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Abstract

We characterize the optimal bidding strategies of local and global bidders for two
heterogenous licenses in a multi-unit simultaneous ascending auction. The global bid-
der wants to win both licenses to enjoy synergies; therefore, she bids more than her
stand-alone valuation of a license. This exposes her to the risk of losing money even
when she wins all licenses. We determine the optimal bidding strategies in the presence
of an exposure problem. By using simulation methods, first, we show the frequency
of inefficient allocation in the simultaneous ascending auction. Then, we show that
the Vickrey-Clarke-Groves (VCG) mechanism may generate more revenue than the
simultaneous ascending auction.
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1 Introduction

In a typical American or Canadian spectrum license auction, hundreds of (heterogenous)

licenses are sold simultaneously. Each of these licences gives the spectrum usage right of

a geographical area to the winning firm. Some ‘local’ firms are interested in winning only

specific licenses in order to serve local markets while other ‘global’ firms are interested in

winning all the licenses in order to serve nationwide.1 The global firms enjoy synergies if they

win all the licenses which gives them an incentive to bid over their stand-alone valuations

for some licenses. As a result, there is a risk of incurring losses. Therefore, global bidders

lower their bids. This is known as the exposure problem.2

In a model simplifying the American and the recent Canadian spectrum license auctions,

we derive the optimal bidding strategies of local and global firms in a simultaneous ascending

auction (SAA) of two licenses. We mainly focus on the optimal bidding strategies when there

is the possibility of an exposure problem (i.e., ex-post loss) since managers of cell-phone

companies and policy makers would be interested in such numbers. Through simulations,

we determine how frequently the exposure problem occurs. In addition, we decompose the

frequency into two cases; the case in which the exposure problem occurs when the global

bidder wins only one license, and the case in which the exposure problem occurs when the

global bidder wins all licenses.

Exposure problem indicates that the allocation may not be efficient. In fact, we show

that allocation may be inefficient with 7.84 per cent of the time for some parameter space.

We compare the efficiency and revenue properties of the simultaneous ascending auction

with those of the Vickrey-Clarke-Groves (VCG) mechanism when bidders are allowed to bid

on packages. VCG is an efficient auction that gives the highest revenue among all incentive

compatible, individually rational, efficient auctions. In the literature, there are examples

1In the recent Canadian Advanced Wireless Spectrum auction, firms such as Globalive and Rogers were
interested in all licenses whereas firms such as Bragg Communication and Manitoba Telecom Services (MTS)
were interested in East Coast and Manitoba licenses, respectively.

2We will interchangeably use exposure problem as follows. We say that an exposure problem occurred
whenever the global bidder incurs a loss ex-post.
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which show that VCG mechanism may give extreme low revenue in complete information

settings, and low revenue is cited as one of the main reasons why VCG mechanism is not

used prevalently (e.g., Ausubel and Milgrom (2006)). We show that VCG mechanism may

give higher revenue to the seller for many parameter spaces and various distributions in

incomplete information setting. For example, when local bidders win the licenses in the

SAA auction and the allocation is inefficient, then VCG auction would give higher revenue

for the same private valuations. However, when the global bidder wins the license with an

ex-post loss (that is, when exposure problem occurs), then SAA auction’s revenue would be

higher than the VCG mechanism. In this paper, we also show the frequency of inefficient

allocation when simultaneous ascending auction is used.

The multi-unit auction literature generally assumes that global bidders have either equal

valuations (Englmaier et. al (2009), Kagel and Levin (2005), Katok and Roth (2004), Albano

et. al. (2001), Rosenthal and Wang (1996), and Krishna and Rosenthal (1996)) or very large

synergies (Albano et al. (2006)). The spectrum licenses for different geographic areas are

not homogenous objects; hence, the equal valuation assumption does not fit the Canadian or

the American spectrum license auction. Moreover, in a heterogeneous license environment,

bidders may not drop out of both auctions simultaneously. This enables us to analyze

bidding behavior in the remaining auction, and hence, the exposure problem/ex-post loss. In

addition, unlike the aforementioned multi-unit auction papers above, we allow for moderate

synergies, and our focus is on the exposure problem and the comparison of revenue and

efficiency properties of the simultaneous ascending auction with those of the VCG auction.

In our paper, the global bidder will lower his bid because of the exposure problem; however,

their optimal strategy still requires him to bid over his stand alone valuation for at least one

license. If he wins this license by receiving a potential loss, then he may need to stay in the

other license auction to minimize his loss. Therefore, there are cases in which the ex-post

loss may occur even when the bidder wins all the licenses.

Goerre and Lien (2010) assume that the marginal valuation of winning a given number

of licenses is the same regardless of the composition of the particular licenses. Hence, they
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find that the optimal drop out price is the same for both licenses. In our paper, marginal

valuations are different; hence, the global bidder has a preference over license A and license B.

Specifically, we model situations in which winning the spectrum license for, say, Iowa City is

different than winning the license for New York city. Hence, our paper shows that the optimal

drop out price is not the same. In addition, through simulations, we show the frequency of

inefficient allocation and ex-post loss for the simultaneous ascending auction. Like Goerre

and Lien (2010), we find VCG mechanism may give higher revenue than the simultaneous

ascending auction. However, we show that VCG mechanism gives higher revenue for cases

in which local bidders win licenses inefficiently (in the SAA auction), and SAA auction

gives higher revenue for cases in which global bidder wins licenses inefficiently.3 In other

words, because of the ex-post loss possibility, global bidder does not bid too much over

the stand alone valuation; hence, local bidders win inefficiently. This lowers the revenue.

However, global bidder still over-bids and wins licenses with ex-post loss when local bidders

are supposed to win in an efficient outcome. This increases the revenue of SAA auction

compared to VCG auction at the expense of global bidder.

2 The Model

There are 2 licenses, license A and B for sale.4 There are one global bidder who demands

both licenses and mj = m− 1 local bidders who demand only license j = A,B. We explain

in detail the cases with more than one global bidder later in the paepr. Specifically, mj will

denote the number of active local bidders on the auction.5 Both local bidders and the global

bidder have a private stand alone valuation for a single license, vij, where i and j represent

the bidder and the license, respectively. The valuations vij are drawn from the continuous

distribution function F (vij) with support on [0, 1] and probability density function f(vij)

which is positive everywhere with the only exception that f(0) ≥ 0 is allowed. The bidders’

3Zheng (2008) is mainly interested in showing that jump-bidding will alleviate the exposure problem. We
do not allow jump-bidding as the Canadian and the American spectrum auction has not allowed this.

4We use two licenses like Albano et. al. (2001 and 2006), Brusco and Lopomo (2002), Chow and Yavas
(2009), and Menucicci (2003).

5Allowing different number of local bidders per license will not change our qualitative results.
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type, global or local, is publicly known.

We consider a setting where the licenses are auctioned off simultaneously through an

ascending multi-unit auction. Each license is auctioned off at a different auction (like Krishna

and Rosenthal (1996) but unlike Kagel and Levin (2005)) but at the same time. Prices start

from zero for both licenses and increase simultaneously and continuously at the same rate.

Bidders choose when to drop out. When only one bidder is left on a given license, the clock

stops for that license, and the sole remaining bidder wins the license at the price at which the

last bidder dropped out. If there are more than one bidder remaining on the other license,

its price will continue to increase. If n bidders drop out at the same price and nobody is left

in the auction, then each one of them will win the license with probability 1
n
. This is a zero

measure event given the valuations are drawn from a continuous distribution function.

The drop-out decision is irreversible. Once a bidder drops out of bidding for a given

license, he cannot bid for this license later.6 The number of active bidders and the drop-

out prices are publicly known. We also assume that there is no budget constraints for the

bidders.

We assume that there is a homogeneous positive synergy for the global bidder. Specifi-

cally, letting bidder 1 be the global bidder, the global bidder’s total valuation, given that it

wins two licenses is, V1 = v1A + v1B + ®, where the synergy term ® is assumed to be strictly

positive and public knowledge.7 His stand-alone valuation of license A or B is given by v1A

or v1B. Bidder iA, i = 2, 3, ...m is only interested in license A, and her private valuation

is viA. Bidder iB is only interested in license B, and her private valuation is viB.
8 A local

bidder who is interested in license j participates only in license j auction.

We derive a symmetric perfect Bayesian equilibrium through a series of lemmas that

follow. First, we describe the equilibrium strategy of the local bidder.

6In the real-world auctions, there is activity rule. If the bidders do not have enough highest standing
bids, then the number of licenses they may bid on is decreased (in the next rounds). Hence, when there are
two licenses, this translates into an irreversible drop-out.

7Public knowledge assumption can be removed, and all results are still valid. We assume public knowledge
not to complicate the notation.

8We do not assume that viA > viB since local firms are different; hence, their efficiency may differ.
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Lemma 1 Each local bidder has a weakly dominant strategy to stay in the auction until the

price reaches his stand alone valuation.

This is a well-known result so we skip the proof.

Now, consider a subgame in which all the local bidder drops out of license B auction,

and hence, the global bidder wins license B at the price pB, which in equilibrium is equal

to pB = max{v2B, ..., v(m)B} by lemma 1. Then, as the price for license A increases, the

global bidder will compare the payoff from dropping out from license A auction at the clock

price p (which is v1B − pB) and the payoff from winning license A at price p (which is

v1A+ v1B +®− pB − p). The updated optimal drop out price, pA, is found by equating these

two equations: v1A + v1B + ®− pB − pA = v1B − pB ⇒ pA = v1A + ®. This is intuitive since

by winning license A, the global bidder will also earn the synergy value. If global bidder

wins license A first, the updated optimal drop out price can be found symmetrically, and it

is pB = v1B + ®. We state this as lemma 2.

Lemma 2 If the global bidder wins license B (or A) first, then it will stay in license A (or

B) auction until the price reaches v1A + ® (or v1B + ®)

The global bidder will not drop out before the price reaches his minimum of stand-alone

valuations. Otherwise, they will lose the chance of winning both licenses and enjoying the

synergy. In addition, if the global bidder’s average valuation, V1

2
= v1A+v1B+®

2
, exceeds 1,

bidding up to his average valuation will shut out the local bidders since local bidders’ stand

alone valuation can be at most 1. If ® is large enough, this condition will always be satisfied.

In such a case, the global bidder always wins both licenses in equilibrium. We summarize

these results as lemma 3.

Lemma 3 a) The global bidder stays in both license auctions at least until the price reaches

the minimum of his stand-alone valuations.

b) If his average valuation is greater than 1, the global bidder’s equilibrium strategy is to

stay in until the price reaches his average valuation.
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To calculate the optimal drop out price for the global bidder, consider first the case in

which v1A > v1B.
9 The global bidder must compare the payoffs for two cases at each price p

as the clock is running: Case 1 is the payoff from dropping out from license B auction at

price p and optimally continuing on license A auction. Case 2 is the payoff from winning

license B at price p and optimally continuing on license A auction.10 At the beginning of

the auction, that is p = 0, the second case payoff is higher so the global bidder will start by

staying in the auction. We show that the difference between these two cases are monotonic

in p ; therefore, there is a unique price that makes the global bidder indifferent between these

two cases (assuming that the local bidders are still active).11 This is the optimal drop out

price, p∗1. We show that this price can be calculated at the beginning of the auction. Note

that according to Lemma 3, p∗1 ≥ v1B, and the optimal updated drop out price for license A,

after winning license B at price p, is v1A + ®.

We denote the expected profit of the global bidder for Case 1 by EΠ1
1 and his expected

profit for Case 2 by EΠ2
1, respectively.

Let pA = max{v2A, ..., vmA} be the price the global bidder will pay for the license A, if

he wins license A. Payoffs are as follows:

EΠ1
1 = Max{0,

∫ v1A

p

(v1A − pA)g(pA∣p)dpA} (1)

EΠ2
1 =

∫ Min{v1A+®,1}

p

(V1 − p− pA)g(pA∣p)dpA +

∫ 1

Min{v1A+®,1}
(v1B − p)g(pA∣p)dpA (2)

The explanation of equation 1 is as follows. After the global bidder drops out of the

auction for license B at p, it becomes just like a local bidder, and hence, will continue to

9The other case can be calculated symmetrically.
10Assuming that it has not won license A yet, the global bidder will drop out of license B first -or at the

same time as A- since v1A > v1B . It would not make sense to drop out from license A first -since the prices
of both auctions increase at the same rate-, and then continuing on the less valued license B.

11Another way of calculating the optimal drop out price would be to maximize the expected payoff.
However, this way would be much more complex; especially proving the second order conditions. Hence, we
exploit the fact that payoff difference above is monotonic in p. Our results coincide with the literature when
the licenses are identical.
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stay in the auction for license A until v1A. If he wins, he will pay pA since the local bidder

with highest valuation of license A will drop out last (by Lemma 1). In order to calculate

his expected profit, global bidder will be using G(pA∣p) (highest order statistic) which is the

distribution function of the local bidders’ highest valuation pA for license A given p. When

there are m− 1 local bidders in license A, the distribution function G(pA∣p) and its density

function g(pA∣p) are:

G(pA∣p) = (F (pA∣p))m−1 = (

∫ pA
p

f(v)dv
∫ 1

p
f(v)dv

)m−1 (3)

g(pA∣p) = (m− 1)(

∫ pA
p

f(v)dv
∫ 1

p
f(v)dv

)m−2(
f(pA)∫ 1

p
f(v)dv

). (4)

The first term of EΠ2
1 is Firm 1’s expected profit of winning both licenses; assuming that

he wins license B at the price p. If the highest local bidder’s valuation pA is less than the

global bidder’s (updated) willingness to pay, v1A + ®, then the global bidder wins license A

and pays pA. Since pA < 1, we use the minimum function in the upper limit of the first

integral. The second term of EΠ2
1 is Firm 1’s expected profit of winning only license B which

can happen only if pA > v1A + ®. Note that the second term is non-positive by Lemma 3

(which is the exposure problem arising from winning only one license).

In Lemma 4 below, we characterize the global bidder’s equilibrium bids. It can be found

from EΠ1
1 = EΠ2

1. Note that these payoffs are changing as local bidders bidding for A

are dropping out; that is, m − 1 is changing. Therefore, the lemma below gives the global

bidder’s (updated) equilibrium drop out price as the local bidders drop out. We show, in the

proof of lemma 4, that this updated price increases as local bidders of license A drop out.12

12Local bidders B dropping out of auction does not affect this optimal drop-out price. Seemingly surprising
result arises because of two facts. First, here the assumption is v1A > v1B so the global bidder will drop out
from license B first,- as explained in footnote 10. Second, when the global bidder makes the calculation, it
compares his payoff of dropping out from license B and continuing on A at the given decision price p, and
winning license B and continuing on license A at the given decision price p. In both cases, the number of
local bidders B have no effect on the decision. However, number of local bidders A will affect its payoff. If
v1B > v1A, then ONLY the number of local bidders B will affect the global bidder’s decision. We emphasize
that local bidders B dropping out from auction affect the game though. If there are fewer local bidders B, it
is more likely for the global bidder to win license B before the price reaches its optimal drop out price, and
then it will update the new optimal drop out price as v1A + ®.
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Lemma 4 Suppose that the average valuation of the global bidder is less than 1 and there

are m− 1 local bidders bidding on license A where m− 1 ≥ 1 and there is at least one active

local bidder B.

If v1A > v1B, the global bidder13 will drop out of license B auction at the unique optimal

drop-out price p∗1 ∈ [0, 1] that satisfies EΠ1
1 = EΠ2

1. Moreover,

a) If v1A+® < 1, and
∫ v1A+®

v1A
G(pA∣p)dpA+(v1B − v1A) < 0, then p∗1 < v1A and the global

bidder will stay in license A auction until v1A (after dropping out from license B auction).

b) If v1A+® < 1, and
∫ v1A+®

v1A
G(pA∣p)dpA+(v1B − v1A) > 0, then p∗1 > v1A and the global

bidder will also drop out of license A auction at p∗1.

c) If v1A + ® > 1, and
∫ 1

v1A
G(pA∣p)dpA + (v1B + ®− 1) < 0, then p∗1 < v1A and the global

bidder will stay in license A auction until v1A (after dropping out from license B auction).

d) If v1A + ® > 1, and
∫ 1

v1A
G(pA∣p)dpA + (v1B + ®− 1) > 0, then p∗1 > v1A and the global

bidder will also drop out of license A auction at p∗1.

Proof. See the Appendix.

We are ready to summarize our Perfect Bayesian equilibrium.

Proposition 5 (Perfect Bayesian Equilibrium)

a) Local bidder of each license will stay in the auction j until price reaches their valuation

vij where j = {A,B}, i = {2, 3, ..m− 1}.
b) A global bidder active only on license j will bid v1j + ®, if he won license −j other

than license j. He will bid v1j when he did not win license −j.

c) When v1A > v1B and the average valuation is less than one, the global bidder who is

active on both licenses and facing m− 1 active local bidders on license A will drop out from

license B at the price that equates equations 1 and 2.

d) When v1A < v1B and the average valuation is less than one, the global bidder who is

active on both licenses and facing m− 1 active local bidders on license B will drop out from

license A at the price that equates equations 1 and 2 (symmetrically replaced v1A with v1B).

13If v1A < v1B , then the proposition has to be written symmetrically
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e) If the average valuation is greater than one, the global bidder will stay in both auctions

until price reaches his average valuation.14

f) Out-of-equilibrium-path beliefs: When a bidder drops out, the other bidders will see

this as an equilibrium behavior. Hence, any out of equilibrium path beliefs can be used.15

At the beginning of the game, each bidder calculates its optimal drop-out price. For local

bidders, the optimal drop out prices are their valuations. In equilibrium, it is optimal for

the global bidder to stay in the auctions for both licenses up to his optimal drop-out price

calculated in Lemma 4. When his average valuation exceeds 1, he will stay until this average

valuation and win both licenses. When the price reaches the minimum of these optimal

drop-out prices, that bidder drops out of license auction. If, for example, the global bidder

wins license A, the global bidder would continue to stay in the auction for license A until

the price reaches v1A+®. At this price, he finds that the payoff from winning only license B

is more than the payoff from winning both licenses even though it will enjoy synergy; hence,

it drops out.

The following is a corollary of Lemma 4, and is an example for the optimal drop out price

when F (.) is a uniform distribution.

Corollary 6 Assume that valuations are drawn from a uniform distribution with a support

[0, 1]. In addition, assume that v1A > v1B (other case is symmetrically found by exchanging

14Price does not have to stop increasing at 1.
15If local bidders drop out, global bidder will think that local bidder is using his/her equilibrium strategy

of dropping out at his/her valuation. If the global bidder drops out from license B first (or license A first),
the local bidders will think that global bidder is using his/her equilibrium strategy of dropping out from
license B since he has a valuation of v1B > v1A (or v1A > v1B) If global bidder drop out from both licenses,
then local bidders will again think that global bidder uses his equilibrium strategy and p∗1 > v1A, v1B . In
other words, sequential rationality is always satisfied.
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0 v1B pB p∗1 v1A + v1B + ®− pB

When pA is here,
global bidder wins both
but makes a loss

Exposure Problem II
v1A + ®

When pA is here,
global bidder wins B
and makes a loss

Exposure Problem I
1

Figure 1: EXPOSURE PROBLEM

v1A with v1B), and there is one local bidder in each license.

p∗1 =

⎧
⎨
⎩

1
2{v1B + ®+ 1−(v21B + 1− 2v1B − ®2 + 2v1B®+ 2®− 4v1A®)

1
2 },

if 0 < v1A < 1− ® and 2(1− v1A)(v1A − v1B) > ®2;
1
3{v1A + v1B + ®+ 1− ((v1A + v1B + ®+ 1)2 − 3(v1A + ®)2 − 6v1B)

1
2 },

if 0 < v1A < 1− ® and 2(1− v1A)(v1A − v1B) ≤ ®2;
1
2{v1B + ®+ 1−{(v1B + ®+ 1)2 − 4(v1A + v1B + ®) + 2 + 2v21A}

1
2 },

if 1− ® ≤ v1A < 1 and 1 + v1A > 2(v1B + ®);
2(v1A+v1B+®)−1

3 ,

if 1− ® ≤ v1A < 1 and 1 + v1A ≤ 2(v1B + ®).

(5)

The optimal drop-out price is a function that takes a unique value defined in the corollary

above. For example, case 0 < v1A < 1 − ® and 2(1 − v1A)(v1A − v1B) > ®2 implies that

p∗1 < v1A. If we assumed v1A = v1B, then our equilibrium drop out price in the corollary

would coincide with the equilibrium drop out prices of Albano et. al (2001) and Goerre

and Yuanchuan (2010). Hence, we generalize their results, and relax the identical valuations

assumption.

2.1 Exposure Problem/Ex-post Loss

We now can discuss the exposure problem with the help of Figure 1. In the first type of

exposure problem, the global bidder may win license B at a price above his stand alone

valuation (i.e., v1B < pB < p∗1) and lose the other license (i.e., pA > v1A + ®). This is the

type of exposure problem Chakraborty (2004) focuses on. In the second type of exposure

problem, the global bidder wins both licenses but incurs a loss. This is the case when he

wins license B at v1B < pB < p∗1 and wins license A at v1A + ® > pA > v1A + ® + v1B − pB.

Note that if he wins license A at the price v1A + ®+ v1B − pB, his payoff is zero. The global

bidder stays in the auction for license A in order to minimize its loss from winning only

11



Table 1: PROBABILITY OF EXPOSURE PROBLEM

Percentage of Percentage of Total Percentage of
Exposure Problem 1 Exposure Problem 2 Percentage Inefficiency

Synergy One One One One
® Local Bidder Local Bidder Local Bidder Local Bidder

Beta Distribution with parameters ® = 1 and ¯ = 4

0.2 2.85 0.64 3.48 7.84
0.4 2.29 2.43 4.72 5.45
0.6 0.54 1.59 2.13 2.15
0.8 0.04 0.62 0.66 0.66

Uniform Distribution

0.2 1.17 0.40 1.57 3.29
0.4 1.13 1.07 2.20 4.22
0.6 0.69 1.51 2.20 4.01
0.8 0.36 1.25 1.61 2.62

Beta Distribution with parameters ® = 4 and ¯ = 1.

0.2 0.34 0.77 1.11 2.72
0.4 0.20 0.93 1.13 1.95
0.6 0.00 0.50 0.50 0.64
0.8 0.00 0.26 0.26 0.28

license B even if the price passes v1A + ® + v1B − pB.

2.2 Simulations

In this subsection, through simulations, we determine the probability of the occurrence of

ex-post loss for the global bidder and the inefficient allocation under various environments.

As we noted, we say that exposure problem occurs when the global bidder wins one or both

licenses with a loss ex-post. We have used MATLAB to write our simulation code. This code

first draws the valuations for both the global and the local bidders from a given distribution

function. We have one local bidder on each license and one global bidder on both licenses.

One set of valuations correspond to one auction. We calculate the optimal drop-out price

of the global bidder; local bidders’ drop-out prices are their valuations. The global bidder’s

equilibrium drop-out price is updated as these local bidders drop out from the auction. If

the global bidder does not win the first license, then no exposure problem occurs. If he wins
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the first license, then we calculate his updated price for the remaining license (unless the

global bidder drops out from both licenses at the same time). We next determine whether

the global bidder will win the remaining license at a positive profit (no exposure problem),

at a loss (exposure problem II) or lose the remaining license (exposure problem I). Dividing

the number of each of these events to the number of draws yields the probability of each

event.16

We use three different distribution functions to draw valuations: uniform, beta distri-

bution with ® = 1, and ¯ = 4, and beta distribution with ® = 4 and ¯ = 1. The second

distribution is first order stochastically dominated by the uniform distribution, while the

third one first order stochastically dominates the uniform distribution. We use one local

bidder on each license.17 We run simulations for four different synergy levels: 0.2, 0.4, 0.6,

0.8.18 The 0.2 represents for small synergy, 0.4 and 0.6 represents middle synergy, and 0.8

represents a large synergy level. We report the results in TABLE 1.

We find that the global bidder may face exposure problem with probability 4.72 per cent,

if the valuations are drawn from beta distribution with parameters ® = 1 and ¯ = 4, and the

synergy level is equal to 0.4. Note that the expected stand alone valuation for each license

is 0.2 with this distribution. Hence, the global bidder’s average valuation does not exceed 1

most of the time which result in more inefficient allocation and ex-post loss.

TABLE 1 also shows that the exposure problem occurs with the smallest probability

among all these different distributions when the synergy level is 0.8. This is expected since

the global bidder, after winning the first license, can bid very high for the remaining license

(in most cases more than 1) but do not incur a loss due to high synergy level.

16In our simulation, to simplify calculations, we only consider cases in which the global bidder values the
license A more than license B. After 10000 draws, we select only the valuations where the global bidder’s
valuation for license A is greater than license B. Hence, we are left with approximately 5000 draws. We used
UNIX system of the University of Manitoba, and our laptops for the simulations. In the UNIX machine, it
took more than four days to run each code.

17Given the complexity of the code we use, we feel that using one local bidder in our simulations are enough
to draw reasonable conclusions though this can be extended to two local bidders in each license. Using three
local bidders or more would extremely complicate the code since one has to keep track of updated prices
every time a local bidder drops off.

18We also write codes for a finer synergy level of 0.1,0.2,...0.9 but we do not report them since no new
insight is learned.

13



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

alpha (Synergy)

pr
ob

ab
ili

ty
Plot of Probability of Inefficiency

 

 
 Probability of Inefficiency
 Total Probability of Exposure Problem
 Probability of Exposure Problem 1
 Probability of Exposure Problem 2

Figure 2: Valuations are drawn from Uniform Distribution.

In our simulations, Exposure problem I occurred most often when the synergy level is

0.4. In this case, the global bidder overbids to enjoy the middle level synergy, so he is very

likely to make a substantial (potential) loss when he wins the first license. His optimal drop-

out price for the remaining license is generally below 1; hence, the risk of losing the second

license is high. Exposure problem II generally occurs the most when the synergy level is 0.6.

After winning the first license, the global bidder will stay in the remaining license auction

for a higher drop out price; hence, rather than exposure problem I, exposure problem II is

likely to occur.

Of the two beta distribution, the one with ¯ = 1 and the one with ¯ = 4, we observe

that the exposure problem occurs much less frequently with the first one. The reason is that

with the former one, the valuations of the global bidder is likely to be higher; hence, even

with a small synergy level, their optimal updated drop out price after winning one license

is more than 1 in most cases. Therefore, it is less likely to have exposure problem. On the

other hand, when the global bidder’s updated optimal price is less than one, it is also more

likely that the local bidder’s valuation will be high so in such cases, one may see exposure

14



problem. As the synergy increases, this case is less likely to happen.

In TABLE 1, we show that, for the Beta distribution with ¯ = 1, the allocation is

inefficient 7.84 per cent of the time when ® = 0.2. As ® increases, global bidder wins both

licenses more often without facing exposure problem that much, and this is the efficient

outcome. Hence, we observe inefficient allocation only 0.66 per cent of the time for ® = 0.8.

Most of the inefficiency is due to exposure problem.

We will talk about the role of inefficiency on revenue in the next section. Especially,

when the inefficiency is due to exposure problem and when it is due to local bidders winning

licenses inefficiently.

Before closing this section, we quickly talk about TABLE 2 which shows the optimal drop

out prices for three different distributions. When the local bidders’ valuation is expected to

be low (when ¯ = 4), optimal drop out price is higher compared to the cases where the local

bidder’s valuation is expected to be high (when ¯ = 1).

3 Comparison with Vickrey Clarke Groves Auction

In this section, we will compare the revenue of our auction with the revenue of Vickrey Clarke

Groves (VCG) auction.19 VCG auction maximizes the expected payment of each agent

among all mechanisms for allocating multiple objects that are efficient, incentive compatible,

and individually rational.20 In this auction, the seller will let the bidders bid on license A,

license B and the whole package license A and B.

We, will first calculate the payment of each winner for all cases; that is, calculate the

revenue of the seller. The payment of a winner (say player i) in this auction is the difference

between the social welfare of the others if the bidder did not participate in the auction

(denote this as W−i(x−i) where x−i denote the bid of all players other than player i), and

the welfare of the others when he participated in the auction, and bid truthfully (denote

this as W−i(x), where x denote the bid of all players.) since truthful bidding is the weakly

19In the literature, there are many papers on VCG mechanism but not interested in exposure problem
aspect such as Sano (2011) and Misra and PArkes (2009)

20See proposition 16.2 of Krishna (2010). In this section, we follow the notation of Krishna (2010) closely.
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Table 2: OPTIMAL DROP OUT PRICE

Global Global Uniform Beta Beta
Bidder’s Bidder’s Distr. Distr. Distr.
Valuation Valuation with ® = 1 with ® = 4

for License A for License B and ¯ = 4 and ¯ = 1

v1A v1B pU1 p¯=4
1 p¯=1

1

Synergy=0.2

0.25 0.2 0.231 0.2796 0.2027
0.4 0.2 0.2641 0.2958 0.2086
0.6 0.2 0.3127 0.3225 0.2276
0.8 0.2 0.3683 0.36 0.289
0.81 0.4 0.5591 0.562 0.4951

Synergy=0.4

0.25 0.2 0.2909 0.4026 0.2215
0.4 0.2 0.3528 0.4671 0.2546
0.6 0.2 0.4536 0.52 0.3524
0.8 0.2 0.5551 0.56 0.489
0.81 0.4 0.7325 0.762 0.6951

Synergy=0.6

0.25 0.2 0.3787 0.5167 0.2865
0.4 0.2 0.4667 0.5912 0.3874
0.6 0.2 0.6 0.6886 0.5524
0.8 0.2 0.7268 0.76 0.689
0.81 0.4 0.8733 0.9044 0.8839

Synergy=0.8

0.25 0.2 0.5 0.6226 0.4451
0.4 0.2 0.6 0.6981 0.5807
0.6 0.2 0.7333 0.7987 0.7401
0.8 0.2 0.8667 0.8994 0.8775
0.81 0.4 1 1 1
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Table 3: Bidders’ Valuations.
A B AB
v1A v1B v1A+v1B+®
v2A 0 v2A
0 v3B v3B

dominant strategy.

The table below shows the valuations of the bidders. To give an example of how payments

are calculated, let us assume that v2A + v1B > v1A + v1B + ® > v2A + v3B. VCG auction will

allocate license A to local bidder A, and license B to global bidder. Payment of local bidder

A is (W−2(x−2)) −W−2(x) = (v1A + v1B + ®) − v1B = v1A + ®. If local bidder A does not

participate in the auction, then global bidder will win the package; hence, the welfare of the

others W−2(x−2) = v1A + v1B + ®. When it participates in the auction, global bidder gets

only license B, and local bidder B gets nothing; hence, the welfare of others in this case is

W−2(x) = v1B.

Payment of the global bidder is: (W−1(x−1))−W−1(x) = (v2A + v3B)− v2A = v3B. If the

global bidder does not participate in the auction, local bidder A and B wins each license;

hence, the welfare of others is the term inside the parenthesis. When the global bidder

participates in the auction, local bidder A wins license A but the welfare of local bidder B

is zero; hence the welfare of others in this case is just v2A.

The total revenue of the seller in this case will be v1A + ®+ v3B.

We summarize the revenue of the seller for all cases in proposition 9 in appendix.

We compare the revenue of the simultaneous ascending auction with those of the VCG

auction through simulation methods. Our results are summarized in FIGURE 2. We run

the simulations for ® = 0.2, 0.4, 0.6, 0.8 and three different distributions. All results show

that VCG mechanism gives higher revenue especially when ® = 0.2. Therefore, unlike

the complete information examples of VCG mechanism in the literature (e.g. Ausubel and

Milgrom (2006)), we show that revenue is higher with VCG mechanism when licenses are
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Table 4: Example of Revenue Comparison for Inefficient Allocations.
v1A v1B ® p∗1 v2A v3B Revenue-Our Model Revenue-VCG Mechanism

0.0963 0.0008 0.2 0.0718 0.1581 0.1247 0.1681 = p∗1 + v1A 0.2829 = v2A + v3B
0.1149 0.1015 0.2 0.1677 0.31 0.16 0.47 = v2A + v3B 0.3628 = 2(v1A + v1B + ®)− v2A − v3B

not identical in an incomplete information setting.

When there is inefficient allocation in our auction, either global bidder wins (with

exposure problem/ex-post loss), or local bidders win when global bidders would win in VCG

auction. If most of the inefficient allocations are due to the first one, then our auction’s

revenue is expected to be higher. If most of the inefficient cases are due to the latter one,

then VCG mechanism’s revenue is expected to be higher. For example, when we look for

Beta Distribution with ¯ = 4 case, exposure problem is very high with 3.48 per cent for

the synergy level of ® = 0.2; however, the overall inefficiency is 7.84 per cent. We can

conclude that most inefficiency is due to local bidders winning licenses. As a result, VCG

mechanism gives a higher revenue. When ® = 0.6 or ® = 0.8, we see that most inefficiency

is due to exposure problem; hence, our auction gives a higher revenue compared to VCG

mechanism. When ® = 0.8, inefficiencies disappear, and not surprisingly the revenue levels

of both auctions converge.

To make our point, let us look at the sample valuations in TABLE 4. In the first row, our

auction allocates goods inefficiently to two local bidders. With VCG, however, global bidder

wins the auction, and pays a higher price. Hence, VCG auction gives a higher revenue. In

the second row, global bidder wins both licenses with an ex-post loss. Hence, the revenue of

our model is higher than VCG mechanism’s revenue.

We prove that SAA auction increases revenue for cases in which global bidder wins

licenses with ex-post loss, and VCG mechanism increases revenue for cases in which local

bidders win the licenses but the allocation is inefficient.

Proposition 7 When the global bidder wins licenses with an ex-post loss; that is, exposure

problem occurs, then revenue of the VCG auction is lower than the simultaneous ascending

auction (SAA); that is, RV CG < RSAA.

18



Proposition 8 When the local bidder wins the licenses and the allocation is inefficient, then

revenue in VCG model is greater than SAA, that is, RV CG > RSAA.

Unfortunately, one cannot say much when the allocation is efficient with SAA auction.

There are cases in which SAA auction gives higher or lower revenue than the VCG auction

in efficient allocations.

The literature writes that exposure problem lowers the revenue since the global bidder

expects that it may end up with a loss; hence, does not over bid too much. Hence, local

bidders win when the global bidder is supposed to win in an efficient auction like VCG.

While this intuition is correct, there is another side of the story. The global bidder still bids

above the stand alone valuation in a SAA auction; hence, it may end up winning licenses

with a loss. This overbidding brings higher revenue compared in SAA auction compared to

VCG auction.

4 More Than One Global Bidder

In this section, we will analyze the case where there is more than one global bidder. The

difficulty in this case arises from the fact that each global bidder’s optimal drop out price

depends on the other global bidders’ optimal drop out price which is a function of private

valuations. As a result, each global bidder, while calculating its own drop out price,

should at the same time calculate the distribution of the other global bidder’s drop

out price. This makes deriving an analytical result impossible.

To make our case, assume that there are two global bidders, Firm 1 and Firm 2, and one

local bidder on each of license A and license B which are denoted as Firm 3 and Firm 4. Let

the valuations viA for i = 1, 2, 3 and vjB for j = 1, 2, 4 are drawn from the same distribution

function G(.). Everything else is the same as the previous section. In addition assume that

viB < viA for i = 1, 2.21 Firm 1 will make a similar calculation as we discussed in one global

bidder case –except that the price would depend on the drop out price of the second global

21This does not have to be true but our point is even if you assume such a restrictive assumption, you
cannot calculate the optimal drop out prices.
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Figure 3:
Uniform Distribution (Top), Beta Distribution with ® = 4, ¯ = 1, Beta Distribution with
® = 1, ¯ = 4 (Bottom)
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bidder which we denote as p∗2– Specifically, he should make the following calculation while

deciding to stay in the license B auction or not. This calculation is done based on a history

in which none of the other bidders have dropped out yet.

EΠ1
1 = Max{0, E

[
([

∫ v1A

p
(v1A −Max{v2A, v3A}P (p∗2 < v4B))dG(Max{v2A, v3A}∣p) (6)

+

∫ v1A

p
(v1A −Max{(v2A + ®), v3A}P (p∗2 > v4B))dG(Max{(v2A + ®), v3A}∣p)])∣p∗2

]
} (7)

EΠ2
1 =

∫ Min{v1A+®,1}

p
(V1−p−pA)dG(Max{v2A, v3A}∣p)+

∫ 1

Min{v1A+®,1}
(v1B−p)dG(Max{v2A, v3A}∣p)

(8)

The explanation of equation 5 is as follows. If this global bidder drops out from license

B before the other global and local bidders, then it will continue on license A auction as a

local bidder. Hence, it can only derive a benefit of v1A if it wins the license. The price it will

pay for license A depends on the result of whether the local or the other global bidder wins

license B. If the local bidder B wins license B (this happens with probability P (p∗2 < v4B)

and we integrate this in the range p to v1A), then the price of license A will be the maximum

of local bidder A’s valuation and the other global bidder’s valuation for license which is

Max{v2A, v3A}. Expectation is taken with respect to p∗2.

Equation 7 analyze the case in which the other global bidder wins license B. This happens

with probability P (p∗2 > v4B) (in the range p to v1A), then it can enjoy synergy and will bid

until v2A + ® for license A. Then, the price global bidder 1 will pay is Max{(v2A + ®), v3A}.
Equation 8 analyzes the case in which Firm 1 wins license B, and then continue optimally

on license A. This is the same as “one global bidder” case. The only difference is that the

other global bidder is now a local bidder; hence, there is one more local bidder in the license

A auction compared to the “one global case”.

When we equate these integrals, we will find p∗1(v1A, v1B, ®, p
∗
2(v2A, v2B, ®)). Global bid-

der, Firm 1, does not know v2A and v2B, and hence, p∗2. Since p∗2 is not known, Firm 1 must
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use its distribution which he does not even know the functional form. At the same time,

the other global bidder, Firm 2, is making a similar calculation; however, he does not know

p∗1(v1A, v1B, ®, p
∗
2(v2A, v2B, ®)). In other words, two global bidders will have two non-linear

equations p∗1(v1A, v1B, ®, p
∗
2(v2A, v2B, ®)) and p∗2(v2A, v2B, ®, p

∗
1(v1A, v1B, ®)) that should be si-

multaneously solved, and to calculate these equations, they need to calculate the distribution

of p∗i for i = 1, 2. We are not sure whether this can be solved through simulations so it is

left as an open problem.22

5 Conclusion and Discussion

We showed the optimal bidding strategies of global bidders when there are moderate synergies

and the licenses are heterogeneous. We also analyzed exposure problem and its role on

revenue extensively. Our revenue comparison of SAA and VCG auctions show that VCG

mechanism gives a higher revenue when the synergy level is low.

We were able to show exposure problem can occur even when the global bidder wins all

licenses. Literature has not studied heterogeneous license case with moderate synergies since

it is technically challenging when one uses more than one global bidder. With this paper,

we fill this gap. One of our contributions is to write a complicated code to calculate the

probability of exposure problem. Our simulation results show that the exposure problem

may be minor for some distributions but may be up to 4.3 per cent for some others.

Extending the results to n global bidders would be very complicated since the optimal

strategies of global bidders (optimal drop out prices) should be determined jointly which in

turn would depend on how many local and how many global bidders are still in the auction.

Moreover, one has to know the distribution of the other global bidder’s optimal drop out

price while calculating the optimal drop out price! We leave this as an open problem, and,

in this paper we follow the literature that use only one global bidder (e.g. Kagel and Levin

(2005)).

22We suspect that other papers in the literature assumes identical licenses to avoid this problem In fact,
Albano et. al (2006) writes “In fact, for intermediate values of ® ∈ (0, 1) and if v1 and v2 are differ-
ent...;showing the existence of a PBE is already problematic in this case.”
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Our other contribution is comparing the revenue and the efficiency properties of the

simultaneous ascending auction with those of the VCG auction. We show that when synergy

level is small (® = 0.2), the VCG mechanism generates more revenue. However, when

valuations are such that exposure problem occurs, then SAA auction gives a higher revenue.

When the local bidders win the license inefficiently (in SAA auction), the VCG mechanism

gives a higher revenue.
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A Mathematical Appendix

Proof of Lemma 4

We will prove that there is a unique optimal drop out price by solving EΠ1
1 = EΠ2

1. Here,

we assume that v1B < v1A.
23 We have four cases.

Case I: In this case, we will assume v1A+® < 1 and
∫ v1A+®

v1A
G(pA∣p)dpA+(v1B−v1A) < 0.

We will show that this implies p∗1 < v1A (which in turn implies EΠ1
1 > 0).

First, we show that there exists a unique solution that makes equations 1 and 2 equal,

and this is the optimal drop out price p∗1. We define a new function, J(p,m) = EΠ1
1 −EΠ2

1.

To prove uniqueness, we will show that this function is monotonically increasing and it is

negative when p = v1B (by lemma 2, p cannot be less than v1B) and is positive when p = v1A.

Hence, there must be a unique root at the interval v1B < p < v1A.

J(p,m) =
∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫ v1A+®

p
(V1 − p− pA)g(pA∣p)dpA

− ∫ 1

v1A+®
(v1B − p)g(pA∣p)dpA.

By using
∫ 1

p
g(pA∣p)dpA = 1 since g(pA∣p) is a probability density function on the support

[p, 1], we have (v1B − p)
∫ 1

p
g(pA∣p)dpA = v1B − p, we can re-write it as

∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫ v1A+®

p
(v1A + ®− pA)g(pA∣p)dpA − (v1B − p)

By using integration by parts twice
∫
udv = uv − ∫

vdu, first we assume that u = v1A − pA

and v = G(pA∣p); then assume that u = v1A+®−pA and v = G(pA∣p), thus, dv = g(pA∣p)dpA,
23The other case, v1B > v1A, is symmetric.
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we have

= (v1A − pA)G(pA∣p) ∣v1Ap − ∫ v1A
p

G(pA∣p)d(v1A − pA)

− (v1A + ®− pA)G(pA∣p) ∣v1A+®
p +

∫ v1A+®

p
G(pA∣p)d(v1A + ®− pA)− (v1B − p)

=
∫ v1A
p

G(pA∣p)dpA − ∫ v1A+®

p
G(pA∣p)dpA − (v1B − p) = − ∫ v1A+®

v1A
G(pA∣p)dpA − (v1B − p)

We take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= ∂
∂p
[− ∫ v1A+®

v1A
G(pA∣p)] + 1 > 0

It is positive since the term ∂
∂p
[
∫ v1A+®

v1A
G(pA∣p)] is negative. As the lower limit of the

integral increases, the value of the expression decreases (does not increase) if the term inside

is non-negative which is true since it is a cumulative distribution function. We must also

show that ∂G(pA∣p)
∂p

≤ 0 to prove this. While one can easily see that this is correct (as p

increases the cumulative distribution conditional on p decreases), we will give a formal proof

by using Leibniz’s rule when necessary.

⇔ ∂G(pA∣p)
∂p

=
∂[(

∫ pA
p f(v)dv
∫ 1
p f(v)dv

)m−1]

∂p

= −(m− 1)f(p)
(
∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

+ (m− 1)f(p)
(
∫ pA
p f(v)dv)m−1

(
∫ 1
p f(v)dv)m

=
(m−1)f(p)(

∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

[−1 +
∫ pA
p f(v)dv
∫ 1
p f(v)dv

]

=
(m−1)f(p)(

∫ pA
p f(v)dv)m−2

(
∫ 1
p f(v)dv)m−1

[−1 + F (pA∣p)] < 0 (≤ 0 only if pA = 1).

Thus, J(p,m) is monotonically increasing function of p, when v1B ≤ p < v1A.

If p = v1B, then J(v1B) =
∫ v1A
v1B

G(pA∣®)dpA − ∫ v1A+®

v1B
G(pA∣v1B)dpA

= − ∫ v1A+®

v1A
G(pA∣v1B)dpA < 0. (note that we prove this for the case v1A > v1B)

If p = v1A, J(v1A) = 0 − ∫ v1A+®

v1A
G(pA∣p)dpA − (v1B − v1A) > 0, then our assumption

∫ v1A+®

v1A
G(pA∣p)dpA + (v1B − v1A) < 0 implies that J(p = v1A) > 0.

Hence, there is a unique root, p∗1 in the such that v1B < p∗1 < v1A.

Next, we show that as the number of active firms in license A auction decreases, the

optimal drop out price will increase. We will use the implicit function theorem for this:

⇔ dp∗1
dm

= −
∂J(p∗1,m)

∂m
∂J(p∗1,m)

∂p∗1

< 0.

We have already shown that
∂J(p∗1,m)

∂p∗1
> 0.

Since J(p,m) =
∫ v1A
p

G(pA∣p)dpA − ∫ v1A+®

p
G(pA∣p)dpA − (v1B − p).

26



Since the lower limits of the two integrals are the same, we can re-write this as J(p,m) =

− ∫ v1A+®

v1A
G(pA∣p)dpA − (v1B − p).

By using Leibniz’s rule for differentiation under the integral sign, we take partial deriva-

tive of J(p,m) with respect to m and have,

∂J(p,m)
∂m

= − ∫ v1A+®

v1A

∂G(pA∣p)
∂m

dpA = − ∫ v1A+®

v1A
ln(F (pA∣p))G(pA∣p)dpA > 0, since ∂G(pA∣p)

∂m
=

ln(F (pA∣p))G(pA∣p) < 0. Hence, we show that ∂J(p∣m)
∂m

> 0 holds.

By the implicit function theorem, we show that the optimal drop out price increases as

the number of local firms, m, decreases.

Since ∂J(p,m)
∂p

> 0 and ∂J(p,m)
∂m

> 0, we have,
dp∗1
dm

= −
∂F (p∗1,m)

∂m
∂F (p∗1,m)

∂p∗1

< 0

Case II: In this case, we will assume that v1A+® < 1 and
∫ v1A+®

v1A
G(pA∣v1A)dpA+(v1B−

v1A) ≥ 0 which we will show that this implies p∗1 ≥ v1A. And this condition in turn implies

that EΠ1
1 = 0, since the global bidder drops from both licenses.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) = 0− ∫ v1A+®

p
(V1 − p− pA)g(pA∣p)dpA − ∫ 1

v1A+®
(v1B − p)g(pA∣p)dpA

= − ∫ v1A+®

p
G(pA∣p)dpA − (v1B − p).

When p ≥ v1A, we take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= − ∂
∂p
[
∫ v1A+®

p
G(pA∣p)dpA] + 1 > 0, since ∂G(pA∣p)

∂p
< 0.

Thus, J(p,m) is monotonically increasing function of p, when v1A ≤ p ≤ v1A + ®.

Our assumption
∫ v1A+®

v1A
G(pA∣v1A)dpA + (v1B − v1A) ≥ 0 implies that J(p = v1A,m) ≤ 0.

If p = v1A + ®, then J(v1A + ®) = 0 − 0 − (v1B − v1A + ®) > 0. Thus, there is a unique

solution, p∗1, in the interval [v1A, v1A + ®).

Next, we show that when the number of active firms in license A auction decreases, this

optimal drop out price will increase.

We take partial derivative of J(p,m) with respect to m, we have,

∂J(p,m)
∂m

= − ∫ v1A+®

p
ln(F (pA∣p))G(pA∣p)dpA > 0.

Since ∂J(p,m)
∂p

> 0 and ∂J(p,m)
∂m

> 0, we have,

dp∗1
dm

= −
∂J(p∗1,m)

∂m
∂J(p∗1,m)

∂p∗1

< 0
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Case III: In this case, we will assume that v1A +® > 1 and
∫ 1

v1A
G(pA∣v1A)dpA +(v1B +

®− 1) < 0 which implies v1A < p∗1. And this condition in turn implies that EΠ1
1 > 0.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) =
∫ v1A
p

(v1A − pA)g(pA∣p)dpA − ∫ 1

p
(v1A + v1B + ®− p− pA)g(pA∣p)dpA

Again, we assume that u = v1A − pA and v = G(pA∣p) for the first integral; then assume

that u = v1A+v1B+®−p−pA and v = G(pA∣p) for the second integral, thus, dv = g(pA∣p)dpA,
By using integration by parts, we have

= (v1A − pA)G(pA∣p) ∣v1Ap +
∫ v1A
p

G(pA∣p)dpA
− (v1A + v1B + ®− p− pA)G(pA∣p) ∣1p −

∫ 1

p
G(pA∣p)dpA

=
∫ v1A
p

G(pA∣p)dpA − (v1A + v1B + ®− p− 1)− ∫ 1

p
G(pA∣p)dpA

= −(v1A + v1B + ®− p− 1)− ∫ 1

v1A
G(pA∣p)dpA

We take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= ∂
∂p
[− ∫ 1

v1A
G(pA∣p)] + 1 > 0

It is positive since the term ∂
∂p
[
∫ 1

v1A
G(pA∣p)] is negative. And we have shown that

∂G(pA∣p)
∂p

≤ 0. Thus, J(p,m) is monotonically increasing function of p, when v1B ≤ p < v1A.

If p = v1B, then J(v1B) = − ∫ 1

v1A
G(pA∣v1B)dpA − (v1A + ®− 1) < 0 since v1A + ® > 1.

If p = v1A, J(v1A) = 0 − ∫ 1

v1A
G(pA∣v1A)dpA − (v1B + ® − 1) > 0 since v1B < v1A and

v1A + ® > 1, then our assumption
∫ 1

v1A
G(pA∣v1A)dpA + (v1B + ® − 1) < 0 implies that

J(p = v1A) > 0.

Hence, there is a unique root in the interval v1B < p < v1A.

We skip to show that as the number of active firms in license A auction decreases, the

optimal drop out price will increase, since we have done this in Case I.

Case IV: In this case, we will assume that v1A +® > 1 and
∫ 1

v1A
G(pA∣v1A)dpA + (v1B +

®− 1) ≥ 0 which implies p∗1 ≥ v1A. And this condition in turn implies that EΠ1
1 = 0.

Now let J(p,m) = EΠ1
1 − EΠ2

1

J(p,m) = 0− ∫ 1

p
G(pA∣p)dpA − (v1A + v1B + ®− p− 1).

When p > v1A, we take partial derivative of J(p,m) with respect to p, we have,

∂J(p,m)
∂p

= − ∂
∂p
[
∫ 1

p
G(pA∣p)dpA] + 1 > 0, since ∂G(pA∣p)

∂p
< 0.
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Thus, J(p,m) is monotonically increasing function of p, when v1A ≤ p ≤ 1.

Our assumption
∫ 1

v1A
G(pA∣v1A)dpA + (v1B + ® − 1) ≥ 0 implies that J(p = v1A) ≤ 0. If

p = 1, then J(1) = 0− 0− (v1B + v1A + ®− 2) > 0. Since v1B + v1A + ® < 2 by our average

valuation is less than 1 assumption in the lemma. Thus, there is a unique solution, p∗1, in

the interval [v1A, 1).

We also skip to show that when the number of active firms in license A auction decreases,

this optimal drop out price will increase which has been proven in Case II.

Proposition 9 Suppose that there is one global bidder and one local bidder bidding for

each license. In the VCG auction, the seller’s revenue will be as follows depending on the

valuations of the bidders.24

CASE I: Suppose that the valuations are such that v1A + v1B + ® < v2A + v3B.

A) (Local bidders win each license) And suppose that v1A < v2A and v1B < v3B. There

are four sub cases to consider.

i) v3B > v1B + ® and v2A > v1A + ®, then the revenue is v1A + v1B.

ii) v3B < v1B + ® and v2A < v1A + ®, then the revenue is 2(v1A + v1B + ®)− v3B − v2A.

iii) v3B > v1B + ® and v2A < v1A + ®, then the revenue is 2v1A + v1B + ®− v2A.

iv) v3B < v1B + ® and v2A > v1A + ®, then the revenue is v1A + 2v1B + ®− v3B.

B) (Local bidder wins A, and global bidder wins B) And suppose that v2A > v1A and

v3B < v1B. Then, the revenue is v1A + ®+ v3B.

C) (Local bidder wins B, and global bidder wins A) And suppose that v2A < v1A and

v3B > v1A. Then, the revenue is v1B + ®+ v2A

CASE II: Suppose that the valuations are such that v1A + v1B + ® > v2A + v3B.

A) (Global bidder wins both licenses) And suppose that v1A < v2A and v1B < v3B. Then,

the revenue is v2A + v3B.

B) (Global bidder wins both licenses) And suppose that v1A > v2A and v1B > v3B. Then,

the revenue is v2A + v3B.

24This result can easily be extended to one global and many local bidders case. Since, we use one global
bidder and one local bidder in each license in the simulations, to save the notation, we give the result for a
special case.
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C) (Global bidder wins license A, local bidder B wins license B) And suppose that v2A <

v1A and v3B > v1B + ®. Then, the revenue is v2A + v1B + ®.

D) (Global bidder wins license B, local bidder A wins license A) And suppose that v2A >

v1A + ® and v3B < v1B. Then, the revenue is v3B + v1A + ®.

Proof of Proposition 9 Suppose that there is one global bidder and one local bidder

bidding for each license. In the VCG auction, the seller’s revenue will be as follows depending

on the valuations of the bidders.

CASE I: Suppose that the valuations are such that v1A + v1B + ® < v2A + v3B.

A) (Local bidders win each license) And suppose that v1A < v2A and v1B < v3B. There

are four sub cases to consider.

i) v3B > v1B + ® and v2A > v1A + ®, then the revenue is v1A + v1B.

since local bidder A’s payment would be W (x−2)−W−2(x) = v1A+v3B− (0+v3B) = v1A

and local bidder B’s payment would be W (x−3)−W−3(x) = v1B + v2A − v2A = v1B

ii) v3B < v1B + ® and v2A < v1A + ®, then the revenue is 2(v1A + v1B + ®)− v3B − v2A.

since W (x−2)−W−2(x) = v1A+ v1B +®− (0+ v3B) = v1A+ v1B +®− v3B and W (x−3)−
W−3(x) = v1A + v1B + ®− (0 + v2A) = v1A + v1B + ®− v2A

iii) v3B > v1B + ® and v2A < v1A + ®, then the revenue is 2v1A + v1B + ®− v2A.

since W (x−2) − W−2(x) = v1A + v3B − (0 + v3B) = v1A, and W (x−3) − W−3(x) =

v1A + v1B + ®− (0 + v2A) = v1A + v1B + ®− v2A

iv) v3B < v1B + ® and v2A > v1A + ®, then the revenue is v1A + 2v1B + ®− v3B.

since W (x−2)−W−2(x) = v1A+ v1B +®− (0+ v3B) = v1A+ v1B +®− v3B and W (x−3)−
W−3(x) = v1B + v2A − v2A = v1B

B) (Local bidder wins A, and global bidder wins B) And suppose that v2A > v1A and

v3B < v1B. Then, the revenue is v1A + ®+ v3B.

since W (x−2)−W−2(x) = v1A+ v1B +®− (0+ v1B) = v1A+®, and W (x−1)−W−1(x) =

v3B + v2A − v2A = v3B

C) (Local bidder wins B, and global bidder wins A) And suppose that v2A < v1A and

v3B > v1B. Then, the revenue is v1B + ® + v2A
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since W (x−3)−W−3(x) = v1A+ v1B +®− (0+ v1A) = v1B +®, and W (x−1)−W−1(x) =

v3B + v2A − v3B = v2A

CASE II: Suppose that the valuations are such that v1A + v1B + ® > v2A + v3B.

A) (Global bidder wins both licenses) And suppose that v1A < v2A and v1B < v3B. Then,

the revenue is v2A + v3B.

since W (x−1)−W−1(x) = v2A + v3B − (0 + 0) = v2A + v3B.

B) (Global bidder wins both licenses) And suppose that v1A > v2A and v1B > v3B. Then,

the revenue is v2A + v3B.

since W (x−1)−W−1(x) = v2A + v3B − (0 + 0) = v2A + v3B.

C) (Global bidder wins license A, local bidder B wins license B) And suppose that

v2A < v1A and v3B > v1B + ®. Then, the revenue is v2A + v1B + ®.

since W (x−1) −W−1(x) = v2A + v3B − (v3B + 0) = v2A and W (x−3) −W−3(x) = v1A +

v1B + ®− (v1A + 0) = v1B + ®.

D) (Global bidder wins license B, local bidder A wins license A) And suppose that

v2A > v1A + ® and v3B < v1B. Then, the revenue is v3B + v1A + ®.

since W (x−1) −W−1(x) = v2A + v3B − (v2A + 0) = v3B and W (x−2) −W−2(x) = v1A +

v1B + ®− (v1B + 0) = v1A + ®.

Proof of Proposition 7 When there is an exposure problem, then revenue in VCG

model, RV CG, is lower than revenue in SAA, RSAA.

First, we consider when there is type 1 exposure problem, there are cases:

Case 1: when v1B < v3B < p∗1 (global bidder wins license B with a loss), and v2A > v1A+®

(but loses license A), then RSAA = v1A + ®+ v3B.

For the above parameter space, there are two possible subcases in VCG model: one is

when v3B > v1B + ®, and v2A + v3B > v1A + v1B + ® (the latter condition makes this an

inefficient allocation), then RV CG = v1A + v1B which is the Case I: A)i) from Proposition 9.

Since v3B > v1B, we have RV CG < RSAA.

The other one is when v3B < v1B + ®, and v2A + v3B > v1A + v1B + ®, then RV CG =

v1A + v1B + ® + v1B − v3B which is the Case I: A)iv) from Proposition 9. Since v3B > v1B,
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we have RV CG < RSAA.

Case 2: This is the symmetric case when v2A > v1A, v2A < p∗1(global bidder wins license

A with a loss), and v3B > v1B + ® (but loses license B), then RSAA = v1B + ®+ v2A.

For the above parameter space, there are two possible subcases in VCG model: one is

when v3B > v1B, v2A > v1A, v2A > v1A+®, v3B > v1B +®, and v2A+ v3B > v1A+ v1B +®(the

latter condition makes this an inefficient allocation), then RV CG = v1A + v1B which is the

Case I: A)i) from Proposition 9. Since v2A > v1A, we have RV CG < RSAA.

The other one is when v3B > v1B, v2A > v1A, v2A < v1A + ®, v3B > v1B + ®, and

v2A+ v3B > v1A+ v1B +®, then RV CG = v1A+ v1B +®+ v1A− v2A which is the Case I: A)iii)

from Proposition 9. Since v2A > v1A, we have RV CG < RSAA.

Then, we consider when there is type 2 exposure problem, there are two kinds of cases.

Case 1: When v3B > v1B, v2A < v1A + ®, and v2A + v3B > v1A + v1B + ®(global bidder

wins license A and B with a loss), then RSAA = v2A + v3B.

For the above parameter space, there are three possible subcases in VCG model: The first

one is when v3B > v1B, v2A > v1A, v2A < v1A+®, v3B > v1B+®, and v2A+v3B > v1A+v1B+®,

then RV CG = 2(v1A + v1B + ®) − v2A − v3B which is the Case I: A)ii) from Proposition 9.

Since v2A + v3B > v1A + v1B + ® , we have RV CG < RSAA.

The second one is when v3B > v1B, v2A > v1A, v2A < v1A + ®, v3B < v1B + ®, and

v2A+ v3B > v1A+ v1B +®, then RV CG = v1A+ v1B +®+ v1A− v2A which is the Case I: A)iii)

from Proposition 9. Since v2A + v3B > v1A + v1B +® and v2A > v1A, we have RV CG < RSAA.

The third one is when v3B > v1B, v2A < v1A, and v2A+v3B > v1A+v1B+®, then RV CG =

v1B + ® + v2A which is the Case I: C) from Proposition 9. Since v2A + v3B > v1A + v1B + ®

and v2A < v1A, we have, v3B > v1B + ®. So we have RV CG < RSAA.

Case 2: This is the symmetric of case 1 above. When v2A > v1A, v3B < v1B + ®,

v2A + v3B > v1A + v1B + ®(global bidder wins license A and B with a loss), then RSAA =

v2A + v3B.

For the above parameter space, there are three possible cases in VCG model: The first

one is when v2A > v1A, v3B > v1B, v3B < v1B+®, v2A < v1A+®, and v2A+v3B > v1A+v1B+®,
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then RV CG = 2(v1A + v1B + ®) − v2A − v3B which is the Case I: A)ii) from Proposition 9.

Since v2A + v3B > v1A + v1B + ®, we have RV CG < RSAA.

The second one is when v2A > v1A, v3B > v1B, v3B < v1B + ®, v2A > v1A + ®, and

v2A+ v3B > v1A+ v1B +®, then RV CG = v1A+ v1B +®+ v1B − v3B which is the Case I: A)iv)

from Proposition 9. Since v2A + v3B > v1A + v1B +® and v3B > v1B, we have RV CG < RSAA.

The third one is when v3B < v1B, v2A > v1A, v2A + v3B > v1A + v1B + ®, then RV CG =

v1A + ® + v3Bwhich is the Case I: B) from Proposition 9. Since v2A + v3B > v1A + v1B + ®

and v3B < v1B, we have, v2A > v1A + ®. So we have RV CG < RSAA.

Proof of Proposition 8 When the allocation is inefficient (except for two types of

exposure problem) in SAA, then revenue in VCG model is greater than that in SAA, that

is, RV CG > RSAA.

There are two cases.

Case 1: Global bidder loses both licenses in SAA model, but wins both in VCG model.

When v3B > p∗1 > v1B(global bidder loses licese B), v2A > v1A(global bidder loses license A),

and v2A + v3B < v1A + v1B + ®(this condition makes an inefficient allocation), if v1A > p∗1,

then RSAA = p∗1 + v1A or if v1A < p∗1, then RSAA = p∗1 + p∗1.

There is one corresponding possible subcase in VCG model which is the Case I: A)iv)

from Proposition 9. when v3B > v1B, v2A > v1A, and v2A + v3B < v1A + v1B + ®, then

RV CG = v2A + v3B. When v1A < p∗1, since v3B > p∗1,and v2A > v1A, we have RV CG < RSAA;

or when v1A > p∗1, since v3B > p∗1,and v2A > v1A, we also have RV CG > RSAA.

Case 2: Global bidder wins license A and local bidder wins license B in SAA model.25

When v3B > p∗1(global bidder loses licese B), v2A < v1A(global bidder wins licese A), v2A > p∗1,

and v1A + v3B < v1A + v1B + ®, then RSAA = p∗1 + ® + v2A.

In such case, there is one possible subcase in VCG model which is the Case II: B)iv) from

Proposition 9 when v3B < v1B+®, and v2A < v1A, then we can derive v2A+v3B < v1A+v1B+®,

then RV CG = v3B + v2A. Since v3B > p∗1, then we have RV CG > RSAA.

25Since we assume v1A > v1B , we do not have the case global bidder wins license B and local bidder license
A. If we remove the assumption, the proof can be written symmetrically.
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