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Abstract 

Laboratory experiments reporting on shortfalls from allocative efficiency of allocation 
mechanisms depend on the induced-values methodology, which cannot be extended to the 
field.  Harstad [2011] proposes to observe efficiency of allocation mechanisms without 
knowing motivations via behavior in appropriately designed aftermarkets.  This paper 
demonstrates the approach in a highly simplified economy:  allocation of a single unit of an 
abstract commodity.  In the context studied, second-price auctions are observed to yield 
significantly greater behavioral inefficiencies than first-price auctions, both in terms of 
frequency of behaviorally inefficient outcomes, and in terms of the expected size of gains 
from aftermarket trade missed by the auction itself.  The design is shown to be field-ready. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The Economic Science Laboratory at the University of Arizona provided facilities, recruiting and assistance 
for the conduct of the experiments; thanks to Cathleen Johnson and Lana Sooter for managing this. The J 
Rhoads Foster Professorship Endowment of the University of Missouri and the Freshwater Group Research 
Fund of the University of Arizona provided appreciated financial support, and the Institute for Social and 
Economic Research at Osaka University provided hospitality during the writing.  I thank Eric Cardella, 
Raymond Chiu, Anthony Dubis and Richard Kiser for assistance in programming and conducting the 
experiments, and Katsunori Yamada for suggestions and assistance in data analysis. 
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  1. Introductory Notes 

Recommendations for policy adoption or alteration are more valuable if evidence of the 
size of shortfalls from allocative efficiency can be provided for the allocation mechanisms or 
policy instruments under consideration.  Such evidence has so far come from laboratory 
experiments using an induced-values methodology for, e.g., an abstract commodity.2  That 
methodology requires that experimental subjects’ motivations are known to the 
experimenter, and as such is unavailable for field experiments. 

In the preceding methodology paper, Harstad [2011], I define behavioral efficiency:  an 
outcome of an allocation mechanism is said to be behaviorally efficient if an appropriate 
aftermarket is actually appended to the allocation mechanism and at most a negligible 
aggregate size of mutually beneficial gains is observed on the aftermarket.  That is, a field 
experiment can first observe behavior under an allocation mechanism (even an informal or 
culturally-based method of reaching an allocation), and then append a properly constructed 
aftermarket, and draw inferences from aftermarket behavior as to whether the field 
experiment’s subjects perceived any remaining mutually beneficial transactions.  That paper 
also characterizes construction of an incentive compatible, transparent aftermarket. 

This paper is a first demonstration of the concept, providing a concrete example of the 
appropriate usage of a properly constructed aftermarket to observe allocative efficiencies (or 
shortfalls therefrom) without relying on knowing subjects’ motivations. It finds first-price 
auctions less behaviorally inefficient than second-price auctions, measures efficiency 
shortfalls; in this context, subjects’ bidding was unaffected by knowing there would be an 
aftermarket.  

2. Laboratory Setting 

Five-bidder sealed-bid auctions of a single abstract asset were conducted, in seven 
sessions (110 subjects) via first-price rules, and in six sessions (85 subjects) via second-price 
rules.3  There were generally 10, 15, 20, 25 or 30 subjects in the laboratory during a session, 
with random reassignments into groups of five each period.4 

Affiliated asset valuations (Milgrom and Weber [1982]) for subjects were determined as 
follows.  In each period, first a random number C, called a central tendency, was drawn 
uniformly from [$50, $1000] (all random variables are multiples of $0.01).  Then, given a 
realization c of C, for each subject j an estimate Xj was drawn uniformly from [$(c – 10), 
$(c + 10)], conditionally independent.  Finally, asset value to subject j was Vj = (3/4)Xj + 
(1/4)C; this system incorporates private values (the first term, Xj) to introduce efficiency 
issues, as well as a natural, small common-value component (C).5  These rules were carefully 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 A subject j might, for example, be told that she is one of N buyers or M sellers of an abstract good called X 
that will be traded, with her payoff being the difference between trading prices and induced values, as in “the 
first unit of X you buy can be resold to the experimenter for $8.75, the second for $6.80, the third for $5.10” to 
a potential buyer, or “the first unit of X you sell can be obtained from the experimenter for $3.10, etc.” 
3 Thus, comparisons across pricing rules are between-subject comparisons. 
4 Subjects were University of Arizona undergraduates, recruited campuswide via website, and sat at visually 
isolated computers.  A second-price auction session for which less than ten subjects showed was eliminated 
from data analysis. The experiments were conducted in October and November 2009, using the Z-Tree 
programming environment (Fischbacher [2007]). 
5 A principal reason for including a common-value component was to avoid a throw-away bid problem:  with 
independent private values, most values will yield so low a chance of winning as to make serious consideration 
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explained and examples given.  C was not revealed to subjects until end-of-period feedback, 
which gave a complete, anonymous report of C, Xj’s, Vj’s, all behavior, and profit 
calculations.  The instructions stated that a reserve price, below which the asset would not be 
sold, was drawn anew before each auction, uniformly from [$(c – 10), $(c – 6)], and would 
not be revealed until end-of-period feedback.6 

Subjects began the experiment with a bank balance of $12, with profits added and losses 
subtracted during the session, and the final balance paid in cash.  These valuation procedures 
call for a small winner’s curse correction; the 90% confidence interval for the loss in the 
event a winning bid exceeded the symmetric, risk-neutral equilibrium bid by exactly the 
winner’s curse correction (were all rival bids in equilibrium) is about [$1.50, $4.25].  Thus, 
three to four such losses could likely be handled without the balance going negative.7 

3. Methodology Implementation 

To discern from subjects’ behavior whether an auction attained an efficient outcome, the 
experiment appended an aftermarket designed as follows.  Once all subjects had typed and 
submitted their bids, the winning bidder was determined (throughout by fair random tie 
breaking if necessary).  Then each bidder was informed of the price determined in the 
auction and whether his bid acquired or did not acquire the asset.  Some seconds later, the 
aftermarket that, before bidding, the subjects had been told would follow the auction was 
begun. 

A price clock ticked up on all subjects’ screens, rising by $0.25 every two seconds (though 
more slowly in the first period with an aftermarket), beginning at a random price calculated 
to be acceptable to all subjects but noisy enough to avoid revealing information about the 
still-unknown C.  The bidder who acquired the asset was labeled the offerer, and asked to click 
the “Accept” button on the screen when the price reached the lowest price at which he was 
willing to sell the asset just acquired in the auction to one of the losing bidders. Each of the 
four bidders that did not submit the highest bid was asked to do nothing so long as the 
prices being shown were prices at which he would be willing to buy the asset from the 
winning bidder, and then to click “Accept” at the highest such price. No subject observed 
any information about other subjects’ behavior in the aftermarket until all five had clicked on 
a price. 

Instructions had carefully described the rules relating these Accept Bids (of the four 
bidders who did not acquire the asset) and Accept Ask (of the acquirer) to possible 
aftermarket transactions.  [1] If the offerer’s Accept Ask exceeds all four Accept Bids, there 
is no aftermarket transaction.  [2] If at least two Accept Bids are no lower than the Accept 
Ask, the asset is transferred from the offerer to the bidder selecting the highest Accept Bid, 
at a price set by the second-highest Accept Bid.  [3] If the highest Accept Bid exceeds the 
Accept Ask and it exceeds all other Accept Bids, a random number R, drawn before the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
of what to bid not worthwhile.  Unfortunately, how high a value a subject has to draw before he or she chooses 
to pay attention is unobservable.  In the current design, all estimates between $60 and $990 have the same 
expected profitability, removing throwaway bid concerns.  (Data analysis only includes the cases, almost 99%, 
where subjects’ estimates were in the [$60, $990] range.) 
6 As expected, the reserve price was never binding. 
7 If a subject’s balance became negative, he was given a $20 loan to be repaid out of his final bank balance. Two 
of 195 subjects could not quite repay the loan; it was of course forgiven and they were paid only the usual $5 
show-up fee.  
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auction from multiples of $0.01 in [$c, $(c + 15)] equiprobably, determines the aftermarket 
outcome.  If R falls between the highest Accept Bid and the Accept Ask, the asset is 
transferred from the offerer to the bidder selecting the highest Accept Bid, at a price set 
equal to R; otherwise, there is no aftermarket transaction. 

This aftermarket design justifies the inferences about behavioral efficiency to be drawn 
from observations of aftermarket behavior:  any mutually beneficial trade revealed is 
transacted with positive probability, and in no aftermarket transaction is the price 
determined by the behavior of either transacting party.  Among possible aftermarket designs, 
prior experimental evidence (Harstad [2000]) suggests the use of the price clock makes 
aftermarket incentives as transparent as possible.  Whenever at least one bidder who did not 
acquire the asset in the auction selects an Accept Bid above the offerer’s Accept Ask, a 
mutually beneficial trade that the auction did not achieve has been identified (whether or not 
the aftermarket actually transacts that trade). 

4. Session Protocol 

Each experimental session ran 150 minutes and followed a multi-phase protocol, to build 
the desired treatment step-by-step from simpler games.  After instructions regarding the 
whole session and the first phase, that first phase exposed subjects to the software of the 
aftermarket, without introducing the word “aftermarket.”  In phase 1 (4-5 periods), each 
subject was informed of a list of all five private values of the abstract asset (told which was 
his value), which were drawn i.i.d. uniform on [$5, $10].  Per instructions, one subject was 
chosen at random to be the offerer, the others bidders.8  As just described, the offerer was 
asked to click on an Accept Ask, the four bidders to click on Accept Bids.  Then the 
aftermarket rules above were used to determine payoffs for the period, which were simply 
asset value minus transaction price for the buyer, and transaction price minus asset value for 
the seller, if there was a transaction, and zero for all non-transacting subjects.  

Further instructions were distributed and read before each following phase.  Phase 2 (6-7 
periods) introduced private information, with subjects’ private values first revealed to all 
group members (anonymously) during end-of-period feedback.  Phase 3 (6-7 periods) 
introduced two changes:  [i] all five subjects were now bidders asked to select Accept Bids 
(that is, in a closed-clock variant of an English auction), and [ii] the private values were now 
affiliated (as in section 2, except that Vj = Xj).  Phase 4 (6-7 periods) set aside the price 
clock, introducing bidding in a sealed-bid auction (first- or second-price, depending on the 
session).  Phase 5 (8-11 periods) introduced affiliated values, the Vj = (3/4)Xj + (1/4)C 
valuations detailed in section 2. 

All this led to the phase of principal interest, phase 6, which re-introduced the software 
from the first two phases, but with the offerer being the bidder who acquired the asset in the 
sealed-bid auction, and the following price-clock activity called an aftermarket.  Phase 6 was 
generally limited by the time constraint, 6-11 periods.  The session ran faster when there 
were fewer groups (with the software always waiting for the last subject in the session to bid, 
to peruse feedback, etc.); in four of the first-price sessions, we were able to run a final phase 
7.  Phase 7 had aftermarkets only in even-numbered periods, with the sealed-bid auction the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 To generate possible gains from trade frequently, the program chose the subject with the highest, second-
highest, …, lowest private values with probabilities {1/8, 1/8, ¼, ¼, ¼}. 
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final determination of period profits in odd-numbered periods.  In the other nine sessions, 
phase 6 was the final phase. 

5. Contrasting Predictions 

Auction theory predicts aftermarket activity with positive probability following first-price 
auctions, but with zero probability following second-price auctions.  It is straightforward to 
show that the unique, risk-neutral, symmetric Bayesian equilibrium of auction-cum-
aftermarket (either first- or second-price) is to submit one’s equilibrium bid in the auction 
and to select an Accept Bid or Ask in the aftermarket most nearly equal to one’s rational 
Bayesian-updated willingness-to-pay or -accept.  In this equilibrium, publicly announcing the 
price attained in a first-price auction informs each losing bidder (but not the winner) of the 
amount by which his bid lost.  Whenever a bidder lost by a sufficiently small margin, rational 
updating leads to his willingness-to-pay exceeding the winning bidder’s willingness-to-accept 
(as he knows of a second estimate nearly as high as the winning bidder’s estimate, which can 
be inferred from the price set by the winner’s monotonic equilibrium bid function). 

No similar occurrence is possible following announcement of the price in second-price 
auctions.  Here the price reveals the private information of the second-highest bidder, who 
Bayesian updates on the basis of learning that one rival estimate was higher and three lower, 
and this leads to a willingness-to-pay that exceeds his equilibrium bid, while the winning 
bidder’s updating leads to a willingness-to-accept that is less than his equilibrium bid.  
However, the second-price auction equilibrium is envy-free: these two adjustments of 
willingness-to-pay and to accept sum to less than the difference between the two highest 
bids, and thus do not change their ordinal rank.9 

To my knowledge, prior  auction experiments have either induced private values 
(independent, as in phases 1 and 2, or affiliated, as in phases 3 and 4) or common values 
(modifying section 2 so that Vj = C, hence there is no inefficiency generated by the bidder 
with the highest estimate being outbid).  Nonetheless, in both settings, bidders have bid 
significantly above the risk-neutral symmetric Bayesian equilibrium (Kagel [1995]), and 
(more pertinent here) have exhibited more heterogeneity in this overbidding in second-price 
than in first-price auctions.10  Thus, prior laboratory experiment results predict more 
aftermarket activity following second-price auctions.  

6. Aftermarket Observations 

First-price [second-price] auctions were observed to be behaviorally efficient in 72% 
[57%] of the observations (cf. Table 1).  In 28% of 203 first-price auctions, and 43% of 142 
second-price auctions, at least one bidder who was outbid was observed to be willing to buy 
the asset from the high bidder for mutual gain.  (These percentages naturally sum 
occurrences where the aftermarket transacted with those where the random price fell below 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Though stated slightly differently, the results in this and the previous paragraph are not new, and can be 
pieced together from Milgrom [1981], Milgrom and Weber [1982], and Harstad and Bordley [1996]. 
10  Kagel and Levin [1986] report on 199 first-price, common-value auctions, and Kagel, Levin and Harstad 
[1995] on 154 second-price, common-value auctions.  To adjust for varying number of bidders, I calculated a 
statistic for each session that takes the frequency with which the high signal holder was the high bidder and 
subtracts 1/n.  The weighted (by number of auctions) average of these statistics was 50.93 for first-price 
auctions and 38.73 for second-price auctions. 
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the high bidder’s Accept Ask or above the one Accept Bid exceeding that Accept Ask.)  This 
difference is significant at the 1% level in a Pearson test. 

 

Table 1 

Observations 

 

First-Price Auctions Second-Price Auctions 

1 Aftermarkets Observed 203 142 

2 Behaviorally Efficient 72% 57% 

3 Mean of Shortfalls $4.45 $4.16 

4 Shortfall Capacity  $10.26 

5 Aftermarket Fraction  41% 

6 Expected Shortfall $1.24 $1.79 

 

Where aftermarket behavior exhibited such gains, the difference between the most an 
outbid bidder will pay and the least the high bidder will accept is a behavioral measure of the 
shortfall from efficiency, averaged in row 3.  While shortfalls when observed were larger in 
first-price auctions, when zero shortfalls are averaged in for the behaviorally efficient 
outcomes, the expected shortfall in row 6 is smaller for first-price auctions. 

It bears emphasis that, while these auctions sold induced-value assets, the behavioral 
efficiency and shortfall measures make no use of any information contained in the induced 
values.  These reports stem solely from subjects’ behaviors:  their sealed bids, Accept Bids 
and Accept Asks, and in no way depend on any information about subjects’ motivations. 

Reports of allocations reached in induced-values experiments can provide efficiency 
measures in percentages, because the dollar value of total gains from trade in Pareto-efficient 
allocations can be calculated from the induced values.  This methodology cannot be used in 
the field. 

In some situations, behavior in the original allocation mechanism can offer a benchmark 
for the economic significance of the size of shortfalls from efficiency.  This experiment 
demonstrates both the possibility and its limitations. 

Second-price auctions are incentive compatible, in that the bid selected determines only 
whether the bidder wins or not; the price is solely determined by the highest rival bid.  In 
particular, the risk-neutral symmetric equilibrium bid is the expected asset value conditioned 
on an assumption that the bid is pivotal.11  For the distributions of section 2, this implies that 
bids should differ from bidders’ expected values by a constant.12  Hence, differences 
between two bids submitted in second-price auctions should be equal to the differences 
between the two bidders’ willingnesses-to-pay and therefore measure the gain from trade if 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 For private values, this is the dominant strategy discovered by Vickrey [1961].  This feature of second-price, 
common-value auctions was first found by Matthews [1977]; the intuition is presented in Harstad and Bordley 
[1996]. 
12 This neglects estimates in the ranges [$50, $60] and [$990, $1000], for which the difference is not constant. 
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the asset were hypothetically to be transferred from the lower bidder to the higher bidder.  
These observations include 586 differences between a losing second-price bid and the high 
bid in the same auction.  The average of those 586 bid differences is the $10.26 reported in 
row 4 above.  This is the capacity for shortfalls from efficiency in the sense that, had the 
original auctions allocated the asset equiprobably among inefficient acquirers, aftermarkets 
that reallocated to the efficient acquirer could average $10.26 in gains from trade unattained 
by such a complete misallocation to a random inefficient acquirer. 

The best measure I can envision to attach an economic significance to the $4.16 mean of 
shortfalls revealed by aftermarkets following second-price auctions is that it is 41% of the 
shortfall capacity. 

The absence in Table 1 of a comparable benchmark for first-price auctions is not an 
oversight.  Differences between a losing first-price bid and the high bid in the same auction 
could be averaged.  However, without the incentive compatibility of second-price auctions, 
these first-price bid differences have no similarly strong argument to measure gains from 
hypothetical transfers between the bidders:  optimizing the {profitability given 
winning/probability of winning} tradeoff in the risk-neutral symmetric equilibrium of the 
first-price auction yields a nonlinear term in the bid function (corresponding to the term that 
is a constant in second-price auctions).  In that equilibrium, if bidder A outbids bidder B by 
$8, A’s willingness-to-pay exceeds B’s, but the $8 bid difference is not a measure of the 
willingness-to-pay difference.  

7. Submitted-Bid Impact 

The unique risk-neutral symmetric Bayesian equilibrium of the game consisting of the 
sealed-bid auction (either pricing rule) followed by the aftermarket is for each bidder to 
make the same equilibrium bid as if there were no aftermarket, and then truthfully reveal in 
the aftermarket.  Despite the theory, it is an empirical question whether subjects bid the 
same way when they know an aftermarket will follow; there might be reasons subjects would 
find for bidding less, or for bidding more, in an auction when knowing there will be an 
aftermarket.13  The protocol in section 4 is designed to shed light on this question. 

The following linear bid function was estimated separately from the first-price and 
second-price data: 

  Mst = const + βx Experst  + βa Aftert + errorst, 

where the markup Mst was the observed bid minus the asset value estimate Xst for subject s 
in period t; Experst was a control for possible learning effects, the number of periods of 
experience in the affiliated-values auctions; Aftert was a dummy variable taking the value 1 if 
the subject knew the auction in period t would be followed with an aftermarket, 0 if the 
subject knew the auction would not be followed with an aftermarket. 

Estimates obtained from OLS linear regressions with clustering by subject are presented 
in Table 2. For both types of auction rules, a null hypothesis that subjects bid no differently 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 Among the possibilities are that a subject might perceive an opportunity to win the auction profitably and 
then profit further by selling in the aftermarket, which could be perceived as suggesting more aggressive 
bidding than if there were to be no aftermarket; or that a subject might perceive the aftermarket as a second 
chance to obtain the asset, which could be perceived as suggesting less aggressive bidding than if there were to 
be no aftermarket. 



	   8 

when knowing there would be an aftermarket as when there would not cannot be rejected at 
anything vaguely approaching conventional levels of significance.14 

 

 Table 2 

 Estimates 

 First-Price Data Second-Price Data 

const -2.346 -1.435 

   Std. error (0.567) (1.629) 

   Significance 0.001 0.38 

βx 0.045 0.393 

   Std. error (0.075) (0.370) 

   Significance 0.55 0.29 

βa -1.242 -5.063 

   Std. error (1.431) (4.738) 

   Significance 0.39 0.29 

   

# Observations 2215 1075 

F test: 1.24 0.58 

   Significance 0.293 0.562 

 

8. Distinct Measure? 

What can be said about how well behavioral efficiency tracks Pareto efficiency?  As these 
experiments used induced values, they can yield insights into the differences between these 
measures.  That is, assume (critically) subjects are all risk-neutral (or identically risk averse), 
and assume completeness of the induced motivations (in particular, assume away 
interdependent preferences, nonpecuniary preferences, and satiation in cash).  Then in a 
Pareto-efficient allocation, the asset is acquired by the subject with the highest estimate.   

In most observations, when either a first-price or a second-price auction reached a 
Pareto-efficient allocation, behavioral efficiency was observed in the aftermarket, and the 
inverse:  Pareto-inefficient auctions led to behaviorally inefficient outcomes, mutual gains 
observed in the aftermarkets. 

The two distinctions from tracking were both observed in significant minorities of the 
observations.  [i] In 15% of first-price auctions and 24% of second-price auctions, the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
14 Failure to reject this null was found in alternatives that did not cluster or added subject fixed effects; 
alternative where the bid was the dependent variable and asset value estimate an independent variable were 
nearly identical.  
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efficient acquirer was the high bidder, so the outcome is assumed Pareto-efficient, yet the 
aftermarket found a mutual gain could arise from a transfer to an outbid rival with a lower 
estimate of asset value.  [ii] For both first-price and second-price auctions, 16% of 
observations found an inefficient acquirer submitting the high bid and then clicking on an 
Accept Ask that exceeded all Accept Asks, including that selected by the efficient acquirer 
whose estimate exceeded his. 

While some variant of an endowment effect could lead to the second way in which 
behavioral efficiency has been found distinct from Pareto efficiency, it bears notice that 
distinction [i] is completely inconsistent with an endowment effect.  More importantly, being 
able to observe which auction outcomes are Pareto efficient and thus observe these 
distinctions depends on having induced values and assumed motivational completeness and 
identical risk tolerances.  Using aftermarkets to observe the size and frequency of shortfalls 
from behavioral efficiency requires none of these.  

9. Readiness Remarks 

These experiments used carefully designed aftermarkets to observe behavior yielding the 
inference of shortfalls from efficiency in 203 first-price auctions with a 28% frequency and 
$1.24 expectation, and in 142 second-price auctions with a 43% frequency and $1.79 
expectation.  Adding the aftermarket did not in these experiments affect bidding in the 
original auction.  While the experiments employed induced values, no aspect of induced 
values was utilized in reaching these conclusions.  A field study of a single-asset auction 
could exactly mimic these procedures to obtain evidence on whether the efficient acquirer 
won the auction and if not, the size of the inefficiency that arose, even in cases where 
existence of equilibrium is in doubt (cf. Jackson [2009]) or equilibrium is incalculable. 

The random-price procedure used when exactly one outbid bidder selected an Accept Bid 
above the Accept Ask could directly be used to observe shortfalls from efficiency in bilateral 
bargaining over transfer of an indivisible asset or service.  As pointed out in Harstad [2011], 
the budget-balance feature of the aftermarkets reported here (that the amount the 
aftermarket purchaser paid is exactly the amount the aftermarket seller received) is not 
essential to appropriate aftermarket design.  When field experiment budgets allow, 
experimenters can provide incentives for field subjects to participate in aftermarkets by 
designing aftermarkets that run an experimenter-covered deficit.  For example, in bilateral 
bargaining, efficiency conclusions could be drawn from an aftermarket design that, whenever 
announcements indicated a mutual gain, [a] paid the aftermarket seller 5% more than the 
random price and charged the aftermarket buyer 5% less than the random price, or [b] paid 
the aftermarket seller the Accept Bid and charged the aftermarket buyer the Accept Ask. 

Fairly straightforward complications of the aftermarket design used here can 
accommodate observing efficiency shortfalls for mechanisms seeking to allocate multiple 
homogeneous assets.  For example, following a mechanism for allocating two homogeneous 
assets, potential buyers in an aftermarket could be asked for a pair of Accept Bids if seeking 
to buy, an Accept ask if one asset won, or a pair of Accept Asks if two, with the rules that 
whenever an Accept Bid by a rival fell between an Accept Bid and a lower Accept Ask, it set 
the price for that transaction, and a random price was consulted when necessary.  It would 
not matter whether bidders had single-unit or multi-unit demands.  In larger, semi-
competitive markets for homogeneous assets, a variant on a call market could serve as an 
aftermarket (so long as no trader were seeking both to buy more and to sell some of what he 
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had obtained), with the highest quantity where the demand price exceeded the supply price 
transacted, buyers paying the price of the last accepted supply unit, sellers receiving the 
(higher) price of the last accepted demand unit, and the experimenter covering the deficit. 

In principle, aftermarkets could yield behavioral observations of shortfalls from efficiency 
even in cases where public goods were being allocated, externalities arose, services had time-
dependent valuations, and/or packages of goods had synergistic values.  It would still be the 
case that a proper aftermarket design would require that the focal equilibrium of the 
allocation-mechanism-cum-aftermarket be focal equilibrium behavior in the allocation 
mechanism followed by truthful revelation in the aftermarket.  Exactly what constraints 
these issues pose on aftermarket design is beyond the scope of this first demonstration. 
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