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Abstract

A group of agents are waiting for their job to be processed in
a facility. We assume that each agent needs the same amount of
processing time and incurs waiting costs. The facility has two parallel
servers, being able to serve two agents at a time. We are interested
in finding the order to serve agents and the (positive or negative)
monetary compensations they should receive. We introduce two rules
for the problem, the minimal transfer rule and the maximal transfer
rule. We show that these two rules correspond to the Shapley (1953)
value of the queueing games with two servers, as discussed similarly
by Maniquet (2003) and Chun (2006a) for queueing problems with one
serve, when the worth of each coalition is appropriately defined. If the
worth of a coalition is defined by assuming the coalitional members are
served before the non-coalitional members, then the minimal transfer
rule is obtained. On the other hand, if it is defined by assuming
the coalitional members are served after the non-coalitional members,
then the maximal transfer rule is obtained.
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1. Introduction

The queueing problem is concerned with the following situation. A group of

agents are waiting for their job to be processed in a facility. The facility can

handle one agent at a time, and each agent needs the same amount of time

for the job to be processed. Furthermore, an agent’s waiting cost is assumed

to be constant per unit of time, but agents differ in their waiting costs. Each

agent’s utility is equal to the amount of his monetary transfer minus his

total waiting costs. We are interested in finding the order in which to serve

agents and the (positive or negative) monetary compensations they should

receive. Recently, this problem has been analyzed in various perspectives:

incentive issues (Dolan, 1978; Suijs, 1996; Mitra 2001, 2002), cooperative

game theoretic approach (Maniquet, 2003; Chun, 2006a; Chun and Hokari,

2004), no-envy (Chun, 2006b), merging and splitting (Moulin, 2004, 2006;

Özsoy 2005), and others.

In particular, Maniquet (2003) proposes the minimal transfer rule for a

model in which a facility serves one agent at a time. This rule corresponds

to the Shapley (1953) value of the game when the worth of each coalition

is defined to be the minimum waiting costs incurred by its members under

the optimistic assumption that they are served before the non-coalitional

members. On the other hand, Chun (2006a) proposes the maximal transfer

rule and shows that it corresponds to the Shapley value of the game when the

worth of each coalition is defined to be the minimum waiting costs incurred

by its members under the pessimistic assumption that they are served after

the non-coalitional members.

In this paper, we extend the model by assuming the facility has two

parallel servers. Also, we introduce two rules for the problem, the minimal

and the maximal transfer rule, and discuss their properties. As in Maniquet

(2003) and Chun (2006a), our rules correspond to the Shapley value of the

game in which the worth of each coalition is appropriately defined. However,

our results are not a simple adaptation of previous results since we need to

consider the transfer between two agents served at the same time. According
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to our rules, even though two agents are served at the same time, their

transfers are different: the transfer can be interpreted as if an agent with a

smaller unit waiting cost receives a monetary transfer from the other agent

in the same group with a larger unit waiting cost. If an agent preceding

the group leaves, then the agent with a larger unit waiting cost moves to

the preceding group, thus saving a unit waiting cost. Such a contingent

possibility requires that the monetary transfer should be imposed agents in

the same group as well as those in the different groups.

We begin our study in the hope to give a sufficient insight to deal with the

queueing problem with an arbitrary number of servers. However, we could

not achieve our goal yet. We can provide an answer to problems with two

parallel servers, but it cannot be generalized to problems with more than two

servers due to computational difficulties.

The paper is organized as follows. Section 2 presents preliminaries. Sec-

tion 3 discusses how the cooperative game theory can be applied to solve our

queueing problems and investigates implications of the optimistic approach.

Section 4 investigates implications of the pessimistic approach in the queue-

ing problems with two servers. In section 5, we conclude by discussing other

possible extensions of the problem.

2. Preliminaries

Let I ≡ {1, 2, · · · } be an (infinite) universe of “potential” agents, and N be

the family of non-empty finite subsets of I. Each agent i ∈ I is characterized

by his unit waiting cost, θi ≥ 0. We assume that the facility can handle

two agents at a time and each agent needs the same amount of service time,

normalized as unit time. Given N ∈ N , each agent i ∈ N is assigned a group

gi ∈ N which is his service order in the queue, and a positive or negative

transfer ti ∈ R. The group which is served first incurs no waiting cost. If

agent i ∈ N is served in the gith group, his waiting cost is (gi − 1)θi. Each

agent i ∈ N has a quasi-linear utility function: his utility from the bundle

(gi, ti) is given by u(gi, ti; θi) = ti − (gi − 1)θi.
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A queueing problem with two parallel servers or a two-server queueing

problem is defined as a list q = (N, θ; 2) where N ∈ N is the set of agents,

θ ∈ RN
+ is the vector of unit waiting costs, and 2 is the number of servers.

Since we analyze two-server problems, 2 indicating the number of servers

is omitted for simplicity. Let QN be the class of all two-server queueing

problems for N and Q = ∪QN . An allocation for q ∈ Q is a pair z = (g, t),

where for each i ∈ N , gi the group to which agent i belongs, and ti the

monetary transfer to him. An allocation is feasible if less than or equal to

two agents are assigned to each group and the sum of transfers is not positive.

Thus, the set of feasible allocations Z(q) consists of all pairs z = (g, t) such

that for any distinct agents i, j, k ∈ N , gi = gj implies gk 6= gi and
∑

i∈N ti ≤
0.

Given q = (N, θ) ∈ QN , an allocation z = (g, t) ∈ Z(q) is group efficient

if it minimizes the total waiting costs, that is, for each z′ = (g′, t′) ∈ Z(q),∑
i∈N(gi − 1)θi ≤

∑
i∈N(g′i − 1)θi. The efficient group of a problem does not

depend on the transfers. Moreover, it is unique except for agents with equal

unit waiting costs. The set of efficient groups for q ∈ QN is denoted by

Eff (q). For a group to be efficient, two agents with the largest unit waiting

costs should be in the first group, and the two agents with the next two

largest unit waiting cost should be in the second group, and so on.

Given q = (N, θ) ∈ QN , an allocation z = (g, t) ∈ Z(q) is budget balanced

if
∑

i∈N ti = 0. An allocation rule, or simply a rule, is a mapping ϕ : Q →∑
N∈N Z(q), which associates with every N ∈ N and every q ∈ QN a non-

empty subset ϕ(q) of feasible allocations. The pair ϕi(q) = (gi, ti) represents

the service time of agent i and his transfer in q under ϕ.

To facilitate our analysis, we rename agents by index d according to their

unit waiting costs. We assign an agent with the largest unit waiting cost 1,

the second largest 2, and so on. The index is unique except for agents with

equal waiting costs. These agents have to be indexed consecutively but in

any order. Given q = (N, θ) ∈ QN , let D(q) be the set of all possible indices.

If we line up agents according to the index, and assign the first two agents to
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the first group, the next two agents to the second group, and so on, we have

an efficient group. That is, for each d ∈ D(q) and each i ∈ N, gi is defined

as

gi = ddi

2
e =

{
di

2
if di is even,

di+1
2

if di is odd.

Then, the resulting group is efficient. Given q = (N, θ) ∈ QN , d ∈ D(q), and

i ∈ N , let Pi(d) be the set of agents with smaller indices than agent i and

Fi(d) the set of agents with larger indices than agent i.

Now we define the minimal transfer rule. This rule chooses an efficient

group. Then, the transfer to agent i is assigned as if it consists of two

parts, compensation to agent i and payment of agent i: compensation to

agent i is the sum of all the group numbers assigned to all agents in the

preceding groups divided by i’s index. After determining compensations

to each agent, the compensation is assigned equally to agents with smaller

indices as payment. Thus, the payment of agent i is the sum of all those

assigned to agent i from all other agents with larger indices.

Minimal transfer rule: for each N ∈ N , each q ∈ QN , and each d ∈ D(q),

ϕM(q) = {(gM , tM) ∈ Z(q) | gM ∈ Eff (q), and ∀i ∈ N,

tMi =

∑
gM
j

<gM
i

gM
j ·2

di
· θi −

∑
k∈Fi(d)

{ 1
dk−1

·
∑

gM
j

<gM
k

gM
j ·2

dk
· θk}.

Remark 1: Alternatively, the transfer can be expressed as follows. For each

i ∈ N,

tMi =
gM

i (gM
i − 1)

di

θi −
∑

j∈Fi(d)

1

dj − 1

gM
j (gM

j − 1)

dj

θj.

Since this expression is somewhat easier to manipulate, we will use it in the

proofs.

Remark 2: We show that our minimal transfer rule coincides with the rule

discussed in Maniquet (2003) for one-server problems, in which a facility can
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handle one agent at a time. Since only one agent is served in one-server

problems at a time, group gi can be replaced by index di which represents

i’s position in the queue, and 2 in the numerator of the compensation should

be changed to 1. Altogether, the definition becomes

tMi (q1) =

∑
dj<di

dj ·1
di

· θi −
∑

k∈N :dk>di

( 1
dk−1

·
∑

dj<dk
dj ·1

dk
· θk)

= di−1
2

θi −
∑

k∈N :dk>di

1
2
θk,

as desired. Moreover, as discussed in Section 3, our rule can be characterized

by axioms in the same spirit as Maniquet’s (2003).

Next we present an example to show how the minimal transfer rule is

calculated.

Example 1: Minimal transfer rule. Let N ≡ {1, 2, 3, 4, 5, 6} and θ ≡
(θ1, θ2, θ3, θ4, θ5, θ6) be such that θ1 > θ2 > θ3 > θ4 > θ5 > θ6. By effi-

ciency, gM = (1, 1, 2, 2, 3, 3) and d = (1, 2, 3, 4, 5, 6). The transfer assigned

by the minimal transfer rule is

tM1 = − 1
2

2
3
θ3 − 1

3
1
2
θ4 − 1

4
6
5
θ5 − 1

5
θ6

tM2 = − 1
2

2
3
θ3 − 1

3
1
2
θ4 − 1

4
6
5
θ5 − 1

5
θ6

tM3 = 1·2
3

θ3 − 1
3

1
2
θ4 − 1

4
6
5
θ5 − 1

5
θ6

tM4 = 1·2
4

θ4 − 1
4

6
5
θ5 − 1

5
θ6

tM5 = 1·2+2·2
5

θ5 − 1
5
θ6

tM6 = 1·2+2·2
6

θ6.

Since agents 3 and 4 belong to the same group, they are served at the same

time. However, the minimal transfer rule assigns different amount of transfers

to them. In fact, agent 3’s transfer has the term −(1/6)θ4, which can be

regarded as payment of 3 to 4. If either agent 1 or agent 2 leaves the queue

without being served, then one agent in the second group moves up to the

first group. By efficiency of the minimal transfer rule, an agent with a larger

unit waiting cost, agent 3, moves up. Since agent 3 can save his waiting cost

in the process, agent 3 compensates to agent 4 even though they are served

at the same time now. �
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3. An optimistic approach to queueing games

The two-server queueing problem can solved by applying cooperative game

theoretic solution as in Maniquet (2003) and Chun (2006a). First, we for-

mally describe TU (transferable utility) games. Let the set of players N ∈ N
be given. A set S ⊆ N is a coalition. A TU game, or a game, is a real-valued

function v defined on all coalitions S ⊆ N satisfying v(∅) = 0. The number

v(S) represents the worth of a coalition S. Let ΓN be the class of games

with player set N , and Γ = ∪ΓN . A value is a function φ defined on Γ which

associates with every N ∈ N and every v ∈ ΓN a vector φ(v) = (φi(v))i∈N .

The number φi(v) is the payoff to player i in game v.

We introduce the best-known value for games, the Shapley (1953) value:

it assigns each player a payoff equal to a weighted average of his marginal

contributions to all possible coalitions, with weights being determined by the

size of coalitions.

Shapley value, SV: For each q = (N, θ) ∈ QN and each i ∈ N ,

SVi(v) =
∑
S:i∈S

(|S| − 1)!(|N\S|)!
|N |!

{v(S)− v(S\{i})}.

As in Maniquet (2003), we define the worth of each coalition S ⊆ N to

be the minimum waiting cost incurred by its members assuming that they

are served before the non-coalitional members. That is, for each S ⊆ N, its

worth vM(S) is defined by setting

vM(S) = −
∑
i∈S

(gS
i − 1)θi,

where gS ∈Eff (qS) and qS = (S, {θ}i∈S).

Next is an example showing that the Shapely value applied to the queue-

ing game results in the same payoff as our minimal transfer rule.

Example 2: (Example 1 continued.) Let N and θ be defined as in Example

1. The Shapley value assigns each agent the following payoff: SV (vM) =
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(−1
3
θ3 − 1

6
θ4 − 3

10
θ5 − 1

5
θ6,−1

3
θ3 − 1

6
θ4 − 3

10
θ5 − 1

5
θ6,−1

3
θ3 − 1

6
θ4 − 3

10
θ5 −

1
5
θ6,−1

2
θ4 − 3

10
θ5 − 1

5
θ6,−4

5
θ5 − 1

5
θ6,−θ6).

Since ti = (gi− 1)θi + ui, the corresponding transfer is t = (−1
3
θ3− 1

6
θ4−

3
10

θ5 − 1
5
θ6,−1

3
θ3 − 1

6
θ4 − 3

10
θ5 − 1

5
θ6,

2
3
θ3 − 1

6
θ4 − 3

10
θ5 − 1

5
θ6,

1
2
θ4 − 3

10
θ5 −

1
5
θ6,

6
5
θ5− 1

5
θ6, θ6), which coincides with the transfer assigned by the minimal

transfer rule in Example 1. �

Before we discuss the relation between the minimal transfer rule and the

Shapley value, we show how the dividend can be calculated for two-server

queueing games. It is well-known that a TU-game v can be written as a

linear combination of unanimity games, that is, v =
∑

T⊆N λv(T )uT , where

the unanimity game uT on N is given by uT (S) = 1 if T ⊆ S, and uT = 0

otherwise. For each S ⊆ N, its dividend λv(S) is defined by if |S| = 1, then

λv(S) = v(S), and if |S| > 1, λv(S) = v(S)−
∑

T S λv(T ).

Lemma 1. For each q = (N, θ) ∈ QN , the unanimity coefficient of S ⊆ N

is defined as

λvM (S) =

{
0 if |S| =1 or 2,

−(−2)|S|−3 min
k∈S

θk if |S| ≥3.

Proof. If |S| = 1 or 2, the conclusion is obtained trivially from vM(S) =

0. If |S| = 3, λvM (S) = vM(S) −
∑

T S λvM (T ) = vM(S) = −min
i∈S

θi =

−(−2)3−3min
i∈S

θi, as desired. Now, as induction hypothesis, suppose that the

conclusion holds for all S ⊂ N such that |S| ≤ s− 1. We need to show that

the conclusion is true for |S| = s. Without loss of generality, we may assume

that S ≡ {1, 2, . . . , s}, θ1 ≥ θ2 ≥ · · · ≥ θs, and that for each i ∈ S, di = i.

Thus, for each i ∈ S, if i is odd, gi = (i + 1)/2, and if i is even, gi = i/2. We

will use the binomial theorem, (a + b)n =
∑n

i=0

(
n
i

)
aibn−i after replacing a

with −2 and b with 1. First, we rewrite λvM (S):

λvM (S) = vM(S)−
∑

T(S λvM (T )

= vM(S) +
∑

T(S,|T |≥3(−2)|T |−3 min
i∈T

θi

= vM(S) +
∑s−1

i=3 (
∑i

j=3

(
i−1
j−1

)
(−2)j−3)θi +

∑s−1
j=3

(
s−1
j−1

)
(−2)j−3θs
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By the binomial theorem and the definition of gi, the second term is rewritten

as: ∑s−1
i=3 (

∑i
j=3

(
i−1
j−1

)
(−2)j−3)θi

=
∑s−1

i=3 (
∑i−1

j=2

(
i−1
j

)
(−2)j−2)θi

=
∑s−1

i=3
1
4
(
∑i−1

j=2

(
i−1
j

)
(−2)j(1)i−1−j)θi

=
∑s−1

i=3
1
4
[(
∑i−1

j=0

(
i−1
j

)
(−2)j(1)i−1−j)− 1 + 2(i− 1)]θi

=
∑s−1

i=3
1
4
[(−2 + 1)i−1 − 1 + 2(i− 1)]θi

=
∑s−1

i=3
(−1)i−1−1+2(i−1)

4
θi

=
∑s−1

i=3 (gi − 1)θi. (1)

Similarly, the third term is rewritten as:∑s−1
j=3

(
s−1
j−1

)
(−2)j−3θs

=
∑s−2

j=2

(
s−1

j

)
(−2)j−2θs

=
∑s−1

j=2

(
s−1

j

)
(−2)j−2θs − (−2)s−3θs

= 1
4

∑s−1
j=2

(
s−1

j

)
(−2)jθs − (−2)s−3θs

= 1
4
[
∑s−1

j=0

(
s−1

j

)
(−2)j − 1 + 2(s− 1)]θs − (−2)s−3θs

= 1
4
[(−2 + 1)s−1 − 1 + 2(s− 1)]θs − (−2)s−3θs

= (−1)s−1−1+2(s−1)
4

θs − (−2)s−3θs

= (gs − 1)θs − (−2)s−3θs.

Since vM(S) = −
∑s

i=3(gi−1)θi, λvM (S) = −(−2)s−3θs = −(−2)s−3 mini∈S θi,

the desired conclusion.

Now we prove that the minimal transfer rule assigns the same payoff as

the Shapley value applied to the queueing game when the worth of a coalition

is optimistically defined.

Theorem 1. Let q ∈ QN and d ∈ D(q). Let z = (g, t) ∈ Z(q) be such that

agents’ utilities at z are equal to the payoff vector obtained by applying the

Shapley value to vM . Then, g ∈Eff (q) and for each i ∈ N , ti = tMi .
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Proof. Let N ≡ {1, 2, . . . , n}. Without loss of generality, we may assume

that θ1 ≥ θ2 ≥ · · · ≥ θn and that for each i ∈ N, di = i. By Lemma 1, for

each i ∈ N, the allocation assigned by the Shapley value can be calculated

as follows:

SVi(v
M) =

∑
i∈S,S⊆N

λ
vM (S)

|S|

=
∑i

k=3
−(−2)k−3

k

(
i−1
k−1

)
θi +

∑n
j=i+1

∑j
k=3

−(−2)k−3

k

(
j−2
k−2

)
θj.

By the binomial theorem and the definition of gi, the first term in SVi(v
M)

can be rewritten as: for each i ∈ N,

∑i
k=3

−(−2)k−3

k

(
i−1
k−1

)
θi

=
∑i

k=3
−(−2)k−3

k
(i−1)!

(i−k)!(k−1)!
θi

=
∑i

k=3−(−2)k−3 i!
(i−k)!k!

1
i
θi

=
∑i

k=3
−(−2)k−3

i

(
i
k

)
θi

= 1
8i

∑i
k=3(−2)k

(
i
k

)
θi

= 1
8i

[
∑i

k=0(−2)k
(

i
k

)
− (1− 2i + 4 (i−1)i

2
)]θi

= 1
8i

[(−1)i − (1− 2i + 4 (i−1)i
2

)]θi

= 1
8i

((−1)i − 1 + 2i− 2i(i− 1))θi

= [−(gi − 1) + gi(gi−1)
i

]θi. (2)

Similarly, by (1) and (2), the second term in SVi(v
M) can be rewritten as:

∑n
j=i+1

∑j
k=3

−(−2)k−3

k

(
j−2
k−2

)
θj

=
∑n

j=i+1

∑j
k=3

−(−2)k−3

k
k−1
j−1

(
j−1
k−1

)
θj

= −
∑n

j=i+1
1

j−1

∑j
k=3(−2)k−3 k−1

k

(
j−1
k−1

)
θj

= −
∑n

j=i+1
1

j−1
[
∑j

k=3(−2)k−3
(

j−1
k−1

)
−

∑j
k=3

(−2)k−3

k

(
j−1
k−1

)
)]θj

= −
∑n

j=i+1
1

j−1
[(gj − 1)− (gj − 1) +

(gj−j)(gj−1)

j
]θj

= −
∑n

j=i+1
1

j−1

gj(gj−1)

j
θj.

Altogether, for each i ∈ N,
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SVi(v
M) =

∑i
k=3

−(−2)k−3

k

(
i−1
k−1

)
θi +

∑n
j=i+1

∑j
k=3

−(−2)k−3

k

(
j−2
k−2

)
θj

= [−(gi − 1) + gi(gi−1)
i

]θi −
∑n

j=i+1
1

j−1

gj(gj−1)

j
θj,

which is the desired expression as noted in Remark 1.

Remark 3: The minimal transfer rule can be characterized by axioms used

in Maniquet (2003), but appropriately modified to be suitable for two-server

queueing problems. In fact, (1) it is the only rule satisfying efficiency, Pareto

indifference, equal treatment of equals, and independence of larger costs; (2) it

is the only rule satisfying Pareto indifference, the identical preferences lower

bound, negative cost monotonicity, and least-cost agent equal responsibility;

(3) it minimizes the sum of the absolute values of transfers among agents

among the rules satisfying Pareto indifference, the identical preferences lower

bound, and least-cost agent equal responsibility.1

4. A pessimistic approach and the maximal

transfer rule

Now we investigate a pessimistic definition for a worth of a coalition which

assumes the members in a coalition are served after the non-coalitional mem-

bers. As in Chun (2006a), even though we apply the same Shapley value to

the game, the resulting rule is different.

1Efficiency requires that the rule should choose allocations that are group efficient and
budget balanced. Pareto indifference requires that if an allocation is chosen by a rule,
then all other allocations which assign the same utilities to each agent should be chosen
by the rule. Equal treatment of equals requires that those who have the same unit waiting
cost should end up with the same utilities. Independence of larger costs requires that an
increase in an agent’s unit waiting cost should not affect agents with smaller unit waiting
costs. The identical cost lower bound (Moulin, 1990) requires that each agent should be at
least as well off as he would be, under efficiency and equal treatment of equals, if all agents
had the same unit waiting cost. Negative cost monotonicity requires that an increase in an
agent’s unit waiting cost should cause all other agents to weakly lose. Finally, least-cost
agent equal responsibility requires that upon the departure of the agent served last, the rule
should choose a group efficient allocation which divides the last agent’s transfer equally
among all remaining agents.
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First, we introduce an alternative definition for a worth of a coalition

S ⊆ N from the pessimistic viewpoint. To do this, we need to consider the

cardinality of N\S because it is served before the coalition S. If |N\S| is

even, then agents in S will be served from ( |N |−|S|
2

+ 1)th group. If |N\S|
is odd, the last group of N\S is composed of one agent from N\S and one

agent from S. Therefore, the waiting cost of i ∈ S, Ci(S), can be calculated

as follows. For each i ∈ S,

Ci(S) =


( |N |−|S|

2
+ (gS

i − 1))θi if |N | − |S| is even,

( |N |−|S|−1
2

+ (gS
i − 1))θi if |N | − |S| is odd and dS

i is odd,

( |N |−|S|−1
2

+ gS
i )θi if |N | − |S| is odd and dS

i is even.

where gS ∈Eff (qS) and qS = (S, {θ}i∈S). Also, the worth of a coalition S

from the pessimistic viewpoint, vX(S), is defines as

vX(S) = −
∑
i∈S

Ci(S).

Next we introduce the maximal transfer rule. This rule chooses an effi-

cient group. Once again, the transfer to agent i is assigned as if it consists

of two parts, compensation to agent i and payment of agent i. Assuming

an even number of agents, payment of agent i is the sum of all the group

numbers assigned to following groups minus i’s group number times 2 (which

is the number of agents in the group) divided by the followers including him.

After determining payments to each agent, the amount is assigned equally

to agents with larger indices than agent i as compensation. Thus, the com-

pensation to agent i is the sum of all those assigned to agent i from all other

agents with smaller indices.

We note that there is a symmetry between the minimal and the maximal

transfer rules. The preceding groups are considered in calculating the “com-

pensation” for the minimal transfer rule, and then the preceding agents pay

the compensation equally. On the other hand, following groups are consid-

ered in calculating the “payment” for the maximal transfer rule, and then

the following agents share the payment equally.

12



For each N ∈ N , each q ∈ QN , each d ∈ D(q), and each i ∈ N, let pi be

the payment of agent i, defined as

pi =


∑

gj>gi
(gj−gi)·2

n−di+1
θi if n is even,∑

gj>gi,gj<dn
2 e

(gj−gi)·2
n−di+1

θi +
dn

2
e−gi

n−di+1
θi if n is odd.

Maximal transfer rule: for each N ∈ N , each q ∈ QN , and each d ∈ D(q),

ϕX(q) = {(gX , tX) ∈ Z(q) | gX ∈ Eff (q), and ∀i ∈ N,

tXi =
∑

j∈Pi(d)
pj

n−dj
− pi}.

Next example shows how the transfer for the maximal transfer rule is

calculated.

Example 3: The Shapley value in a pessimistic approach.

Let N ≡ {1, 2, 3, 4, 5, 6} and θ ≡ (θ1, θ2, θ3, θ4, θ5, θ6) be such that θ1 >

θ2 > θ3 > θ4 > θ5 > θ6. Now we apply the Shapley value in a pessimistic

perspective and calculate the corresponding transfer.



tX1 = − 1·2+2·2
6

θ1

tX2 = 1
5
θ1 − 1·2+2·2

5
θ2

tX3 = 1
5
θ1 + 1

4
6
5
θ2 − 1·2

4
θ3

tX4 = 1
5
θ1 + 1

4
6
5
θ2 + 1

3
1
2
θ3 − 1·2

3
θ4

tX5 = 1
5
θ1 + 1

4
6
5
θ2 + 1

3
1
2
θ3 + 1

2
2
3
θ4

tX6 = 1
5
θ1 + 1

4
6
5
θ2 + 1

3
1
2
θ3 + 1

2
2
3
θ4.

Therefore, it coincides with transfers specified by the maximal transfer rule.

We note that p1 = {(2−1)+(3−1)}·2
6−1+1

θ1 = θ1, and it is equally shared by the

followers, 2, 3, 4, 5, and 6, by 1
5
θ1. Similarly, p2 = {(2−1)+(3−1)}·2

6−2+1
θ2 = 6

5
θ2 and

it is equally shared by the followers 3, 4, 5, and 6 by 1
4

6
5
θ2. And so on. �

As in the optimistic approach, we relate the maximal transfer rule with

the Shapley value. First, we derive the unanimity coefficient λvX .

13



Lemma 2. For each q = (N, θ) ∈ QN , the unanimity coefficient of S ⊆ N

is defined as follows. If |N | is even, then

λvX (S) =


−(dn

2
e − 1)θi if |S| = 1 and i ∈ S,

0 if |S| = 2,
(−2)|S|−3 max

k∈S
θk if |S| ≥ 3,

and if |N | is odd, then

λvX (S) =


−(dn

2
e − 1)θi if |S| = 1 and i ∈ S,

max
k∈S

θk if |S| = 2,

−(−2)|S|−3 max
k∈S

θk if |S| ≥ 3.

Proof. Let N ≡ {1, 2, . . . , n}. We will prove only when |N | is even. For

each i ∈ N, if S = {i}, then λvX (S) = vX(S) = −(dn
2
e − 1)θi. For each i,

j ∈ N such that i 6= j, if S = {i, j}, then λvX (S) = vX(S)−
∑

T(S λvX (T ) =

−(dn
2
e− 1)(θi + θj) + (dn

2
e− 1)θi + (dn

2
e− 1)θj = 0. For each i, j, k ∈ N such

that k > max{i, j}, if S = {i, j, k}, then λvX (S) = vX(S)−
∑

T(S λvX (T ) =

−(dn
2
e − 1)(θi + θj)− (dn

2
e − 2)θk + (dn

2
e − 1)(θi + θj + θk) = θk, as desired.

Now, as induction hypothesis, suppose that the conclusion holds for each

S ⊂ N such that |S| ≤ s − 1. We need to show that the conclusion is true

for |S| = s. Without loss of generality, we assume that S ≡ {1, 2, . . . , s} and

that θ1 ≤ θ2 ≤ · · · ≤ θs. First, we consider the case when |S| is even.

λvX (S) = vX(S)−
∑

T(S λvX (T )

= −(dn
2
e − 1)(θ1 + θ2)− (dn

2
e − 2)(θ3 + θ4)− · · · − (dn

2
e − s

2
)(θs−1 + θs)

−
∑s−1

i=3 (
∑i

j=3(−2)j−3
(

i−1
j−1

)
)θi −

∑s−1
i=3 (−2)i−3

(
i−1
j−1

)
θs

+(dn
2
e − 1)(θ1 + θ2 + · · ·+ θs)

= [( s
2
− 1)(θs + θs−1) + ( s

2
− 2)(θs−2 + θs−3) + · · ·+ (θ4 + θ3)]

−[
∑s−1

i=3 (
∑i

j=3(−2)j−3
(

i−1
j−1

)
)θi]− [

∑s−1
i=3 (−2)i−3

(
i−1
j−1

)
θs].

By the binomial theorem, the terms above can be rewritten as

14



∑s−1
i=3 (

∑i
j=3(−2)j−3

(
i−1
j−1

)
)θi =

∑s−1
i=3

2i−3+(−1)i−1

4
θi

= ( s
2
− 1)θs−1 + ( s

2
− 2)(θs−2 + θs−3) + · · ·+ (θ4 + θ3)∑s−1

i=3 (−2)i−3
(

s−1
j−1

)
θs = [2s−3+(−1)s−1

4
− (−2)s−3]θs

= [( s
2
− 1)− (−2)s−3]θs.

Altogether, λvX (S) = (−2)s−3θs = (−2)s−3 maxi∈S θi, the desired conclusion.

The case when |S| is odd can be proven in a similar way.

Now we show that the maximal transfer rule assigns the same payoff as

the Shapley value applied to the queueing game when the worth of a coalition

is pessimistically defined.

Theorem 2. Let q ∈ QN and d ∈ D(q). Let z = (g, t) ∈ Z(q) be such that

agents’ utilities at z are equal to the payoff vector obtained by applying the

Shapley value to vX . Then, g ∈Eff (q) and for each i ∈ N , ti = tXi .

Proof. Let N ≡ {1, 2, . . . , n}. Without loss of generality, we may assume that

θ1 ≥ θ2 ≥ · · · ≥ θn and that for each i ∈ N, di = i. First, we consider the

case when |N | is even. By Lemma 2, for each i ∈ N, the transfer assigned

by the Shapley value can be expressed as:

ti = −(dn
2
e − 1)θi +

∑
i∈S,S⊆N

(−2)s−3 maxk∈S θk

s
+ (gi − 1)θi

where |S| = s. For each i ∈ N, ti can be rewritten as

ti = [(gi − dn
2
e) +

∑n−i+1
s=3

(−2)s−3

s

(
n−i
s−1

)
]θi +

∑i−1
j=1[

∑n−j+1
s=3

(−2)s−3

s

(
n−j−1

s−2

)
]θj
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By the binomial theorem, the terms in the first half are rewritten as

(gi − dn
2
e) +

∑n−i+1
s=3

(−2)s−3

s

(
n−i
s−1

)
= (gi − dn

2
e) +

∑n−i+1
s=3 (−2)s−3 (n−i+1)!

(n−i−s+1)!s!
1

n−i+1

= (gi − dn
2
e)− 1

8(n−i+1)
{
∑n−i+1

s=3 (−2)s
(

n−i+1
s

)
}

= (gi − dn
2
e)− 1

8(n−i+1)
[
∑n−i+1

s=0 (−2)s
(

n−i+1
s

)
− 1 + 2(n− i + 1)− 2(n− i + 1)(n− i)]

= (gi − dn
2
e) + 2(n−i+1)(n−i−1)+1−(−1)n−i+1

8(n−i+1)

=

{
− (n−i+2)(n−i)

4(n−i+1)
, if i is even,

−n−i−1
4

, if i is odd,

}
= −

∑dn
2 e

k=gi+1(k−gi)·2
n−i+1

. (3)

Also, by the binomial theorem and (3), the terms in the second half can be

rewritten as∑n−j+1
s=3

(−2)s−3

s

(
n−j−1

s−2

)
= 1

n−j
[(n− j)

∑n−j+1
s=3

(−2)s−3

s

(
n−j−1

s−2

)
]

= 1
n−j

[
∑n−j+1

s=3 (−2)s−3 s−1
n−j−s+1

(
n−j

s

)
]

= 1
n−j

[
∑n−j+1

s=3 (−2)s−3 s−1
n−j−s+1

(
n−j

s

)
+

∑n−j+1
s=3

(−2)s−3

s

(
n−j
s−1

)
−

∑n−j+1
s=3

(−2)s−3

s

(
n−j
s−1

)
]

= 1
n−j

[
∑n−j+1

s=3 (−2)s−3{ s−1
n−j−s+1

(
n−j

s

)
+ 1

s

(
n−j
s−1

)
} −

∑n−j+1
s=3

(−2)s−3

s

(
n−j
s−1

)
]

= 1
n−j

[
∑n−j+1

s=3 (−2)s−3
(

n−j
s−1

)
−

∑n−j+1
s=3

(−2)s−3

s

(
n−j
s−1

)
]

= 1
n−j

[1
4
{(−1)n−j − 1 + 2(n− j)} −

∑n−j+1
s=3

(−2)s−3

s

(
n−j
s−1

)
]

= 1
n−j

[gn − gj −
∑n−j+1

s=3
(−2)s−3

s

(
n−j
s−1

)
]

= 1
n−j

∑dn
2 e

k=gj+1(k−gj)·2

n−j+1
.

Altogether, for each i ∈ N,

ti = −
∑dn

2
e

k=gi+1(k − gi) · 2
n− i + 1

θi +
∑

j∈Pi(d)

1

n− j

∑dn
2
e

k=gj+1(k − gj) · 2
n− j + 1

θj

which coincides the transfer for the maximal transfer rule.

The case when |N | is odd can be proved in a similar way.
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Remark 4: As in Remark 1, the maxiaml rule can be characterized by

axioms in Chun (2006a), but modified to be suitable for two server queueing

problems.

5. Concluding remarks

In this section, we investigate other properties of the minimal transfer rule in

the current context and discuss a possible generalization of queueing prob-

lems with two servers.

5.1 Core, Nucleolus, and Shapley value

As in the one server case, it can easily be shown that our queueing game

vM is concave. Also, it can be checked that the allocations assigned by the

minimal and the maximal transfer rules belong to the anti-core of the game.

Chun and Hokari (2004) show that the prenucleolus (Schmeidler, 1969)

and the Shapley value coincides on the class of queueing problems with one

server. Similarly, we can ask whether these two solutions coincide for our

problems. As it turns out, they coincide on the class of problems with less

than or equal to 4 agents, but not any more for problems with more than 4

agents. Moreover, our games with four agents do not satisfy sufficient con-

ditions of Kar, Mitra, and Mutuswami (2005) for coincidence of the Shapley

value and the nucleolus. It would be interesting to investigate the existence

of another sufficient condition satisfied by our games with four agents.

5.2 Queueing problems with multiple servers

Our analysis on the queueing problem with two parallel servers can be gen-

eralized to the problem with an arbitrary number of servers. We conjecture

that an agent i’s utility for `-server problem is

u(gi, ti; θi) = −(gi−1)θi+

∑
gM

j <gM
i

gM
j · `

di

·θi−
∑

k∈Fi(d)

{ 1

dk − 1
·

∑
gM

j <gM
k

gM
j · `

dk

·θk}

17



where gi = ddi

`
e for each q` = (N, θ; `) and d ∈ D(q`). However, we could not

prove our conjecture due to computational difficulties.

5.3 Other issues

This paper leaves many interesting open questions. First, it would be in-

teresting to generalize the problem by assuming that agents need different

amounts of processing time. Also, it would be interesting to study an in-

centive compatible mechanism for the problem as Suijs (1996) for problems

with one server. We hope to address these issues in our future research.
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[11] H. Özsoy, “Coordinated splitting in probabilistic scheduling,” mimeo,

Rice University, 2005.

[12] D. Schmeidler, “The nucleolus of a characteristic function game,” SIAM

Journal on Applied Mathematics 17 (1969), 1163-1170.

[13] L. S. Shapley, “A value for n-person games,” in Contributions to the the-

ory of Games II, Annals of Mathematics Studies No. 28 (H. W. Kuhn

and A. W. Tucker, Eds.), pp.307-317, Princeton, NJ:Princeton Univer-

sity Press, 1953.

[14] J. Suijs, “On incentive compatibility and budget balancedness in public

decision making,” Economic Design 2 (1996), 193-209.

19


