given conditions, we can show that

E[f(hδt )|hδt−1 = x] = 1 + E[g(zt−1) + c(zt−1)x]m

≤ 1 + E[c(zt−1)]mxm + b(1 + x)m−1

≤ f(x)

"
1− τ1x

m + b(1 + x)m−1

1 + xm

#
, (3.6)

where τ1 = 1−E[c(zt−1)]m, and b = Pm−1
i=0

³ m
i

´
Em−i[g(zt−1)]Ei[c(zt−1)].

Note that τ1 ∈ (0, 1), and xm/(1 + xm) and b(1 + x)m−1/(1 + xm) converge to
1 and 0, respectively, as x → ∞. It is obvious that there exists a constant K such

that, when x ≥ K, [τ1x
m + b(1 + x)m−1]/(1 + xm) > τ1/2 − τ1/4 > 0. Denote

A = (0, K). Let τ = τ1/4 and ∆ = 1 +Km. It follows that

E[f(hδt )|hδt−1 = x] ≤ ∆, x ∈ A
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and

E[f(hδt )|hδt−1 = x] ≤ (1− τ)f(x), x ∈ Ac.

This completes the proof. 2

Proof of the sufficiency of Theorem 2.2. First, note that {hδt} is a Markov
chain with state space R0. It is straightforward to prove that, for each bounded

continuous function f on R0, E[f(h
δ
t )|hδt−1 = x] is continuous in x, that is, {hδt} is

a Feller chain.

From Lemma 3.2, there exists a constant K > 0, A = (0,K) and τ > 0 such

that the function defined by f(x) = 1 + xm satisfies

E[f(hδt )|hδt−1 = x] ≤ ∆, x ∈ A (3.7)

and

E[f(hδt )|hδt−1 = x] ≤ (1− τ)f(x), x ∈ Ac, (3.8)

where τ and ∆ are positive constants.

By (3.7)-(3.8), it is not difficult to show that the function f(x) satisfies conditions

(3.2) and (3.3) in Lemma 3.1 and, hence, there is an invariant probability measure

π for the process {hδt}.
Let g(x) = τf(x). By (3.8) and Lemma 3.1 (3), we know that Eπf(h

δ
t ) is finite.

Thus, Eπh
δm
t <∞.

By Hölder’s inequality, Eπh
αδ
t ≤ (Eπh

δm
t )

α/m <∞, and hence π is the αδth-order
stationary distribution of ht. Thus, εt = ztht is the αδth-order stationary solution of

model (1.1). By Theorem 2.1, the solution is unique. Thereforce, the solution {εt}
in Theorem 2.1 has finite mth-order moment. This completes the proof. 2
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