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1 Introduction

1.1 Charitable Giving and Coordination Game

Charitable giving is a topic that has attracted the attention of many public
economists for a long time and has been studied in various aspects.1 This
paper presents a new view to this topic that charitable behavior is well
represented as a coordination game. Further, we claim that if the number
of potential donors is large and they have little information about other
potential donors’ valuations for the charity project, the global game, which
is a recently developed coordination game with incomplete information, is
quite suitable to represent the situation and brings several insights to the
study of charitable giving. In this first subsection of Introduction, we explain
the reason for this.

In recent years, it has been revealed that when considering charitable be-
havior, especially in large economies, the warm-glow property of preference
is important. A preference with warm-glow property is typically represented
by a utility function that possesses a three-dimensional domain: the private
consumption, the total amount of donations from all contributors to a char-
ity, and her own contribution to a charity. This contrasts with the classical
preference represented by a utility function with only a two-dimensional do-
main: the private consumption, and the total amount of donations from
all contributors to a charity. Warm-glow is the property that increases a
donor’s utility as a result of her own contribution.2 This property has been
developed theoretically by Andreoni (1988, 1989, 1990), and supported em-
pirically by studies such as Palfrey and Prisbrey (1996, 1997) and Ribar and
Wilhelm (2002).3 In particular, Andreoni (1988) and Ribar and Wilhelm
(2002) suggest that in a large economy, the warm-glow property is crucial
to collect adequate amounts of charitable contributions.

A simple simultaneous game of a capital campaign for charity confirms
their finding as follows. A capital campaign constitutes a funding drive for a
charity that incurs a large fixed cost to ensure project success.4 A campaign
to collect funds to build a hospital is a case in point. If the fixed cost
for the project success is very large and there are many potential donors,
each contribution from each donor has almost no effect on project success.
Assume a potential donor in a large economy has two choices Donate and
Not Donate, and possesses a simple classical preference that depends on her
own private consumption and whether the project is a success or a failure.
The latter condition is equivalent to whether the total amount of donations
exceeds the fixed cost or not. Assume that even if the project fails, the

1See Andreoni (2006b) for a recent survey on the studies of charitable giving.
2Warm-glow is also called impure-altruism or joy-of-giving.
3Andreoni (2006b) contains a summary and discussions on the warm-glow property.
4We owe this definition of a capital campaign to Andreoni (1998).
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donations are nonrefundable. Also assume that if a sufficiently large number
of potential donors choose Donate, the project succeeds. Then her payoff is
represented as follows.

Success Failure
Donate Happy Unhappy
Not Donate Very Happy Neutral

(1)

Given that a potential donor cares only for her own private consumption
and project success and she has no effect on project success, she is better
off choosing Not Donate if the project succeeds. Of course, Not Donate also
yields greater happiness if the project fails. From the Payoff Table (1), Not
Donate is the strictly dominant strategy and each potential donor chooses
this action. It is a prisoner’s dilemma game and represents the classical
free-riding problem.

However, if people possess the warm-glow property in their preferences,
what is the payoff table in the same capital campaign game for a large
number of potential donors? It is natural to consider that the payoff table
is given as follows.

Success Failure
Donate Very Happy Unhappy
Not Donate Happy Neutral

(2)

A contribution makes a donor with a warm-glow property happier than when
not contributing if the project is a success.5 Then it has two pure strategy
Nash equilibria; that is, either everybody chooses Donate, or everybody
chooses Not Donate. This is a typical coordination game.

The coordination game is one of the most classical problems in game
theory and has significantly improved in recent years due to Carlsson and
van Damme (1993). They consider a simultaneous incomplete information
coordination game where each agent has little knowledge about the type
distribution, and they show the existence of a unique equilibrium with few
assumptions concerning the strategies of agents. Even in the Bayesian coor-
dination game where the type distribution is common knowledge, a unique
equilibrium is difficult to obtain. Consequently, their work has attracted
much attention. Their game model, known as the global game, has become
popular with game theorists and has been extended in a number of differ-
ent directions. Thanks to Morris and Shin (1998, 2003), it has now been
extended to encompass a coordination problem in a large economy.6

5Ribar and Wilhelm (2002) find that in a large economy, the warm-glow property has
a much stronger effect than the altruistic property concerned only with project success
or failure in this example. Following this, the payoff to choose Not Donate with project
success is even represented by Neutral.

6Well-known applications of the global game include debt pricing (Morris and Shin,
2004) and bank runs (Goldstein and Pauzner, 2005). Both are typical coordination prob-
lems.
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If there are a sufficiently large number of potential donors with the warm-
glow property of preference, donation behavior for a charity project becomes
a coordination game. In the situation of simultaneous donations, the incom-
pleteness of information on the valuation of each potential donor for the char-
ity project is also appropriate. These are the reasons why we consider that
a global game is suitable for modeling charitable behavior. We construct a
simultaneous incomplete information game model of charitable giving based
on a simple global coordination game, and we characterize a unique equilib-
rium of the game. By means of comparative static analysis, we show that
the model is compatible with the empirical studies of charitable behavior,
especially the field experimental evidence in List and Lucking-Reiley (2002).
We discuss this in the following subsection.

Finally, in this subsection, we note that this model has the same structure
as the voluntary provision of an excludable threshold public good. If a
contribution sufficient to exceed a threshold is necessary to produce a public
good, and if the benefit for each contributor from the public good depends
on how much she pays, then this has the same representation as the capital
campaign to donors with the strong warm-glow property.7 Hence, the results
in this paper also apply to the problem of producing an excludable threshold
public good under incomplete information.

1.2 Seed Money

Seed money is a preliminary fund for charity publicly announced at the
time when the project is announced. Leaders directly solicited to donate
before the public announcement sometimes provide this seed money. Even
before Andreoni (1998) introduced this problem to public economists, it was
well known among charity fund-raisers that if seed money is granted, the
donations from general contributors increase.

The field experimental evidence in List and Lucking-Reiley (2002) sup-
ports this knowledge among charity fund-raisers.8 List and Lucking-Reiley
(2002) divide 3,000 potential donors into six groups. For three groups, each
with 500 potential donors, they solicit the donation of a laboratory for en-
vironmental studies to purchase a computer at a fixed cost of $3,000 with
different levels of seed money.9 To the first group, they announce that the
seed contribution is $300, to the second group, $1000, and to the third
group, $2,000. Table 1 provides the result. As shown, List and Lucking-
Reiley (2002) clearly demonstrate that the total amount of contributions,

7To represent the excludability of the public good in the Payoff Table (2), we need only
change the payoff of choosing Not Donate with project success to Neutral.

8Other empirical studies on seed money include List and Rondeau (2003) and Potters
et al. (2005).

9The other three groups of potential donors are assigned to an experiment concerning
refunds.
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the proportion of donors who actually contribute, and the per capita amount
of contributions strictly and continuously increase according to the amount
of seed money.

[Table 1 about here.]

By drawing on a global coordination game, our model demonstrates that
the proportion of actual donors and the total amount of donations strictly
and continuously increase with the amount of seed money. The result is
compatible with List and Lucking-Reiley’s (2002) field experimental work,
and it supports the view that charitable giving actually involves a coordi-
nation game. The key to deriving this result is the threshold shift effect
of seed money. This is the effect of seed money shifting the minimal re-
quirement of donations for project success from the cost of the project itself
to the amount of the cost minus the seed money. Under the global game
setting, each potential donor forecasts the distribution of other potential
donors’ valuations for the project based on her own valuation. Once the
threshold for project success is given, she predicts the proportion of actual
contributors and calculates her expected payoffs in both cases of donating
and not donating. When seed money shifts the threshold downwards, for
some proportion of potential donors, the expected payoff by donating be-
comes greater than when not donating. This makes both the proportion of
actual donors and the total amount of donations increase. This behavior
can be observed only under global game setting of incomplete information.
In an alternative Bayesian game where the distribution of potential donors’
valuations is common knowledge, they often together decide to donate or not
to donate in an equilibrium. This is inconsistent with the above empirical
data by List and Lucking-Reiley (2002).

While this paper is the first to model charitable giving as a coordination
game and to capture the threshold shift by seed money, there is a consid-
erable theoretical literature on the effect of seed money. Andreoni (1998)
considers the seed money as a contribution from leaders, and he shows that
the voluntary contribution from leaders cancels the zero-contribution equi-
librium and leaves only the equilibrium with a positive amount of contri-
butions. His discussion bases on a complete information game suitable to
charitable giving among a small number of potential donors, while we con-
struct a game with a large number of potential donors under incomplete
information. Vesterlund (2003) and Andreoni (2006a) direct their attention
to the quality signal effect of seed money. They explain that seed money
donated by leaders indicates the high quality of the charity and therefore
increases contributions from remaining donors. If there is a quality signal
effect from seed money, it is easy to derive the strict increase in donations
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corresponding to the amount of seed money.10 In contrast, our model shows
that even without the quality signal effect, we can derive the positive effect
of seed money. Indeed, the threshold shift effect and the quality signal ef-
fect are not contradictory but rather are complementary in increasing total
contributions. Our study is meaningful even if we take the quality signal
effect of seed money into account.11

1.3 The Structure of the Paper

The structure of the paper is as follows. Section 2 examines the basic model
of charitable giving without seed money. In Subsection 2.1, we construct a
model based on a simple global coordination game. We derive the equilib-
rium in Subsection 2.2, and examine the conditions for the efficiency and
success of a project in Subsection 2.3. In Section 3, we consider the ef-
fect of seed money. In Subsection 3.1, we introduce seed money with the
threshold shift effect, and we observe the impact on the behavior of potential
donors. In Subsection 3.2, we calculate the minimal seed money needed to
achieve success. Section 4 discusses remaining inconsistencies with List and
Lucking-Reiley (2002) and their conceivable solutions. Section 5 concludes.
All proofs of propositions and remarks are in the Appendix.

2 Basic Model and Results

In this section, we present a model of charitable giving that provides a
foundation for future comparative static analysis. The effect of seed money
is not yet considered. We present the detailed game structure in Subsection
2.1, derive a unique equilibrium in Subsection 2.2, and provide remarks on
the efficiency and success of the project in Subsection 2.3.

2.1 Preliminaries

There is a charity project and n ∈ N potential donors (agents). The project
has a threshold level of cost C ∈ R++, and if the total provision from
agents exceeds the threshold C, then the quality of the project is significantly
improved. Imagine, for example, a charitable campaign to promote child

10An interesting aspect of Vesterlund (2003) and Andreoni (2006a) is that the leaders
donating the seed money and the amount of seed money donated are determined endoge-
nously.

11There are several other studies on the effect of seed money. Romano and Yildirim
(2001) show that in a two stage game of public good provision, the announcement of the
contribution in the first stage sometimes brings about larger total contributions because
of the warm-glow property. Bac and Bag (2003) consider a similar question about when
it is beneficial for a charity fund-raiser to reveal the number of potential donors who are
actually willing to donate. Bag and Roy (2008) explain the effect of seed money by the
uncertainty regarding other donors’ valuations of the project.
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health care in a rural area of a developing country. If the charity collects
sufficient donations to build a hospital, the quality of the project increases
substantially. Refer to the project as a success (in the ex-post sense) if the
donations collected from agents are sufficient to cover C, and a failure (in
the ex-post sense) if the total donations are less than C.

We consider cases where the number of agents are sufficiently large.12

We adopt the assumption of a continuum of agents. To simplify the analysis,
we normalize the length of the continuum of agents to 1. Let c = C

n . Under
the normalized setting, c plays a role as the threshold cost instead of C.
Thus we also refer to c as the threshold cost.

The charity announces the threshold cost c and solicits agents for do-
nation. Through the announcement, each agent receives a signal of how
worthy the project is in the case of both project success and failure. Based
on this signal, each agent makes a decision about whether to donate. To
simplify the analysis, we assume that her decision is merely a choice from
her action set {Donate,Not Donate} and that the amount of donation on
the basis of her signal is given exogenously.13

Let vi ∈ R be the signal of an agent i’s degree of warm-glow for this
project. vi > 0 means that that if i decides to donate and the project
succeeds, she is delighted because of her warm-glow property. vi ≤ 0 means
that she thinks that the project is not worthwhile and even if it succeeds,
she does not gain anything from her own contribution.

Assume that an agent i with vi donates x(vi) when she makes a decision
Donate, where x : R → R++ is the same among all agents, weakly increasing,
continuous and there exists an upper bound x ∈ R++ such that for all vi ∈ R,
x(vi) ≤ x. This upper bound x can be interpreted as the constraint of their
incomes. Also assume simply that vi works as the coefficient of x(vi) in her
payoff when the project succeeds.

Any agent is assumed to take zero payoff if she does not donate, re-
gardless of whether the project is a success or a failure. Because of the
warm-glow property discussed in Introduction, when the project is a suc-
cess, the payoff not to donate is smaller than that of donating. Thus we
adopt the assumption of a zero payoff without donation for simplicity.

The table below summarize the payoffs.

12In each field experiment in List and Lucking-Reiley (2002), the number of potential
donors (people who received solicitation letters) was 500.

13It is widely adopted as a simplification technique to limit the elements of each agent’s
action set to binary in the literature of global games. See, for example, Morris and Shin
(2003). Moreover, even in classical models of discrete public good provision, such as
Palfrey and Rosenthal (1984) and Gradstein (1994), the elements of the action set are
binary limited to reduce complexity.
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Success Failure
Donate vi · x(vi) −x(vi)
Not Donate 0 0

(3)

Based on this ex-post payoff table, each agent is assumed to calculate
her own von Neumann-Morgenstern expected interim payoff, and to decide
whether to donate.14

Let us introduce the signal distribution structure and information setting
for agents. Assume that the signal for each agent vi follows a normal distri-
bution with mean θ and standard deviation σ independently and identically.
Given that the density function for a normal distribution approximates a
wide class of symmetric density functions with a peak, this assumption is
adequate.15 Let F (·; θ) denote the normal cumulative distribution function
with mean θ and standard deviation σ, and let f(·; θ) denote its probability
density function.

Following Morris and Shin (2003), we assume that it is common knowl-
edge among agents that each signal vi for an agent i is independently, iden-
tically, and normally distributed with standard deviation σ. However, each
agent i has no information about the mean θ. She has to predict the mean
θ based on her realized signal vi. We assume that her prior belief for θ is
uniformly distributed over the real line R. This prior belief is improper as
the total probability mass is infinite; however, the posterior belief through
Bayesian estimation is well defined.16 She believes, based on her signal vi,
that θ follows the normal distribution with mean vi and standard deviation
σ. This is to say, from her point of view, F (·; vi) is the cumulative distri-
bution function of the actual mean θ, and f(·; vi) is its probability density
function. It is an interesting aspect of this improper uniform prior belief
that the same function is available to represent both the distribution of real
signals and the distribution of the predictable mean based on the belief of
a single agent.

14We can extend the model to consider the case where an agent who decides to donate
takes a refund if the project is in failure. For example, let r ∈ (0, 1] and assume −r · x(vi)
as i’s payoff when she decides to donate and the project is in failure. r represents the rate
of her losses including those incurred by waist of time and negative emotional influence.
Even with this change in payoff, the structure of the following investigation and the
consequences are unchanged. A detailed explanation is given in the Supplementary Note
attached to the discussion paper version of this study (Hatsumi, 2011). However, note
that in the field experiments in List and Lucking-Reiley (2002), the refund policy did not
affect the proportion of actual contributors.

15In the field experiments in List and Lucking-Reiley (2002), all potential donors met
two criteria: (i) the household’s annual income was above $70,000, and (ii) the household
was known to have previously given to a charity. In this case, the standard deviation σ is
relatively small.

16See Morris and Shin (2003) for a detailed explanation. They discuss the improper
uniform prior belief with respect to the philosophy of Laplace.
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In comparison with a Bayesian game wherein the signal distribution is
common knowledge among agents, the assumption that the posterior belief
of signal distribution for each agent is slightly different from those of others
is quite natural. This is because of the following reasons. First, in a large
economy where a continuum can approximate the total agents, if the dis-
tribution of signals is common knowledge, it almost represents a complete
information game. This appears unrealistic. Second, especially when agents
are relatively homogeneous (i.e., σ is small) as in the field experiments in
List and Lucking-Reiley (2002), it is reasonable that each agent predicts the
signal distribution on the basis of her own signal.

A strategy for an agent i is a function mapping her receiving signal
vi to her action set {Donate,Not Donate}. If both actions occasion the
equivalent expected payoff for i, we assume that she selects Not Donate. This
assumption is just to simplify the description, and the opposite assumption
is, of course, available.

At this point, we define a Bayesian type of incomplete information game.
Let G denote this game. In the next subsection, we consider the equilibrium
in this game.

2.2 The Equilibrium

We are interested in Bayesian Nash equilibria of the game defined in the
previous subsection. In this subsection, we characterize a unique Bayesian
Nash equilibrium under the assumption that all strategies of agents have
symmetry and switching properties. A strategy is symmetric if all agents
follow the same strategy. A strategy is a switching strategy around some
cutoff point k ∈ R if there exists a unique cutoff point k such that if an
agent’s receiving signal vi is above k, she donates; otherwise, she does not
donate. A symmetric switching strategy s : R → {Donate, Not Donate} is
formally written as follows.

s(vi) =

{
Donate if vi > k

Not Donate if vi ≤ k

First, let us introduce two functions that play important roles in the
following investigation. ∫ ∞

k
f(v; θ)dv (4)∫ ∞

k
x(v)f(v; θ)dv (5)

(4) represents the proportion of agents whose signal is larger than k when
the mean signal is θ. This function is useful no matter what strategies are
adopted. (5) represents the total donation when the mean of the signals
is θ and any agent receiving a signal larger than the cutoff point k decides
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to donate. (5) is meaningful only when any agent adopts the switching
strategy.

At the beginning of the investigation, notice the remark below.

Remark 1. For any agent i with vi ≤ 0, Not Donate is the strictly dominant
action.

This remark is straightforward from the payoff tables of the previous
section. Hereafter, we focus on the actions of agents with signals larger
than 0. Note that the interim payoff of an agent i with a positive signal
vi > 0 is represented by

Pr(Success)(vi · x(vi)) + (1 − Pr(Success))(−x(vi)). (6)

Thus, agent i decides to donate if

(6) > 0

⇐⇒ Pr(Success) >
1

vi + 1
.

Let a function p : R++ → (0, 1) be such that p(vi) = 1
vi+1 . p(vi) represents

the threshold probability for i with vi > 0 in the sense that if the probability
of project success is larger than p(vi), Donate leads to a higher expected
payoff than Not Donate. On the other hand, if the probability of project
success is less than p(vi), Not Donate guarantees a higher expected payoff
than Donate. Then p(·) has the following properties obviously.

Remark 2. p(·) is strictly decreasing and continuous in vi > 0.

[Figure 1 about here.]

Let θ̂ : R++ → R be a function such that for vi > 0,∫ ∞

θ̂(vi)
f(v; vi)dv = p(vi).17

See Figure 1 for an illustration. Remember that an agent i with a signal
vi believes the mean of normally distributed signals to be vi itself. Thus
the equation represents that i considers that the probability of the mean of
signal distribution being larger than θ̂(vi) is p(vi) (i.e., i considers Pr(θ ≥
θ(vi)) = p(vi)). Since p(·) is strictly decreasing in vi > 0 by Remark 2, we
have the remark below.

17In the explicit form, θ̂(vi) = F−1(1−p(vi); vi), where F−1(·; vi) is the inverse function
of F (·; vi). This expression is rarely used in the following investigation.
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Remark 3. (i) θ̂(vi) is strictly increasing and continuous in vi > 0. (ii)
For v′i > vi > 0, θ̂(v′i) − θ̂(vi) > v′i − vi. (iii) limv→+∞ θ̂(v) = +∞. (iv)
limv→0 θ̂(v) = −∞.

We introduce two more functions and discuss their properties.∫ ∞

k
x(v)f(v; θ̂(vi))dv (7)

(7) is a special case of (5), and the mean of signals is θ̂(vi). Since θ̂(vi) is
strictly increasing in vi > 0, the following remark is straightforward.

Remark 4. (7) is strictly increasing and continuous in vi > 0 and strictly
decreasing and continuous in k > 0.∫ ∞

vi

x(v)f(v; θ̂(vi))dv (8)

(8) is a special case of (7). The mean of the signals is θ̂(vi) and the cutoff
point k = vi. Remark 3 induces the next remark.

Remark 5. (8) is strictly increasing and continuous in vi > 0, and as vi → 0,
(8) → 0.

Now, we characterize a cutoff point and the equilibrium in a game G.
Given a threshold cost c, let k∗ ∈ R++ be such that∫ ∞

k∗
x(v)f(v; θ̂(k∗))dv = c.

Note that by Remark 5, k∗ is uniquely determined.

Proposition 1. Let a symmetric switching strategy s∗(·) be such that

s∗(vi) =

{
Donate if vi > k∗

Not Donate if vi ≤ k∗.

Then, in a game G, s∗(·) is a unique symmetric switching strategy consti-
tuting a Bayesian Nash equilibrium.

Note that from the definition of k∗, the actual mean of the signal dis-
tribution θ has no effect in determining the equilibrium cutoff point k∗. In
contrast, θ̂(·) is quite important in determining k∗. The example below
illustrates this proposition.

Example 1. Let a threshold level of cost c = 6.18 Let the standard deviation
of the signal distribution σ = 3. Let for all vi ∈ R, x(vi) = 10. Then, we
calculate θ̂(k∗) = 2.26 and k∗ = 1.50, and have Table 2.

18In each field experiment in List and Lucking-Reiley (2002), the threshold level of
project cost for success is $3,000 and the number of potential donors is 500 (i.e., C = 3, 000
and n = 500). In this case, c = C/n = 6.
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[Table 2 about here.]

Note that the proportion of actual contributors is represented by∫ ∞

k∗
f(v; θ)dv (9)

and the total donation is represented by∫ ∞

k∗
x(v)f(v; θ)dv. (10)

The project is a success if (10) is larger than c.
As in Example 1, the equilibrium cutoff point k∗ is strictly larger than

0. This is because of a particular assumption of the global game that each
agent possesses a different belief about the signal distribution. Under a
Bayesian game model where the signal distribution and the strategies of
other agents constitute common knowledge, all agents with signals larger
than 0 decide together whether to donate or not depending on the actual
mean of the signals θ in an equilibrium. Under the same setting as Example
1, this alternative Bayesian game analysis provides this in an equilibrium;
if θ > 2.26, agents with signals larger than 0 together decide to donate, and
if θ ≤ 2.26, any agent does not donate and the total amount of donation is
equal to zero. This prediction is incompatible with the empirical research
such as List and Lucking-Reiley (2002). It suggests the effectiveness of global
game analysis in the study of charitable giving.19

2.3 Conditions for Efficiency and Success

In this subsection, we first consider the condition that achieves the ex-post
Pareto efficiency of the donation for agents. Next, we consider the condition
for the success of the project.

We refer to a project as efficient if in the equilibrium, the actions of
agents derive ex-post Pareto efficiency. Formally, this is represented when∫ ∞
0 x(v)f(v; θ)dv ≥ c, any agent i with signal vi > 0 chooses Donate, and

any agent j with signal vj ≤ 0 chooses Not Donate, otherwise, all agents
select Not Donate. This is achievable in an equilibrium of the alternative
Bayesian Game discussed in the last paragraph of the previous subsection.
However, it is never obtained under the more realistic global game setting.

19In the literature of global games, the strategy profile surviving the iterated elimination
of interim strictly dominated strategies is widely used as the equilibrium concept. See,
for example, Morris and Shin (2003). However, in the present model, to derive the same
equilibrium to Proposition 1 under this stronger equilibrium concept, we need an addi-
tional outlandish assumption that any agent with sufficiently large signal has the strictly
dominant action to donate. A detailed explanation is given in the Supplementary Note
attached to the discussion paper version of this study (Hatsumi, 2011).
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Proposition 2. Any project is inefficient.

The intuition for this proposition is quite simple. Even though the
project is a failure, some agents with signals larger than k∗ choose Donate.
This implies that the project is not efficient. If the project is a success, an
agent i with 0 < vi < k∗ chooses Not Donate, which brings about ineffi-
ciency. Therefore, there is no condition that occasions efficiency.

As already mentioned in the previous subsection, a project is a success
if ∫ ∞

k∗
x(v)f(v; θ)dv ≥ c. (11)

This may be the most important matter for a charity fund-raiser. The
proposition below states the condition for project success.

Proposition 3. A project is a success if and only if θ ≥ θ̂(k∗).

Since
∫ ∞
k∗ x(v)f(v; θ̂(k∗))dv = c, θ ≥ θ̂(k∗) induces

∫ ∞
k∗ x(v)f(v; θ)dv ≥ c

and the project succeeds. If θ < θ̂(k∗), then
∫ ∞
k∗ x(v)f(v; θ̂(k∗))dv = c >∫ ∞

k∗ x(v)f(v; θ)dv. This induces project failure.
In the next section, we introduce seed money. The main purpose for

introducing seed money is to obtain the success of a project. We show how
to calculate the minimal amount of seed money for success.

3 Seed Money

We exogenously introduce seed money. We see the threshold shift effect of
the seed money on the donation behavior of agents in Subsection 3.1. We
also see how to obtain the success of the project by announcing seed money
in Subsection 3.2.

3.1 The Threshold Shift Effect

Let L ∈ [0, C) denote the amount of seed money. L = 0 represents the state
where no seed money is granted. If seed money L is granted, the threshold
level for project success shifts from C to C − L. Assume that information
about the project never changes except concerning the existence and amount
of seed money. We consider that all other structures of the game except for
the shift of the threshold for project success remain as before.

Let ` denote the normalized version of seed money; i.e., ` = L
n . Conse-

quently, the normalized version of the shifted threshold is c − `.
Let G(`) denote a Bayesian game with the same structure as that in

Subsection 2.1 with the shift of threshold level from c to c − `. Then we
derive a unique equilibrium strategy s∗(·; `) in a game G(`) as a corollary of
Proposition 1.
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Corollary 1. In a game G(`), a unique symmetric switching strategy s∗(·; `)
constituting a Bayesian Nash equilibrium is such that

s∗(vi; `) =

{
Donate if vi > k∗(`)
Not Donate if vi ≤ k∗(`),

where k∗(`) ∈ R++ is such that∫ ∞

k∗(`)
x(v)f(v; θ̂(k∗(`)))dv = c − `.

According to Corollary 1, we have the remark below.

Remark 6. k∗(`) is strictly decreasing and continuous in `, and lim`→c k∗(`) =
0.

From Remark 6, we derive a proposition below that is quite compatible
with the field experiments in List and Lucking-Reiley (2002).

Proposition 4. If a granted amount of seed money ` strictly increases, then
both the proportion of agents who decide to donate and the total amount of
donations strictly increase.

The example below illustrates this proposition.

Example 2. Similarly to Example 1, let a threshold level of cost c = 6, a
standard deviation of signal distribution σ = 3, and for all vi ∈ R, x(vi) =
10. Let the actual mean of signal distribution θ = 0. Consequently, we have
the results in Table 3.

[Table 3 about here.]

The mechanism behind Proposition 4 is quite simple and only depends
on Remark 6. If k∗(`) decreases, it is obvious that the number of agents
with signals larger than the cutoff point k∗(`) strictly increases, and then
the proportion of agents who decide to donate and the total amount of
donations also strictly increase. As discussed in the last part of Subsection
2.2, the emergence of the cutoff point k∗(`) strictly larger than 0 is due to the
global game assumption that the actual signal distribution is not common
knowledge but is noisily observed and guessed by each agent i on the basis
of her own signal vi. This realistic setting of the global game is the key to
the derivation of Proposition 4.
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3.2 Minimal Seed Money for Success

The main purpose for introducing seed money is to obtain the efficiency or
success of a project that is not achieved in its absence. Unfortunately, by
Proposition 2, efficiency is never obtained by introducing any amount of seed
money. Hence, in this subsection, we only focus on the minimal amount of
seed money to success.

From the viewpoint of a charity fund-raiser, the attainment of project
success is crucial. Even though we do not explicitly consider the cost of
introducing seed money, charity fund-raisers actually require a considerable
effort to collect seed money and are better off if the amount of seed money
needed for success is as small as possible.

The project is not a success without seed money if θ < θ̂(k∗(0)). In this
case, in order to achieve success, we have the following proposition.

Proposition 5. When θ < θ̂(k∗(0)), the minimal amount of seed money for
success `∗ is such that θ̂(k∗(`∗)) = θ.

Note that from Remarks 3 and 6, θ̂(k∗(`)) is continuously and strictly
decreasing in ` ∈ [0, `] and θ̂(k∗(`)) → −∞ as ` → c. Thus `∗ is uniquely
determined. In the case of Example 2, `∗ = 1.91.

To calculate the minimal seed money for success, a charity fund-raiser
needs to know the actual mean of the distribution θ. Indeed, the collection
of the actual signal distribution is quite difficult for a charity fund-raiser. It
involves a considerable cost for preliminary surveys on the potential donors
to approach the actual mean θ, and it is very beneficial.

4 Discussion

In the previous section, we establish Proposition 4, which is quite compatible
with the empirical result in List and Lucking-Reiley (2002). In this section,
we discuss the still remaining inconsistency of our model with List and
Lucking-Reiley (2002). In our model, the per-capita amount of donations
weakly decreases along with the increase of seed money, whereas the per-
capita amount of donations strictly increases corresponding to the increase
of seed money in List and Lucking-Reiley (2002). We discuss the source of
this inconsistency and propose some ideas for its resolution.

The mechanism behind this inconsistency is quite simple. We assume
that the amount of donation x(vi) of agent i with signal vi is exogenously
given and never changes to the amount of seed money. From Remark 6, if
the amount of seed money increases, the threshold signal k∗(`) decreases.
Therefore, an agent who changes her action from Not Donate to Donate
because of the increase in seed money has a smaller signal than agents who
continue to choose to Donate. Then, since the amount of donation x(vi)
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weakly increases in her signal vi, the per-capita amount of donation should
weakly decrease in the amount of seed money.20

To remove this inconsistency in the extended version of our model, we
need to increase x(vi) according to the increase of seed money. Two ap-
proaches are considerable for this purpose.

The first approach is to render x(vi) endogenously determined as an
optimal value corresponding to the probability of success. This maintains
the assumption that the effect of seed money is only the threshold shift effect.
As the probability of success depends on the amount of donation obtained
from other agents, this optimization problem is highly complicated. At
present, we are unsure about whether this approach makes sense.

The second approach entails the introduction of the quality signal effect
of seed money. The increase of x(vi) corresponding to the increase in seed
money can be considered as the consequence of the quality signal effect.
For example, consider the simple introduction of the quality signal effect
as follows. Let θ be the mean of each agent’s signal, similarly to Section
2. Let θ : [0, c) → R be a strictly increasing and continuous function such
that θ(0) = θ. Assume that when seed money ` is granted, the mean of
signal θ is shifted to θ(`). Moreover, assume that the standard deviation σ
remains the same. We interpret this shift of θ to θ(`) as indicating that an
agent i receiving a signal vi when no seed money is granted receives a signal
vi(`) = vi + (θ(`) − θ) when seed money ` is granted. It is obvious that in
this model, the inconsistency regarding the per-capita amount of donation
is resolved.21

The second explanation also suggests the possibility of constructing a
model in which the threshold shift effect and the quality signal effect are
complementary. Which effect actually works remains an interesting question
in both the theoretical and empirical work.

5 Concluding Remarks

In this paper, we construct a global coordination game model of charitable
giving. We show that by merely considering the threshold effect of seed
money, the proportion of agents who decide to donate and the total amount
of donations strictly and continuously increase according to the increase in
seed money.

We construct a simultaneous model for comparison with the empirical
work in List and Lucking-Reiley (2002). However, the actual capital cam-
paigns of charities usually allow agents to donate in a certain period, and

20The assumption that the function x(·) is weakly increasing is crucial for the uniqueness
of the equilibrium. See the proof of Remark 5.

21It may be more sophisticated in the global game framework to represent the quality
signal of seed money by the public signal, which is a signal that all agents can observe in
the same way. See Morris and Shin (2003) for the details.
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possibly represented by dynamic games. Even in dynamic models, our view
that charitable donation is indeed a coordination game plays an important
role.22 We hope that this paper encourages further study of donation be-
havior and thereby assists future charity projects.

Appendix

In the Appendix, we provide the proofs of the Propositions and Remarks.
We omit the proofs of Remarks 1, 2 and 4 since they are straightforward.

Proof of Remark 3. Remember that
∫ ∞
θ̂(vi)

f(v; vi)dv = p(vi) for vi > 0.
Since p(·) is strictly decreasing in vi > 0 by Remark 2, for v′i > vi > 0,∫ ∞

θ̂(vi)
f(v; vi)dv = p(vi) > p(v′i) =

∫ ∞

θ̂(v′
i)

f(v; v′i)dv.

The continuity of p(·) implies (i) θ̂(vi) is strictly increasing and continuous
in vi > 0.

Note that if p(vi) > p(v′i), θ̂(v′i) − θ̂(vi) > v′i − vi. (See Figure 2 for an
illustration.) This implies (ii) for v′i > vi > 0, θ̂(v′i) − θ̂(vi) > v′i − vi.

limv→+∞ p(v) = 0, limv→0 p(v) = 1, and
∫ ∞
θ̂(vi)

f(v; vi)dv = p(vi) implies

(iii) limv→+∞ θ̂(v) = +∞ and (iv) limv→0 θ̂(v) = −∞.

[Figure 2 about here.]

Proof of Remark 5. Continuity of (8) is obvious. Let v′ > v > 0. Since
θ̂(v′i) − θ̂(vi) > v′i − vi by Remark 3,

∫ ∞
vi

f(v; θ̂(vi))dv <
∫ ∞
v′

i
f(v; θ̂(v′i))dv.

Since x(·) is a weakly increasing function, it implies that∫ ∞

vi

x(v)f(v; θ̂(vi))dv <

∫ ∞

v′
i

x(v)f(v; θ̂(v′i))dv.

Thus (8) is strictly increasing in v > 0. When vi → 0, by Remark 3,
θ̂(vi) → −∞. Since x(v) has an upper bound x, (8) → 0 as vi → 0.

22Famous dynamic models of investments in projects include Admati and Perry (1991)
and Marx and Matthews (2000). Dynamic models of investment in projects in the global
game framework include, for example, Heidhues and Melissas (2006), Dasgupta (2007),
and Barbieri and Mattozzi (2009).
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Proof of Proposition 1. First, we show that s∗(·) is a symmetric switching
strategy constituting a Bayesian Nash equilibrium. Suppose that all agents
except i follow the strategy s∗(·). By the payoff matrix of this model, if
vi ≤ 0, it is obvious that she has no incentive to donate. We focus on the
case of vi > 0.

Note that for any θ > θ̂(k∗),∫ ∞

k∗
x(v)f(v; θ)dv >

∫ ∞

k∗
x(v)f(v; θ̂(k∗))dv = c, (12)

and for any θ′ ≤ θ̂(k∗),∫ ∞

k∗
x(v)f(v; θ′)dv ≤

∫ ∞

k∗
x(v)f(v; θ̂(k∗))dv = c. (13)

This means that under the assumption of that all agents except i follow
the strategy s∗(·), if the actual mean of the signals is larger than θ̂(k∗), the
project is a success, and if it is smaller than θ̂(k∗), the project is a failure.
Also note that for any vi > k∗,∫ ∞

θ̂(k∗)
f(v; vi)dv >

∫ ∞

θ̂(k∗)
f(v; k∗)dv = p(k∗), (14)

and for any v′i ≤ k∗,∫ ∞

θ̂(k∗)
f(v; v′i)dx ≤

∫ ∞

θ̂(k∗)
f(v; k∗)dv = p(k∗). (15)

This means that i with a signal vi > k∗ forecasts Pr(θ > θ̂(k∗)) > p(k∗),
and that with a signal v′i ≤ k∗ forecasts Pr(θ ≤ θ̂(k∗)) ≤ p(k∗).

Thus, (12) and (14) together imply that an agent i with signal vi > k∗

has an incentive to donate, and (13) and (15) together imply that an agent
i with signal v′i ≤ k∗ has no incentive to donate.

Therefore, s∗(·) surely constitutes an Bayesian Nash equilibrium.

Next, we show the uniqueness of s∗(·) under the assumption that strate-
gies have symmetric and switching properties.

First, suppose, on the contrary, that a symmetric switching strategy
s(·) with cutoff point k > k∗ constitutes a Bayesian Nash equilibrium. In
this case, by Remark 5,

∫ ∞
k x(v)f(v; θ̂(k))dv > c. Thus, by that θ̂(·) is

continuous and Remark 4, for a small ε > 0,∫ ∞

k
x(v)f(v; θ̂(k − ε))dv > c. (16)

This means that if the realized mean of signals θ ≥ θ̂(k − ε) and any agent
with a signal larger than k donates, the project is a success. Note that∫ ∞

θ̂(k−ε)
f(v; k − ε

2
)dv >

∫ ∞

θ̂(k−ε)
f(v; k − ε)dv (17)
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= p(k − ε) (by the definition of θ̂(·))

> p(k − ε

2
). (by Remark 2)

This means that an agent with signal k− ε
2 predicts Pr(θ ≥ k−ε) > p(k− ε

2).
Therefore, (16) and (17) together imply that an agent with signal vi = k− ε

2
has an incentive to donate. This is a contradiction.

Second, suppose, on the contrary, that a symmetric switching strategy
s(·) with a cutoff point k < k∗ constitutes a Bayesian Nash equilibrium.

In this case, by Remark 5,
∫ ∞
k x(v)f(v; θ̂(k))dv < c. Thus, by Remark

4, for a small ε > 0, ∫ ∞

k
x(v)f(v; θ̂(k + ε))dv < c. (18)

This means that if the realized mean of the signals θ ≤ θ̂(k + ε) and any
agent with a signal smaller than k does not donate, the project is a failure.
Note that∫ ∞

θ̂(k+ε)
f(v; k +

ε

2
)dv <

∫ ∞

θ̂(k+ε)
f(v; k + ε)dv (19)

= p(k + ε) (by the definition of θ̂(·))

< p(k +
ε

2
). (by Remark 2)

This means that an agent with signal k+ ε
2 predicts Pr(θ ≥ k+ε) < p(k+ ε

2).
Therefore, (18) and (19) together imply that an agent with signal k + ε

2 has
no incentive to donate. This is a contradiction.

By the above two cases, we have that s∗(·) with cutoff point k∗ is a
unique symmetric switching strategy for a Bayesian Nash equilibrium.

Proof of Proposition 2. The proof is given in the paragraph after this propo-
sition.

Proof of Proposition 3. The proof is given in the paragraph after this propo-
sition.

Proof of Remark 6. Let a small ε > 0. Then, from Corollary 1, we have∫ ∞

k∗(`)
x(v)f(v; θ̂(k∗(`)))dv = c − ` (20)

and ∫ ∞

k∗(`+ε)
x(v)f(v; θ̂(k∗(` + ε)))dv = c − (` + ε). (21)

By subtracting both sides of (21) from those of (20), we have∫ ∞

k∗(`)
x(v)f(v; θ̂(k∗(`)))dv −

∫ ∞

k∗(`+ε)
x(v)f(v; θ̂(k∗(` + ε)))dv = ε > 0. (22)
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Remark 5 and (22) imply k∗(`) > k∗(` + ε). Hence, k∗(`) is strictly
decreasing and continuous in `.

Proof of Proposition 4. Note that the proportion of agents who decide to
donate is represented by

∫ ∞
k∗(`) f(v; θ)dv and the total amount of donations

is given by
∫ ∞
k∗(`) x(v)f(v; θ)dv. Since both are strictly decreasing in k∗(`),

Remark 6 induces this proposition.

Proof of Proposition 5. Let ` ≥ `∗. Remark 6 implies that k∗(`) ≤ k∗(`∗).
Thus we have θ̂(k∗(`)) ≤ θ̂(k∗(`∗)) = θ. Since Corollary 1 states that∫ ∞

k∗(`)
x(v)f(v; θ̂(k∗(`)))dv = c − `,

θ̂(k∗(`)) ≤ θ implies that∫ ∞

k∗(`)
x(v)f(v; θ)dv ≥ c − `.

This occasions project success. Let `′ < `∗. Then the symmetric reasoning
brings

∫ ∞
k∗(`′) x(v)f(v; θ)dv < c − `′. This induces project failure.
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Table 1: a Result of the Field Experiment by List and Lucking-Reiley (2002)

A. Experimental Design
Number of solicitations mailed 500 500 500
Seed money (%) 10% 33% 67%
Seed money ($) $300 $1,000 $2,000
B. Result
Number of contributions 17 33 42
Participation rate 3.40% 6.60% 8.40%
Total contributions $202 $805 $1,485
Mean amount given $11.88 $24.39 $35.36
Standard error of mean amount $2.27 $2.50 $2.26

Source: Table 1 of List and Lucking-Reiley (2002)
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Table 2: the Results of Example 1

θ proportion of donors total donation success/failure
5 0.88 8.78 s

2.5 0.63 6.31 s
0 0.31 3.09 f

–2.5 0.09 0.91 f

Table 3: the Results of Example 2

` k∗ θ̂(k∗) proportion of donors total donation success/failure
0 1.50 2.26 0.31 3.09 f

0.5 1.22 1.60 0.34 3.42 f
1 1.00 1.00 0.37 3.69 f

1.5 0.82 0.44 0.39 3.99 f
2 0.67 –0.09 0.41 4.12 s
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Figure 1: The relationship between vi, p(vi), and θ̂(vi)



Figure 2: Illustration for the proof of Remark 3



Supplementary Note for “A Coordination Game

Model of Charitable Giving and Seed Money Effect”

Kentaro Hatsumi∗

This Version: May 26, 2011

In this supplementary note, (I) we first show that an alternative payoff
structure that captures a refund policy instead of that in Payoff Table (3)
is available with the same consequences. (II) Next, we show that with
additional two assumptions, the equilibrium in Proposition 1 can be derived
as a unique strategy profile surviving the iterated elimination of interim
strictly dominated strategies.

(I) Assume that the payoff table is

Success Failure
Donate vi · x(vi) −r · x(vi)
Not Donate 0 0

(23)

where r ∈ (0, 1]. r represents loss ratio when a refund is allowed. r > 0
means that even if 100% refund is possible, disutility occurs bacause of waist
of time or negative emotional influence.

To derive the equivalent result to Proposition 1, it is sufficient to show
the equivalent result to Remark 2 because this is the key to the uniqueness
of the equilibrium.

Given Payoff Table (23), an agent i with a positive signal vi > 0 chooses
to donate if

Pr(Success)(vi · x(vi)) + (1− Pr(Success)(−r · x(vi)) > 0

⇐⇒ Pr(Success) >
r

vi + r
.

Let a function p : R+ → R++ be such that p(vi) = r
vi+r . Then obviously

the following remark holds.

Remark 2’. p(·) is strictly decreasing and continuous in vi ≥ 0.
∗Corresponding to: Institute of Economic Research, Kyoto University. Yoshida,

Sakyoku, Kyoto 606-8501, Japan. Email: kentaro.hatsumi at fx5.ecs.kyoto-u.ac.jp
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Because of Remark 2’, for this alternative payoff table, we can derive the
equivalent results to Remarks 3 to 5 and Proposition 1 by using the same
proofs.

(II) Next, we show that the strategy s∗(·) defined in Proposition 1 consti-
tutes a unique strategy profile surviving the iterated elimination of interim
strictly dominated strategies. Instead of the assumption that symmetry and
switching properties of agents’ strategies are common knowledge, we need
two additional assumptions.

We require a similar property to Remark 1 that for any agent i with a
sufficiently large signal vi, Donate is the strictly dominant action.

Remember that we assume the number of agents to be large and ap-
proximated by a continuum of agents with length 1. Therefore, an agent
regards her contribution itself as zero even if she donates a positive amount
of money. However, an agent with so large a signal that her own contribution
covers the whole project cost C (i.e., an agent i with signal vi > 0 such that
x(vi) > C) may not consider her contribution to be zero. Note that it is not
the normalized cost c but rather the original C. As her actual contribution
covers the whole cost C, she has no reason to fear project failure.

Assumption 1 below represents the above discussion. Let V ∈ R++ be
such that x(V ) = C.

Assumption 1. For any agent i with vi > V , Donate is the strictly domi-
nant action.23

We add one more assumption related to Assumption 1.

Assumption 2.
∫∞
V x(v)f(v; θ̂(V ))dv > c

Assumption 2 states that if the mean of signals is θ̂(V ) and agents with
signals more than V donate, the total donation from agents with signals
larger than V exceeds c and the project is a success. As already discussed
when we introduced Assumption 1, the signal V is so large that x(V ) =
C. Given that θ̂(V ) is also large in accordance with V , Assumption 2 is
supported.

Then we have the following proposition.

Proposition 6. In a game G with Assumptions 1 and 2, s∗(·) defined in
Proposition 1 is a unique strategy constituting the strategy profile surviving
the iterated elimination of interim strictly dominated strategies.

Proof of Proposition 6. Proposition 2.1 of Morris and Shin (2003) provides
the equilibrium of a general global game where the (ex-post) payoff of an
agent depends on her action, the proportion of other agents’ strategies,

23It is important that an agent with a large enough signal has the strictly dominant
action to donate. The value V itself is not essential.
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and her own signal. Even though in our game G, the payoff of an agent
depends on her action, the total amount of donation, and her own signal,
our Proposition 6 is essentially the same as their Proposition 2.1. We owe
Morris and Shin (2003) and originally Carlsson and van Damme (1993) their
proof techniques.

First, we construct a sequence of recursive values v0, v1, v2, · · · such that
for agents with signals larger than each value, Not Donate is the interim
strictly dominated action.

By Assumption 1, for any agent i with vi > V , Donate is the strictly
dominant action, and Not Donate is strictly dominated. Let v0 = V .

Let t ∈ N∪{0}. Assume as an induction hypothesis that for any agent i
with vi > vt, Not Donate is the interim strictly dominated action, and they
choose to Donate. Let vt+1 be such that∫ ∞

vt
x(v)f(v; θ̂(vt+1))dv = c. (24)

Suppose, at first, that all the other agents with signals smaller than vt

choose Not Donate. Then, (24) represents that if the mean signal is θ̂(vt+1),
the total amount of donation equals c. Thus if the mean signal is larger
than θ̂(vt+1), the project is a success.

Note that for an agent i with vi > vt+1, Pr(θ ≥ θ̂(vt+1)) > Pr(θ ≥
θ̂(vi)) = p(vi) since θ̂(vi) > θ̂(vt+1). This means that from i’s point of view,
the probability of success is larger than p(vi), and Donate is more profitable
than Not Donate.

Notice that if we drop the supposition that all other agents with signals
smaller than vt choose Not Donate, the probability of success for i with
vi > vt+1 is higher than that with the supposition. Thus, for i with vi > vt+1,
Not Donate is the interim strictly dominated action.

Next, we show that k∗ < vt+1 < vt ≤ V .
First, notice k∗ < V = v0 by Assumption 2 and Remark 5.
Assume as an induction hypothesis that k∗ < vt. Then

∫∞
k∗ x(v)f(v; θ̂(k∗))dv =

c by the definition of k∗ and Remark 5 imply that∫ ∞

vt
x(v)f(v; θ̂(vt))dv > c. (25)

(24), (25) and Remark 4 imply that vt > vt+1. Similarly, since k∗ < vt,∫∞
k∗ x(v)f(v; θ̂(k∗))dv = c, (24) and Remark 4 imply vt+1 > k∗. Hence

k∗ < vt+1 < vt ≤ V .
By recursive means, we have that the sequence v0, v1, v2, · · · is weakly

decreasing and has an lower bound k∗. Thus it has the limit value. Let v
be the limit value. (i.e., limt→+∞ vt = v.) Since (7) is continuous in both
k and vi by Remark 4, we have that

∫∞
v x(v)f(v; θ̂(v))dv = c. This implies

v = k∗.
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(B) Similarly, we can construct a sequence of recursive values v0, v1, v2, · · ·
such that for agents with signals smaller than each value, Donate is the in-
terim strictly dominated action.

Let v0 = 0. Given t ∈ N ∪ {0}, let vt+1 be such that∫ ∞

vt

x(v)f(v; θ̂(vt+1))dv = c.

Then, Remark 1 and the symmetric reasoning of (A) guarantee that for
agents with signals smaller than each value, Donate is the interim strictly
dominated action.

Similarly to (A), we have that 0 ≤ vt < vt+1 < k∗ for any t ∈ N ∪ {0},
and limt→+∞ vt = k∗.

By discussions (A) and (B), we have the statement of Proposition 6.
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