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1 Introduction

This paper studies the problem of fairly allocating an amount of a divisible resource

among agents whose preferences are single-peaked (Sprumont, 1991). An allocation

rule, or simply a rule, is a function which maps each single-peaked preference profile

to an allocation. The fairness property of the rules we are interested in is envy-

freeness, which states that, at any chosen allocation, no one should prefer anyone

else’s consumption to her own (Foley, 1967). The practicality condition we are

interested in is peak-only, which states that the choice of allocations should only

depend on the peaks of preferences. We say “practical,” since the user of any peak-

only rule only needs information on peak amounts of individual preferences, instead

of all complicated details.

Our purpose is to study various envy-free and peak-only rules and to clarify

the structure of the set of those rules. We do not impose efficiency, although our

main results are deeply related to it. The aim is to extract pure implications of

envy-freeness and peak-only as much as possible. However, it will turn out that the

absence of efficiency does clarify the role of efficiency in some existing results in the

literature, and in this sense, we are studying efficiency.

We have two main theorems. In our first main theorem, we show that a rule is

envy-free and peak-only if and only if it satisfies Kolm’s strong fairness condition

of convex envy-freeness and some mild conditions, and also offer a functional char-

acterization of any such rule. Furthermore, it is proved that the set of these rules

forms a complete lattice with respect to a dominance relation. In our second main

theorem, we impose strategy-proofness on envy-free and peak-only rules. We then

offer a functional characterization of any such rule and prove that the set of these

rules also forms a complete lattice with respect to the dominance relation. In both

theorems, the unique upper (resp. lower) bound of the dominance relation is the

uniform (resp. equal division) rule, and any other rule lies between the two rules.

This implies that, in the choice problem of a rule from the set of these rules, there

is always the unanimous agreement that the uniform rule is the best and the equal

division rule is the worst.

Our work particularly follows the interesting works by Thomson (1994), Chun

(2000), and Kesten (2006). Thomson (1994) shows that the uniform rule is the only

efficient, envy-free, and peak-only rule, and Chun (2000) shows that the uniform

rule is the only efficient and convex envy-free rule. Our results give some insights

into the role of efficiency in the list of their axioms, since the results do not rely on

efficiency with keeping other axioms. Kesten (2006) shows that any envy-free and
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peak-only rule is convex envy-free. He also points out Paretian dominance relations

over the set of convex envy-free allocations. Our work can be seen as an extension

of his work that offers full characterizations of some convex envy-free rules and sets

of the rules.1

The rest of the paper proceeds as follows: Section 2 offers the model. Section 3

presents main results. Section 4 concludes the paper. Some proofs are relegated to

the Appendix.

2 Basic definitions

2.1 Model

Let N ≡ {1, 2, . . . , n} be the finite set of agents. There is a fixed amount of an

infinitely divisible resource Ω > 0 to be allocated. An allotment for i ∈ N is

xi ∈ [0, Ω]. An allocation is a vector of allotments x ≡ (x1, x2, . . . , xn) ∈ [0, Ω]N such

that
∑

i∈N xi = Ω. Let X be the set of allocations. Given x ∈ X, let x ≡ mini∈N xi

and x ≡ maxi∈N xi.

A single-peaked preference is a transitive, complete, and continuous binary rela-

tion Ri over [0, Ω] for which there exists a unique point pi ∈ [0, Ω] such that for each

xi, x
′
i ∈ [0, Ω],

[x′
i < xi ≤ pi or pi ≤ xi < x′

i] =⇒ xi Pi x′
i,

where the symmetric and asymmetric parts of Ri are denoted by Ii and Pi, respec-

tively. The point pi is called the peak of Ri, and the profile of peaks is denoted by

p ≡ (p1, p2, . . . , pn). Let R be the set of single-peaked preferences and RN the set

of single-peaked preference profiles R ≡ (R1, R2, . . . , Rn).

2.2 Axioms and rules

A rule is a function f : RN → X which maps a preference profile R ∈ RN to an

allocation f(R) ≡ (f1(R), f2(R), . . . , fn(R)) ∈ X. Let F be the set of rules. The

following axioms of rules are standard:

• Efficiency : An allocation x ∈ X is efficient for R ∈ RN if
∑

i∈N pi ≤ Ω

implies p 5 x and
∑

i∈N pi ≥ Ω implies p = x. A rule f is efficient if for each

R ∈ RN , f(R) is efficient for R.
1We thank the associate editor for raising our attention to Kesten’s paper.
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• Envy-freeness (Foley, 1967): An allocation x ∈ X is envy-free for R ∈ RN if

for each i, j ∈ N , xi Ri xj. A rule f is envy-free if for each R ∈ RN , f(R) is

envy-free for R.

• Convex envy-freeness (Kolm, 1973): An allocation x ∈ X is convex envy-free

for R ∈ RN if for each i ∈ N and each a ∈ [x, x], xi Ri a. A rule f is convex

envy-free if for each R ∈ RN , f(R) is convex envy-free for R.

• Peak-only : For each R,R′ ∈ RN with p = p′, f(R) = f(R′).

• Strategy-proofness: For each R ∈ RN , each i ∈ N , and each R′
i ∈ R, fi(R) Ri

fi(R
′
i, R−i).

• Non-bossiness : For each R ∈ RN , each i ∈ N , and each R′
i ∈ R, if fi(R) =

fi(R
′
i, R−i), then f(R) = f(R′

i, R−i).

We also introduce much weaker versions of strategy-proofness and non-bossiness,

which only concern preferences with unchanged peaks. They are also trivially im-

plied by peak-only.

• Strategy-proofness for same peaks : For each R ∈ RN , each i ∈ N , and each

R′
i ∈ R with pi = p′i, fi(R) Ri fi(R

′
i, R−i).

• Non-bossiness for same peaks : For each R ∈ RN , each i ∈ N , and each R′
i ∈ R

with pi = p′i, if fi(R) = fi(R
′
i, R−i), then f(R) = f(R′

i, R−i).

Since the seminal works by Benassy (1982) and Sprumont (1991), the following

rule has played the central role in the literature.2 It satisfies all the axioms defined

above:

Uniform rule, U : For each R ∈ RN and each i ∈ N ,

Ui(R) ≡

{
min{pi, λ} if

∑
j∈N pj ≥ Ω,

max{pi, λ} if
∑

j∈N pj ≤ Ω,

where λ solves
∑

j∈N Uj(R) = Ω.

The next rule satisfies all the axioms except for efficiency.3

Equal division rule, E: For each R ∈ RN and each i ∈ N , Ei(R) ≡ Ω/n.

2We refer to Thomson (2005) for a survey on various characterizations of the uniform rule.
3This rule is characterized by Bochet and Sakai (2007) on the basis of a strong implementability

condition.
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2.3 Binary relations

This subsection introduces some standard definitions on binary relations.

Partial ordering. A binary relation % on a set A is a partial ordering if it satisfies:

• Reflexivity : For each a ∈ A, a % a,

• Transitivity : For each a, b, c ∈ A, [a % b and b % c] implies a % c,

• Anti-symmetry : For each a, b ∈ A, [a % b and b % a] implies a = b.

Then a pair (A,%) is called a partially ordered set.

Linear ordering. A binary relation % on a set A is a linear ordering if it is a

partial ordering that satisfies:

• Completeness : For each a, b ∈ A, a % b or b % a.

Then a pair (A,%) is called a linearly ordered set.

Lattice theoretic notions. Consider a partial ordering % on a set A.

• Join: Given B ⊆ A, an element a ∈ A is the join of B for % if it is the

least maximal of B according to %; that is, (i) for each b ∈ B, a % b and

(ii) for each a′ ∈ A, [a′ % b for each b ∈ B] implies a′ % a.

• Meet : Similarly, an element a ∈ A is the meet of B for % if it is the

greatest minimal of B; that is, (i) for each b ∈ B, b % a and (ii) for each

a′ ∈ A, [b % a′ for each b ∈ B] implies a % a′.

• Lattice: A partially ordered set (A, %) is a lattice if for each a, b ∈ A,

there exist the join and meet of {a, b} for %.

• Complete lattice: A partially ordered set (A, %) is a complete lattice if

for each B ⊆ A, there exist the join and meet of B for %.

If they exist, the join and the meet of B are uniquely determined by anti-

symmetry of %.

Given Y ⊆ X and R ∈ RN , the dominance relation on Y , dom[R], is defined to

be the binary relation on Y such that for each x, y ∈ Y ,

x dom[R] y ⇐⇒ [xi Ri yi ∀i ∈ N ].
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We shall analyze the order structure of any set G ⊆ F . The dominance relation

on G is denoted by dom, which is defined by, for each f, g ∈ G ,

f dom g ⇐⇒ [f(R) dom[R] g(R) ∀R ∈ RN ].

Note that dom is a partial ordering on G . In particular, we denote by F e ⊆ F

the set of envy-free and peak-only rules and by dome the dominance relation on F e,

and by F es ⊆ F the set of envy-free, peak-only, and strategy-proof rules and by

domes the dominance relation on F es. These notations will appear in the proofs of

Theorems 1 and 2.

3 Characterizations

We offer a series of propositions that characterize certain geometric properties or

axiomatic relations concerning convex envy-free allocations. To do so, it is conve-

nient to denote by C(R) ⊆ X the set of convex envy-free allocations for R. These

propositions will be finalized into our main theorems.

Proposition 1. An allocation x ∈ X is convex envy-free for R ∈ RN if and only if

for each i ∈ N ,

xi < pi =⇒ xi = x,

pi < xi =⇒ xi = x.

Proof. It is easy to check the “if” part. Let us prove the “only if” part. For each

i ∈ N with xi < pi, if xi < x, then a Pi xi for each a ∈ (xi, x), a contradiction to

convex envy-freeness. Hence, xi < pi implies xi = x. Similarly, we can show that

pi < xi implies xi = x.

The variance function is a function var : RN
+ → R+ defined by, for each x ∈ X,

var(x) ≡ 1

n

∑
i∈N

(
xi −

Ω

n

)2

.

The second proposition clarifies how convex envy-free allocations can be mutually

compared in view of variance or dominance.

Proposition 2. For every R ∈ RN and every x, y ∈ C(R),

x ≤ y ⇐⇒ y ≤ x ⇐⇒ var(x) ≥ var(y) ⇐⇒ x dom[R] y; (C1)
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x = y ⇐⇒ x = y ⇐⇒ var(x) = var(y) ⇐⇒ x = y; (C2)

U(R) dom[R] x dom[R] E(R). (C3)

Proof. See, the Appendix.

The fact that the variance of the uniform allocation is larger than that of any

other convex envy-free allocation is first shown by Chun (2000). This is a converse

implication to a result by Schummer and Thomson (1997) which states that the

variance of the uniform allocation is always smaller than that of any other efficient

allocation. (C3) is first obtained by Kesten (2006, Proposition 3). Kesten (2006,

pp. 199–200) also mentions a procedure that obtains all convex envy-free allocations

from the equal division allocation, and then points out that all convex envy-free

allocations are Pareto ranked. Our Proposition 2 can be seen as a completion of their

arguments that offers full details of relations among convex envy-free allocations.

Proposition 3. For each R,R′ ∈ RN with p = p′, C(R) = C(R′).

Proof. It suffices to show that for each R,R′ ∈ RN with p = p′ and each x ∈ C(R),

we have x ∈ C(R′). To do so, we shall prove that, given any i ∈ N and any a ∈ [x, x],

xi R′
i a. If xi = pi, then xi = p′i, so that xi R′

i a. If pi < xi, then p′i < xi = x by

Proposition 1, so that xi R′
i a. If xi < pi, then x = xi < p′i by Proposition 1, so that

xi R′
i a. Therefore, x ∈ C(R′) in all cases.

Proposition 3 does not imply that all convex envy-free rules are peak-only, since

the choice of one allocation from the same set C(R) = C(R′) may depend on informa-

tion other than peaks. However, the next result shows that, under mild conditions,

convex envy-freeness in fact implies peak-only.

Proposition 4. If a rule is convex envy-free, strategy-proof for same peaks, and

non-bossy for same peaks, then it is peak-only.

Proof. Let f be any convex envy-free, strategy-proof for same peaks, and non-bossy

for same peaks rule. By non-bossiness for same peaks, it suffices to show that

for each R ∈ RN , i ∈ N , and each R′
i ∈ R with pi = p′i, we have fi(R) =

fi(R
′
i, R−i). If fi(R) = pi, then by strategy-proofness for same peaks, fi(R

′
i, Ri) = pi.

Consider the case fi(R) ̸= fi(R
′
i, R−i). By strategy-proofness for same peaks, either

fi(R) < pi < fi(R
′
i, R−i) or fi(R

′
i, R−i) < pi < fi(R). We only consider the subcase

fi(R) < pi < fi(R
′
i, R−i), since the other subcase can be parallely shown. Then

Proposition 1 implies

f(R) = fi(R) < fi(R
′
i, R−i) = f(R′

i, R−i),
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but this contradicts the definition of allocations.

The next result by Kesten (2006, Proposition 1) is somewhat a converse of Propo-

sition 4. We give a proof for completeness.

Proposition 5. If a rule is envy-free and peak-only, then it is convex envy-free.

Proof. Let f be an envy-free and peak-only rule. Pick any R ∈ RN . By Proposi-

tion 1, we need to show that pi < fi(R) implies fi(R) = f(R) and fi(R) < pi implies

fi(R) = f(R). In the case pi < fi(R), if fj(R) < fi(R) for some j, then, whenever

R′
i is such that p′i = pi and fj(R) P ′

i fi(R), i envies j under (R′
i, R−i) by peak-only,

a contradiction. The parallel proof applies to the case fi(R) < pi.

We are now in a position to offer our first main theorem:

Theorem 1. The following three statements on any rule f are equivalent:

(i) f is envy-free and peak-only;

(ii) f is convex envy-free, strategy-proof for same peaks, and non-bossy for same

peaks;

(iii) There exists a function g : [0, Ω]N → X such that for each R ∈ RN and each

i ∈ N ,

fi(R) = gi(p), (G1)

pi < gi(p) =⇒ gi(p) = g(p), (G2)

gi(p) < pi =⇒ gi(p) = g(p). (G3)

Furthermore, the set of these rules is a complete lattice with respect to the domi-

nance relation, whose greatest, least elements are the uniform rule, the equal division

rule, respectively.

Proof. The equivalence between (i) and (ii) follows from Propositions 4 and 5. The

equivalence between (i) and (iii) follows from Proposition 1.

We next show that (F e, dome) is a complete lattice. Let G ⊆ F e. Define the

rule
∨

G by, for each R ∈ RN , ∨
G (R) ≡ x,

where x is chosen such that x ∈ C(R) and

x = inf
g∈G

g(R).
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Note that the existence of x follows from the compactness of C(R) and the unique-

ness of x follows from Proposition 2. Thus
∨

G is well-defined. Obviously,
∨

G is

the unique least upper bound of G . The unique greatest lower bound of G can be

parallely found. Thus (F e, dome) is a complete lattice.

The fact that the uniform, the equal division rules are the greatest, least elements

of (F e, dome), respectively, immediately follows from Proposition 2.

Thomson (1994, Lemma 1) shows that the uniform rule is the only efficient,

envy-free, and peak-only rule. The equivalence between (i) and (iii) in Theorem 1

clarifies what happens if efficiency is dropped from the list of Thomson’s axioms.

Theorem 1 also implies that, under envy-freeness and peak-only, the uniform rule

can be selected without caring who gains or loses from the choice of rules, since

everyone gains by the use of the uniform rule independent of their preferences.

Given Theorem 1, a natural question is if there is any interesting sublattice. We

consider this question for the strategy-proof subclass.

Theorem 2. The following three statements on any rule f are equivalent:

(i) f is envy-free, strategy-proof, and peak-only;

(ii) f is convex envy-free, strategy-proof, and non-bossy for same peaks;

(iii) For every i ∈ N , there exist two functions hi, hi : [0, Ω]N\{i} → [0, Ω] such that

for each R ∈ RN ,

fi(R) = med[pi, hi(p−i), hi(p−i)], (H1)

pi < hi(p−i) =⇒ med[pi, hi(p−i), hi(p−i)] = min
j∈N

med[pj, hj(p−j), hj(p−j)], (H2)

hi(p−i) < pi =⇒ med[pi, hi(p−i), hi(p−i)] = max
j∈N

med[pj, hj(p−j), hj(p−j)]. (H3)

Furthermore, the set of these rules is a complete lattice with respect to the domi-

nance relation, whose greatest, least elements are the uniform rule, the equal division

rule, respectively.

Proof. The equivalence between (i) and (ii) follows from Propositions 4 and 5. One

can easily show that (iii) implies (i).

Let us prove that (i) implies (iii). Pick any envy-free, strategy-proof, and peak-

only rule f and let g : [0, Ω]N → X be the associated function satisfying the condi-

tions in (iii) of Theorem 1. For each i ∈ N , define two functions hi, hi : [0, Ω]N\{i} →
[0, Ω] by, for every p−i ∈ [0, Ω]N\{i},

hi(p−i) ≡ gi(0, p−i),
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hi(p−i) ≡ gi(Ω, p−i).

By strategy-proofness, i has no incentive to report peak Ω when her true peak is zero,

and hence hi(p−i) ≤ hi(p−i). Similarly, one can easily show by strategy-proofness

that pi < hi(p−i) implies fi(R) = hi(p−i) and hi(p−i) < pi implies fi(R) = hi(p−i).

Next, if hi(p−i) < pi < hi(p−i), then by strategy-proofness and peak-only, pi = fi(R).

In either case, we obtain fi(R) = med[pi, hi(p−i), hi(p−i)], meaning that (H1) holds.

Then (H2) and (H3) immediately follow from Theorem 1.

We next establish the complete lattice structure of F es with respect to the

dominance relation. Let G ⊆ F es. By Theorem 1, there uniquely exist the join and

meet of G ,
∨

G ,
∧

G ∈ F e, respectively. To prove that (F es, domes) is a complete

lattice, it suffices to show that
∨

G ,
∧

G are strategy-proof. For each i ∈ N and each

R ∈ RN , by definition of the join,∨
Gi(R) Ri gi(R) ∀g ∈ G . (1)

For each i ∈ N , each R ∈ RN , and each R′
i ∈ R, by strategy-proofness,

gi(R) Ri gi(R
′
i, R−i) ∀g ∈ G . (2)

For each i ∈ N , each R ∈ RN , and each R′
i ∈ R, (1) and (2) together imply∨

Gi(R) Ri gi(R
′
i, R−i) ∀g ∈ G ,

and then by definition of
∨

Gi(R
′
i, R−i) and continuity of Ri,∨

Gi(R) Ri

∨
Gi(R

′
i, R−i).

Thus
∨

G is strategy-proof. We can similarly show that
∧

G is strategy-proof, too.

Therefore, (F es, domes) is a complete lattice.

4 Conclusion

We characterized envy-free and peak-only rules and clarified the complete lattice

structure of the class of these rules. We also imposed strategy-proofness to the

rules and then identified functional forms of the rules and again found the complete

lattice structure of the strategy-proof subclass. These results enable us to easily

compare any two such rules in view of dominance relations and suggest how strong
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the position of the uniform rule is and how weak the position of the equal division

rule. In general, this kind of easy-to-compare relations is rarely observed, except

for two-sided matching problems (e.g., Roth and Sotomayor, 1990). Thus results

like ours are rather infrequent. In the theorems, we found the existence of certain

functions characterizing rules, but did not clarify concrete forms of the functions.

Since they seem to have non-trivial complicated forms, obtaining simpler forms by

imposing additional axioms is of interest as a future research.
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Appendix: Proof of Proposition 2

The proof proceeds in several lemmas.

Lemma 1. For each R ∈ RN and each x ∈ C(R), if x < x, then for each i ∈ N ,

xi = x ⇐⇒ pi ≤ x, (3)

xi = x ⇐⇒ x ≤ pi. (4)

Proof. We only prove (3), since (4) can be shown by a parallel way. If xi = x but

x < pi, then xi < pi. By Proposition 1, xi = x, a contradiction to x < x. Next, if

pi ≤ x but x < xi, then pi < xi, a contradiction to Proposition 1.

Lemma 2. For each R ∈ RN , each x ∈ C(R), and each i ∈ N ,

x ≤ pi ≤ x =⇒ pi = xi, (5)

x < xi < x =⇒ pi = xi. (6)

Proof. We only prove (5), since (6) can be shown by a parallel way. By a con-

traposition argument, suppose that pi ̸= xi. Consider the case pi < xi. Then

by Proposition 1, xi = x, so pi < x. Next consider the case xi < pi. Then by

Proposition 1, xi = x, so x < pi.

Lemma 3. For each R ∈ RN and each x, y ∈ C(R), if x = y, then x = y.

Proof. Assume x = y. If x = x or y = y, then by feasibility, x = E(R) = y. Hence,

let us consider the case x < x and y < y. Without loss of generality, we can assume

x ≤ y. Let

N(x) ≡ {i ∈ N : pi ≤ x} ,

N(y) ≡
{
i ∈ N : pi ≤ y

}
,

N(x) ≡ {i ∈ N : x ≤ pi} ,

N(y) ≡ {i ∈ N : y ≤ pi} .

Note that N(y) ⊆ N(x).

Since x = y is assumed, we have N(x) = N(y), and by Lemma 1,

xi = x = y = yi ∀ i ∈ N(x). (7)
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By Lemma 2,

xi = pi = yi ∀ i ∈ N \ (N(x) ∪ N(x)). (8)

By Lemmas 1 and 2,

xi = x ≤ pi = yi ∀ i ∈ N(x) \ N(y). (9)

By Lemma 1,

xi = x ≤ y = yi ∀ i ∈ N(y). (10)

Since
∑

i∈N xi =
∑

i∈N yi, (7)–(10) together imply x = y.

Lemma 4. For each R ∈ RN and each x, y ∈ C(R), if x < y, then y < x.

Proof. Suppose, by contradiction, that there exist R ∈ RN and x, y ∈ C(R) such

that x < y and x ≤ y. By feasibility, x < y ≤ x ≤ y and y < y. By Lemmas 1 and

2,

pi ≤ x =⇒ xi = x < y = yi, (11)

x < pi ≤ y =⇒ xi = pi ≤ y = yi, (12)

y < pi ≤ x =⇒ xi = pi = yi, (13)

x < pi ≤ y =⇒ xi = x < pi = yi, (14)

y < pi =⇒ xi = x ≤ y = yi. (15)

For j ∈ N such that xj = x, Lemma 1 implies pj ≤ x, so xj < yj. Hence,

(11)–(15) together imply
∑

i∈N xi <
∑

i∈N yi, a contradiction.

Lemma 5. For each R ∈ RN and each x, y ∈ C(R), if x < y, then x dom[R] y and

not y dom[R] x.

Proof. Immediately follows from Lemmas 1–4.

Proof of Proposition 2. (C1) and (C2) immediately follow from Lemmas 1–5.

(C3) is a direct consequence from (C1) and (C2).
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