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1. Introduction

We have been facing with the problem of global warming. In order to deal with the threat to the

environment, the government should adopt environmental policies to reduce emissions of SO2

or CO2 and not to increase greenhouse gas concentrations. In this paper, we consider a problem

in environmental policy design within the framework of optimal timing problems. The purpose

of this paper is to derive optimal timings at which the government should adopt environmental

policies to deal with increases in greenhouse gas concentrations and to reduce emissions of SO2

or CO2 under the continuous-time Knightian uncertainty. Furthermore, we analyze the effects of

increases in Knightian uncertainty on optimal environmental policies and the reservation value.

Usually, such a problem is analyzed based on the cost-benefit analysis. However, this

standard approach does not consider three significant characteristics of environmental problems,

that is, uncertainty, irreversibility, and the flexibility in deciding the timing of adopting envi-

ronmental policies. We briefly explain these notions before we go into details. First, there exist

economic uncertainty over future costs and benefits of adopting environmental policies and eco-

logical uncertainty over the evolution of ecological systems. We do not know exactly the effect of

adopting environmental policies nor know the economic damages caused by increases in average

temperature. Second, there exist, at least two irreversibilities to be considered in environmental

problems. The one is the irreversibility with respect to environmental damage. For instance,

emissions of CO2 will increase greenhouse gas concentrations, which is considered to lead to

grobal warming and damage the ecosystems. The other is the irreversibility with respect to

economic damage. For example, the installation of “scrubbers” by truck companies will be sunk

costs on society. Third, the adoption of environmental policies is not now-or-never decisions.

That is, the government has the option to postpone the adoption of policies and can wait for the

arrival of new information, for example, some data about global warming, or some innovation

about scrubbers, which will enable us to put off adopting environmental policies and to avoid

imposing sunk costs on society.

As we have already mentioned, we have to consider two kinds of uncertainties that play

important parts in environmental policy design. The one is economic uncertainty, that is, the

uncertainty over future costs and benefits of adopting environmental policies to reduce emissions
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of SO2 or CO2. When it comes to global warming, we would not grasp the resulting cost to

society, or we would not exactly predict how the increase in temperature would affect agricultural

outputs, or ecological systems, even if how large average temperature is expected to rise. The

other is ecological uncertainty, that is, the uncertainty over the evolution of ecological systems.

We could not exactly predict how further increase in greenhouse gas concentrations would affect

average temperature in the future, or how much today’s level of greenhouse gas concentrations

could be reduced by government’s policies.

We also have to take care of at least two different kinds of irreversibilities that have

the opposite characteristics. First, environmental policies that aim at reducing environmental

damage impose sunk cost on society. For example, consider the situations in which companies

owning coal-burning utilities might be forced to install scrubbers, or the situations in which they

might have to scrap existing facilities and invest in more efficient machines. These sunk costs

generate an opportunity cost of adopting policies immediately, rather than waiting for the arrival

of new information about environmental damage and their economic concequences, for example,

the information about innovations of new technologies in the near future that might enable us

to remove sulfur more cheaply and efficiently. Traditional cost and benefit analysis based on the

net present value approach ignores this opportunity cost, which should be considered carefully.

The second irreversibility is the one with respect to environmental damage. For example,

environmental pollutants are not easily removable from the atmosphere; even if the government

adopts severe policies to reduce greenhouse gas emissions, it would take many years to reduce

greenhouse gas concentrations in the atmosphere. The damage to environmental systems caused

by higher global warming cannot be easily reversible. Contrary to the first irreversibility, this

implies that adopting environmental policies right now rather than waiting has sunk benefit, a

negative opportunity cost. Again, the standard cost-benefit analysis based on the net present

value approach does not consider opportunity benefit.

In the literature of decision making under non-deterministic situation, decision maker’s

beliefs are captured by a single probability measure over the state of the world, which is cate-

gorized as risk. Recently, new approaches have been proposed and axiomatized by Gilboa and

Schmeidler (1989) in which decision maker’s beliefs are captured by not a single but multiple
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probability measures over the state of the world, which is categorized as Knightian uncertainty

or uncertainty in the literature.1 This paper adapts a model of the continuous-time Knightian

uncertainty proposed by Chen and Epstein (2002), which is a counterpart of the static frame-

work developed by Gilboa and Schmeidler (1989). We show that while an increase in risk does

not affect the value of adopting environmental policies, an increase in Knightian uncertainty in-

duces a decrease in the value of adopting environmental policies. This result implies that if the

government is uncertainty averse, then she underestimates the value of adopting environmental

policies since she makes decision on the worst case scenario. Our paper is related to Pindyck

(2000, 2002). He shows that an increase in risk induces an increase in the reservation value

above which environmental policies are immediately adopted and below which environmental

policies are never adopted. This paper shows that an increase in Knightian uncertainty induces

a decrease in the reservation value under some condition, which is a stark contrast to Pindyck

(2000, 2002).

The organization of this paper is as follows. Section 2 provides continuous-time models

under risk and Knightian uncertainty. In order to analyze the value of adopting environmental

policies under the continuous-time Knightian uncertainty in the later sections, mathematical def-

initions and results are provided. Section 3 derives the value of adopting environmental policies

under the continuous-time Knightian uncertainty. Section 4 provides the further characteriza-

tion of the value of adopting policies, and derives the value of optimal environmental policies

under the continuous-time Knightian uncertainty. Section 5 provides sensitivity analyses, which

are main results of this paper.

2. The Value of Environmental Policies under the Continuous-Time Knightian

Uncertainty

In this section, we provide continuous-time models under risk and Knightian uncertainty. At

first, definitions and mathematical notions are in order.

2.1 A General Continuous-Time Model under Risk

Let (Ω,FT , P ) be a probability space, and let (Bt)0≤t≤T be a standard Brownian motion with
1For example, see Knight (1921), Gilboa (1987), Schmeidler (1989) or Gilboa and Schmeidler (1989).
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respect to P .2 We consider the standard filtration (Ft)0≤t≤T for a standard Brownian motion

(Bt)0≤t≤T .3 Let (Mt)0≤t≤T be a stochastic process of the stock of an environmental pollu-

tant (for example, CO2 concentrations in the atmosphere) and let Et be the evolution of the

rate of emission of the pollutant at time t. We assume that the evolution of the stock of the

environmental pollutant (Mt)0≤t≤T follows a controlled arithmetic Brownian motion,

dMt = (βEt − δMt)dt + σMdBM
t , (1)

where β ∈ (0, 1] denotes the absorption rate of the environmental pollutant, δ ∈ [0, 1] denotes the

natural decay rate of the stock of the environmental pollutant over time, and σM is a constant

real number. In other words, a fraction β of the emission Et goes into the atmosphere, and a

fraction δ of the environmental pollutant Mt on the atmosphere diffuses into the ocean, and the

forests. In this paper, we ignore the stochastic fluctuation of Mt for simplicity. Thus, equation

(1) reduces to the following,

dMt = (βEt − δMt)dt. (2)

We assume that Et stays at the constant initial level E0, until an environmental policy is adopted.

We assume that economic uncertainty follows a geometric Brownian motion,

dXt = αXtdt + σXtdBt, (3)

where α and σ are constant real numbers. This stochastic process (Xt)0≤t≤T is assumed to

capture economic uncertainty over the future costs and benefits of policy adoptions. Changes

in Xt over time might reflect changes in technologies. For instance, if M is SO2 concentrations,

then changes in Xt might reflect the innovation of technologies that would drastically reduce

the social cost of M , or population increase that would raise the social cost. Without loss of

generality, it is assumed that σ > 0.

2A stochastic process (Bt)0≤t≤T is a standard Brownian motion if it is a continuous and adapted process on
(Ω,FT , P ) with properties that B0 = 0 a.s. and for 0 ≤ s < T , the increment BT − Bs is independent of Fs and
is normally distributed with mean zero and variance T − s. For definitions and notions of stochastic differenital
equations, see Karatzas and Shreve (1991) or Protter (2004).

3A stochastic process (Ft)0≤t≤T is a standard filtration for a Brownian motion (Bt) if for each t ≥ 0, Ft is the
smallest σ-algebra that contains the σ-algebra generated by (Bs)0≤s≤t and all P -null sets.
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We assume that the flow of social cost associated with the stock variable Mt, C(Mt,Xt)

is linear in Mt,4 that is

C(Xt,Mt) = −XtMt. (4)

The value at t of adopting environmental policies with T an expiration time is

W (Xt,Mt, t) ≡ EP

[∫ T

t
e−r(s−t)C(Xs,Ms)ds

∣∣∣∣Ft

]
,

where r > 0 is the discount rate, and EP [·| Ft] is the expectation with respect to P conditioned

on Ft.

The government’s problem is formulated to decide the time when she will incur the

social cost of adopting policies. The optimal time can be considered to be the solution to the

optimal stopping problem of finding an (Ft)-stopping time, t′ ∈ [0, T ] that maximizes the value

of adopting policies at period 0

EP

[∫ T

0
e−rsC(Xs,Ms)ds − e−rt′K

∣∣∣∣F0

]
. (5)

It is also assumed that r > α.5

The value at t of optimal environmental policies Vt, is defined by

Vt ≡ max
t′∈[t,T ]

EP

[∫ T

t
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]
. (6)

We can show that6

W (Xt,Mt, t)

= −XtMt

∫ T

t
exp (−(r + δ − α)(s − t)) ds

= − XtMt

r + δ − α
(1 − exp (−(r + δ − α)(T − t))) . (7)

The value of adopting policies W (Xt,Mt, t) equals

Wt ≡ W (Xt,Mt) = − XtMt

r + δ − α
(8)

4This assumption makes the optimal policy independent of Mt.
5In the later sections, we impose a strong assumption that r > α + σκ for κ > 0, which implies r > α.
6See Appendix in details.

5



as T goes to ∞. Since this model is stationary, the value of optimal environmental policies Vt

is shown to depend only on Xt and Mt, not to depend directly on t, and satisfies the following

Hamilton-Jacobi-Bellman equation,

V (Xt,Mt) = max
{
Wt − K, −XtMtdt + EP [dVt|Ft] + V (Xt,Mt) − rV (Xt,Mt)dt

}
. (9)

Proof. See Appendix.

It can be shown that the optimal strategy is to stop and adopt the environmental policy right

now if Xt ≥ X∗ and to continue if Xt < X∗, where X∗ is the reservation value. From the

Hamilton-Jacobi-Bellman equation above, it follows that in the continuation region,

−XtMtdt + EP [dVt| Ft] = rV (Xt,Mt)dt. (10)

Note that the left-hand side of this equation is the social cost associated with the stock of the

environmental pollutant plus the government’s expected gain of having the rights to implement

environmental policies, and the right-hand side is the opportunity cost measured in terms of

government’s discount rate. By applying Ito’s lemma to Vt and some calculations, it follows

that

dVt =
∂Vt

∂Xt
dXt +

∂Vt

∂Mt
dMt +

1
2

∂2Vt

∂X2
t

dX2
t

=
∂Vt

∂Mt
(βE0 − δMt)dt +

∂Vt

∂Xt
(αXtdt + σXtdBt) +

1
2

∂2Vt

∂X2
t

σ2X2
t dt.

Combining two equations implies that

EP [dVt] =
∂Vt

∂Mt
(βE0 − δMt)dt +

∂Vt

∂Xt
αXtdt +

1
2

∂2Vt

∂X2
t

σ2X2
t dt. (11)

Thus, in the continuation region,

rVt = −XtMt +
∂Vt

∂Mt
(βE0 − δMt) +

∂Vt

∂Xt
αXt +

1
2

∂2Vt

∂X2
t

σ2X2
t . (12)

We solve this differential equation under three boundary conditions,

Vt(0,Mt) = 0, (13)

Vt(X∗,Mt) = − X∗Mt

r + δ − α
− K, and (14)
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∂Vt

∂Xt
(X∗,Mt) =

∂Wt

∂Xt
(X∗,Mt), (15)

where X∗ is the critical value of X at or above which environmental policies should be adopted.

Condition (13) reflects the fact that if Xt is always zero, then the flow of the social cost associated

with the stock variable C(Xt,Mt) is zero. Thus the value of optimal policies will remain to be

zero. Condition (14) that follows from (9) is called the value matching condition; when Xt = X∗

and the government exercises her option to adopt policies, it incurs a sunk cost K and obtains

the net payoff. Condition (15) is called the smooth pasting condition; if adopting policies at X∗

is critical, then the derivative of the value function must be continuous.7 We guess the solution

to this equation as follows:

Vt = AXγ
t + BXtMt + DXt,

where A, B and D are some constants. Then

1
2
σ2X2

t Aγ(γ − 1)Xγ−2
t + α (AγXγ

t + BMtXt + DXt)

−r (AXγ
t + BXtMt + DXt) − XtMt + (βE0 − δMt)BXt = 0.

⇔ AXγ
t

(
1
2
σ2γ(γ − 1) + αγ − r

)
+ ((α − r − δ)B − 1)XtMt + (βBE0 + D(α − r))Xt = 0.

Thus,

1
2
σ2γ(γ − 1) + αγ − r = 0

(α − r − δ)B − 1 = 0 ⇔ B = − 1
r + δ − α

βBE0 + D(α − r) = 0 ⇔ D = − βE0

(r − α)(r + δ − α)
.

The value A remains to be determined. By the boundary conditions, the negative part of the

solution to (1/2)σ2γ(γ − 1) + αγ − r = 0 is ruled out.8 Note that

γ =
−(α − σ2/2) +

√
(α − σ2/2)2 + 2rσ2

σ2

>
−(α − σ2/2) +

√
(α − σ2/2)2 + 2ασ2

σ2

7For the value matching condition and the smooth pasting condition, see Dixit and Pindyck (1994, Chapter
4), and Dixit (1993).

8See Appendix.
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=
−(α − σ2/2) +

√
(α + σ2/2)2

σ2

=
−(α − σ2/2) + (α + σ2/2)

σ2
= 1. (16)

Then

A =
(

K

γ − 1

)1−γ

γ−γ

(
βE0

(r − α)(r + δ − α)

)γ

X∗ =
(

γK

γ − 1

)(
(r − α)(r + δ − α)

βE0

)
.

Thus

Vt

=

⎧⎪⎨
⎪⎩

(
K

γ − 1

)1−γ

γ−γ

(
βE0

(r − α)(r + δ − α)

)γ

Xγ
t − XtMt

r + δ − α
− βE0Xt

(r − α)(r + δ − α)
if Xt < X∗

Wt − K if Xt ≥ X∗.

The value function in the continuation region consists of three components. The first

term is the value of the option to adopt environmental policies. The second term is the present

value of the flow of social cost from the current stock of the pollutant. The third is the present

value of the flow of social cost from the emission E0. The value function in the stopping region

consists of two terms: the value of adopting environmental policies defined by (8) plus the direct

cost resulting from adopting environmental policies.

2.2 Continuous-Time Knightian Uncertainty

In this subsection, we provide a model of continuous-time Knightian uncertainty, which is first

proposed by Chen and Epstein (2002).

2.2.1 Densitiy Generators, Girsanov’s Theorem

Let L be the set of real-valued, measurable,9 and (Ft)-adapted10 stochastic process on (Ω,FT , P )

with an index set [0, T ] and let L2 be a subset of L that is defined by

L2 =
{

(θt)0≤t≤T ∈ L
∣∣∣∣
∫ T

0
θ2
t dt < +∞ P -a.s.

}
.

9A stochastic process (Xt)0≤t≤T on (Ω,FT , P ) is measurable if for every A ∈ B(R), {(t, ω)|Xt(ω) ∈ A} belongs
to the product σ-algebra (B([0, T ]) ⊗FT ), in other words, a function X : [0, T ] × Ω → R is (B([0, T ]) ⊗FT )-
measurable. For example, see Karatzas and Shreve (1991, p.3).

10A stochastic process (Xt)0≤t≤T on (Ω,FT , P ) is adapted to the filtration (Ft) if Xt is Ft-measurable for each
t. For example, see Karatzas and Shreve (1991, p.4).
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Given θ = (θt) ∈ L2, define a stochastic process (zθ
t )0≤t≤T by11

(∀t ∈ [0, T ]) zθ
t = exp

(
−1

2

∫ t

0
θ2
sds −

∫ t

0
θsdBs

)
. (17)

A stochastic process (θt) ∈ L2 is called a density generator if (zθ
t ) is (Ft)-martingale.

Novikov’s condition is one of the sufficient conditions for (zθ
t ) to be (Ft)-martingale: 12

EP

[
exp

(
1
2

∫ T

0
θ2
sds

)]
< +∞.

Let θ be a density generator and define Qθ by

(∀A ∈ FT ) Qθ(A) =
∫

Ω
zθ
T (ω)χA(ω) dP (ω) = EP [χAzθ

T ]. (18)

Since (zθ
t ) is (Ft)-martingale, Qθ(Ω) = EP (zθ

T ) = zθ
0 = 1. Thus, Qθ is a probability measure, 13

and it is absolutely continuous with respect to P . 14 Furthermore, since zθ
T is strictly positive,

P is also absolutely continuous with respect to Qθ. Thus, Qθ is equivalent to P .15 Conversely,

any probability measures equivalent to P can be obained by a density generator in this way.16

Let Θ be a set of density generators. For such a set Θ, define the set of probability

measures, PΘ on (Ω,FT ), generated by Θ, by

PΘ =
{
Qθ

∣∣ θ ∈ Θ
}

, (19)

where Qθ is derived from P according to (18). In this paper, decision maker’s beliefs are

captured by not a single probability measure, but the set of probability measures equivalent to

a probability measure P .

For any θ ∈ Θ, a stochastic process (Bθ
t )0≤t≤T defined by17

(∀t ∈ [0, T ]) Bθ
t = Bt +

∫ t

0
θsds

11By Ito’s lemma, we can define (zθ
t )0≤t≤T as a unique solution to the stochastic differential equation: dzθ

t =
−zθ

t θtdBt with zθ
0 = 1.

12For example, see Karatzas and Shreve (1991, p.199, Corollary 5.13).
13The countable additivity of Qθ on (Ω,FT ) is easy to show.
14A probability measure Q on (Ω,F) is absolutely continuous with respect to a probability measure P if for any

A such that P (A) = 0, Q(A) = 0.
15This argument draws on the following result: If Y is a nonnegative random variable with EP [Y ] = 1, then

we can create a new probability measure Q from the old probability measure P by defining Q(A) = EP [1AY ] for
all A ∈ FT .

16For example, see Duffie (1996).
17Equivalently, we can rewrite this as follows: (∀t ∈ [0, T ]) dBθ

t = dBt + θtdt.
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is a standard Brownian motion with respect to (Ft) on (Ω,FT , Qθ). This follows from Girsanov’s

Theorem.18

2.2.2 A Set of Stochastic Differential Equations

By Girsanov’s theorem, the stochastic differential equation capturing economic uncertainty turns

out to be

dXt = αXtdt + σXtdBt

= αXtdt + σXt(dBθ
t − θtdt)

= (α − σθt)Xtdt + σXtdBθ
t (20)

for any θ ∈ Θ. Note that the change of measure formula by way of Girsanov’s Theorem does

not affect the volatility term. By (20), and by applying Ito’s lemma to lnXt by considering Qθ

as the true probability measure,

(∀t ∈ [0, T ]) Xt = X0 exp
(

(α − (1/2)σ2)t − σ

∫ t

0
θsds + σBθ

t

)
. (21)

2.2.3 Rectangularity, Strong Rectangularity, i.i.d. Uncertainty, and κ-ignorance

Now we define three classes of density generators for the later analyses in this paper. A set of

density generators, ΘKt(ω), is rectangular if there exists a set-valued stochastic process (Kt)0≤t≤T

such that

ΘKt(ω) =
{

(θt) ∈ L2 | θt(ω) ∈ Kt(ω) (m ⊗ P )-a.s.
}

, (22)

and, there exists a compact subset K of R such that for each t, Kt : Ω � K is compact-valued and

convex-valued, the correspondence (t, ω) � Kt(ω), when restricted to [0, s]×Ω, is B([0, s])⊗Fs-

measurable for any 0 < s ≤ T ,19 and 0 ∈ Kt(ω) (m ⊗ P )-a.s., where m is the Lebesgue measure

restricted on B([0, T ]).

A set of density generators ΘKt is strongly rectangular if there exist a nonempty compact

subset20 K of R and a compact-valued, convex-valued, measurable correspondence21 K : [0, T ] �
18See Karatzas and Shreve (1991, p.191), for example.
19That is, {(t, ω) ∈ [0, s] × Ω |Kt(ω) ∩ U 	= ∅} ∈ B([0, s]) ⊗ Fs for any open set U . See Aliprantis and Border

(1994).
20This assumption corresponds to uniform boundedness in Chen and Epstein (2002). Under this assumption,

we can show that any θ ∈ ΘKt satisfies Novikov’s condition.
21See Chen and Epstein (2002) in details.
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K such that 0 ∈ Kt and

ΘKt =
{

(θt) ∈ L2 | θt(ω) ∈ Kt (m ⊗ P )-a.s.
}

, (23)

where m is the Lebesgue measure restricted on B([0, T ]). Any element in ΘKt satisfies Novikov’s

condition, which follows since Kt is a subset of a compact subset K of R for all t. Note that the

set Kt is independent of a state ω, that is, non-stochastic, contrary to the set Kt(ω) in (22).

Next, we consider a special case of strongly rectangular sets in which Kt is independent

of time t. The uncertainty characterized by ΘK is i.i.d. uncertainty if there exists a compact

subset K of R such that 0 ∈ K and

ΘK =
{

(θt) ∈ L2 | θt(ω) ∈ K (m ⊗ P )-a.s.
}

.

Note that the set ΘK is independent of the state and time.

Finally, we consider a special case of the i.i.d. uncertainty ΘK , where the set K is

specified as

K = [−κ, κ],

where κ > 0. This type of uncertainty is called the κ-ignorance. The real number κ is considered

to be a degree of Knightian uncertainty because the larger κ is, the larger the set of probability

measures is.

In order to prove Proposition 1, we adapt the theory of support functions along with

Chen and Epstein (2002). Define

et(σ)(ω) ≡ max
x∈Kt(ω)

σx for σ ∈ R++.

The strict positivity of σ for the definition of the support function is assumed in order to define

θ∗t and (θt)∗ below. Since Kt(ω) is convex-valued, we can adapt the theory of support functions.

See Rockafeller (1970) in details. In this paper, further restriction is imposed on the support

function. Define

et(σ) ≡ max
x∈Kt

σx for σ ∈ R++. (24)
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Recall that Kt is convex-valued. For this support function, define

(∀t ∈ [0, T ]) θ∗t ≡ argmax {σx |x ∈ Kt} = {maxKt} . (25)

The equality holds since σ > 0 and Kt is compact-valued. Note that (θ∗t ) is a degenetate

measurable process, and (θ∗t ) ∈ L. Thus (θ∗t ) ∈ ΘKt . Furthermore, if the κ-ignorance is

assumed, then θ∗t = κ since θ∗t = max[−κ, κ]. In this case, the support function turns out to be

e(σ) = max
x∈K

σx = σκ for σ ∈ R++,

where K = [−κ, κ]. Note that θ∗t and e(σ) are independent of the state and time in case of the

κ-ignorance. For the analyses in the later section, we define (θt)∗ by

(∀t ∈ [0, T ]) (θt)∗ ≡ argmin {σx |x ∈ Kt} = {minKt} .

This is a counterpart of Equation (25). Note that (θt)∗ = −κ under the κ-ignorance since

(θt)∗ = min[−κ, κ].

3. The Value of Adopting Policies under Strong Rectangularity

In this section, we derive the value of adopting environmental policies Wt by assuming the strong

rectangularity.

We assume that the government is uncertainty averse. In other words, her beliefs are

captured by the set of probability measures PΘ, (19), and she maximizes the infimum of expected

returns over PΘ. Furthermore, we impose the strong rectangularity on Θ, which implies that Θ

is equal to ΘKt. Thus, the value at t of adopting environmental policies with T an expiration

time is

W (Xt,Mt, t) ≡ inf
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds

∣∣∣∣Ft

]
,

where C(Xt,Mt) is defined by (4)

Proposition 1. Suppose that the government is uncertainty averse, and her beliefs are charac-

terized by ΘKt, where ΘKt is a strongly rectangular set of density generators defined by (23) for

some (Kt). Then the value of adopting environmental policies is provided by

W (Xt,Mt, t) = −
∫ T

t
XtMt exp

(
−(r + δ − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds, (26)

12



where (θt)∗ is defined by

(∀t ∈ [0, T ]) (θt)∗ ≡ argmin {σx |x ∈ Kt} = {minKt} .

Proof. See Appendix.

4. The Optimal Environmental Policy under Strong Rectangularity

In this section, we derive the values of adopting environmental policies and optimal environmen-

tal policies under the i.i.d. uncertainty and the infinite time horizon in addition to the strong

rectangularity.

4.1 The Value of Optimal Environmental Policies under the Strong Rectangularity

The optimal time is the solution to the optimal stopping problem of finding an (Ft)-stopping

time, t′ ∈ [0, T ] that maximizes the value of adopting policies at period 0

min
Q∈PΘ

EQ

[∫ T

0
e−rsC(Xs,Ms)ds − e−rt′K

∣∣∣∣F0

]
.

Thus, the value at t of optimal environmental policies Vt, is defined by

Vt ≡ max
t′∈[t,T ]

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]
, (27)

where C(Xt,Mt) is defined by (4). Appendix shows that Vt is a solution to the following

Hamilton-Jacobi-Bellman equation,

Vt = max
{

Wt − K,−XtMtdt + min
Q∈PΘ

EQ [dVt | Ft] + Vt − rVtdt

}
, (28)

where Wt is defined below by (32). Further assumptions enable us to solve this type of the

Hamilton-Jacobi-Bellman equation, otherwise difficult to solve analytically. We discuss this

topic in the next two subsections.

4.2 The Value of Adopting Policies under the i.i.d. Uncertainty and the

Infinite-Time Horizon

In this subsection, we derive the value of adopting policies by assuming the i.i.d. uncertainty,

the infinite-time horizon and no-existence of expiration date.

13



Under the assumption of the i.i.d. uncertainty, the support function (24) reduces to

e(σ) = max
x∈K

σx for σ ∈ R++, (29)

and

θ∗ = argmax {σx|x ∈ K} = max K. (30)

Furthermore, θ∗ = argmin {σx|x ∈ K} = min K. Note that θ∗ and θ∗ are independent of time

and the state. Under the i.i.d. uncertainty, (26) reduces to

W (Xt,Mt, t) = −
∫ T

t
XtMt exp (−(r + δ − α + σθ∗)(s − t)) ds

= −
∫ T

t
XtMt exp(−λ(s − t))ds

= −XtMt

λ
(1 − exp(−λ(T − t))) , (31)

where λ ≡ r + δ − α + σθ∗.

Thus, by assuming that there exists no expiration date, together with the i.i.d. un-

certainty and the infinite-time horizon, the value of adopting environmental policies reduces

to

Wt ≡ W (Xt,Mt) = −XtMt

λ
(32)

as T goes to ∞, since r > α, σ > 0, δ > 0, and 0 ∈ K, which implies the positivity of λ.

4.3 The Value of Optimal Environmental Policies under i.i.d. uncertainty and

Infinite Horizon

In this subsection, we derive the value of optimal environmental policies Vt under the i.i.d.

uncertainty and the infinite-time horizon. In order to solve the HJB equation (28) analytically,

we assume that the continuous-time Knightian uncertainty is independent of time, in other

words, it is characterized by the i.i.d. uncertainty, the planning horizon is infinite, and there

exists no expiration date,22 which implies that Vt depends on Xt and Mt, not on time t directly.

22We impose three assumptions, that is, the i.i.d. uncertainty, the infinite time horizon, and no-existence of
expiration date. See discussions in Nishimura and Ozaki (2003).
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Thus we can write Vt = V (Xt,Mt) for some function V : R × R+ → R. Then the Hamilton-

Jacobi-Bellman equation (28) turns out to be

V (Xt,Mt)

= max
{

Wt − K,−XtMtdt + min
Q∈PΘ

EQ [dVt | Ft] + V (Xt,Mt) − rV (Xt,Mt)dt

}
, (33)

where V : R+ × R+ → R. From the Hamilton-Jacobi-Bellman equation (33), it follows that

−XtMtdt + min
Q∈PΘ

EQ [dVt | Ft] = rV (Xt,Mt)dt,

in the continuation region. The left-hand side of this equation is the social cost assosiated with

the stocks of environmental pollutants plus the government’s expected minimum gain of having

the rights to carry out environmental policies, and the right-hand side is the opportunity cost

measured in terms of government’s discount rate. If PΘ is singleton, then this equation reduces

to (10).

In the continuation region, it is shown that23

min
Q∈PΘ

EQ [dVt|Ft] =
∂Vt

∂Xt
(α − σθ∗)Xtdt +

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt.

Thus in the continuation region, it follows that

1
2
σ2X2

t

∂2Vt

∂X2
t

+ (α − σθ∗)Xt
∂Vt

∂Xt
− rVt +

∂Vt

∂Mt
(βE0 − δMt) − XtMt = 0.

We solve this differential equation with the following boundary conditions,

Vt(0,Mt) = 0, (34)

Vt(X∗,Mt) = −X∗Mt

λ
− K, and (35)

∂Vt

∂Xt
(X∗,Mt) =

∂Wt

∂Xt
(X∗,Mt), (36)

where X∗ is the critical value of X at or above which environmental policies should be adopted.

The three conditions have been already explained within the framework of risk. Condition (34)

reflects the fact that if X is always zero, then the flow of the social cost associated with the stock

23In order to derive this equation, we assume that ∂V/∂Xt is negative in the continuation region, and V is twice
differentiable in the continuation region. These two assumptions actually hold. We verify these assumptions in
Appendix.
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variable C(Xt,Mt) is zero. Thus the value of optimal policies will remain to be zero. Condition

(35) is the value matching condition, and condition (36) is the smooth pasting condition. By

solving the differential equation with the three boundary conditions, we obtain the following

optimal strategy,

Vt

=

⎧⎪⎪⎨
⎪⎪⎩

AXγ
t − XtMt

r + δ − (α − σθ∗)
− βE0Xt

(r − (α − σθ∗))(r + δ − (α − σθ∗))
if Xt < X∗

Wt − K if Xt ≥ X∗,

where

A =
(

K

γ − 1

)1−γ

γ−γ

(
βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))

)γ

X∗ =
(

γK

γ − 1

)(
(r − (α − σθ∗))(r + δ − (α − σθ∗))

βE0

)

γ =
−(α − σθ∗ − σ2/2) +

√
(α − σθ∗ − σ2/2)2 + 2rσ2

σ2
.

It can be shown that γ > 1 (see Appendix).

The value function in the continuation region consists of three components. The first

term is the value of the option to adopt the environmental policy. The second term is the present

value of the flow of social cost from the current stock of pollutants. The third is the present

value of the flow of social cost from the emission E0. The value function in the stopping region

consists of two terms: the value of adopting environmental policies defined by (32) plus the

direct cost resulting from adopting the environmental policy.

5. Sensitivity Analyses

In this section, we analyze the effects of increases in risk and Knightian uncertainty on

the value of adopting environmental policies and the value of optimal environmental policies.

We also analyze the effects of increases in risk and Knightian uncertainty on the optimal timing

of adopting environmental policies.

5.1 An Increase in Risk (the case of no-Knightian uncertainty)

In this subsection, we consider the case of no-Knightian uncertainty. We show that an

increase in risk does not affect the value of adopting policies Wt, and an increase in risk does

16



induce increases in the value of optimal environmental policies Vt in the stopping region and the

reservation value X∗.

Proposition 2. In the case of no Knightian uncertainty, an increase in risk induces no change

in the value of adopting policies Wt, an increase in risk induces an increase in the value of

optimal environmental policies Vt in the stopping region, and an increase in risk induces an

increase in the reservation value X∗.

Proof. See Appendix.

The first claim in this proposition states that an increase in risk does not have any effect

on the value of adopting environmental policies. The third claim implies that the more risk

there exists over the future social cost of pollutants, the greater is the incentive to wait rather

than to adopt environmental policies immediately. Note that while the second and third claims

are presented in Pindyck (2000), the first claim is not.

5.2 An Increase in Knightian uncertainty (the case of κ ignorance)

In this subsection, we analyze the effects of Knightian uncertainty on the value of adopt-

ing policies and the reservation value. We show that an increase in Knightian uncertainty

induces a decrease in the value of adopting policies, and induces a decrease in the reservation

value under some condition. Recall that in the case of no-Knightian uncertainty, an increase in

risk does not affect the value of adopting policies Wt, and an increase in risk does induce an

increase in the reservation value X∗. Finally, we provide the following proposition.

Proposition 3. We assume the same conditions in Proposition 2, and assume the κ-ignorance.

Then, an increase in Knightian uncertainty induces a decrease in the value of adopting policies

Wt, and an increase in Knightian uncertainty induces a decrease in the reservation value X∗ for

parameters that make the absolute value of ∂γ/∂κ sufficiently small.

Proof. See Appendix.

The first claim in this proposition states that an increase in Knightian uncertainty has

the negative effect on the value of adopting environmental policies. This result implies that if the
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government has imprecise knowledge about the state of the world, then she underestimates the

value of adopting environmental policies since she makes decisions on the worst case scenario.

This is a stark contrast to the first claim in Proposition 2. Contrary to the first claim in this

proposition, which holds without any restrictions, the second claim in this proposition holds for

sets of parameters that make the absolute value of ∂γ/∂κ sufficiently small.
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Appenix 1: Derivations of Mathematical Results

Derivation of (8).

At first, we derive the value at t of adopting policies as follows:

W (Xt,Mt, t)

≡ EP

[∫ T

t
e−r(s−t)C(Ms,Xs)ds

∣∣∣∣Ft

]

= EP

[
−

∫ T

t
XsMse

−r(s−t)ds

∣∣∣∣Ft

]

= −
∫ T

t
EP

[
e−r(s−t)Xt exp

(
(α − 1/2σ2)(s − t) + σ(Bs − Bt)

)
Ms

∣∣∣∣Ft

]
ds

= · · · · · ·

= −
∫ T

t
XtMs exp (−(r − α)(s − t)) ds

= −
∫ T

t
Xt (−μ + (Mt + μ) exp (−δ(s − t))) exp (−(r − α)(s − t)) ds

= μXt

∫ T

t
exp (−(r − α)(s − t)) ds − XtMt

∫ T

t
exp (−(r + δ − α)(s − t)) ds

−μXt

∫ T

t
exp (−δ(s − t)) exp (−(r − α)(s − t)) ds

=
μXt

r − α

(
1 − e−(r−α)(T−t)

)
− XtMt

r + δ − α

(
1 − e−(r+δ−α)(T−t)

)
− μXt

r + δ − α

(
1 − e−(r+δ−α)(T−t)

)
,

which goes to

− XtMt

r + δ − α
− βE0Xt

(r − α)(r + δ − α)
(37)

as T → ∞, where the second equality follows from Fubini’s Theorem and solving the stochastic

differential equation dXt = αXtdt + σXtdBt,24 and the fifth equality follows from solving the

ordinal differential equation dMt/dt = βE0 − σMt.25 By letting E0 = 0, we obtain the value of

adopting policies W (Xt,Mt) = −XtMt/(r + δ − α). Thus, the stationarity is obtained. �

Derivation of HJB in case of risk

24The solution to dXt = αXtdt + σXtdBt is Xs = Xt exp
(
(α − 1/2σ2)(s − t) + σ(Bs − Bt)

)
for all s ≥ t.

25The solution to dMt/dt = βE0 − δMt = −δ(Mt + μ) is Ms = −μ + (Mt + μ)e−δ(s−t) for all s ≥ t, where
μ ≡ −(β/δ)E0.

19



The Hamilton-Jacobi-Bellman equation follows since

Vt

= max
t′∈[t,T ]

EP

[∫ t′

t
e−r(s−t)C(Xs,Ms)ds +

∫ T

t′
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣ Ft

]

= max
{

EP

[∫ T

t
e−r(s−t)C(Xs,Ms)ds

∣∣∣∣Ft

]
− K, −XtMtdt+

max
t′∈[t+dt,T ]

EP

[∫ t′

t
e−r(s−t)C(Xs,Ms)ds +

∫ T

t′
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]}

= max {Wt − K, −XtMtdt+

max
t′∈[t+dt,T ]

EP

[∫ t′

t
e−r(s−t)C(Xs,Ms)ds +

∫ T

t′
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]}

= max {Wt − K, −XtMtdt+

e−rdt max
t′∈[t+dt,T ]

EP

[
EP

[∫ T

t
e−r(s−t−dt)C(Xs,Ms)ds − e−r(t′−t−dt)K

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

]}

= max
{
Wt − K, −XtMtdt + e−rdt EP [Vt+dt| Ft]

}
= max

{
Wt − K, −XtMtdt + (1 − rdt)

(
EP [dVt| Ft] + Vt

)}
= max

{
Wt − K, −XtMtdt + EP [dVt| Ft] + Vt − rVtdt

}
,

where the first equality follows from the definition of Vt, the third equality follows from the

definition of Wt, the fourth holds by the law of iterated integrals, the fifth follows from the

definition of Vt, the sixth holds by approximating e−rdt by (1− rdt), and the last equality holds

by eliminating higher order terms than dt. �

Proof of Proposition 1

In order to prove Proposition 1, we have to show the next lemma.

Lemma 1. For any s ≥ t and for any θ ∈ ΘKt,

EQθ

[
exp

(
−

∫ s

t
σθhdh + σ

(
Bθ

s − Bθ
t

)) ∣∣∣∣Ft

]

≤ EQθ∗
[
exp

(
−

∫ s

t
σ(θh)∗dh + σ

(
Bθ∗

s − Bθ∗
t

)) ∣∣∣∣Ft

]
,

where θ∗ ≡ argmin {σx|x ∈ K} = minK.
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Proof. Let s ≥ t and let θ ∈ ΘKt. Then

(∀ω) exp
(
−

∫ s

t
σθrdr + σ

(
Bθ

s − Bθ
t

))
≤ exp

(
−

∫ s

t
σ(θr)∗dr + σ

(
Bθ

s − Bθ
t

))
.

Thus

EQθ

[
exp

(
−

∫ s

t
σθrdr + σ

(
Bθ

s − Bθ
t

)) ∣∣∣∣Ft

]

≤ EQθ

[
exp

(
−

∫ s

t
σ(θr)∗dr + σ

(
Bθ

s − Bθ
t

)) ∣∣∣∣Ft

]

= exp
(
−

∫ s

t
σ(θr)∗dr

)
exp

(
1
2
σ2(s − t)

)

= EQθ∗
[
exp

(
−

∫ s

t
σ(θr)∗dr + σ

(
Bθ∗

s − Bθ∗
t

)) ∣∣∣∣Ft

]
,

where the inequality follows from the monotonicity of conditional expectation.26

Now we are in a position to prove Proposition 1.

Proof of Proposition 1.

W (Xt,Mt)

= inf
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds

∣∣∣∣Ft

]

= inf
θ∈Θ

EQθ

[
−

∫ T

t
e−r(s−t)XsMsds

∣∣∣∣Ft

]

= inf
θ∈Θ

∫ T

t
EQθ

[
−XsMse

−r(s−t)

∣∣∣∣Ft

]
ds

= inf
θ∈Θ

−
∫ T

t
XtMsE

Qθ

[
exp(−r(s − t))Xt exp

(
(α − σ2/2)(s − t) − σ

∫ s

t
θhdh + σ(Bθ

s − Bθ
t )

) ∣∣∣∣Ft

]
ds

= inf
θ∈Θ

−
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t)

)
EQθ

[
exp

(
−σ

∫ s

t
θhdh + σ(Bθ

s − Bθ
t )

) ∣∣∣∣Ft

]
ds

= −
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t)

)
EQθ∗

[
exp

(
−σ

∫ s

t
(θh)∗dh + σ(Bθ∗

s − Bθ∗
t )

) ∣∣∣∣Ft

]
ds

= −
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t) −

∫ s

t
σ(θh)∗dh

)
EQθ∗

[
expσ

(
Bθ∗

s − Bθ∗
t

) ∣∣∣∣Ft

]
ds

= −
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t) −

∫ s

t
σ(θh)∗dh

)
exp

(
σ2(s − t)/2

)
ds

= −
∫ T

t
XtMs exp

(
−(r − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds

26For example, see Billingsley (1995), p.447.
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=
∫ T

t
XtMt exp (−δ(s − t)) exp

(
−(r − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds

= −
∫ T

t
XtMt exp

(
−(r + δ − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds,

where the second equality holds by (19), the third equality holds by Fubini’s theorem for con-

ditional expectation,27 the fourth equality holds by (21), the sixth equality holds by Lemma 1,

the seventh equality follows from the fact that (θ∗) is a degenerate stochastic process, the eighth

equality holds by the fact that (Bθ∗
t ) is a Brownian motion with respect to Qθ∗ , and the tenth

equality follows since Ms = −μ + (Mt + μ)e−δ(s−t) for all s ≥ t, where μ = −(β/δ)E0. Thus the

proof is completed.

Derivation of HJB in case of Knightian Uncertainty

Vt

= max
t′∈[t,T ]

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣ Ft

]

= max
{

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds

∣∣∣∣Ft

]
− K,

−XtMtdt + max
t′≥t+dt

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]}

= max {Wt − K,

−XtMtdt + max
t′≥t+dt

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]}

= max {Wt − K,

−XtMtdt + max
t′≥t+dt

min
θ∈Θ

EQθ

[∫ T

t
e−r(s−t)C(Xs,Ms)ds − e−r(t′−t)K

∣∣∣∣Ft

]}

= max {Wt − K, −XtMtdt

+e−rdt max
t′≥t+dt

min
θ∈Θ

EQθ

[
EQθ

[∫ T

t
e−r(s−t−dt)C(Xs,Ms)ds − e−r(t′−t−dt)K

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

]}

= max {Wt − K, −XtMtdt

+e−rdt max
t′≥t+dt

min
θ∈Θ

EQθ

[
min
θ′∈Θ

EQθ′
[∫ T

t
e−r(s−t−dt)C(Xs,Ms)ds − e−r(t′−t−dt)K

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

]}

= max {Wt − K, −XtMtdt

27See Ethier and Kurtz (1986) and Nishimura and Ozaki (2003) in details.
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+e−rdt min
θ∈Θ

EQθ

[
max

t′≥t+dt
min
θ′∈Θ

EQθ′
[∫ T

t
e−r(s−t−dt)C(Xs,Ms)ds − e−r(t′−t−dt)K

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

]}

= max
{

Wt − K, −XtMtdt + e−rdt min
θ∈Θ

EQθ
[Vt+dt| Ft]

}

= max
{

Wt − K, −XtMtdt + (1 − rdt)
(

min
θ∈Θ

EQθ
[dVt| Ft] + Vt

)}

= max
{

Wt − K, −XtMtdt + min
θ∈Θ

EQθ
[dVt| Ft] + Vt − rVtdt

}
,

where the first equality follows from the definition of Vt, the third equality follows from (32),

the fourth follows from the definition of PΘ, the fifth holds by the law of iterated integrals, the

sixth follows from the strong rectangularity (41), the eighth follows from the definition of Vt,

the ninth holds by approximating e−rdt by (1 − rdt), and the last equality holds by eliminating

higher order terms than dt. �

Derivation of Vt under Knightian uncertainty

By Ito’s lemma,

dVt =
∂Vt

∂Xt
dXt +

1
2

∂2Vt

∂X2
t

dX2
t +

∂Vt

∂Mt
dMt

=
∂Vt

∂Xt

(
(α − σθt)Xtdt + σXtdBθ

t

)
+

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt.

Thus we can show that

min
Q∈PΘ

EQ [dVt|Ft]

= min
Q∈ΘK

EQ [dVt|Ft]

= min
θ∈ΘK

EQθ

[
∂Vt

∂Xt

(
(α − σθt)Xtdt + σXtdBθ

t

)
+

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt

∣∣∣∣Ft

]

= min
θ∈ΘK

∂Vt

∂Xt
(α − σθt)Xtdt +

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt

=
∂Vt

∂Xt
max
θ∈ΘK

(α − σθt)Xtdt +
1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt

=
∂Vt

∂Xt

(
α + max

θ∈ΘK
(−σθt)

)
Xtdt +

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt

=
∂Vt

∂Xt

(
α − min

θ∈ΘK
(σθt)

)
Xtdt +

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt

=
∂Vt

∂Xt
(α − σθ∗)Xtdt +

1
2

∂2Vt

∂X2
t

σ2X2
t dt +

∂Vt

∂Mt
(βE0 − δMt) dt,
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where the first equality follows from the assumption of the i.i.d. uncertainty, the fourth equality

holds by the negativity of ∂Vt/∂Xt in the continuation region, and the last equality follows from

the definition of θ∗.

Therefore, in the continuation region, it follows that

1
2
σ2X2

t

∂2Vt

∂X2
t

+ (α − σθ∗)Xt
∂Vt

∂Xt
− rVt +

∂Vt

∂Mt
(βE0 − δMt) − XtMt = 0,

with the following boundary conditions:

Vt(0,Mt) = 0,

Vt(X∗,Mt) = Wt − K, and

∂Vt

∂Xt
(X∗,Mt) =

∂Wt

∂Xt
(X∗,Mt).

We guess the solution to this equation as follows:

Vt = AXγ
t + BXtMt + DXt,

where A,B and D are some constants. Then

1
2
σ2X2

t Aγ(γ − 1)Xγ−2
t + (α − σθ∗) (AγXγ

t + BMtXt + DXt)

−r (AXγ
t + BXtMt + DXt) − XtMt + (βE0 − δMt)BXt = 0.

⇔ AXγ
t

(
1
2
σ2γ(γ − 1) + (α − σθ∗)γ − r

)

+((α − σθ∗ − r − δ)B − 1)XtMt + (βBE0 + D(α − σθ∗ − r))Xt = 0.

Thus,

1
2
σ2γ(γ − 1) + (α − σθ∗)γ − r = 0

(α − σθ∗ − r − δ)B − 1 = 0 ⇔ B = − 1
r + δ − α + σθ∗

βBE0 + D(α − σθ∗ − r) = 0 ⇔ D = − βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))
.

The value A remains to be determined. By the boundary conditions, the negative part of the

solution to (1/2)σ2γ(γ − 1) + (α − σθ∗)γ − r = 0 is ruled out. Note that

γ =
−(α − σθ∗ − σ2/2) +

√
(α − σθ∗ − σ2/2)2 + 2rσ2

σ2
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>
−(α − σθ∗ − σ2/2) +

√
(α − σθ∗ − σ2/2)2 + 2(α − σθ∗)σ2

σ2

=
−(α − σθ∗ − σ2/2) + |α − σθ∗ + σ2/2|

σ2

= 1, (38)

where the inequality holds by the assumption that r > α + σκ, and the last equality holds since

α, σ > 0 and θ∗ = −κ < 0, which implies that |α − σθ∗ + σ2/2| = α − σθ∗ + σ2/2. Then

A =
(

K

γ − 1

)1−γ

γ−γ

(
βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))

)γ

X∗ =
(

γK

γ − 1

)(
(r − (α − σθ∗))(r + δ − (α − σθ∗))

βE0

)
.

Thus

Vt

=

⎧⎪⎪⎨
⎪⎪⎩

AXγ
t − XtMt

r + δ − (α − σθ∗)
− βE0Xt

(r − (α − σθ∗))(r + δ − (α − σθ∗))
if Xt < X∗

Wt − K if Xt ≥ X∗.

Therefore, the derivation is completed. �

Proof of ∂γ/∂σ2 < 0 and ∂γ/∂κ < 0.

Let

Q1(γ) =
1
2
σ2γ(γ − 1) + αγ − r.

Note that Q1(1) = α− r < 0, Q1(0) = −r < 0, and γ1 > 1 by (16), where γ1 is the positive part

of this quadratic equation. By differentiating this quadratic equation totally with respect to σ2,

it follows that

∂Q1

∂γ1

∂γ1

∂σ2
+

∂Q1

∂σ2
= 0.

∂Q1/∂σ2 = (1/2)γ(γ − 1) > 0 and ∂Q1/∂γ1 > 0 at γ1 > 1 imply

∂γ1

∂σ2
< 0. (39)
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Let

Q2(γ) ≡ 1
2
σ2γ(γ − 1) + (α + σκ)γ − r = 0.

Note that Q2(1) = α − r + σκ < 0,28 Q2(0) = −r < 0, and γ1 > 1 by (38), where γ1 is the

positive part of this quadratic equation. By differentiating this quardratic equation totally with

respect to κ, it follows that

∂Q2

∂γ1

∂γ1

∂κ
+

∂Q2

∂κ
= 0.

∂Q2/∂κ = σγ > 0 at γ1 > 1 and ∂Q2/∂γ1 > 0 at γ1 imply

∂γ1

∂κ
< 0. (40)

Thus, the proof is completed. �

Proof of the negativity of ∂Vt/∂Xt

In order to show that ∂Vt/∂Xt < 0 in the continuation region, it suffices to show that in the

continuation region,

AγXγ−1
t − βE0

(r − (α + σκ))(r + δ − (α + σκ))
− Mt

r + δ − (α + σκ)
< 0,

where A is defined by

A =
(

K

γ − 1

)1−γ

γ−γ

(
βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))

)γ

.

The inequality is proved as follows:

AγXγ−1
t − βE0

(r − (α + σκ))(r + δ − (α + σκ))
− Mt

r + δ − (α + σκ)

< Aγ(X∗)γ−1 − βE0

(r − (α + σκ))(r + δ − (α + σκ))
− Mt

r + δ − (α + σκ)

= − Mt

r + δ − (α + σκ)
< 0

for any Xt < X∗, γ > 1, δ > 0, and r > α + σκ. Furthermore,

∂2Vt

∂X2
t

= Aγ(γ − 1)Xγ−2
t > 0

for any γ > 1, δ > 0, and r > α + σκ. Thus, the proof is completed. �

28We need to assume that r > α + σκ.
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Proof of Proposition 2

By (8), it follows that ∂Wt/∂σ2 = 0.

Define V ′
t as follows:

V ′
t ≡

(
K

γ − 1

)1−γ

γ−γ

(
βE0

(r − α)(r + δ − α)

)γ

Xγ
t .

By taking the logarithm of both sides of the equation and differentiating both sides of the

equation with respect to γ, it follows that

∂(ln V ′
t )

∂γ

= −(lnK − ln(γ − 1)) + (1 − γ)(− 1
γ − 1

) − ln γ − γ
1
γ

+ ln
(

βE0

(r − α)(r + δ − α)

)
+ ln Xt

< ln
(

γ − 1
Kγ

)
+ ln

(
βE0

(r − α)(r + δ − α)

)
+ ln X∗

t

= 0.

Recall that ∂γ/∂σ2 < 0 by (39). Thus

∂V

∂σ2
=

∂V

∂γ

∂γ

∂σ2
> 0.

Moreover, it follows that

∂X∗

∂γ
= − K

(1 − γ)2

(
(r − α)(r + δ − α)

βE0

)
< 0.

Thus

∂X∗

∂σ2
=

∂X∗

∂γ

∂γ

∂σ2
> 0,

which completes the proof. �

Proof of Proposition 3

It follows from (32) that ∂Wt/∂κ < 0.

By differentiating X∗ with respect to κ, it follows that

∂X∗

∂κ
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= − K

βE0(γ − 1)

(
(r − (α + σκ))(r + δ − (α + σκ))

γ − 1
∂γ

∂κ
+ 2σκ (2r + δ − 2(α + σκ))

)
.

Thus, ∂X∗/∂κ < 0 if

(0 >)
∂γ

∂κ
> − 2σγ(γ − 1)(2r + δ − 2(α + σκ))

(r − (α + σκ))(r + δ − (α + σκ))
.

Note that the negativity of ∂γ/∂κ follows from (40). �

Appendix 2

Let 0 ≤ s ≤ t ≤ T , let x be an FT -measurable function, and let Θ be rectangular. Then,

min
θ∈Θ

EQθ
[x| Fs] = min

θ∈Θ
EQθ

[
EQθ

[x|Ft]
∣∣∣∣Fs

]

= min
θ∈Θ

EQθ

[
min
θ′∈Θ

EQθ′
[x|Ft]

∣∣∣∣Fs

]
, (41)

where the first equality follows from the law of iterated integral. The second equality follows

from Lemma 4 below. See Nishimura and Ozaki (2003) in details.

Let θ be a density generator, let (zθ
t ) be defined by

(∀t ∈ [0, T ]) zθ
t = exp

(
−1

2

∫ t

0
θ2
sds −

∫ t

0
θsdBs

)
,

and define the measure Qθ
t by

(∀t ∈ [0, T ])(∀A ∈ FT ) Qθ
t (A) =

∫
A

zθ
t dP.

Lemma 2. Qθ
t is a probability measure satisfying

(∀A ∈ Ft) Qθ
t (A) = Qθ(A),

where Qθ is defined by

(∀A ∈ FT ) Qθ(A) =
∫

A
zθ
T (ω)dP (ω).

Lemma 3. Let 0 ≤ s ≤ t ≤ T and let x be an Ft-measurable function. Then EQθ
[x|Fs] depends

only on (θu)s≤u<t.
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These lemmas together with the assumption that Θ is strongly rectangular prove the

following lemma.

Lemma 4. Let 0 ≤ s ≤ t ≤ T and let x be an Ft-measurable function. Also assume that Θ is

strongly rectangular. Then under the assumption that the minima exist,

min
θ∈Θ

EQθ

[
EQθ

[x | Ft]
∣∣∣∣Fs

]
= min

θ∈Θ
EQθ

[
min
θ′∈Θ

EQθ′
[x | Ft]

∣∣∣∣Fs

]
.
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