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Abstract 
The purpose of this paper is to use Bahadur’s asymptotic relative efficiency measure to 
compare the performance of various tests of autoregressive (AR) versus moving average 
(MA) error processes in regression models. Tests to be examined include non-nested 
procedures of the models against each other, and classical procedures based upon testing 
both the AR and MA error processes against the more general autoregressive-moving 
average model. 
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1. INTRODUCTION 
 
In contrast to the numerous empirical studies which have reported estimates of regression 
models with autoregressive errors, there have been relatively few studies reporting 
estimates of regression models with moving average errors. This situation prevails in spite 
of the computational ease with which regression models with moving average errors can be 
estimated by maximum likelihood (ML) methods (see, for example, Pesaran and Pesaran 
[1] and Quantitative Micro Software EViews 4.0 [2]), or by asymptotically efficient two 
step methods (see Reinsel [3] and Hannan et al. [4]). The Lagrange multiplier (LM) test for 
serial correlation can detect serial correlation but provides no indication of whether the 
serial correlation in a regression model arises from an autoregressive process or a moving 
average process (see, for example, Godfrey [5]). The major aim of this paper is to compare 
some tests that will enable a choice to be made between the two error processes in a 
regression model using Bahadur’s asymptotic relative efficiency measure. 
 
Moving average (MA) errors are a viable alternative to autoregressive (AR) errors in a 
regression model since there are strong a priori reasons to expect the errors in certain 
models to have an MA form. For example, MA errors in a regression context may arise 
when: (i) there are random measurement errors associated with the dependent variable and 
lagged dependent variables appear as explanatory variables (Walker [6] and Pesaran [7]); 
(ii) the forecasting period exceeds the sampling period in forecasting equations (Hansen 
and Hodrick [8]); (iii) the equation is a solution of a rational expectations model (Broze et 
al. [9] and Evans and Honkapohja [10]); (iv) the model is a discrete time approximation to 
a continuous time model (Bergstrom [11]); (v) Koyck lag distributions are employed 
(Chow [12, pp. 102-103]); (vi) overlapping data on the dependent variable are used 
(Rowley and Wilton [13] and Kenward [14]); (vii) structural time series models are used 
(Harvey and Todd [15]); (viii) the data have been adjusted using filters such as X-11 
(Wallis [16]); or (ix) an error correction model is estimated for series that are cointegrated 
(Engle and Granger [17]). Nicholls et al. [18] and Schwert [19, pp. 77-78] indicate a 
number of other instances where moving average errors can also be expected. 
 
On the other hand, AR errors in a regression context may arise from common factor 
restrictions in dynamic models (see Hendry and Mizon [20] and Sargan [21]) and from 
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stock adjustment models, or they may be indicative of general misspecification, especially 
in the form of the exclusion of important explanatory variables. If the excluded variables 
have the typical spectra of economic variables (Granger [22]), then the errors are likely to 
be AR. Alternatively, AR errors may be assumed because the consequences of doing so, 
even when the errors follow an MA error process, may not be too severe (see Griffiths and 
Beesley [23] for the case of a first-order MA, or MA(1), process). 
 
Justifications for autoregressive-moving average (ARMA) errors rest on a combination of 
the reasons for AR and MA errors. The principle of parsimony, or Occam’s razor (see, for 
example, Zellner et al. [24]), may lead to a simple AR or MA representation as an 
approximation to a higher-order ARMA process (see Box and Jenkins [25] and Hendry and 
Trivedi [26]). 
 
The problem of testing between AR and MA models has been considered in the pure time 
series literature by Whittle [27], Walker [28], Pagan et al. [29], McAleer et al. [30], Hall 
and McAleer [31], Godfrey and Tremayne [32, 33], Franses [34], and Gourieroux and 
Monfont [35]. There have been a few attempts to examine the problem of testing between 
two regression models with different error processes; for example, King and McAleer [36], 
Godfrey and Tremayne [32] and Burke et al. [37] test AR(1) errors against MA(1) errors, 
Silvapulle and King [38] test MA(1) errors against AR(1) errors, Silvapulle and King [39] 
test joint AR(1)-AR(4) disturbances against joint MA(1)-MA(4) disturbances, and 
McKenzie et al. [40] test AR(p) disturbances against MA(q) disturbances. The available 
Monte Carlo evidence for both the pure time series and regression cases suggests that 
non-nested tests of these two models can have high power against each other, as well as 
against inappropriate alternatives (see McAleer et al. [30], Hall and McAleer [31] and 
McKenzie et al. [40]). 
 
As a complement to existing research which tests these non-nested models against each 
other, this paper uses Bahadur’s asymptotic relative efficiency to compare various tests of 
AR versus MA errors in regression models against each other. 
 
The plan of the paper is as follows. Section 2 contains details of the model being 
considered as well as definitions of a number of variables that are used in later sections. 
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Section 3 briefly reviews tests of the null hypothesis that the errors follow either an AR or 
an MA process against the non-nested alternative of an MA or an AR process, respectively, 
as well as diagnostic tests for the respective null hypotheses against higher-order ARMA 
processes. Section 4 provides a comparison of the Bahadur approximate slopes of the 
diagnostic and non-nested tests against appropriate and inappropriate fixed alternatives. 
The final section contains some concluding comments. 
 
 
2. MODEL AND NOTATION 
 
Consider the linear regression model 

T,...,1=t,u+β'x=y ttt                                                   (1) 

where xt  is presumed to be a k by 1 vector of non-stochastic variables and β is a k by 1 
vector of unknown parameters. Two alternative non-nested hypotheses concerning the 
nature of ut  are the AR(p) and MA(q) processes, namely:  

)σ,0(NID~ε,ε+uρ+...+uρ=u:H 2
ttp-tp1-t1t0                                   (2) 

)σNID(0,~ ε,εγ- ...- εγ- ε=u:H 2
tq- tq1- t1tt1 .                                   (3) 

The AR(p) process in (2) is assumed to be finite and stationary, and the MA(q) process in 
(3) is assumed to be finite and invertible. Provided 0≠ρi for at least one i (0<i<p+1) and 

0≠γj  for at least one j (0<j<q+1), the hypotheses H0  and H1  can be shown to be 
globally non-nested. Assuming fixed initial values for ut  (t= -p+1,…,0) in H0  and for 
εt  (t=    -q+1,…,0) in H1 , denote the ML estimates of (1) under H0  as 

)σ,ρ,..,ρ,`'β(
^
2

^

p

^

1

^
 with associated residuals ,β'x-y=u

^

tt

^

t and under H1  as 

~
2

~

q

~

1

~
)σ,γ,..,γ,`'β(  with associated residuals .β'x-y=u

~

tt

~

t The predictions and prediction 

errors from the two models are denoted by: 
^

p-t

^

p

^

1-t

^

1

^

t

^

t0 uρ+...+uρ+β'x=y:H  and 
^

tt

^

t y-y=ε , 
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and 
~

q-t

~

q

~

1-t

~

1

~

t

~

t1 εγ-...-εγ-β'x=y:H  and .y-y=ε
~

tt

~

t  

For future reference, it will be useful to define the following polynomial lag functions: 

,Lρ-...-Lρ-1=)L(ρ p
p1  ,Lρ-...-Lρ-1=)L(ρ p

^

p

^

1

^
 

Lγ-...-Lγ-1=)L(γ q
q1 , Lγ-...-Lγ-1=)L(γ q

~

q

~

1

~
, 

and the following transformed variables: ,y)L(ρ=y t

^*
t  ,x)L(ρ=x t

^
*
t  ,y)L(γ=y t

1- ~+
t  

,x)L(γ=x t
1- ~

+
t  ,ε)L(γ=ε

~

t
1- ~~

+
t  and .u)L(γ=u=ε

~

t
1-~~

+
t

~

t  

 
 
3. TESTS OF AR(p) VERSUS MA(q) ERRORS 
 
3.1 Testing :H0 AR(p) by Variable Addition 
 
The tests of the AR(p) null against the MA(q) alternative developed in McKenzie et al. [40] 
are based on the following auxiliary regression equation: 

w+θ'Z+uφ+...+uφ+β'x=y tt

^

p-tp

^

1-t1
*
t

*
t                                       (4) 

where )β-β('x))L(ρ-)L(ρ(+ε=w
^

t

^

tt ,
^

iii ρ-ρ=φ , Zt  is an r by 1 vector of added 

variables that are asymptotically uncorrelated with ,εt  and θ is an r by 1 vector of 
unknown parameters. Estimating (4) by OLS and denoting the F test of 0=θ:H0  by F, 

then χ→rF 2
)r(

d
 under H0  as .∞→T  

 
The test associated with the hypothesis 0=θ  in (4) can be computed as  
 

)T/ESS/()ESS-ESS(=rF UUR                                               (5) 
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where ESSR  and ESSU  are the restricted and unrestricted error sums of squares from 
estimating (4) subject to 0=θ  and ,0≠θ  respectively. An identical procedure can be 

obtained by subtracting 
^

*
t β'x  from both sides of (4) to give 

.w+θ'Z+uφ+...+uφ+)β-β('x=ε tt

^

p-tp

^

1-t1

^
*
t

^

t                                    (6) 

Equation (6) is particularly useful for calculating the asymptotic relative efficiencies of the 
various tests. For testing the AR(p) null against the MA(q), AR(p+r) or ARMA(p, r) 
alternatives, the choices of Zt  are given in Table 1. 
 
3.2 Testing :H1 MA(q) by Variable Addition 
 
The tests of the MA(q) null against the AR(p) alternative developed in McKenzie et al. [40] 
are based on the following auxiliary regression equation: 

η+θ'Z+εψ+...+εψ+β'x=y tt

~
+

q-tq

~
+

1-t1
+
t

+
t                                        (7) 

where )ε-ε()L(γ)]L(γ-)L(γ[+ε=η
~

tt
1-~~

tt  and γ-γ=ψ i

~

ii . Estimating (7) by OLS, and 

denoting the F test of 0=θ:H0  by F, then χ→rF 2
)r(

d
 under H 0  as ∞.→T  

 
The test associated with the hypothesis 0=θ  in (7) can be computed as rF in (5), where 
ESSR  and ESSU  are the restricted and unrestricted sums of squares from estimating (7) 
subject to 0=θ  and ,0≠θ  respectively. An identical procedure can be obtained by 

subtracting 
~

+
t β'x  from both sides of (7) to give 

η+θ'Z+εψ+...+εψ+)β- (β'x=ε tt

~
+

q-tq

~
+

1-t1

~
+
t

~

t .                                   (8) 

Equation (8) is particularly useful for calculating the asymptotic relative efficiencies of the 
various tests. For testing the MA(q) null against the AR(p), MA(q+r) or ARMA(p, q) 
alternatives, the choices of Zt are given in Table 2.  
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4. BAHADUR’S ASYMPTOTIC RELATIVE EFFICIENCY 
 
Given the number of consistent tests in section 3, some criterion must be chosen to 
compare their performance. Since the AR(p) and MA(q) error processes are non-nested, 
non-local power comparisons are used to evaluate the tests. Specifically, Bahadur’s [41, 42] 
asymptotic relative efficiency criterion is used for purposes of comparison (see Geweke [43, 
44, 45], Pesaran [46], Wascher [47], Pesaran and Smith [48], and Zabel [49] for some 
econometric applications). In this context, since only the asymptotic properties of the 
estimators under both the null and alternative hypotheses are known, it is necessary to work 
with the approximate rather than the exact slopes of the tests, despite the difficulties noted 
in Geweke [43]. The difference between the tests labelled 1 and 2 in Tables 1 and 2 is 
whether the added variable is not modified before being included (method 1), or is 
modified by the AR transformation in Table 1 (method 2) or the MA transformation in 
Table 2 (method 2). 
 
There are three important questions relating to the various tests: (i) For any given added 
variable, is any one of the testing methods clearly superior? (ii) For any given testing 
method, is any one of the added variables dominant? (iii) Is there an optimal test? 
 
Bahadur’s approach keeps the alternative hypothesis fixed and allows the probability of 
type I error (size) to tend to zero as the sample size increases. The slopes of the power 
functions can be approximated by evaluating the various statistics for testing the null 
hypothesis under the fixed alternative. In this section, the tests are compared using 
Bahadur’s asymptotic relative efficiency for testing, in the context of the linear regression 
model, an AR(1) null hypothesis against an MA(1) alternative (section 4.1) and an MA(1) 
null hypothesis against an AR(1) alternative (section 4.2). 
 
4.1 Approximate Slopes of Tests of the AR(1) Model 
 

A particularly useful property of the ML estimator 
^
β is that β=βlimp

^
 regardless of 

whether the true disturbances follow an AR or an MA process. As x*
t  is asymptotically 

orthogonal to the remaining regressors in the equation for the LM, E and DOP tests, the 
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term )β-β('x
^

*
t  in (6) can be omitted without affecting the asymptotic properties of the 

test under either the null or the alternative hypothesis. Therefore, the LM, E and DOP 
statistics can be calculated from the auxiliary regression 

w+θ'Z+uφ+...+uφ=ε t1t

^

p-tp

^

1-t1

^

t                                             (9) 

where ).β-β('x+w=w
^

*
ttt1  The Bahadur criterion requires an evaluation of the probability 

limit of the test statistic under the fixed alternative. When the linear regression model has 

been estimated assuming an AR(1) disturbance, the pseudo-true value of 
^
,ρ ,ρ*  is given, 

in general, as ,)γ+/(1γ-=ρlimp=ρ 2
^

1
*  where γ is the true value of the MA(1) 

parameter and 
^

1ρlimp  denotes the probability limit of 
^
ρ under H1 . 

 
Using the test statistics calculated from (9), the Bahadur approximate slopes are computed 
as T/rFlimp 1  for the various forms of the LM, E and DOP tests of the regression model 
with AR(1) errors, assuming a fixed alternative of a regression model with MA(1) errors. 
The probability limits of the approximate slopes of the tests will depend only on γ, given 

the consistency of 
^
β under both hypotheses. 

 
Using the results in the Appendix, it can be shown that the approximate slope, AS, of each 
test defined using (9) can be computed as 
 

ESS/)ESS-ESS(=AS UUR ,                                               (10) 
 
where ESSU is the unrestricted error sum of squares from one of the regressions defined in 

Table 3, and s's=ESS 11R  (with s1  defined in Table 3). Let 
~

1

~

1 s's  be the unrestricted error 

sum of squares from a particular auxiliary regression arising from Table 3, so that the 
approximate slope of the test statistic is given by 



 8

~

1

~

1

~

1

~

111 s's/)s's-s's(=AS . 

An interesting point to note from Table 3 is that the approximate slopes of E1, E2 and 
DOP1 are identical since the regressors used, a2 , f 2  and r2 , respectively, are linearly 
dependent. 
 
Another test considered here is the adaptation by Burke et al. [37] of the test developed in 
Godfrey and Tremayne [32] for pure time series models for testing the null hypothesis of 
AR(1) errors against the alternative of MA(1) errors in a regression model. The test statistic 
is given by 
 

)r-1/()r-r(T=τ 2
2
12

2/1                                                     (11) 

where )1,0(N→τ
d

 under the null hypothesis of AR(1) errors, and ri  is an estimate of the 

ith-order autocorrelation coefficient (i=1,2) calculated using OLS residuals. As the test has 
a negative mean under the MA(1) alternative, the AR(1) null is not rejected if c>τ α, 
where cα is such that α=)c<)1,0(NPr( α  and α is a given critical level. Since the 
theoretical autocorrelation coefficient for an MA(1) process cannot exceed 0.5, Burke et al. 
[37, p. 138] also suggest not rejecting the AR(1) model if )T+5.0(>r 2/1-

1 . However, the 
interpretation of this outcome should be that the MA(1) model is rejected, not that the 
AR(1) model is accepted. The reason for this interpretation is that there are many other 
stationary processes for which the theoretical autocorrelation coefficient at lag one can 
exceed 0.5, such as an MA(2) process. Under the MA(1) alternative, 

,)γ+1/(γ=τTlimp 42421-
1  where γ is the true value of the MA(1) parameter (see Bera 

and Newbold [50]). 
 
Figures 1 and 2 graph the approximate slopes of the tests for values of the true MA 
parameter between 0 and 0.9. Burke et al.’s [37] τ test is labelled TAU in Figure 1. In 

order that all these tests are distributed as χ2
)1(  under the null hypothesis, the rule that the 

MA(1) model should be rejected when )T+5.0(>r 2/1-
1  is ignored in this analysis. One 

important result is that E1=E2=DOP1, so that no single testing method or added variable is 
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preferred. It is clear from these figures that the asymptotic relative efficiencies of the tests 
that use information from the alternative (E and DOP) are generally higher than the 
corresponding tests based on the LM principle (LMM and LMA). Moreover, in this simple 
case, of all the tests in the comparison, the E1 (=E2=DOP1) test would appear to be the best. 
The E1 test dominates Burke et al.’s [37] τ test. 
 
4.2 Approximate Slopes of Tests of the MA(1) Model 
 

Since under H0  and H1 , β=βlimp
~

 and x+
t  is asymptotically orthogonal to all the 

other regressors in the equation for the LM, E and DOP tests, )β-β('x
~

+
t  in (8) can be 

omitted without affecting the asymptotic properties of the test under either the null or 
alternative hypotheses. Thus, the LM, E and DOP test statistics can be calculated from the 
auxiliary regression 

η+θ'Z+εψ+...+εψ=ε t1t

~
+

q-tq

~
+

1-t1

~

t                                            (12) 

where )β-β('x+η=η
~

+
ttt1 . When the linear regression model has been estimated assuming 

an MA(1) error, the pseudo-true values of 
~
β and 

~
γ under H0 :AR(1) are β=βlimp

~
 

and γ=γlimp *
~

0 , respectively, where γ*  is the solution to 

 
0=ρ-γ-ργ+ργ *2*23*                                                     (13) 

 
that lies in the interval (-1,1) (Whittle [27, p. 91]), ρ is the true value of the AR(1) 

parameter, and 
~

0γlimp  denotes the probability limit of 
~
γ under H0 . Thus, the 

probability limits for calculating the approximate slopes of the tests of H1 will depend only 
on ρ. 
 
Using the test statistics calculated from (12), the Bahadur approximate slopes are computed 
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as T/rFlimp 0  for the various forms of the LM, E and DOP tests of the regression model 

with MA(1) errors, assuming a fixed alternative of a regression model with AR(1) errors. 
The probability limits of the approximate slopes of the tests will depend only on ρ, given 

the consistency of 
~
β under both hypotheses. 

 
Based on (12) and using the results in the Appendix, it can be shown that the approximate 
slope of each test defined using (12) can be computed as 
 

ESSlim/)ESSlim-ESS(lim=AS UUR ,                                       (14) 
 
where ESSU  is the unrestricted error sum of squares from one of the regressions defined 

in Table 4, ESSR  is the error sum of squares from the regression of q
~

 on nq1
~

 (with q
~

 

and nq1
~

 defined in the Appendix), and lim denotes the limit as .∞→T  

 
Figures 3-4 graph the approximate slopes of the tests for values of the true AR parameter 
between 0 and 0.9. It should be noted that the approximate slopes of LMA1, LMA2, 
LMM1, E2 and DOP2 are the same so that no single testing method or added variable is 
preferred. When they differ, the tests that use information from the alternative generally 
have higher approximate slopes than the corresponding tests based on the LM principle. In 
this case, the DOP1 test would appear to be the best of the tests in the comparison. 
 
 
5. CONCLUSION 
 
This paper has used Bahadur’s asymptotic relative efficiency (ARE) to compare several 
simple procedures for the purpose of testing AR versus MA error processes in regression 
models. For the case of comparing a regression model with AR(1) errors as the null and 
MA(1) errors as the alternative, it was found on the basis of Bahadur’s ARE criterion that 
the preferred test uses information from the alternative model through the prediction errors 
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or the difference in prediction errors of the two models. When the roles of the null and 
alternative hypotheses are reversed, so that the MA(1) model is the null and the AR(1) 
model is the alternative, the preferred test on the basis of Bahadur’s ARE criterion uses 
information from the alternative model through the difference in the prediction errors. 
 
 
APPENDIX 
 
Let A and B be T by T band matrices with elements α=a 1i,i , α=a 2i,1+i ,…, α=a ki,1-k+i  
and 0=a j,i  otherwise, and β=b 1i,i , β=b 2i,1+i ,…, β=b ki,1-k+i  and 0=b j,i  otherwise, 

respectively. Denote the ith columns of A and B as ai
~

 and bi
~

, respectively. In addition, 

the vectors a j
i
~

 and b j
i

~

 are j by 1 vectors with elements identical to the first j elements of 

ai
~

 and bi
~

, respectively. Other vectors with a superscript are defined in a similar manner.  

 

Lemma 1: (a) If k=T and b1'a1lim
~~

 exists, then b1'a1lim=T/)B'A(trlim
~~

. 

         (b) If k is fixed as ∞,→T  bk
1'ak

1lim=T/)B'A(trlim
~~

. 

Proof: (a) If k=T, using the definitions of A and B, tr( B'A ) is given by 

.βα∑ )j-1+T(=)B'A(tr jj
T

1=j
 

Taking limits as ∞→T  gives  

.β∑ α1)/T]-j(-1[lim=T/)B'A(trlim j
T

1=j
j  

The result follows from the properties of Cesaro sums (see Hatanaka [51]). 
(b) Given (a), the case of fixed k is obvious.     

QED 
For the purpose of computing the Bahadur asymptotic relative efficiencies associated with 
tests of the AR(1) null under a fixed MA(1) alternative, and the MA(1) null under a fixed 
AR(1) alternative, it is useful to rewrite the models given in equations (1)-(3) in matrix 
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form for p=q=1. The regression model with AR(1) errors is rewritten as 
 

,U+βX=y  e=U)ρ(R , E(e) = 0, ,Iσ=)e(V T
2  

 
where y, U and e are T by 1 vectors, X is a T by k matrix of non-stochastic variables, β is 
a k by 1 vector of unknown parameters, and )ρ(R  is a T by T band matrix with 1=r i,i , 

ρ-=r 1-i,i  and 0=r j,i  otherwise. Denote the columns of )ρ(R  by )ρ(r1
~

, )ρ(r2
~

,…, 

)ρ(rT
~

. The regression model with MA(1) errors is rewritten as  

 
,U+βX=y  e)γ(N=U , E(e) = 0, ,Iσ=)e(V T

2  
 

where )γ(N  is a TxT band matrix with 1=a i,i , γ-=a 1-i,i  and 0=a j,i  otherwise. 

Denote the columns of )γ(N  by )γ(a1
~

, )γ(a2
~

,…, ).γ(aT
~

 

 

For the analysis that follows, define the T by 1 vectors Uj , e
^

, 
^

je , 
^
U , ,U

^

j  
~
U , ,U

~

j e
~

, 

~

je , ,e
~
+  

~
+
je , 

~
++

je  with typical elements u j-i , 
^

iε, 
^

j-iε , 
^

iu , 
^

j-iu , 
~

iu , 
~

j-iu , 
~

iε, 
~

j-iε , 
~
+
iε , 

~
+

j-iε  and 
~

++
j-iε  (j>0). Now 

^^^
U)ρ(R=e where 

^^
βX-y=U , so that 

)]β-β(X+U)[ρ(R=)βX-y)(ρ(R=e
^^^^^

                                      (A1) 

and 
^

iU  can be written as 

)β-β(X+U=βX-y=U
^

ii

^

ii

^

i                                               (A2) 

where yL=y i
i , XL=X i

i  and L is the lag operator. Similarly, 
~~~
e)γ(N=U  where 

~~
βX-y=U , so that 
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)β-β(X+U[)γ(N=)βX-y()γ(N=e
~1-~~1-~~

                                    (A3) 

and 
~
+
ie  can be written as 

)]β-β(X+U[)γ(N=e)γ(N=e
~

ii
2-~~

i
1-~~

+
i .                                      (A4) 

 
A. Tests of the AR(1) Null Under a Fixed MA(1) Alternative 
 
It is useful to define the matrix )γ(N)ρ(R=)ρ,γ(S , which is a T by T band matrix with 
elements 1=s i,i , )γ+ρ-(=s 1-i,i , γρ=s 2-i,i  and 0=s j,i  otherwise. Denote the columns 

of S by )ρ,γ(s1
~

, )ρ,γ(s2
~

,…, )ρ,γ(sT
~

.  If the columns of the T by T identity matrix are 

defined as 
~
1f , 

~
2f , 

~
3f ,…, 

~
Tf , then define the T by T matrix L1 with the first (T-1) 

columns being 
~
2f , 

~
3f ,…, 

~
Tf  and the last column being a column of zeros. It should be 

noted that )γ(aρ-)γ(a=)ρ(rγ-)ρ(r=)ρ,γ(s
~

1+i
~

i
~

1+i
~
i

~
i  and 

~
1+i

~
i

~
i fρ-f=)ρ(r . Define the T by 

T matrix )γ(N1  with columns 
~
2a , 

~
3a ,…, 

~
Ta , with the last being a column of zeros. 

 
Using (9), for the tests of the AR(1) model, ESSR  is given by 

^^

1
1-^

1

^

1

^

1

^^^

R e'U)U'U(U'e-e'e=ESS . 

As indicated in section 4.1, )γ+(1γ-=ρlimp=ρ 2
^

1
* , where γ is the true value of the 

MA(1) parameter. Let ZE1  denote expectation of Z evaluated when H1 , the regression 
model with MA(1) errors, is true. 
 

Proposition 1: ).ρ,γ(s)'ρ,γ(sσ=e'eTlimp *

~

*

~

2
^^

1-
1

3
1

3
1  

Proof: Given the non-stochastic nature of xt , and using (A1) and 0=)β-βlim(p
^

 under 
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both H0  and H1 , gives 

].U)ρ(R)ρ('R'U[Tlimp=e'eTlimp
^^

1-
^^

1-  

Evaluation under H1  gives 

]e)γ(N)ρ(R)ρ('R)γ('N'e[Tlimp=e'eTlimp **1-
1

^^
1-

1  

          ]e)ρ,γ(S)ρ,γ('S'e[Tlimp= **-1
1  

          )]ρ,γ(S)ρ,γ('S[trTlimσ= **1-2  

          )ρ,γ(s3
1)'ρ,γ(s3

1σ= *

~

*

~

2  

where Lemma 1 is used to obtain the last result. 
QED 

Proposition 2: .0=U'eTlimp
^

1

^
1-

1  

Proof: Using (A1) and (A2), and by similar reasoning to Proposition 1, gives 

].U)ρ('R'U[Tlimp=U'eTlimp 1

^
1-

^

1

^
1-  

Evaluation under H1  yields 

]e)γ(NL)ρ('R)γ('N'e[Tlimp=U'eTlimp 1
*1-

1

^

1

^
1-

1  

           ]e)γ(N)ρ,γ('S'e[Tlimp= 1
*-1

1  
           )]γ(N)ρ,γ('S[trTlimσ= 1

*-12  

           )γ(a3
2)'ρ,γ(s3

1σ=
~

*

~

2  

           ].ργ+)ρ+γ[(σ-= *2*2  

Since ),γ+/(1γ-=ρ 2*  .0=U'eTlimp
^

1

^
1-

1  

QED 
 

Proposition 3: ).γ(a)'γ(aσ=U'UTlimp
~

3
2

~

3
2

2
^

1

^

1
1-

1  

Proof: Using (A2), and by similar reasoning to Proposition 1, gives  

.U'UTlimp=U'UTlimp 11
1-

^

1

^

1
1-  
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Evaluation under H1  gives 

]e)γ(NL'L)γ('N'e[Tlimp=U'UTlimp 11
1-

1

^

1

^

1
1-

1  

            ]e)γ(N)γ('N'e[Tlimp= 11
-1

1  
            )]γ(N)γ('N[trTlimσ= 11

-12  

            ).γ(a)'γ(aσ=
~

3
2

~

3
2

2  

QED 

Combining the results in Propositions 1-3 implies ).ρ,γ(s)'ρ,γ(sσ=T/ESSlimp *

~

3
1

*

~

3
1

2
R1  

The other terms that appear in the various tests can be calculated in the same way using the 
following results for i, j > 0: 
 

),γ(a)'ρ,γ(sσ=T/U'elimp
~

k
1+j

*

~

k
1

2
^

j

^

1  where k=j+2 

),γ(a)'γ(aσ=T/U'Ulimp
~

k
1+j

~

k
1+i

2
^

j

^

i1  where k=2+max(i,j) 

~

k
1+j

*

~

k
1

2
~

j

^

1 f)'ρ,γ(sσ=T/e'elimp , where k=1+max(2,j) 

,f)'γ(aσ=T/e'Ulimp
~

k
1+j

~

k
1+i

2
~

j

^

i1  where k=1+max(i+1,j) 

),ρ,γ(s)'ρ,γ(sσ=T/e'elimp *

~

k
1+j

*

~

k
1+i

2
^

j

^

i1  where k=3+max(i,j) 

),ρ,γ(s)'γ(aσ=T/e'Ulimp *

~

k
1+j

~

k
1+i

2
^

j

^

i1  where k=2+max(i,j+1) 

),ρ,γ(s)'ρ,γ(sσ=T/eelimp *

~

k
1+i

*

~

k
1

2
^

i

^

1  where k=i+3. 

 
B. Tests of the MA(1) Null Under a Fixed AR(1) Alternative 
 

It is useful to define the matrix )ρ,γ(S=)ρ(R)γ(N=)ρ,γ(Q -11-1- , which is a T by T band 

matrix with elements 1=q i,i , γ+ρ=q 1-i,i , qγρ-qγ)+ρ(=q 2+j-i,i1+j-i,ij-i,i  (j>1) and 



 16

0=q j,i  otherwise, and the matrix )ρ,γ(Q)γ(N=)ρ,γ(NQ 1- , which is also a T by T band 

matrix with elements 1=nq i,i , γ2+ρ=nq 1-i,i , )γ+γρ(2-qγ)n2+ρ(=nq 2
1-i,i2-i,i , 

nqγρ+nq)γ+γρ(2-nqγ)2+ρ(=nq 3+j-i,i
2

2+j-i,i
2

1+j-i,ij-i,i  (j>2) and 0=nq j,i  otherwise. 

Denote the columns of )ρ,γ(Q  by )ρ,γ(q),..,ρ,γ(q),ρ,γ(q
~
T

~
2

~
1  and the columns of 

)ρ,γ(NQ  by )ρ,γ(nq),..,ρ,γ(nq),ρ,γ(nq
~

T
~

2
~

1 . Define a T by T matrix )ρ,γ(NQ1  with 

columns )ρ,γ(nq),..,ρ,γ(nq),ρ,γ(nq
~

T
~

3
~

2 , and the last is a column of zeros. Denote the 

columns of )ρ(R 1-  by )ρ(rr),..,ρ(rr),ρ(rr
~

T
~

2
~

1 . )ρ(R 1-  is a T by T band matrix with typical 

element ρ=rr j
j-i,i  (j=0,1,2,3,..) and 0=rr j,i  otherwise. Define the T by T matrix 

)ρ,γ(Q)γ(N=)ρ,γ(NNQ -2  which is a band matrix with typical elements 1=nnq i,i , 

γ3+ρ=nnq 1-i,i , )γ3+γρ(3-nnqγ)3+ρ(=nnq 2
1-i,i2-i,i , 

)γ+γρ(3+nnq)γ3+γρ(3-nnqγ)3+ρ(=nnq 32
1-i,i

2
2-i,i3-i,i , 

nnqγρ-nnq)γ+γρ(3+nnq)γ3+γρ(3-nnqγ)3+ρ(=nnq 4+j-i,i
3

3+j-i,i
32

2+j-i,i
2

1+j-i,ij-i,i  (j>3) 

and 0=nnq j,i  otherwise. Denote the columns of )ρ,γ(NNQ  by 

)ρ,γ(nnq),..,ρ,γ(nnq),ρ,γ(nnq
~

T
~

2
~

1 . 

 
Using (12) for the tests of the MA(1) model, ESSR  is given by 

~~
+
1

1-
~
+
1

~
+
1

~
+
1

~~~

R e'e)e'e(e'e-e'e=ESS . 

As indicated in section 4.2, 
~

0
* γlimp=γ  and γ*  is given by the solution to (13) that lies 



 17

in the interval (-1, 1). Let ZE0  denote the expectation of Z evaluated when H0 , the 
regression model with AR(1) errors, is true. 
 

Proposition 4: ).ρ,γ(q)'ρ,γ(qlimσ=e'eTlimp *

~
1

*

~
1

2
~~

1-
0  

Proof: Given the non-stochastic nature of xt , and using (A3) and 0=)β-βlim(p
~

 under 

both H0  and H1 , gives  

].U)γ(N)γ('N'U[Tlimp=e'eTlimp 1-~1-~
1-

~~
1-  

Evaluation under H0  gives 

]e)ρ(R)γ(N)γ('N)ρ('R'e[Tlimp=e'eTlimp 1-1-~1-~1-1-
0

~~
1-

0  

          ]e)ρ,γ(Q)ρ,γ('Q'e[Tlimp= **-1
0  

          ).ρ,(γq)'ρ,(γqlimσ= *

~
1

*

~
1

2  

QED 

Proposition 5: )ρ,γ(nq)'ρ,γ(qlimσ=e'elimp *

~
2

*

~
1

2
~
+
1

~

0 . 

Proof: Using (A3) and (A4), and by similar reasoning to Proposition 4, gives 

].U)γ(N)γ('N'U[Tlimp=e'eTlimp 1
2-~1-~

1
1-

~
+
1

~
1-  

Evaluation under H0  gives 

]e)ρ(RL)γ('N)γ('N)ρ('R'e[Tlimp=e'eTlimp 1-
1

2-*1-*1-1-
0

~
+
1

~
1-

0  

          ]e)ρ,γ(NQ)ρ,γ('Q'e[Tlimp= *
1

*-1
0  

          ).ρ,γ(nq)'ρ,γ(qlimσ= *

~
2

*

~
1

2  

QED 

Proposition 6: ).ρ,γ(nq)'ρ,γ(nqlimσ=e'eTlimp *

~
2

*

~
2

2
~
+
1

~
+
1

1-
0  
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Proof: Using (A4), and by similar reasoning to Proposition 4, gives 

].U)γ(N)γ('N'U[Tlimp=e'eTlimp 1
2-~2-~

1
1-

~
+
1

~
+
1

1-  

Evaluation under H0  gives 

]e)ρ('RL)γ(N)γ('N'L)ρ('R'e[Tlimp=e'eTlimp 1
2-~2-~

1
1-

0

~
+
1

~
+
1

1-
0  

           ]e)ρ,γ(NQ)ρ,γ('NQ'e[Tlimp= *
1

*
1

-1
0  

           ).ρ,γ(nq)'ρ,γ(nqlimσ= *

~
2

*

~
2

2  

QED 
The other terms that appear in the various tests can be calculated in the same way using the 
following results for i,j>0: 

)ρ(rr)'ρ,γ(nqlimσ=T/U'elimp
~

1+j
*

~
1+i

2
^

j

~
+
i0  

)ρ,γ(nq)'ρ,γ(nqlimσ=T/e'elimp *

~
1+j

*

~
1+i

2
~
+
j

~
+
i0  

)ρ(rr)'ρ(rrlimσ=T/U'Ulimp
~

1+j
~

1+i
2

^

j

^

i0  

)ρ,γ(q)'ρ(rrlimσ=T/e'Ulimp *

~
1+j

~
1+i

2
~

j

^

i0  

)ρ,γ(nnq)'ρ,γ(nqlimσ=T/e'elimp *

~
1+j

*

~
1+i

2
~

++
j

~
+
i0  

)ρ,γ(nnq)'ρ,γ(nnqlimσ=T/e'elimp *

~
1+j

*

~
1+i

2
~

++
j

~
++

i0  

).ρ,γ(q)'ρ,γ(qlimσ=T/e'elimp *

~
1+j

*

~
1

2
~

j

~

0  
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Table 1: Added Variables for Testing the AR(p) Null Against Three Alternatives 
 
Alternative Added Variables  Degrees of Test 
Hypothesis    Freedom  
 

MA(q)  
~

q-t

~

1-t ε,...,ε   q  E1 

MA(q)  
~
*

q-t

~
*

1-t ε,...,ε   q  E2 

MA(q)  
~

t

^

t ε-ε    1  DOP1 

MA(q)  
~
*
t

^
*
t ε-ε    1  DOP2 

AR(p+r)  
^

r-p-t

^

1-p-t u,..,u   r  LMA1 

AR(p+r)  
^

*
r-p-t

^
*

1-p-t u,..,u   r  LMA2 

ARMA(p,r) 
^

r-t

^

1-t ε,..,ε   r  LMM1 

ARMA(p,r) 
^
*

r-t

^
*

1-t ε,..,ε   r  LMM2 

 
 
Notes: 

1. An asterisk is used to denote the transformation of the relevant variable by )L(ρ
^

; for 

example, 
~

t

^~
*
t ε)L(ρ=ε . 

2. LMA1=LMM1 (see Godfrey [5]). 
3. E denotes the prediction error test, and DOP denotes the difference of prediction errors 
test. 
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Table 2: Added Variables for Testing the MA(q) Null Against Three Alternatives 
 
Alternative Added Variables  Degrees of Test 
Hypothesis    Freedom  

AR(p)  
^

p-t

^

1-t u,...,u   p  E1 

AR(p)  
^

+
p-t

^
+

1-t u,...,u   p  E2 

AR(p)  
~

t

^

t ε-ε    1  DOP1 

AR(p)  
~
+
t

^
+
t ε-ε    1  DOP2 

MA(q+r) 
~
+

r-q-t

~
+

1-q-t ε,..,ε   r  LMM1 

MA(q+r) 
~

++
r-q-t

~
++

1-q-t ε,..,ε   r  LMM2 

ARMA(r,q) 
~

+
r-t

~
+

1-t u,..,u   r  LMA1 

ARMA(r,q) 
~

++
r-t

~
++

1-q-t u,..,u   r-q [r>q]  LMA2 

 
Notes: 

1. A plus sign is used to denote the transformation of the relevant variable by )L(γ 1-~
; for 

example, 
^

t
1-~^

+
t u)L(γ=u . 

2. LMM1=LMA1 (see Godfrey [5]). 
3. E denotes the prediction error test, and DOP denotes the difference of prediction errors 
test. 
4. Following the convention for the other tests, the added variables for LMA2 should be 

~
++
r-t

~
++
1-t u,..,u . Since 

~
++

t

~
+
t u=ε , it follows that 

~
++
q-t

~
++
1-t u,..,u  are perfectly correlated with the 

existing regressors in (7) and so are excluded from the above Table.  
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Table 3: Auxiliary Regressions to Calculate Bahadur Approximate Slopes for Tests of the 
AR(1) Null Evaluated Under the MA(1) Alternative 
 
Test  Unrestricted Regression 
 
E1  s1  on a2  and f 2  
E2  s1  on a2  and r2  
 
DOP1  s1  on a2  and )aρ+fγ(- 2

*
2  

DOP2  s1  on a2  and )aρ-a(ρ+rγ(- 3
*

2
*

2 ) 
 
LMA1  s1  on a2  and a3  
LMA2  s1  on a2  and aρ-a 4

*
3  

 
LMM1  s1  on a2  and s2  
LMM2  s1  on a2  and sρ-s 3

*
2  

 

where ,)'0,0,ργ ),ρ+γ-(,1(=)ρ,γ(s=s ***

~

5
11  ,)'0,ργ ),ρ+γ-(,1,0(=)ρ,γ(s=s ***

~

5
22  

,)'ργ ),ρ+γ-(,1,0,0(=)ρ,γ(s=s ***

~

5
33  ,)'0,,0γ-,1,0(=)γ(a=a

~

5
22  ,)'0,γ-,1,0,0(=)γ(a=a

~

5
33  

,)'γ-,1,0,0,0(=)γ(a=a
~

5
44  ,)'0,0,0,1,0(=f=f

~

5
22  and )'.0,,0ρ-,1,0(=)ρ(r=r **

~

5
22  The vectors 

)ρ,γ(s *

~

5
i  [i=1,2,3], )γ(a

~

5
j  [j=2,3,4], 

~

5
2f  and )ρ(r *

~

5
2  are defined in the Appendix. 
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Table 4: Auxiliary Regressions to Calculate Bahadur Approximate Slopes for Tests of the 
MA(1) Null Evaluated Under the AR(1) Alternative 
 
Test  Unrestricted Regression 
 

E1  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and )ρ(rr2

~
 

E2  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and )ρ,γ(q *

~
2   

 

DOP1  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and ))ρ(rr2ρ+)ρ,γ(q2γ(-

~

*

~

*  

DOP2  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and ))ρ,γ(q2ρ+)ρ,γ(nq2γ(- *

~

*

~

*  

 

LMM1  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and )ρ,γ(nq3

*

~
 

LMM2  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and )ρ,γ(nnq3

*

~
 

 

LMA1  )ρ,γ(q *

~
1  on )ρ,γ(nq2

*

~
 and )ρ,γ(q *

~
2  

LMA2  Not defined due to perfect collinearity among regressors. 
 
 

where )ρ,γ(q *

~
i ,  )ρ,γ(nqi

*

~
, )ρ,γ(nnqi

*

~
 and )ρ(rri

~
 are defined in the Appendix. 
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