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Abstract

Consider a two-player discounted infinitely repeated game. A player’s belief
is a probability distribution over the opponent’s repeated game strategies. This
paper shows that, for a large class of repeated games, there are no beliefs that
satisfy three conditions, learnability, consistency, and a diversity condition, CS.
This impossibility theorem generalizes results in Nachbar (1997).
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1 Introduction.

1.1 A statement of the result.

Consider an infinitely repeated game with discounting and perfect monitoring based
on a finite stage game. For simplicity, I restrict attention to two-player games, but
the results extend to games with any finite number of players. A belief is a probability
distribution over the opponent’s repeated game strategies. This paper establishes
an impossibility theorem for beliefs.

By way of motivation and illustration, suppose that each player has only two
stage game actions, H and T . Suppose further that each player is certain that the
opponent’s repeated game behavior strategy is i.i.d. – in each period, the opponent
plays H with some probability q, independent of history – but is uncertain as to
the value of q ∈ [0, 1]. Each player’s belief can then be represented as a probability
over [0, 1]. Suppose that each player’s belief has a continuous and strictly positive
density. In the special case in which each player’s belief is a Beta distribution, and
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players best respond, it is a folk theorem that, for any discount factor, this Bayesian
model is equivalent to fictitious play.1

In this model, player beliefs satisfy three conditions. The belief supports are
learnable, meaning that if player i’s opponent were to play an i.i.d. strategy then
(one can show) player i’s one-period-ahead forecasts along the path of play would
become accurate asymptotically. Beliefs are weakly cautious because the support of
each player’s belief over q is the entire interval [0, 1]; no i.i.d. strategy is excluded (as
defined, weak caution actually requires less than this). And beliefs are symmetric
in that they have the same supports, reflecting the symmetry of the strategy sets
in this repeated game. Symmetry does not require that probabilities over q have
the same densities. For general definitions (not restricted to i.i.d. strategies) and
additional motivation, see Section 4.1 (learnability) and Section 4.3 (weak caution
and symmetry).

But player beliefs are not consistent. Consistency requires that each player have
a best response in the support of his opponent’s belief; the formal definition is in
Section 4.2. It is not hard to see that, with any beliefs of the sort described, no
i.i.d. strategy will be optimal, except in the trivial case that one of the stage game
actions is weakly dominant. Informally, each player is certain the other is playing
an i.i.d. strategy even though, if players optimize, neither player is. It is as though
each player were certain that he were more sophisticated than his opponent.

The main result of this paper, Theorem 1, is that this generalized, Bayesian
version of fictitious play exhibits a phenomenon that is common in repeated game
models: for a large class of repeated games, there are no beliefs that simultaneously
satisfy learnability, consistency, and CS, a diversity condition that is weaker than
weak caution and symmetry.

The proof of Theorem 1 rests on the following observation. For a large class of
repeated games, for any strategy σ1 that player 1 might play, there is a strategy σ2,
an evil twin of σ1, such that, were player 2 actually to play σ2 and were player 1’s one-
period-ahead forecasts along the path of play to become accurate asymptotically,
then player 1 would eventually learn that continued play of σ1 was suboptimal.
Because a player can hold erroneous beliefs about his opponent’s behavior off the
path of play even if his forecasts along the path of play are accurate, the statement
that σ2 is σ1’s evil twin is strictly stronger than the statement that σ1 is not a best
response to σ2.

It follows from the definitions that if player 1’s belief satisfies learnability and if
σ1’s evil twin is in the support of player 1’s belief then σ1 is not optimal. Say that
beliefs have the evil twin property if every strategy in the support of player 2’s belief
about player 1 has an evil twin in the support of player 1’s belief about player 2,
and vice versa. If learnability is satisfied and if the evil twin property holds then
consistency fails. This observation, which is simply a marshalling of definitions, is
recorded in the paper as Theorem 2. The bulk of the proof of Theorem 1 is devoted

1See the appendix to Chapter 2 in Fudenberg and Levine (1998) and also Lehrer (1996).
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to showing that CS implies the evil twin property.
The above discussion glossed over an ambiguity in the definition of “support”

stemming from the fact that there are typically many equivalent ways to represent
the same belief. For example, in the two action case, the degenerate belief that
assigns probability one to the i.i.d. behavior strategy with q = 1/2 is outcome
equivalent to the belief that is uniform over pure strategies that specify actions as
a function of time but that are otherwise independent of history (for example, the
strategy “play H in period 1, T in period 2, etc.”). This paper finesses this ambiguity
by stating results in a form that is independent of the belief representation. A more
accurate statement of Theorem 1 is, For a large class of repeated games, for any
beliefs, there are no strategy subsets that are simultaneously learnable, consistent,
and satisfy CS. Learnability of a given strategy subset holds for one belief if and
only if it holds for all outcome equivalent beliefs, and similarly for consistency. The
definition of CS does not depend on beliefs at all.

In the remainder of this introductory section, I discuss the application of The-
orem 1 to models of out of equilibrium learning and I review some of the other
relevant literature. Section 2 provides basic notation and definitions for repeated
games. Section 3 deals with beliefs and learning. Section 4 provides formal defini-
tions of learnability, consistency, and CS. Section 5 states and proves Theorem 1.
Section 6 contains some concluding remarks.

1.2 An application to learning in repeated games.

Suppose that two players are engaged in a repeated game, with neither player know-
ing the strategy of her opponent. One would like to argue that, via Bayesian up-
dating of their beliefs, players learn to make increasingly accurate forecasts, and
that, as a result, play asymptotically resembles that of a Nash equilibrium of the
repeated game. This is the class of learning models examined in Kalai and Lehrer
(1993). A natural way to proceed in constructing such a model is to start by iden-
tifying strategy subsets, to be interpreted as the supports of player beliefs, with the
property that there are, in fact, beliefs for which these sets are both learnable and
consistent. For such beliefs, consistency guarantees that an optimizing player might
play a strategy in the support of his opponent’s belief, and, assuming such a strategy
is played, learnability then guarantees that each player will indeed learn to make
increasingly accurate forecasts. Theorem 1 says that, for a large class of repeated
games, any such strategy sets will violate CS. Put differently, Theorem 1 says that,
given learnability, consistency requires that a certain kind of equilibrium assump-
tion be built into the supports of player beliefs. Consistency doesn’t require that
the supports exclude everything except i’s actual strategy, as in a Nash equilibrium.
But consistency goes a non-trivial distance in that direction.

To head off confusion, let me make two additional comments. First, there is a
well developed literature that examines within equilibrium (rather than out of equi-
librium) learning in repeated games with a type space structure. In particular, each
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player may privately learn his stage game payoff function, drawn from a commonly
known distribution, before engaging in the repeated game. A strategy in the type
space game is a map from types to strategies in the repeated game. By “within
equilibrium,” I mean that players play a Nash equilibrium of the type space game.
The classic cite is Jordan (1991).

The assumption that players are in a Nash equilibrium means that, in effect, each
player knows the other’s type space strategies. If one relaxes the Nash equilibrium
assumption, the analog of the results in this paper hold, now for type space strategies
rather than for strategies in the realized repeated game; see Nachbar (2001) and also
Section 4.1.

Second, there is a large literature in which players use prediction rules, which are
functions from histories to one period ahead forecasts of the opponent’s action. A
prediction rule is formally equivalent to a behavior strategy, and so a model in which
players use prediction rules is formally equivalent to a Bayesian model in which each
player’s belief places probability 1 on a behavior strategy.2 There will, typically, be
many other, less trivial, belief representations generating the same prediction rule.
Theorem 1 states that, for a large class of repeated games, for any learning model
using prediction rules, there is no equivalent Bayesian model in which the support
of player beliefs are learnable, consistent, and satisfy CS.3

1.3 Other relevant literature.

Theorem 1 generalizes the results of Nachbar (1997). Most notably, Nachbar (1997)
had left largely unresolved whether an impossibility result continues to hold if players
simultaneously (a) ε optimize rather than optimize and (b) randomize.4 If the
answer were “no” then the impossibility results in Nachbar (1997) could be avoided
by appealing to a form of bounded rationality. The present paper shows that the
impossibility results of Nachbar (1997) are robust in this respect. The present paper
also provides a reformulation that is, I think, much more transparent.

Propositions 4 and 5 of Nachbar (1997) are immediate corollaries of Theorem 1
of this paper. The Theorem and Proposition 3 of Nachbar (1997) are corollaries as
well, with the minor qualification that weak caution condition (1) is stronger than
its counterpart in Nachbar (1997). See also the discussion of neutrality in Remark 4
in Section 4.3 of this paper. Theorem 1 is also stronger than its analogs in Nachbar
(1997) in that it uses a weaker definition of prediction, and in that it applies to a

2In many such models, players maximize, or ε maximize, payoffs period-by-period. Myopic ε
optimization corresponds to δ = 0 uniform ε optimization in the present paper; see Section 3.3.

3I have implicitly assumed that prediction rules are deterministic. There is also a literature (e.g.
Young (1993)) in which players use prediction rules that are probabilistic. Probabilistic prediction
rules are not equivalent to beliefs over strategies and hence the players using them are not Bayesian
in the standard sense. Theorem 1 has no implications for such learning models.

4Proposition 5 in Nachbar (1997) showed, using a computability argument, that the inconsistency
arises if the Σ̂i comprise the behavior strategies that can be implemented by Turing machines with
access to randomization devices. Proposition 5 in Nachbar (1997) was restricted to δ close to zero.
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somewhat larger class of repeated games (condition MM in this paper is somewhat
weaker than its analog, assumption M, in Nachbar (1997)). The basic argument,
however, is essentially the same as in Nachbar (1997); in particular the proof of
Lemma 3 of this paper is a modification of the proof of Proposition 1 in Nachbar
(1997).

Both this paper and Nachbar (1997) are close relatives of Dawid (1985). Roughly
put, Dawid (1985) points out that if a Bayesian, looking at the data generated by
an unknown stochastic process, thinks that the set of possible stochastic processes
satisfies a condition similar to weak caution then the Bayesian’s prediction rule,
which is itself a stochastic process, will be, loosely speaking, more complicated than
any of the processes that he thinks are possible. Both Nachbar (1997) and the
present paper can be viewed as exploring the implications of this observation for
game theory.

Finally, as noted in Nachbar (1997), these impossibility results are reminiscent
of difficulties that arise in static (rather than repeated) environments in which each
player chooses a decision procedure that takes his opponent’s decision procedure as
input. The classic cite is Binmore (1987). I refer the reader to Nachbar (1997) for
a discussion.

2 Repeated Games.

As in Nachbar (1997), I focus on two-player infinitely repeated games of perfect
monitoring. The analysis extends easily to games with more than two players, but
adding additional players introduces the possibility that correlation may be built
into beliefs.

2.1 The stage game.

Let Ai denote the set of actions available to player i in the stage game. Let ai

denote an element of Ai. I assume that |Ai| < ∞, where |Ai| is the cardinality of
Ai. Let A = A1 ×A2. An element a = (a1, a2) ∈ A is an action profile.

Let ∆(Ai) denote the set of probability mixtures over Ai. ∆(Ai) can be identified
with the unit simplex in R

|Ai|.
Each player has a stage game payoff function, ui : A → R. I also let ui denote the

mixed extension of ui. Thus ui(α) = Eαui(a), where Eα denotes expectation with
respect to the measure over A defined by the mixed action profile α ∈ ∆(A1)×∆(A2).

2.2 Histories and paths of play.

An n period history, denoted h, is an element of An, the n-fold Cartesian product
of A. Let h0 denote the null history, the history that obtains before play begins.
Let H denote the set of all finite histories, including h0.
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A path of play, denoted z, is an infinite history, an element of A∞. Let Z = A∞

denote the set of paths of play. zn denotes the action profile played at date n
under the path of play z. π(z, n) ∈ An denotes the projection of z onto its first n
coordinates, giving the initial n period history determined by z.

Make Z measurable by giving it the σ-algebra generated by the cylinders C(h) ⊂
Z, where C(h) is the set of paths of play with initial segment h. Let ∆(Z) denote
the set of probability measures over Z.

2.3 Behavior strategies and mixed strategies.

Players at date n + 1 know the realized n period history (perfect monitoring). I
adopt the convention that the term action refers to the stage game while the term
strategy refers to the repeated game. A behavior strategy for i is a function of the
form

σi : H → ∆(Ai).

Given a behavior strategy σi and a history h, the probability that player i chooses
action ai in the period following h is σi(h)(ai). Let Σi denote the set of i’s behavior
strategies. Since H is countable, Σi can be identified with [R|Ai|]∞. Let Σ = Σ1×Σ2.

I use si to denote a pure strategy, which is a behavior strategy that, for each h,
assigns probability 1 to an element of Ai. Following history h, if the pure strategy
si assigns probability 1 to ai then I write si(h) = ai. Si ⊂ Σi denotes the set of
player i’s pure strategies.

Make Σi measurable by giving [R|Ai|]∞ the product Borel σ algebra. Let ∆(Σi)
denote the set of probability measures over Σi.

2.4 Induced measures over Z.

A behavior strategy profile σ induces a probability measure µσ ∈ ∆(Z). Similarly, a
mixed strategy profile β ∈ ∆(Σ1)×∆(Σ2) induces a probability measure µβ ∈ ∆(Z),
and so on for combinations of mixed and behavior strategies.

Say that history h is reachable under the behavior strategy profile σ iff µσ(C(h)) >
0. Say that history h is reachable under σ1 iff there exists some pure strategy s2 for
which µ(σ1,s2)(C(h)) > 0. Analogous definitions hold for mixed strategies.

2.5 Outcome equivalence.

Two behavior strategies σ1 and σ∗
1 are outcome equivalent iff for any behavior strat-

egy σ2 ∈ Σ2,

µ(σ1,σ2) = µ(σ∗
1 ,σ2).

One can verify that σi and σ∗
i are outcome equivalent iff µ(σ1,β2) = µ(σ∗

1 ,β2) for any
β2. The definition of outcome equivalence for mixed strategies is analogous.
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One can prove the following variant of Kuhn’s theorem, establishing outcome
equivalence between mixed and behavior strategies (in the standard version of
Kuhn’s Theorem, mixtures are over Si rather than Σi).

Lemma 1 (Kuhn’s Theorem). For any mixed strategy βi there is a behavior
strategy σi such that βi is outcome equivalent to σi, and conversely.

If σi is outcome equivalent to the mixed strategy βi then say that σi is a reduced
form of βi.

Much of this paper implicitly assumes that players adopt behavior strategies
rather than mixed strategies. By Kuhn’s Theorem, this is largely a matter of inter-
pretation. If one wants, for reasons of interpretation, to retain mixed strategies, one
way to do so is to introduce types. The results of this paper carry over into type
space models; see Section 1.2.

2.6 Repeated game payoffs.

Player i’s payoff in the repeated game is the expectation of the discounted value of
the payoffs he receives along the realized path of play. Formally, given a behavior
strategy profile σ, the expected payoff to player i is

Vi(σ) = Eµσ

( ∞∑
n=1

δn−1ui(zn)

)
,

where δ ∈ [0, 1). One can analogously define Vi(β) and Vi(σ1, β2).

2.7 Continuation games.

An n period history h defines a continuation game, the repeated game starting in
period n + 1. In the continuation game following h, a behavior strategy σi induces
a continuation behavior strategy σih defined by

σih(h′) = σi(h · h′)

for any history h′, where h ·h′ denotes the concatenation of h and h′. Given a profile
σ = (σ1, σ2), let σh = (σ1h, σ2h).

The profile σh induces the distribution µσh
over the set of continuation paths,

which is simply Z. Given a history h and the profile σ, the expected continuation
payoff to player i is

Vi(σh) = Eµσh

( ∞∑
n=1

δn−1ui(zn)

)
.

Note that, in this definition, payoffs are discounted to the start of the period fol-
lowing h, rather than back to the first period.
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3 Beliefs, Optimization, and Learning.

3.1 Beliefs.

A belief about player i is a probability distribution over player i’s behavior strategies.
A belief about player i is thus formally equivalent to a mixed strategy for player
i. By Kuhn’s Theorem, for any belief βi there is a reduced form σβ

i , not uniquely
defined, that is outcome equivalent to βi, and conversely. It is often more convenient
to work with a reduced form σβ

i than with βi.

3.2 Bayesian updating.

As the game proceeds, each player learns by Bayesian updating of her prior. Given
a prior βi, any history h that is reachable under βi, and any reduced form σβ

i , a
reduced form of the posterior over continuation game strategies is simply σβ

ih.

3.3 Optimization.

Given ε ≥ 0, σ∗
1 is an ex ante ε best response to β2 (or σ∗

1 is ex ante ε optimal) iff

V1(σ∗
1, β2) + ε ≥ max

σ1∈Σ1

V1(σ1, β2).

Even if a behavior strategy is ex ante ε optimal, the induced continuation strategy
may be ε suboptimal in subgames that are far in the future or that the player views
as unlikely. Should such a subgame be reached, the player would, presumably,
deviate from her behavior strategy. The following stronger version of ε optimization
eliminates this problem for subgames that are reachable given the player’s belief
(see also Lehrer and Sorin (1998)).

Definition 1. Given ε ≥ 0, σ∗
1 is a uniform ε best response to β2 (or σ∗

1 is uniformly
ε optimal) iff, for any reduced form σβ

2 of β2 and any h that is reachable under
(σ∗

1, σ
β
2 ),

V1(σ∗
1h, σ

β
2h) + ε ≥ max

σ1∈Σ1

V1(σ1, σ
β
2h).

If σ∗
1 is a uniform ε best response to β2, write σ∗

1 ∈ BRε
1(β2). The definition for

player 2 is analogous.

Note that if δ = 0 then uniform ε optimization corresponds to myopic (period-
by-period) ε optimization.

3.4 Learning to predict the path of play.

Informally, player 1 learns to predict the path of play generated by σ2 (and player
1’s own strategy) if her one period ahead forecasts along the path of play eventually
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become almost as accurate as if she knew σ2. This is not the same thing as saying
that player 1 learns σ2. Player 1 could learn to predict the path of play generated
by σ2 and still hold erroneous beliefs about what player 2 would do off the path of
play. Note also that if σi(h) = αi is not pure then accurate prediction means only
that the player predicts approximately αi, not that she predicts the realized action.

Recall that π(z, n) is the history corresponding to the n period initial segment
of z and that C(h) is the cylinder of all paths of play with initial segment h.

Definition 2. Fix a belief β2. Player 1 learns to predict the path of play generated
by the behavior strategy profile σ = (σ1, σ2) iff the following conditions hold.

1. µσ(C(h)) > 0 implies µ(σ1,β2)(C(h)) > 0 for any finite history h.

2. For any real number η > 0 and µσ almost any path of play z, there is a period
n(η, z) such that, for any n > n(η, z) and any a2 ∈ A2, letting h = π(z, n),

|σ2(h)(a2) − σβ
2 (h)(a2)| < η.

A similar definition holds for player 2.

This definition is equivalent to the one given in Nachbar (1997). Prediction
corresponds to the more general concept of weak merging; see Kalai and Lehrer
(1994).

As defined, prediction requires accurate forecasts in every period following period
n(η, z). To be able to apply results from Lehrer and Smorodinsky (1996) (see also
Section 4.1), I consider a weaker form of prediction that requires forecasts to be
accurate only on a set of dates of density 1. Formally, let N be the set of natural
numbers (excluding zero) and consider a set N

� ⊂ N. Say that N
� has density 1 iff

lim
n→∞

|{1, 2, . . . , n} ∩ N
�|

n
= 1.

Definition 3. Fix a belief β2. Player 1 weakly learns to predict the path of play
generated by the behavior strategy profile σ = (σ1, σ2) iff the following conditions
hold.

1. µσ(C(h)) > 0 implies µ(σ1,β2)(C(h)) > 0, for any finite history h.

2. For any real number η > 0 and µσ almost any path of play z, there is a set
N

P (η, z) ⊂ N of density 1 such that, for any n ∈ N
P (η, z) and any a2 ∈ A2,

letting h = π(z, n),

|σ2(h)(a2) − σβ
2 (h)(a2)| < η.

A similar definition holds for player 2.

Weak prediction corresponds to the more general concept of almost weak merging
introduced in Lehrer and Smorodinsky (1996). Prediction implies weak prediction
but not conversely.
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4 Consistency, Learnability, and CS

4.1 Learnability.

Here and throughout, Σ̂i ⊂ Σi and Σ̂ = Σ̂1 × Σ̂2.

Definition 4. Given Σ̂ ⊂ Σ and belief β2, Σ̂2 is learnable iff for any σ1 ∈ Σ̂1

and any σ2 ∈ Σ̂2, player 1 weakly learns to predict the path of play. An analogous
definition holds for learnability of Σ̂1. Σ̂ is learnable iff Σ̂i is learnable for each i.

There are product sets that are not learnable for any beliefs. In particular, The-
orem 1 implies that if either player has at least two actions in the stage game then
there are no beliefs for which Σ, the full product set of behavior strategies, is learn-
able; this is a game theoretic version of an observation about stochastic processes
made in Dawid (1985). Thus, Σ̂ ⊂ Σ can be learnable only if it is sufficiently small
in some sense.

A well known sufficient condition for player 1 to learn to predict the path of play
is for player 1’s belief to assign positive probability to player 2’s actual strategy.
Even if the probability assigned to player 2’s strategy is extremely low, a strong
form of prediction will be satisfied: player 1 learns to accurately forecast the entire
infinite tail of the game, rather than merely the next period. Since every element
of a countable set can be given positive probability, it follows that if Σ̂ is countable
there are beliefs for which that set will be learnable.

Uncountable Σ̂ can also be learnable. Example 2 in Lehrer and Smorodinsky
(1996) implies that if the Σ̂2 has a “nice” finite dimensional parameterization then
there are beliefs for which Σ̂2 is learnable. By “nice,” I mean that if two parame-
ters are close in the standard Euclidean topology then the associated strategies are
likewise close under a particular metric on Σ2.5 The i.i.d. example of Section 1.1 is
an example of a “nice” finite dimensional parameterization.6

Theorem 1 can be viewed as a purely positive statement: if the strategy sets
happen to be learnable then either consistency or CS must fail. But one can argue
that learnability should be “built in” by choosing belief representations in which, as
in the i.i.d. example, beliefs are probabilities over learnable strategies. Such learn-
able representations are always possible: given any belief βi, take the alternative

5Adapting the definition of neighborhood in Lehrer and Smorodinsky (1996) to the present
context (strategies in repeated games rather than stochastic processes), σ′ is in the ε neighborhood
of σ iff, for any history h that is reachable under σ2 and any a2 ∈ A2 for which σ(h)(a2) > 0,

|σ′
2(h)(a2) − σ2(h)(a2)| < εσ2(h)(a2).

This definition of neighborhood is more restrictive than that implied by the sup norm. It is not
known whether the sup norm will suffice.

6One can show that beliefs in the i.i.d. example allow prediction rather than merely weak pre-
diction. A natural conjecture is that, more generally, beliefs allow prediction rather than merely
weak prediction if, as in the i.i.d. example, the parameter set is closed and the distribution over
parameters admits a strictly positive density. But at this writing this conjecture has not been
established.
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representation that places probability 1 on the reduced form σβ
i . This representa-

tion is trivial, but non-trivial learnable representations are typically also available;
see, in particular, the representation proposed by Jackson, Kalai, and Smorodinsky
(1999).

An argument for adopting learnable representations is the following. Suppose
that the beliefs used in Bayesian models are a construction by boundedly rational
players who consider the game, decide what strategies their opponents might play,
and choose probability distributions over those strategies. If a player really thinks
that an opposing strategy σi is possible then his belief should give every neigh-
borhood of σi positive probability. If one defines neighborhood with a sufficiently
strong metric, a metric that takes into account behavior in the tails, then σi will
be learnable (exactly what metrics will serve remains an open question; see also
footnote 5).

Adoption of a strong metric implies that players care about the tail of the game,
which conflicts with modeling them as discounting ε optimizers. One, informal,
justification for nevertheless focusing on learnable representations mirrors the jus-
tification offered for uniform, as opposed to ex ante, ε optimization. Upon reaching
the subgame defined by history h, a player wants to get a high average payoff from
that point forward. So his continuation strategy should be ε optimal with respect to
his posterior, and his posterior should itself be “good.” The player should not, on
reaching h, want to violate Bayes’s rule by reconsidering the game and constructing
a new posterior to permit forecasting of strategies effectively ruled out by his prior.
To avoid this kind of dynamic problem, the priors in a Bayesian model should be
modeled as if players cared about the tail of the game.7 Whether one can build a
coherent model of belief construction along the lines sketched remains a topic for
future work.

Remark 1. Weak prediction is stronger than necessary for the main results of this
paper. As will be clear from the proofs, a weaker condition that will work just as
well is that, for any positive integer �, with high probability, there is a period after
which the player’s forecast of his opponent’s play over the next � periods is highly
accurate. Even one such period will serve; the proof does not require that the set
of such periods have density 1.

Also, for the sake of generality, the definition of learnability, like the definition
of conventional prediction in Nachbar (1997), requires prediction by player 1 only
if she herself plays a strategy in Σ̂1. The sufficient conditions for prediction given
above do not, in fact, require that player 1’s strategy be restricted to Σ̂1. The results
hold a fortiori if the definition of learnability is strengthened to require prediction
regardless of one’s own strategy. �
Remark 2. In type space models (see Section 1.2), the requirement that players
learn to predict the path of play generated by the opponent’s realized repeated

7For a model, necessarily non-Bayesian, in which players do jettison their Bayes’s rule posteriors,
see Foster and Young (2003).
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game strategy can be too strong, and must be replaced by the appropriate analog,
namely that players learn to predict the path of play generated by the opponent’s
type space strategy (a map from types to repeated game strategies). See Nachbar
(2001). Thus defined, learnability is compatible with purification in the spirit of
Harsanyi (1973), a phenomenon that has been emphasized in the context of type
space learning models by Jackson and Kalai (1997) (although, strictly speaking, this
is for recurring rather than repeated games), Jordan (1995), and Nyarko (1998). �

4.2 Consistency.

Definition 5. Given beliefs β1 and β2, Σ̂ ⊂ Σ is ε consistent iff for any ε > 0,
player 1 has a uniform ε best response in Σ̂1 and player 2 has a uniform ε best
response in Σ̂2: BRε

1(β2) ∩ Σ̂1 �= ∅ and BRε
2(β1) ∩ Σ̂2 �= ∅. Σ̂ is consistent iff Σ̂ is ε

consistent for every ε > 0.

A trivial learnable and consistent strategy set is a Nash equilibrium strategy
profile with associated beliefs (probability 1 on the opponent’s actual strategy). A
Nash equilibrium profile, however, violates CS, defined below.

4.3 CS, weak caution, and symmetry.

Definition 6. Σ̂ ⊂ Σ satisfies CS iff the following conditions hold.

1. There is an ξ ∈ (0, 1) such that, for each i, the following is true. Consider
any σi ∈ Σ̂i. There is a pure strategy si ∈ Σ̂i such that, for any history h, if
si(h) = ai then σi(h)(ai) > ξ.

2. Consider any pure strategy s1 ∈ S1. For any function γ12 : A1 → A2 there is
a pure strategy s2 ∈ Σ̂2 such that the following is true. Let z be the path of
play generated by (s1, s2). There is a set N

γ(z) ⊂ N of density 1 such that for
any n ∈ N

γ(z), letting h = π(z, n),

s2(h) = γ12(s1(h)).

And an analogous statement holds for s2 ∈ Σ̂2 and γ21 : A2 → A1.

The motivation for condition (1) is that if a behavior strategy σ2 is in Σ̂2 (to
be thought of as the support of player 1’s belief) then a prudent player 1 should
think that at least one comparatively simple, nonrandomizing variation on σ2 is
contained in Σ̂2 as well. The leading candidate for a nonrandomizing variation on
a behavior strategy σ2 is the pure strategy, call it s∗2, that, for any history h, plays
the action to which σ2 assigns highest probability. s∗2 has the property that, for any
h, if s∗2(h) = a2 then

σ2(h)(a2) ≥
1

|A2|
.
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CS condition (1) is in the spirit of requiring that s∗2 be contained in Σ̂2, but it is
weaker. CS condition (1) requires only that one such pure strategy be contained in
Σ̂2, not that every such pure strategy be contained in Σ̂2.

CS condition (2) is implied by two stronger conditions, weak caution and sym-
metry (the name CS is derived from Caution and Symmetry) that are easier to
motivate.

Definition 7. Σ̂i ⊂ Σi is weakly cautious iff the following is true.

1. CS Condition 1 holds.

2. Consider any strategy σi ∈ Σ̂i and any function g : Ai → Ai (not necessarily
1-1 or onto). There is a strategy σg

i ∈ Σ̂i such that, for any h and any
a∗i ∈ g(Ai),

σg
i (h)(a∗i ) =

∑
ai∈g−1(a∗

i )

σi(h)(ai).

Σ̂ is weakly cautious iff Σ̂i is weakly cautious for each i.

The motivation for weak caution condition (2) is that if a strategy σ2 is in Σ̂2

(still to be thought of as the support of player 1’s belief) then a prudent player
1 should include all computationally trivial variants of σ2 in Σ̂2 as well. More
explicitly, view a behavior strategy as a black box that takes histories as input and
yields stage game actions as output. Condition (2) states that if σi is in Σ̂i then so
is any behavior strategy generated by using a function g to relabel outputs, leaving
the black box, which is where all of the strategic complexity resides, unchanged.
For any σi, the set of such computationally trivial variants is finite, since I have
assumed that the action set is finite.

Naively, one might demand, instead of weak caution, full caution: Σ̂i = Σi. But,
as noted in Section 4.1, if either player has at least two stage game actions then Σ̂ is
not learnable for any beliefs. Thus, to avoid triviality when dealing with learnable
sets, one must restrict attention to some weakened form of caution. The definition
offered here is arguably too strong in that it is payoff independent, but it is not clear
how much payoff dependence would be incorporated into the support of a prudent
player’s belief. The payoff independent formulation is, at a minimum, a natural and
useful benchmark.

Definition 8. Σ̂ ⊂ Σ is symmetric iff the following holds. Consider any behavior
strategy σ1 ∈ Σ̂1. Let A∗

1 ⊂ A1 be the set of actions such that if a1 ∈ A∗
1 then there

exists a history h for which σ1(h)(a1) > 0. Let r = min{|A∗
1|, |A2|}. Then there is

a set A∗
2 ⊂ A2 with |A∗

2| = r, an onto map γ : A∗
1 → A∗

2, and a behavior strategy
σγ

2 ∈ Σ̂2 such that, for any a∗2 ∈ A∗
2,

σγ
2 (h)(a∗2) =

∑
a1∈γ−1(a∗

2)

σ1(h)(a1).

13



And a similar condition holds for any behavior strategy σ2 ∈ Σ̂2.

Symmetry is motivated by the idea that, aside from differences in the compo-
sition and cardinality of the stage game action sets, the mechanics of constructing
strategies are the same for the two players. More explicitly, as in the discussion of
weak caution condition (2), view a strategy as a black box that takes histories as
inputs and produces stage game actions as outputs. Then symmetry requires that
for every σ1 ∈ Σ̂1, Σ̂2 contains a strategy σγ

2 constructed from σ1 by relabeling out-
puts (using the function γ) while leaving the black box unchanged. σγ

2 is the same
as σ1, except that whenever σ1 chooses, say, up, σ2 chooses, say, H. The definition
of symmetry is complicated by the desire to ensure that the relabeling function γ
is, loosely speaking, complexity preserving.

Lemma 2. If Σ̂ is weakly cautious and symmetric then Σ̂ satisfies CS.

Proof. CS condition (1) is immediate. For CS condition (2), it is easy to verify
that weak caution condition (2) and symmetry imply that, for any γ12 : A1 → A2

and any pure strategy s1 ∈ Σ̂1, there is a pure strategy s2 ∈ Σ̂2 such that, for any
history h (not just histories along the path of play generated by (s1, s2)),

s2(h) = γ(s1(h)).

That is, CS condition (2) holds for every z (not just z generated by (s1, s2)), and
N

γ(z) = N. �

Example 1. Consider any Σ̂ where, for each i, Σ̂i is defined as the set of strategies
that satisfy some bound on strategic complexity. For example, Σ̂i might be the set of
strategies that have one period memory, or k-period memory, or are implementable
by automata or, or by Turing machines, possibly with access to randomization
devices. Any such set is weakly cautious and symmetric, and hence satisfies CS. �
Example 2. Suppose that Σ̂1 is the set of pure strategies for player 1 that are im-
plementable by automata and Σ̂2 is the set of pure strategies for player 2 that are
implementable by Turing machines. Then Σ̂ violates CS and, in particular, violates
symmetry. It is not hard to see, however, that Σ̂ is nevertheless inconsistent for any
beliefs for which Σ̂ is learnable. �
Example 3. Each player’s action set in the stage game is Ai = {H,T}.

1. Suppose that Σ̂i consists of the two elements H and T , where H is the pure
strategy “play H in every period” and T is the pure strategy “play T in every
period.” Then Σ̂ satisfies weak caution and symmetry and hence CS. This Σ̂i

is sparse, which underscores the fact that weak caution is, as a characterization
of prudence, weak.
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2. Suppose that, for each i, Σ̂i consists of the single element “randomize 50:50
in every period, regardless of history,” hereafter 50:50. This Σ̂ violates weak
caution and CS. In particular, it is not hard to see that CS requires here that
if 50:50 is in Σ̂i then so are H and T .

�
Remark 3. Trembles can be accommodated by the following slight weakening of
weak caution condition (1). Fix k ∈ (0, 1). There is a ξ > 0 such that, for any
σi ∈ Σ̂i, there is a behavior strategy σk

i ∈ Σ̂i such that, for any history h, there is
an ai ∈ Ai for which

1. σk
i (h)(ai) > 1 − k, and

2. σi(h)(ai) > ξ.

One can verify that the main results continue to hold with this modification, for any
k sufficiently small. See also the discussion of trembling in Nachbar (1997). �
Remark 4. Symmetry and weak caution are, collectively, analogous to what Nachbar
(1997) called neutrality. Symmetry and weak caution condition (2) are weaker than
the first four neutrality conditions in Nachbar (1997). Weak caution condition (1) is
stronger than neutrality condition (5) in Nachbar (1997). Neutrality condition (5) in
Nachbar (1997) in effect allowed the bound ξ to depend both on the history and on
the behavior strategy. Weak caution (1) requires ξ to be uniform across histories and
behavior strategies. Although, as a technical exercise, one can construct examples
in which neutrality condition (5) holds but weak caution condition (1) fails, I am
not aware of any interesting examples where this occurs. �

5 Impossibility.

5.1 The main result and the evil twin property.

An action a∗1 ∈ A1 is weakly dominant iff, for any a2 ∈ A2,

u1(a∗1, a2) ≥ max
a1∈A1

u1(a1, a2).

This definition is somewhat weaker than the standard one in that I do not require
strict inequality for any a2. The definition for player 2 is similar.

Definition 9. The stage game satisfies No Weak Dominance (NWD) iff neither
player has a weakly dominant action.

Player 1’s minmax payoff is given by

m1 = min
α2∈∆(A2)

max
α1∈∆(A1)

u1(α1, α2).
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Player 1’s pure action maxmin payoff is given by

M1 = max
a1∈A1

min
a2∈A2

u1(a1, a2).

The definitions for player 2 are analogous.

Definition 10. The stage game satisfies MM iff, for each player i, the pure action
maxmin payoff is strictly less than the minmax payoff,

Mi < mi.

Examples of stage games that satisfy MM are matching pennies, rock-scissors-
paper, battle of the sexes, and many coordination games.

The main result of the paper is the following.

Theorem 1. Fix beliefs β1 and β2. Consider any Σ̂ ⊂ Σ.

1. If NWD holds then there is a δ̄ ∈ (0, 1] such that, for any δ ∈ [0, δ̄), if Σ̂ is
learnable and satisfies CS then Σ̂ is not consistent.

2. If MM holds then, for any δ ∈ [0, 1), if Σ̂ is learnable and satisfies CS and
symmetric then Σ̂ is not consistent.

The intended interpretation is that, for a large set of repeated games, if beliefs
have supports that are both learnable and sufficiently diverse then the beliefs are
inconsistent.

NWD cannot be relaxed. If δ is low and NWD fails then at least one of the
players will be able to satisfy consistency because, no matter what his belief, it will
be a best response for him to play the constant strategy in which he repeatedly
plays his weakly dominant stage game action. The repeated prisoner’s dilemma, for
example, is not vulnerable to this form of inconsistency.

It is not clear whether MM is necessary, although it is used in an important way
in the proof of Theorem 3, which is the key technical result.

For more on the hypotheses in Theorem 1, see the discussion following Lemma 3
in Section 5.2.

The proof of Theorem 1 relies on the following concept.

Definition 11. Fix δ. A behavior strategy σ2 ∈ Σ2 is an ε evil twin of a behavior
strategy σ1 ∈ Σ1 iff σ1 is not a uniform ε best response to any belief β2 for which
player 1 weakly learns to predict the path of play generated by (σ1, σ2). A similar
definition holds for player 2.

In the coordination game below, it is easy to show that

H T
H −1,−1 1, 1
T 1, 1 −1,−1
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an ε evil twin of any pure strategy s1, for any ε, is simply s1 itself, that is, the
strategy s2 defined by, for any h,

s2(h) = s1(h).

In this case, an evil twin is an identical twin. In repeated matching pennies, an ε
evil twin of any pure strategy s1, for any ε, is any best response to s1. I take up the
general construction of evil twins in Section 5.2.

Definition 12. Fix δ. Σ̂ ⊂ Σ has the evil twin property iff there is an ε > 0 such
that, for any σ1 ∈ Σ̂1, there is a strategy σ2 ∈ Σ̂2 that is an ε evil twin of σ1, and
similarly for player 2.

Marshaling definitions yields the following observation.

Theorem 2. Fix δ and fix beliefs β1 and β2. If Σ̂ ⊂ Σ is learnable and has the evil
twin property then it is not consistent.

The key technical fact underlying Theorem 1 is that the evil twin property follows
from CS.

Theorem 3. Consider any Σ̂ ⊂ Σ.

1. If NWD holds then there is a δ̄ ∈ (0, 1] such that, for any δ ∈ [0, δ̄), if Σ̂
satisfies CS then Σ̂ has the evil twin property.

2. If MM holds then, for any δ ∈ [0, δ̄), if Σ̂ satisfies CS then Σ̂ has the evil twin
property.

The proof of Theorem 1 follows immediately from Theorems 2 and 3. It remains
to prove Theorem 3.

5.2 The proof of Theorem 3.

The proof of Theorem 3 follows from a sequence of lemmas. I begin by showing how
to construct evil twins for pure strategies.

Define aM
2 : A1 → A2 by, for any pure action a1 ∈ A1,

aM
2 (a1) = arg min

a2∈A2

u1(a1, a2).

If the right-hand side is not single valued, arbitrarily pick one of the values to be
aM

2 (a1). The function aM
1 is defined similarly.

Recall that π(z, n) is the n period initial segment of the infinite path of play z.
Given s1, define SM

2 (s1) ⊂ S2 to be the set consisting of all s2 for which there exists
a set N

� ⊂ N of density 1 such that, for all n ∈ N
�, letting z denote the path of play

generated by (s1, s2) and letting h = π(z, n),

s2(h) = aM
2 (s1(h)).
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The definition of SM
1 (s2) is analogous.

Define the function ã2 : A1 → A2 by, for any pure action a1 ∈ A1,

ã2(a1) = arg max
a2∈A2

[
max
a′
1∈A1

u1(a′1, a2) − u1(a1, a2)

]
.

If the right-hand side is not single valued, arbitrarily pick one of the values to be
ã2(a1). The function ã1 is defined similarly. Loosely, ã2(a1) is the action that gives
player 1 maximal one-period incentive not to play a1. ã2(a1) does not necessarily
minimize player 1’s payoff from a1. That is, it is not necessarily true that ã2(a1) =
aM

2 (a1).
Given s1, define S̃2(s1) ⊂ S2 to be the set consisting of all s2 for which there

exists a set N
� ⊂ N of density 1 such that, for all n ∈ N

�, letting z denote the path
of play generated by (s1, s2) and letting h = π(z, n),

s2(h) = ã2(s1(h))

The definition of S̃1(s2) is analogous.
Lemma 3 confirms that, for a large set of games, elements of either S̃1(s2) or

SM
1 (s2) are indeed evil twins of s1. The proof is in the appendix.

Lemma 3.

1. Suppose that NWD holds. Then there is a δ̄ ∈ (0, 1) and an ε′ > 0 such that,
for any δ ∈ [0, δ̄), any ε ∈ [0, ε′), and any pure strategy s1 ∈ S1, if s2 ∈ S̃2(s1)
then s2 is an ε evil twin of s1. And an analogous statement holds for any
s2 ∈ S2.

2. Suppose that MM holds. Then there is an ε′ > 0 such that, for any δ ∈ [0, 1),
any ε ∈ [0, ε′), and any pure strategy s1 ∈ S1, if s2 ∈ SM

2 (s1) then s2 is an ε
evil twin of s1. And an analogous statement holds for any s2 ∈ S2.

Informally, the logic of the argument is as follows. If NWD holds, then s1(h) is
not a stage game ε best response to ã2(s1(h)) for any h, for ε sufficiently small. If
δ is close to zero, therefore, and if player 1 learns to predict the path of play, then
player 1 will learn to predict that the continuation strategy induced by s1 is not
ε optimal on a set of periods of density 1, which means that s1 is not uniformly ε
optimal.

On the other hand, for any δ, if MM holds, then player 1 will learn to predict
that his payoff average is at most M1, which, by assumption, is strictly less than
the minmax payoff m1. But a uniform ε optimizing player always expects to earn
at least m1 − ε, on average, in any continuation game he thinks is reachable.

If MM fails then it is possible that player 1 never learns to expect to receive less
than m1, on average. Although meager, a payoff average of m1 can be consistent
with ε optimization, depending on what player 1 expects to happen should she
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deviate. In this regard, recall that the Folk Theorem states that player 1 can receive
a payoff average arbitrarily close to m1 in equilibrium (indeed, in subgame perfect
equilibrium). This said, I do not know of any examples in which (a) MM is violated
but NWD is satisfied, and (b) learnability, consistency, and CS are all satisfied.

The next lemma records that evil twins of the sort just constructed will be
included in any Σ̂ that satisfies CS.

Lemma 4. Suppose that Σ̂ satisfies CS. Consider any s1 ∈ Σ̂1.

1. There is an s2 ∈ Σ̂2 ∩ S̃2(s1).

2. There is an s2 ∈ Σ̂2 ∩ SM
2 (s1).

And analogous statements hold with the roles of the players reversed.

Proof. Given s1 as in the statement of the lemma, define γ12 : A1 → A2 by
γ12(a1) = ã2(a1). In view of the definition of S̃2(s1), the conclusion then follows
from CS condition (2), with N

� = N
γ(z). The proof for SM

2 (s1) is similar, as is the
proof for the analogous claims with the roles of the players reversed. �

These lemmas establish Theorem 3, and hence Theorem 1, for the special case
in which Σ̂ is pure. It remains to extend the argument to Σ̂ that include random-
izing behavior strategies. I do so by means of the following fact about uniform ε
optimization. The proof is in the appendix.

Lemma 5. Consider any belief β2, any ε ≥ 0, any behavior strategy σ1 that is a
uniform ε best response to β2, and any ξ > 0. Consider any pure strategy s1 such
that, for any history h, if s1(h) = a1 ∈ A1 then

σ1(h)(a1) > ξ.

Then s1 is uniformly
ε

(1 − δ)ξ

optimal. A similar statement holds for player 2.

Proof of Theorem 3. Consider any belief β2 and any behavior strategy σ1 ∈ Σ̂1.
By CS condition (1), there is a pure strategy s1 ∈ Σ̂1 and a ξ > 0 such that, for any
history h, if s1(h) = a1 ∈ A1, then

σ1(h)(a1) > ξ.

By Lemma 5, if σ1 is a uniform ε best response to player 1’s belief then s1 is a
uniform ε/[(1− δ)ξ] best response. By Lemma 3 and Lemma 4, it follows by contra-
position that s1 cannot be a uniform ε/[(1 − δ)ξ] best response for ε/[(1 − δ)ξ] less
than ε′, where ε′ is as in the statement of Lemma 3, hence σ1 cannot be a uniform
ε best response for ε less than ε′(1 − δ)ξ. The proof follows. �
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6 Conclusion

The paper’s main result, Theorem 1, states that, for a large class of repeated games,
if beliefs have supports that are learnable and sufficiently diverse, in the sense of
satisfying CS, then the supports are inconsistent.

Although one can work with an inconsistent model, like Bayesian fictitious play,
consistency seems to me to be so attractive property that I would prefer to retain it,
if possible. And, for reasons discussed in Section 4.1, I would also like to represent
beliefs as probabilities over learnable strategies, in which case learnability is built
in. This leaves CS.

I have chosen definitions of CS, and of weak caution and symmetry, that are
based exclusively on complexity considerations, independent of payoffs. This formu-
lation is, I think, a natural benchmark, but a compelling theory of belief formation
would also take account of payoffs. It is possible that, because of this, a prudent
player, according to some more fundamental definition of prudence, would never-
theless have beliefs that violate CS. But developing such a theory remains a topic
for future work.
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Appendix

Proof of Lemma 3. The proof is a modification of the proof of Proposition 1 in
Nachbar (1997).

Let

w1 = min
a1∈A1

[
max
a′
1∈A1

u1(a′1, ã2(a1)) − u1(a1, ã2(a1))

]
.

By NWD, w1 > 0. Let

ū1 = max
a∈A

u1(a),

u1 = min
a∈A

u1(a),

By NWD, ū1 > u1.
To prove the first part of the lemma, choose δ̄ sufficiently small that, under

uniform ε optimization, player 1 acts to maximize his current period payoff (i.e. he
is effectively myopic). In particular, it will turn out that the argument below goes
through for ε′ > 0 and δ̄ ∈ (0, 1] such that, for any ε ∈ [0, ε′) and any δ ∈ [0, δ̄),

ε < w1 −
δ

1 − δ
[u1 − u1] .

Note that such ε′ and δ̄ do exist.
Consider any pure strategy s1 ∈ S1 and any s2 ∈ S̃2(s1). Temporarily fix

η ∈ (0, 1). Let z be the path of play generated by (s1, s2) and suppose that player
1 weakly learns to predict the path of play. Then there is a set N

P (η, z) ⊂ N of
density 1 such that, for any n ∈ N

P (η, z), in the continuation game beginning in
period n + 1, player 1 assigns some probability greater than 1 − η to the actual
action chosen by player 2 in period n + 1. Let N

◦(η, z) = N
P (η, z) ∩ N

�, where N
�

is from the definition of S̃2(s1). Note that N
◦(η, z), as the intersection of two sets

of density 1, has density 1.
Choose any n ∈ N

◦(η, z). Recalling that π(z, n) is the history corresponding
to the n period initial segment of z, let s1(π(z, n)) = a∗1 be the action chosen by
player 1 in period n + 1. Then player 2 chooses action ã2(a∗1). Discounting payoffs
to period n + 1, player 1’s expected payoff in the continuation game is at most

(1 − η)u1(a∗1, ã2(a∗1)) + ηu1 +
δ

1 − δ
u1.

If player 1 were instead to choose an action a1 in period n+1 to maximize u1(a1, ã2(a∗1)),
his expected payoff in the continuation game would be at least

(1 − η) max
a1∈A1

u1(a1, ã2(a∗1)) + ηu1 +
δ

1 − δ
u1.
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Thus, uniform ε optimization requires

ε + (1 − η)u1(a∗1, ã2(a∗1)) + ηu1 +
δ

1 − δ
u1

≥ (1 − η) max
a1∈A1

u1(a1, ã2(a∗1)) + ηu1 +
δ

1 − δ
u1

or

ε + η(u1 − u1) ≥ w1 −
δ

1 − δ
[u1 − u1].

By the construction of ε′ and δ̄, there is an η sufficiently small such that this in-
equality cannot hold for any ε ∈ [0, ε′) and δ ∈ [0, δ̄). This establishes the first part
of the lemma.

As for the second part of the lemma, suppose that Assumption MM holds. Fix
any δ ∈ [0, 1) and choose ε′ > 0 such that, for any ε ∈ [0, ε′),

ε <
1

1 − δ
[m1 −M1] .

By Assumption MM, m1 > M1, hence such ε′ exist.
Once again, consider any pure strategy s1 ∈ S1 and any s2 ∈ SM

2 (s1). Let z be
the path of play generated by (s1, s2). Temporarily fix η > 0 and an integer � > 0.
Again, suppose that player 1 weakly learns to predict the continuation path of play.
Then there is a set N

P (η, z) ⊂ N of density 1 such that in the continuation game
beginning in period n + 1, player 1 assigns a probability greater than 1 − η to the
actual action chosen by player 2 in period n+1. Let N

◦(η, z) = N
P (η, z)∩N

�, where
N� is from the definition of SM

2 (s1). Note that N
◦(η, z), as the intersection of two

sets of density 1, has density 1.
Let N

�(η, z) ⊂ N
◦(η, z) be such that for any n ∈ N

�(η, z) and any k ∈ {1, . . . , �},
player 1 assigns probability greater than 1− η to the actual action chosen by player
2 in period n + k. Because N

◦(η, z) has density 1, N
�(η, z) has density 1 (and, in

particular, is not empty). Thus, for any n ∈ N
�(η, z), player 1 assigns a probability

greater than (1−η)� to the actual �-period continuation history, beginning in period
n + 1. For ease of notation, define λ ∈ (0, 1) by

1 − λ = (1 − η)�.

Note that λ decreases as either η decreases or � increases.
Consider any n ∈ N

�(η, z). In the �-period continuation history beginning in
period n + 1, player 1 receives at most M1 per period. On the other hand, player 1
believes that there is a probability of at most λ that the continuation history might
be something else. In an alternate �-period continuation history, player 1 receives
at most u1 per period. Finally, from period n + � + 1 onwards, player 1 receives at
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most u1 per period. Thus, beginning in period n + 1, player 1 expects to earn at
most

1 − δ�

1 − δ
[(1 − λ)M1 + λu1] +

δ�

1 − δ
u1.

In contrast, any best response must expect to earn at least m1, on average, following
any history given positive probability by µ

(s1,σβ
2 )

. (And, by the assumption that
player 1 learns to predict the path of play, any history along z is given positive
probability.) Thus, under a true best response, player 1 expects to earn at least

m1

1 − δ
.

Thus ε optimization requires

ε +
1 − δ�

1 − δ
[(1 − λ)M1 + λu1] +

δ�

1 − δ
u1 ≥ m1

1 − δ

or

ε ≥ (1 − λ)
1 − δ�

1 − δ
[m1 −M1] −

δ� + λ(1 − δ�)
1 − δ

[u1 −m1].

By the construction of ε′, one can find η sufficiently small and � sufficiently large
that this inequality cannot hold for any ε ∈ [0, ε′). This establishes the second part
of the lemma. �

Proof of Lemma 5. Fix any history h that is reachable under (σ1, σ
β
2 ). For

concreteness, let the length of h be n. I must show that s1h is 1
(1−δ)ξε optimal.

Following any history h, let J(a1) denote the expected discounted payoff to
player 1 from playing action a1 in the next period and thereafter playing according
to σ1. Let s1(h) = a∗1. Then, by the construction of s1, for any h,

V1(σ1h, σ
β
2h) ≤ ξJ(a∗1) + (1 − ξ) max

a1∈A1

J(a1).

On the other hand, since σ1 is uniformly ε optimal, for any h that is reachable under
(σ1, σ

β
2 ),

V1(σ1h, σ
β
2h) + ε ≥ max

σ′
1∈Σ1

V1(σ′
1, σ

β
2h).

Combining these inequalities with the fact that

max
σ′
1∈Σ1

V1(σ′
1, σ

β
2h) ≥ max

a1∈A1

J(a1),
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one concludes that playing a∗1 next period and thereafter playing according to σ1

loses, relative to the optimal continuation strategy, at most ε/ξ:

max
σ′
1∈Σ1

V1(σ′
1, σ

β
2h) − J(a∗1) ≤

ε

ξ
.

Fix any integer N > 0. Let sN
1 denote the pure strategy that is identical to s1

on every history of length n + N − 1 or less, and thereafter is identical to σ1.
Consider any continuation history h′ of length N − 1 that is reachable under

(σ1h, σ
β
2h). From the argument above, the continuation payoff from playing sN

1 ,
starting at history h · h′, is within ε/ξ of the maximum continuation payoff.

Similarly, for any continuation history h′′ of length N−2 that is reachable under
(σ1h, σ

β
2h), the continuation payoff from playing sN−1

1 , starting at history h · h′′, is
within ε/ξ of the maximum continuation payoff. If, instead of playing sN−1

1 , one
plays sN

1 , as in the previous paragraph, then one loses, at most, an additional δε/ξ,
discounted back to date n + N − 1. Therefore, for any continuation history h′′ of
length N−2 that is reachable under (σ1h, σ

β
2h), the continuation payoff from playing

sN
1 , starting at history h · h′′, is within

ε

ξ
+ δ

ε

ξ

of the maximum continuation payoff.
Continuing in this way, it follows that the continuation payoff from playing sN

1 ,
starting at history h, is within

ε

ξ
+ · · · + δN−1 ε

ξ
=

(
1 − δN

1 − δ

)
ε

ξ

of the maximum continuation payoff. This holds for any integer N > 1. Therefore,
taking the limit as N → ∞ (and noting that sN

1 converges to s1 in the product
topology, and that V1 is continuous in the product topology), the continuation payoff
from playing s1, starting at history h, is within

ε

(1 − δ)ξ

of the maximum continuation payoff, as was to be shown. �
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