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Abstract

This paper develops two instrumental variable (IV) estimators for dynamic panel data
models with exogenous covariates and a multifactor error structure when both cross-
sectional and time series dimensions, N and T respectively, are large. Our approach
initially projects out the common factors from the exogenous covariates of the model,
and constructs instruments based on this defactored covariates. For models with homo-
geneous slope coeflicients, we propose a two-step IV estimator: the first step IV estimator
is obtained using the defactored covariates as instruments. In the second step, the entire
model is defactored by the extracted factors from the residuals of the first step estimation
and subsequently obtain the final IV estimator. For models with heterogeneous slope co-
efficients, we propose a mean-group type estimator, which is the cross-sectional average of
first-step IV estimators of cross-section specific slopes. It is noteworthy that our estima-
tors do not require us to seek for instrumental variables outside the model. Furthermore,
our estimators are linear hence computationally robust and inexpensive. Moreover, they
require no bias correction, and they are not subject to the small sample bias of least
squares type estimators. The finite sample performances of the proposed estimators and
associated statistical tests are investigated, and the results show that the estimators and
the tests perform well even for small N and T'.
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1 Introduction

The rapid increase in the availability of panel data during the last few decades has invoked
a large interest in developing ways to model and analyse them effectively. In particular, the
issue of how to characterise ‘between group’ or cross-sectional dependence, and then creating
consistent estimation methods and making asymptotically valid inferences, has proven both
popular and challenging. The factor structure approach has been widely used to model cross-
sectional dependence. It escapes from the curse of dimensionality by asserting that there exists
a common component, which is a linear combination of a finite number of time-varying com-
mon factors with individual-specific factor loadings. One can provide different interpretations
of this approach, depending on the application in mind. In macroeconomic panels the un-
observed factors are frequently viewed as economy-wide shocks, affecting all individuals albeit
with different intensities; see e.g. Favero et al. (2005). In microeconomic panels the factor error
structure may be thought to reflect distinct sources of unobserved individual-specific hetero-
geneity, the impact of which varies over time. For instance, in a model of wage determination
the factor loadings may represent several unmeasured skills, specific to each individual, while
the factors may capture the price of these skills, which changes intertemporally in an arbitrary
way; see e.g. Carneiro et al. (2003) and Heckman et al. (2006).

A large body of the literature has focused on developing statistical inferential methods
for models with an error factor structure. For large panels, two estimation approaches have
been popular: Pesaran (2006) proposed the Common Correlated Effects (CCE) estimator, that
consists of approximating the unobserved factors by the linear combinations of cross-sectional
averages of the dependent and explanatory variables. Bai (2009a) proposed an iterative least
squares estimator with bias corrections, approximating the unobserved factors by principal
component (PC) estimator.! For both estimators it is assumed that the regressors are strictly
exogenous with respect to the idiosyncratic error component, whereas possible correlation
between the regressors and the error factor component is permitted. Under somewhat weaker
assumptions, Moon and Weidner (2015) show that the estimator of Bai (2009a) is interpretable
as a quasi maximum likelihood estimator (QMLE), the consistency of which is maintained even
when the number of factors is not specified correctly, so long as it is larger than or equal to
the true number of factors.

In this paper we consider estimation of linear dynamic panel data models with an error fac-
tor structure in large panels.? Recently, the CCE and the PC estimators have been extended
to accommodate this case as well. In particular, Chudik and Pesaran (2015a) propose mean
group CCE (CCEMG) estimation of panel autoregressive distributed lag models. The dynamic
structure considered therein is very general for two reasons. Firstly, it permits cross-sectionally
heterogeneous slope coefficients. Secondly, their model can be seen as a structural transfor-
mation of a multivariate dynamic process, such as a vector autoregressive model. Chudik and
Pesaran (2015a) employ a mean group type estimator to deal with the slope heterogeneity, and
propose to augment the regression with the cross-sectional averages of dependent variables and
covariates and their lags, in order to control the common components.

On the other hand, Moon and Weidner (2017) propose a bias-corrected QMLE (BC-QMLE)
estimator for dynamic panel data models with homogeneous slopes, and put forward bias-
corrected likelihood based tests. Unlike CCEMG and the approach proposed in the present
paper, they allow covariates to be correlated to the common component in disturbances without

1See Westerlund and Urbain (2015) for a comparison analysis of the CCE and PC estimation. Chudik and
Pesaran (2015b), Sarafidis and Wansbeek (2012) and Bai and Wang (2016) also provide excellent surveys on
the related literature.

2Estimation of such models for short panel data is considered by Ahn et al. (2013) and Robertson and
Sarafidis (2015).



having necessarily a linear factor structure. Furthermore, the precision of the estimator is
expected to be higher than existing estimators under certain regularity conditions.

This paper develops two instrumental variable (IV) estimators for dynamic panel data
models with exogenous covariates and a multifactor error structure when both cross-sectional
and time series dimensions, N and T respectively, are large. Our approach initially projects out
the common factors from the exogenous covariates of the model, and constructs instruments
based on defactored covariates in order to build a consistent first step IV estimator.?

At the beginning, we consider a two-step IV estimator for models with homogeneous slope
coefficients. The first step IV estimator is obtained using the defactored covariates as instru-
ments. In the second step, the entire model is defactored by the extracted factors from the
residuals of the first step estimation and subsequently obtain the final IV estimator. We show
the v/ NT-consistency of the two-step estimator and establish its asymptotic normality. Al-
though both our approach and the QMLE approach of Moon and Weidner (2017) is based on
the PC estimator, there are important differences in practice; firstly, since our estimator is an
instrumental variable estimator, it is not subject to the small sample bias, known as “Nickell
bias” that arises with least squares type estimators in dynamic panel data models. Secondly,
our estimator is linear hence robust and computationally inexpensive, whereas obtaining the
QMLE estimator requires nonlinear optimisation, which can be more costly and can fail to
reach at the global minimum.* Thirdly, our estimator does not have asymptotic bias unlike
the QMLE estimator, which requires bias-corrections to re-centre the limiting distribution of
the original estimator.

Next, we consider estimation of models with heterogeneous slope coefficients. In particular,
we propose a mean group IV estimator, which is the cross-sectional average of first-step IV esti-
mators of cross-section specific coefficients. We establish the v/N-consistency of our estimator
to the population average of the slopes and its asymptotic normality. Our estimator has some
advantages over the CCEMG estimator of Chudik and Pesaran (2015a). Firstly, we employ the
PC approach for defactoring the exogenous covariates, therefore we do not need to seek exter-
nal variables to approximate the factors when the number of unobserved factors is larger than
the number of covariates plus one. By contrast, in this situation the CCE estimation requires
additional sets of variables, which are not in the original model of interest but expected to form
a part of the dynamic system. In practice, this may not be a trivial exercise. Secondly, the
CCE estimator is subject to the small T bias of least squares estimators, whilst our estimator
is not, since it is based on the IV estimation. Chudik and Pesaran (2015a) propose to adjust
the bias using the jackknife method, which might not be very effective for small or moderate
T, especially so with persistent data.

The required assumption underlying our IV approach is that any sources of endogeneity of
the covariates arise solely due to the non-zero correlation between the common components in
the covariates and in the model disturbances. Notably, this assumption can be tested using an
overidentifying restrictions test.

Incidentally, our approach can be regarded as the opposite one employed by Bai and Ng
(2010) and Kapetanios and Marcellino (2010). In specific, in their model the idiosyncratic errors
of the reduced form regression of the covariates cause endogeneity, therefore, no error factor
structure is considered in the structural model of interest. They propose finding instruments
for this endogenous covariates by extracting the common components from external variables
and the endogenous covariates in the model. Our approach essentially complements theirs.

Using simulated data it is shown that the proposed approach performs satisfactorily under
all circumstances examined. In particular, in comparison to the aforementioned alternative
methods, both IV estimators appear to have little or negligible bias in most circumstances,

30ur methodology can be regarded as an extension of the approach taken by Sarafidis et al. (2009).
4See Moon and Weidner (2019) for more details.



and correct size of the t-test even for small sample size. Furthermore, the overidentifying
restrictions test appears to have high power when the key assumption of the model is violated,
namely the exogeneity of the covariates with respect to the purely idiosyncratic disturbance.
In addition, the test tends to have good power under slope parameter heterogeneity, unless
the number of degrees of freedom of the test statistic is very small. By contrast, the CCEMG
estimator can suffer from non-negligible bias and large size distortions of the associated t-
test. Similarly, although under slope homogeneity BC-QMLE tends to exhibit the smallest
dispersion, it suffers from large bias and substantial size distortions of the associated bias-
corrected test, unless both N and 7' is large.

The paper is organised as follows. Section 2 sets out the model with homogeneous slopes
and assumptions to introduce the two-step IV estimator and its optimal version with the asso-
ciated overidentifying restrictions test, then investigates their asymptotic properties. Section
3 develops consistent estimators of cross-sectionally heterogeneous slope coefficients and its
averages, then establishes their asymptotic normality. Section 4 studies the finite sample per-
formance of the proposed estimators along with the CCE estimator of Chudik and Pesaran
(2015a) the QMLE estimator of Moon and Weidner (2017) using simulated data. Section 5
contains some concluding remarks. Proofs of propositions, theorems and corollaries, together
with used lemmas, are contained in Appendix A. Appendix B gives proofs of all the lemmas and
Appendix C provides extra experimental results, which are available in Supplemental Material.

2 Model and Estimation Method

In this section we consider the following autoregressive distributed lag, ARDL(1,0), panel data
model with homogeneous slopes and a multifactor error structure®

yit:pyi,tfl_‘_ﬁlxit—i_uit; L= 1727-"7N; t= 1727"'7T7 (1)
with
Uit = ’YSIZ-f;,),t + Eit, (2)

where [p| < 1, B = (b1, B2, ..., B)" with at least one of {Bg}lgzl being non-zero, x; =
(T 13ty T2it, - Tri)' 18 @ k X 1 vector of regressors, fl?’t = ( ;M, 572“ ey Z’?vmyt)/ denotes an m,, x 1
true vector of unobservable factors. The m, x 1 vector 721‘ contains the true factor loadings

associated with f°,, whereas €;; is an idiosyncratic error. x; is subject to the following process:

Yt
Xit = Fg’ifi’,t + Vi, (3)
where I'); = (79,79, -, Yi;) denotes the true m, x k factor loading matrix, £, = (f91,, for - o mat)

! . .« 7. .
denotes an m, x 1 vector of true factors, and vy = (vi, Vo, ..., Ukit) is an idiosyncratic error
term which is independent of ;.

; -, and (non)overlapping
elements in fg}t and f};t may be correlated to each other. Importantly, our approach can control
for endogeneity of x;; which stems from the common components, whereas it is assumed to be
strongly exogenous with respect to the idiosyncratic errors, ;.

Remark 1 Our approach permits correlation between and within '72- and T'Y

Remark 2 When time invariant effects and cross-sectionally invariant time effects exist in
u; and X, all the results in this paper will remain unchanged if {y;,x;} is replaced with
the transformed variables {g;, %}, }, where y; = yy —0: — 9 + § and X3 = x3 — X; — X + X

5The main results of this paper naturally extend to the models with higher order lags, i.e. ARDL(p,q) for
p >0 and g > 0. Also the models with heterogeneous slopes are considered in Section 3.



with ¢; = T71 ZtT:o Yie, Yo = N1 ZZ]L Yie, § = N1 Zf\il Ui, and X;, X; and X are defined
analogously. Indeed, the experiments for our proposed estimators and tests implemented in
Section 4 are based on the transformed variables.

Stacking the T" observations for each ¢ yields

Yi = pYi—1 + XI,B +u; with u; = FS"}’SZ + [or (4)
where y; = (Yi, Yio, - Yir)'s Yio1 = L'Yi = (Yio, Vi, -, Yir—1) with L7 being the j™ lag
operator, X; = (X1, Xi2, -, X))y Wi = (Wi, Wiz, ooy i), Fg = (f5,1>f5,z7---,f§,T)’ and g; =
(81'1, Ei2y ony giT),- Snmlarly,

X; = F)Iy, + Vi, (5)
where F0 = (fa(l17 f£72, ey f:g,T)/ and V; = (v;1,Vio, ..., vir)'.

Let W; = (y; _1,X;) and 8 = (p, 8')’. The model in (4) can be written more concisely as

Our estimation approach involves two steps. In the first step, we asymptotically eliminate
the common factors in X; by projecting them out, then using the defactored regressors as
instruments to consistently estimate the structural parameters of the model. To illustrate the
first step estimator, momentarily supposing F? observable, consider the following projection
matrices:

Mpo = Iy — FO (FYF0) 'FY; My =1 — FS_, (F”

VAR FL, ()
where Fgﬁl = L'FY. If FY were observed, premultiplying X; by Mpo would yield MpoX; =
Mpo V. Assuming V; is independent of &;, F), F§) and v}, it is easily seen that E(X;Mpou;) =
E(V:Mpou;) = 0. Furthermore, let X; _; = L’X;. So long as {yiu,x};}, t = 0,1,...,T is
observed, the T" x k matrix X, _; is also observed. Using similar assumptions, one can show
that B(X]_1Mpo_w;) = E(V]_Mpo_u;) = 0. Now collect the set of the instrumental
variables: 7 7

Z: = (MFQXZ»,MFSAXH) (T x 2k). 8)

Given the model in equation (6), it is clear that Z; satisfies E(Z,u;) = 0 and also F(Z;W;) # 0,
thus, it is a valid instrument set.5

Having obtained the consistent first step estimator, in the second step of our approach we
estimate the factors in the error term, Fg, using the residuals in the first step IV regression.
Then we asymptotically eliminate Fg from the entire model by projecting them out from
{yi, W;} and use the instrumental variables Z; to obtain the second step estimator. To portray
the second step estimator, temporarily supposing F(y) observable, define the projection matrix

My = Ir — F) (F)F,) " Fy). (9)
Premultiplying the model (6) by Mpo we obtain
Mproy; = MpoW;0 + Mpoe;, (10)

where the factor component Fg'ygi in the error term is swept away. With a similar reasoning

given in the first step estimation, we can easily see that F(Z;Mpoe;) = 0 and E(Z;MpoW;) #

6In general, for ARDL(p, q) models, T' x (s + 1)k instruments set {MF;)__TXZ-’,T} o where s = q + [p/k]

with [.] being the ceiling function, is necessary.



0. Therefore, it is straightforward to apply instrumental variable (IV) estimation using Z; to
the transformed model in (10).7

In practice, the factors F2, ng_l and Fg are usually not observed. As will be discussed in
detail below, we replace these factors with the estimated ones based on the principal compo-
nents approach, as advanced in Bai (2003) and Bai (2009a), among many others.®

In this section and the next, we treat the number of factors, m, and m, as given. In practice,
these should be estimated. m, can be estimated from the raw data x;;, t =0,....,T,i=1,..., N,
by using the methods which have been proposed in the literature, such as information criteria
of Bai and Ng (2002) and the eigenvalue methods of Ahn and Horenstein (2013). m, can be
estimated using the above mentioned methods from the residual covariance matrix.” In the
Monte Carlo section below, we use the various existing methods to determine the number of
factors, and it will be shown that these provide quite accurate determination of the number of
factors with our experimental design.

Remark 3 Since our approach makes use of the transformed x’s as instruments, identification
of p requires that at least one element in B is not equal to zero, given model (3). We believe
this is a mild condition, especially compared to a restriction that all the elements in B are
non-zero. Specifically, identification of the autoregressive parameter can be achieved based on
the covariate(s) and lagged value(s) corresponding to the non-zero slope coefficient(s). Notably,
it is not necessary to know which covariates have non-zero coefficients since by construction the
IV estimation procedure does not require that all instruments are relevant to all endogenous
regressors.

Remark 4 More instruments potentially are available when further lags of x;; are observed.
In particular, given model (3), when {x;};_, ; for j > 1 are observable, (j + 1)k instruments
can be used instead of (8):

7 — (MFQX“MFSAX,»,_I, o Mpo _jxl,_j) (T x (j + 1)k). (11)

It is well documented in the literature that the larger the number of instruments, the more
efficient but more biased the estimator will become. In this paper we assume a small finite
number j > 1 which does not depend on sample size, 7', in particular.!® Without loss of
generality, we set ;7 = 1 for the theoretical analysis in Sections 2 and 3. In Section 4 we
conduct finite sample experiment with different values of j.

To obtain our results it is sufficient to make the following assumptions, where tr [A] and
[|A|| = \/tr [A’A] denote the trace and Frobenius (Euclidean) norm of matrix A, respectively,
and A is a finite positive constant.

Assumption 1 (idiosyncratic error in y): ¢; is independently distributed across ¢ and ¢,
with E(ey) = 0, E(2) = 02,,, and E |e4*™® < A < oo for a small positive constant §.

e,it)

Assumption 2 (idiosyncratic error in x): (i) vy is independently distributed across ¢
and group-wise independent from e;; (ii) E (vez) = 0 and E \v&-t|8+5 < A < oo (iii)

"This IV estimation is equivalent to the one using the transformed instrument set, M Fo Z;, for the original
model (6). '

80ne could employ Pesaran’s (2006) approach to estimate the common factors in the regressors.

9See Bai (2009b, C.3) for discussion on estimation of the number of factors in disturbances.

10The limit behaviour of the estimators when the number of instruments increases with 7" might be of
theoretical interest, however, it is beyond the scope of this paper. See Alvarez and Arellano (2003) among
others for a related analysis.



4
T_l Zzzl 23:1 E |U€isvéit|1+6 S A < o3 <1V) E ‘N_l/Q zlf\il [U&'svfit —F (vfisvﬁt>] S

A < oo forevery £, tand s; (v) N2 ST ST ST ST Jeov (Ve Veir Ve )| <
A < oo; (vi) the largest eigenvalue of E (v;v);) is bounded uniformly for every ¢, i and
T.

Assumption 3 (stationary factors): f), = C.(L)ey,, and f), = C,(L)ey, ;, where C,(L)
and C,(L) are absolutely summable, ef,; ~ i.i.d.(0,X,) and ey, ; ~ i.i.d.(0,Xy,),
where Xy, and Xy, are positive definite matrices. Each element of ey, ; and ey, ; has
finite fourth order moments and are group-wise independent from v;; and €.

Assumption 4 (random factor loadings): I'); ~ i.i.d.(0, Xr,), v}, ~ i.i.d.(0, X,), where
Y, and X, are positive definite matrices, and each element of T'); and +}; has finite
fourth order moments. IT'); and -y, are independent groups from ey, v, ey, and ey, ;.

Assumption 5 (identification of 6): (i) A;p = T 'Z'W,, B,y = T 'Z\Z;, A1 =

T-'Z'M Fng’ and B, r = T-'Z'M Fo Z; have full column rank for all ¢ for a sufficiently

- 2+2 - ||2+28

large T'; (ii) EHALT) <A<oo, E )Bi’TH < A < o0, E||AZ~,T||2+26 <A< oo

and E |B;7||*" < A < oo for all i for a sufficiently large T'; (iii) E ||@ il < A < 00

for all i for a sufficiently large T, where @ p;r = Tfl/ZZi'Mpgei, and E (@ pir@pr) 1S a pos-

itive definite matrix for all ¢ for a sufficiently large T. In addition,
By 700 NESN B (@pir@er) = Q, which is a fixed positive definite matrix.

The assumptions above require some discussion. First of all, notice that Assumption 1
allows non-normality and (unconditional) times-series and cross-sectional heteroskedasticity in
the idiosyncratic errors in the equation for y. Assumptions 2 and 3 allow for serial correlation
in the idiosyncratic errors in the equation for x and the factors. Assumption 2 is in line with
Bai (2003) but assumes independence across i, which can be relaxed such that the factors
and (g4, v;) and/or €5, and ¢, are weakly dependent, provided that there exist higher order
moments; see Assumptions D-F in Bai (2003)!!. Assumptions 3 and 4 are standard in the
principal components literature; see e.g. Bai (2003) among others. Assumption 3 permits
correlations between f}, and f),, and within each of them. Assumption 4 allows for possible
non-zero correlations between 'y(y)i and I‘gi, and within each of them, which are the loadings
associated with the factors fg’t and f;t. Since the variables y; and x;; of the same individual
unit ¢ can be affected in a related manner by the common shocks, allowing for this possibility
is potentially important in practice. Finally, Assumption 5(i)-(ii) is common in overidentified
instrumental variable (IV) estimation; for example, see Wooldridge (2002, Ch5). Assumption
5(iii) is required for identification of the estimator, the consistency property of the variance-
covariance estimator and the asymptotic normality of the estimator as N and T tend to infinity
jointly.

Let us begin with the discussion of the first step IV estimator of our approach. Given
m,, the factors are extracted using principal components (PC) from {X;}Y,. Define F, as
VT times the eigenvectors corresponding to the m, largest eigenvalues of the 7' x T matrix
SV X, X!/NT. ¥, _; is defined in the same way, but this time based on 3. | X1 X _/NT.

Remark 5 Note that FO, T, FO |, (FY and 49;) can be identified and estimated up to an
invertible m, x m, (and m, x m,) matrix transformation; see, Bai and Ng (2013), among
others. For example, F, is a consistent estimator of F, = F.G,, where G, is an invertible

matrix which makes F,F,/T = Iy and 7,; = G;'~9 such that S35, SN ~,.~}, is a diagonal

' This includes conditional heteroskedasticity, such as ARCH or GARCH processes.



matrix. We define F, _;, (F, and «,,) in an analogous manner, which are estimated by the

PC method.

The empirical counterparts of the projection matrices defined in (7) and (9) are given by

A

. A~ LA N N -1
My, =T =B, (FF,) B My, =T =B (BB ) B (12)

x,—1

The associated transformed instrument matrix discussed above is

Z; = (M X My, X)) (13)
We propose the following first-step instrumental variable (IV) estimator of :
~ - L 21 ~
Orv = (AN ByrAn ) AnrByr8nrs (14)
where
2 1 & 1 4p = 1 &,
Anr = — ZW;, By = — 2.7, Snr = —— 7y, 15
NT NT; i ) NT NT; i gNT NT; iy ( )

Firstly we show consistency of the above estimator. To begin with, from (6) and (14) we
obtain

a 2! 2-1 2 L 21 1 N
VNT (em - 9) - (ANTB ANT) AyrByr (— ZZ;uZ) . (16)

Since the asymptotic properties of the estimator are primarily determined by those of Zf\il Z;ul /VNT,

we focus on this term. The formal analysis is provided as a proposition below, where (N, T') EN
oo signifies that N and T tend to infinity jointly.

Proposition 1 Under Assumptions 1-5, as (N,T) = oo such that N/T — ¢ with 0 < ¢ < o0,

N
1 ~
WE Zn, \/_E Z’ul +14/ blNT+\/ b2NT+0p
i=1

where Z; is defined by (13), Z; = (MpX;, MFo 15(1',—1); X;=X;,—+% SN X, T (19,07 T,
Xi1 = Xio1— £ 30 X T (X0,0) " ng; YN = & 201 iy VoYW and biyy =
[blllNTa bllQNT] bont = [bh N, Boony]” with

N N -1
1 V’V 1 (F.F° Fq,
b _ JI\OI TO T+ T x
11INT N ; ]Zl T ( ka) T T
N N ¥ -1
1 Vi _1Vja L (FYFD Fo_w
b = b2 ST 0 (400 z, z, z, .
12NT N ; ; T zj ( Jsz) < T ) T ’
N -1
1 _ FO/FO _
b =~ g ST (V) () F S M,
=1
N or 0 -1
1 1 (F) _Fo _
boonr = “NT ZF% (TgkN) 1 (%) Fg’,—lszTrlMFf,flui’
i=1
V=V, — —Zn 1Vnrg,n (Y0n) T, Viey = Viog — 300 Vi T (Y0, 7' T,

S k N
YNt = N Ze:1 Zj:l E (ijvéj) and Spyr,-1 = % > =1 Zj:l E (ij,—lvzj,fl)'

7



Remark 6 The source of the bias term in Proposition 1 is different than the bias terms
reported in Bai (2009a) and Moon and Weidner (2017). In particular, the bias term of our
estimator arises primarily due to the correlation between the factor loadings associated with
F, in x and the error term in the equation of y, u;. On the other hand, the two bias terms
in Bai (2009a) and Moon and Weidner (2017) arise from error serial dependence and weak
cross-sectional dependence. In our case, error serial correlation in the idiosyncratic part of the
X process, vy, does not result in bias because vy is not correlated with the error term in the
y equation, ;. Also note that Moon and Weidner (2017) report additional bias term that
generalises the small T bias, called “Nickell bias,” which typically occurs in the least square
estimation of dynamic panel models. Our estimator is not subject to such a bias as it is based
on instrumental variable method.

From the result stated in Proposition 1 it can be shown that S~ Z/u;/v/NT is O,(1)
and tends to a multivariate distribution. In addition, \/T/Nbiyr and /N/Tbany are O,(1)
as (N,T) % oo such that N/T — ¢ with 0 < ¢ < oo. Therefore, in such situation the IV

estimator is v N7T-consistent.
The above discussion is formally summarised in the following theorem:

Theorem 1 Consider model (1)-(3) and suppose that Assumptions 1-5 hold true. Then,
VNT (é,v - 0) ~0,(1)

as (N, T) 2y 00 such that N/T — ¢ with 0 < ¢ < co, where Oy is defined in (14).

Even though the estimator O,y is vV NT-consistent, under our assumptions the limiting
distribution of v NT <é v — 0) will contain asymptotic bias terms such as the limits of by

and boyr, which are defined in Proposition 1.'2 Rather than bias-correcting this estimator,
we propose to compute a potentially more efficient second-step estimator, by asymptotically
projecting out F, from the model using Ory.

To compute the second step estimator, ﬁrstly the factors F,, are estimated using principal
components from {uz}Z 1, Where @; = y; — W, OIV with 01\/ being a first-step IV estimator
defined in (14). We define F as VT times the eigenvectors corresponding to the m, largest
cigenvalues of the T x T matrix SV | o;&,/NT.

The (sub-optimal) second step IV estimator is defined as

o = (AsBibAxr)  AbrBiigur, (1)
where
R 1 N R R 1 N R R 1 N .
Avr = 5% ; ZiMy, Wi, Byr = ; ZiM, Zi, gnr = o ; ZMyy:  (18)
with

A A~ o~ N1 4
My, =T - B, (B F,) F), (19)

In order to show consistency of 8y, we use again (6) and (17) to obtain:

. 3 N
VNT (é,v - 9) - (A’NTB;&T ANT> AL, Bi (ﬁ > ZMFu> . (20)

120f course we could consistently estimate these bias terms.



The asymptotic property of the key term ﬁ ZZ]L Z;M f, W In (20) is stated in the following
proposition.

Proposition 2 Under Assumptions 1-5, as (N, T) % oo such that N/T — ¢ with 0 < ¢ < 00,

N N
1 - 1
i=1 =1

where Z; is defined by (13).

From Proposition 2 we see that the estimation effect in \/#—T Zfil Z;M W is asymptotically
ignorable. Since g; is independent of Z; and Fg with zero mean, the limiting distribution of
ﬁ Zfil Z;M 7,0 18 centred at zero. The following theorem provides asymptotic normality

of the distribution of 8y, based on Hansen’s (2007) law of large numbers and central limit
theorem, which are restated as Lemmas 1 and 2 in Appendix A.

Theorem 2 Suppose that Assumptions 1-5 hold true under model (1)-(3). Then, as (N,T) EN
oo such that N/T — ¢ with 0 < ¢ < o0,

(i) i
VNT <§W ~ 0> 4 N(0,%),
where 51V is defined by (17) and
¥ - (AB'A)A'B'OB A (A'BT'A)

is a positive definite matriz, A = plimy Ayr and B = plimy 7, Byr with Ayr and
By defined in (18), and Q is defined in Assumption 5.
(i) ¥ yp — ® 5 0, where

—~ “ N N -1 “ N N N N N N —1
Uyr = <A/NTB]_VITANT> AN ByrQnrByrAnr <A'NTBJ_VITANT> ; (21)
with
. 1 K. .
Qvr = 7 > LMy, 0,0 M, Z (22)

and ﬁl =Y — Wié[‘/.
Finally we propose the optimal second step estimator, which we recommend to use:
2 ~ ~ ~ -1 5 ~
Orv2 = (AEVTQJ_VITANT> AN QNN (23)

where A np and By are defined in (18), and Qnr is given in (22). The following corollary
describes the asymptotic properties of the estimator:

Corollary 1 Suppose that Assumptions 1-5 hold true under model (1)-(3). Then, as (N, T) EN
oo such that N/T — ¢ with 0 < ¢ < 0,

VNT (61, - 6) 5 N (0, (a'27'A) )

and

Ay QA — A'Q7TA B o,
where Oy, is defined by (23), A = plimy 7, Anr and Q is defined in Assumption, 5.
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The associated overidentifying restrictions test statistic is given by
1 N N
s = () (S0, 2
i=1 i=1

where @; = y; — W,;0;12, and Qyr is defined by (22). The limit distribution of the overiden-
tifying restrictions test statistic is established in the following theorem:

Theorem 3 Suppose that Assumptions 1-5 hold true under model (1)-(3). Then, as (N, T) EN
oo such that N/T — ¢ with 0 < ¢ < o0,

SNT i) Xiqf (25)
for k > 1, where Syt is defined in (24).

Remark 7 The overidentifying restrictions test is particularly useful in our approach. Firstly,
it is expected to pick up the violation of exogeneity assumption on the idiosyncratic error
in the equation for z. Secondly, if the slope vector, 6, is cross-sectionally heterogeneous,
the orthogonality property of the instruments may be lost hence the proposed estimators in
this section may become inconsistent. In such a case the test is expected to reject the null
hypothesis.

In the next section we discuss estimation of models with heterogeneous slope coefficients.

3 The Model with Heterogeneous Coefficients

So far we have discussed estimation of the model with homogeneous slopes. In this section we
consider a model where the coefficients are heterogeneous across i:

yi = W,0; +u;, (26)

where W; = (y; _1, X;) with X; follows the factor structure defined by (5), 8; = (p;, 3;)" with
Sup;<;<n |pi] < 1 and w; is defined by (4). It is widely known that, for dynamic panel data

models, the pooled estimator, including 0 1va, will be inconsistent to, say, 8 = F (0;), if the
slopes are cross-sectionally heterogeneous.'® Henceforth, we introduce an estimator of ; then
propose a mean group [V estimator of the population average of 8; and establish its consistency
and asymptotic normality.

To begin with, we introduce the following additional assumptions about the heterogeneous
slopes, 6;:

Assumption 6 (random coefficients): (i) 6, = 6 +n,, 0, ~ i.i.d. (0,%,), where 3, is a
fixed positive definite matrix; (i) #; is independent of T, vy;, €, Vi, €p, ¢ and ey, ;

(iii) m, satisfies the tail bound:

z

1 2
P(|nir| > 2) < 2exp (—— X )

2 a-+bz

for all z (and all 7) and fixed a,b > 0, where 7;, is the r-th element of n, for 2 < r < k+1.

13See Pesaran and Smith (1995).
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Assumption 7 (moment condition): (i) E|n;|* < A; (ii) E||TY2V/F||* < A;
(i) B N-Y2T-12 500 ST (Vive — E(Vivy)y% |t < A; In addition,

J=1

(iv) E(T_1/2 212:1 23:1@1?@% - Evgit))Q <A.

Assumption 8 (identification of 6;): A; = plimy_,. A, has full column rank, B; =

plimy o Bir and X; = plimy_, T7'Z:M Fouu;M poZ; are positive definite, uniformly.

Assumptions 6(i)-(ii) are standard in the random coefficient literature; see, for example,
Pesaran (2006). Assumptions 6(iii), 7 and 8 are required for the estimators of 8; tending to
their limiting distributions, uniformly.

Now it is ready to introduce the first-step IV estimator of 6;:

~ 2 2—12 L 2
OIV,i = (Ai,TBi,TAi,T> Ai,TBi,Tgi,Tv (27)
where A ) A . )

We can see from (28) that the instrument set used here is M, Z:. Tt is equivalent to making

use of Z; for the model (26) premultiplied by M, , which is expected to produce more efficient
first step IV estimator of @; if the span of FY includes a subset of FJ.'* Using (26) and (27)
we have

al 2 —1 al 2 —1

. —1
VT (ém . ei) - (ALTBLTALT) A,4B,; (T—l/Qz;M Fu) . (29)
The limiting property of the 7/ 2Z;l\/I £, ; 1s given by the following proposition.

Proposition 3 Consider the model in equation (26). Under Assumptions 1-6, as (N, T) ENNS
such that N/T — ¢ with 0 < ¢ < 0o, we have

T-'2ZM g w; = TV ZMpou; + VTO, (332)
where Z;, M. andZ; are defined by (8), (12) and (13), respectively, and d 7 = min {\/T, \/N}

Using the result stated in Proposition 3 we see that T-1/2Z!M u, is O,(1) and tends to

a random vector as (N, T) Jy o0 such that N/T — ¢ with 0 < ¢ < co. The formal result is
summarised in the theorem below:

Theorem 4 Consider model (26) and suppose that Assumptions 1-8 hold true. Then, as
(N, T) % oo such that N/T — ¢ with 0 < ¢ < oo, for each i,

VT (ém _ ai) 4 N (0, (A/B;'A;)"AIB;'E,B A (AB 1A ) (30)

where OAIW is defined in (27), and A;, B; and 3; are defined in Assumption 8.

14We could construct the first-step IV estimator of 8 in Section 2 using M 7 7, instead of Z;, however, the
second-step estimator will be asymptotically equivalent to the proposed one which is based on M F}Z when

the span of FY includes a subset of F?.
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Therefore, the estimator ] v, is vV T-consistent to 6;.

Using a similar line of the discussion for the IV estimator in Section 2, we could consider
a mean group IV estimator using the second step estimator, attempting to asymptotically
project out Fg from the model, i.e., Mpgyi = MFQWiBZ- + Mpgui, then apply our IV method
to estimate 6;. However, to deal with the heterogeneous slopes, F, should be estimated using
the residuals from the time series I'V regression, i; = y; —Wié 1v,i. Since 0 1vi 1s v/ T-consistent,
not v/ NT-consistent, the estimation of F, may become very inefficient. Due to this we will not
pursue such an estimator here. Note that the estimation of F, for the first step IV estimator
does not suffer from a similar problem, because it can be estimated using the raw data {Xz}f\il

Now define the mean group estimator of 6:

N
~ 1 ~
Orvie = Z Orv,, (31)
where 8y, is given in (27). From (26), (29) and Assumptions 1-8 it can be shown that'?
Lo
VN<9WMG—9) = \/—Nizl"?mLOp(l). (32)

It is easily seen that \/—% SV, 4 N (0,%,) as N — oo, which implies that @7y ¢ is v/ N-

consistent. The asymptotic normality of 0y v and the consistency of an estimator of X, are
summarised in the following theorem:

Theorem 5 Consider model (26) with (5) and suppose that Assumptions 1-7 hold true. Then,
as (N, T) 2y 00 such that N/T — ¢ with 0 < ¢ < o0,
(i)
VN (Brvi —6) 5 N (0,3,), (33)

where Oy is defined in (31);
(i)
3, -%,50 (34)
where
_ 1 M . . . /
S =72 (i — Orvarc) (Brvi = Orvarc) (35)

i=

élw and 01y e are given by (27) and (31), respectively.

4 Monte Carlo Experiments

This section investigates the finite sample behaviour of the proposed estimators by means of
Monte Carlo experiments, based on bias, root mean squared error (RMSE), empirical size and
power of the t-test. In particular, we examine the optimal two-step IV estimator (IV2), which
is defined in (23), and the mean group IV estimator (IVMG), defined in (31). To see the effects
of choice of the number of instruments (see Remark 4), we consider two sets of instruments for

IV2 and IVMG, Z;:
IV set a: (Mg X My, X 1) (Tx2k)

15See the proof of Theorem 5.
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IV set b: (MFXMF_ X 1, M _QXi,,2> (T'x3k). (36)

1 x,

The instrument sets used for the IV estimators are denoted by the superscripts a and b (e.g.
IV29).

For the purposes of comparison, we also investigate the performance of the bias-corrected
quasi maximum likelihood estimator (BC-QMLE) recently proposed by Moon and Weidner
(2017), as well as the CCE mean group (CCEMG) estimator and its bias-corrected version
(BC-CCEMG), put forward by Chudik and Pesaran (2015a).

The bias-corrected QMLE estimator, @ po_qare, is defined as'®

éBCfQMLE‘ = éQMLE - BQMLE> (37)

where

éQMLE = argmin Lyt (0);
0co

LNT (9) = min ‘CNT (0, Fy, Fy) )
Fvay
T
. /
Lyt (0,Ty,Fy) = HP%D NT ZZI (yi — W) Mp, (yi — W.0),
with I'), = (’yy’l, e ,’yy’N)/, whereas the estimator of the bias, BQMLE, is defined in Definition 1
in Moon and Weidner (2017). The “t-test” in our experiment is computed using the estimator
of the variance-covariance matrix for @pc_gurr (Moon and Weidner, 2017; p.174). It should
be highlighted that Moon and Weidner (2017) do not assume a linear factor process in X,

which is specified by (3), hence they may permit more general processes for the covariates.
The CCEMG estimator is given by

N
bcopme = N7 Z bcor;, (38)

=1

where éCCE,i = (W;MQWZ)_l W;ngz, Mf{ = IT — FI (ﬁ/ﬁ)_l H/7 ﬁ = Nil ZZJ\LI I‘IZ Hz
contains (y;; X;) and their lags:

H; = (YiaYi,—17 s Yipy s XKy Xi 15 -~-aXi,—px7LT) ; (39)

where ¢ is a T'x1 vector of ones, y; _; = L’y; and Xi—j = L’X,;. In view of the strict
exogeneity of X, in our experimental design, which is discussed shortly below, p, = p lags
of y; are included but no lags of X;, namely p, = 0 in H;; see Chudik and Pesaran (2015a,
equation 38).'7 Following Chudik and Pesaran (2015a) we choose the integer part of 7/3
as the value of p. The “t-test” is computed using the estimated variance-covariance matrix,

—~ ~ ~ - ~ /
Y MGCCE = ﬁ Zfil (OCCEJ- — OMGCCE> (90031- - HMGCCE> . The bias-corrected CCEMG

estimator, Ogc_ccema, is given by

A ; 1 /A A
Opc_copmc = 20cceme — 3 (000EMG + OCCEMG) : (40)

16We are grateful to Martin Weidner for providing us the computational algorithm for the BC-QMLE esti-
mator.

1"We have also considered Dy = Pz = D, such that y; and X; have the same number of lags in H;. The
performance of the CCEMG estimator is slightly worse in this case. The results are reported in Tables C11-
C12 in Appendix C.
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where éf\leCC g denotes the mean group CCE estimator computed from the first half of the

available time period and 95\24)00015 from the second half. See Chudik and Pesaran (2015a) for
more details.!®

Following Remark 2, before computing the proposed IV estimators, the data are demeaned
using the within transformation in order to eliminate individual-specific effects. m, and 1,
are obtained in each replication, based on the eigenvalue ratio (ER) statistic proposed by Ahn
and Horenstein (2013, p.1207). In our experiment we set m, = 2 and m, = 3, as will be
shown shortly. For the estimation we set the maximum number of factors equal to three for m,
and four for 7m,. For the CCEMG estimator, the untransformed data, (y;, W;), are used but
a T'x1 vector of ones is included along with the cross-sectional averages, as described above.
Finally, for the computation of BC-QMLE, following the practice of Moon and Weidner (2015)
we use the within-transformed data, like in our IV estimators. To avoid introducing further
uncertainty by estimating the number of factors in wu;, the BC-QMLE is computed given the
true number of factors, m,,.

4.1 Design

We consider the following dynamic panel data model with two covariates and three factors:

k My
Yit = G + PilYiz—1 + Z BeiTeit + Wit Ugr = Z Vo so,t + Eits (41)
/=1 s=1

1=1,...N,t=—-49, ..., T, where

.s?,t = pfsfg,tfl + (1 - p?‘s)l/2gs,t7 (42)

with (54 ~i.i.d.N(0,1) for s =1, ..., m,. We set k =2 and m, = 3. We set pss = 0.5 for all s.

The idiosyncratic error, €;, is non-normal and heteroskedastic across both 7 and ¢, such
that e = o€ — 1)/V2, € ~ i.0.d.x3, with 02 = nigy, m; ~ i.i.d.x3/2, and o, = t/T for
t=0,1,...,T and unity otherwise.

It is straightforward to see that the average variance of €;; depends only on ¢2. Let 7, denote
the proportion of the average variance of u; due to ;. That is, we define 7, := ¢2/ (m, + ¢2).
Thus, for example, 7, = 3/4 means that the variance of the idiosyncratic error accounts for
75% of the total variance in w. In this case most of the variation in the total error is due to
the idiosyncratic component and the factor structure has relatively minor significance. Solving
in terms of ¢? yields

Ty,

We set ¢ such that m, € {1/4, 3/4}.
The process for the covariates is given by

T = i+ D VoS + v 1= 1,2, Nyt =—49, 48, T, (44)
s=1
for 0 =1,2.
We set m, = 2. This implies that the first two factors in ug, fy}, f5,, are also contained
in xpy, for £ = 1,2 whilst fg?t is included in wu; only. Observe that, using notation of earlier

sections, fg?,t = (f{]w fzota f:?t)/ and fa(t),t = (f{]n fgt)/'

18We are grateful to Alex Chudik for sharing his code to compute the (BC-)CCEMG estimator with us.
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The idiosyncratic errors of the process for the covariates are serially correlated, such that
Ve = : 1= p2 ) @, e ~ i.0.d.N(0,62 45
it Pou,eVeit—1 + ( sz) TWyeit, Wit 1.1.4. ( 790)’ ( )

for ¢ =1,2. We set p, ¢ = 0.5 for all /.

Initially, all individual-specific effects and factor loadings are generated as correlated and
mean-zero random variables, and they are distinguished using the superscript “*”. In particu-
lar, the mean-zero individual-specific effects are drawn as

aj ~ i d.N(0, (1= pi)*), g = puee + (1= pf o), (46)

where wy; ~ i.i.d.N(0, (1 — p;)?), for £ =1,2. We set p,, = 0.5 for £ =1,2.
Moreover, the mean-zero factor loadings in u; are generated as 7% ~ i.0.d.N(0,1) for s =
1,...,m, = 3, and the factor loadings in z1;; and x9; are drawn as

Viwi = pras¥sr + (1= 0500 *€rsis €1 ~ 4.d.N (0, 1) (47)

’Yg:z = p'y,Qs’Yg; + (1 - :0'2y,25)1/2€23i; §23i ~ ZZdN(Ov 1)7 (48)

respectively, for s = 1,...,m, = 2. The process (47) allows the factor loadings to f, and f3,
in x1; to be correlated with the factor loadings corresponding to the factor specific in uy, f??’t.
On the other hand, (48) ensures that the factor loadings to fﬂt and f3, in g are allowed to
be correlated with the factor loadings corresponding to the same factors in u;, f{),t and fgt.
We consider p, 11 = py12 € {0, 0.5}, whilst p, 91 = py 22 = 0.5.

Finally, the factor loadings entering the model are generated such that

Y =r4+r% (49)
where 0 0 0 0 0 0
o Yo Vi Vous o i Vit Vel
L = 7% 7?21‘ 7821‘ and I';" = 78; 7?51‘ 7852‘
v 0 0 v 00

Observe that, using notation of earlier sections, vy, = (77}, 79;, 7%;)’ and I, = (v3,v%) with
¥0: = (Vo1 Voe;) for £ =1,2. Also it is easily seen that the average of the factor loadings are
given by E (I'}) =T°. To ensure that the rank condition for CCEMG is satisfied, we set'?

1/4 1/4 —1
=1\ 12 -1 1/4 |. (50)
/2 0 0

We note that our estimators and BC-QMLE do not require this condition, and we also consider
the experiment with T = 0.2
In a similar manner, the individual effects entering the data generating process are such
that
Q; :04"‘04::#&' ZNZ+MZi> (51)
for £ =1,2, setting o = 1/2, g =1, pg = —1/2.
The slope coefficients are generated as

Pi = P+ Npi, Bri = P1 + g, and Ba; = Ba + 1. (52)

19See Assumption 6 in Chudik and Pesaran (2015a).
20The results are reported in Tables C7 and C8 in Appendix C.
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We consider p € {0.5,0.8}. Following Bai (2009a), we set 51 = 3 and 2 = 1 as a benchmark
case. In order to investigate the properties of the estimator when one of the slope coefficients
equals zero, we also consider $; = 3 and S = 0.

For the homogeneous slopes design, we set p; = p, f1; = [1 and [y = (. For the
heterogeneous slopes design, we specify 1,; ~ i.i.d.U [—¢, +¢], and

NBei = [(26)2/12} i pﬁgﬁzi + (1 - p%)l/z Npis

where £3,; is the standardised squared idiosyncratic errors in x4, computed as

Sﬁgi = - . 1/2°
s (-2 ]

with v_fl =71 ZtT:l v, v = N1 Zfilv_gi, for { =1,2. Weset ¢ =1/5, psg =0.4for { =1,2.
Denoting p, = pye, ¢ = 1,2, we define the signal-to-noise ratio (SNR) for the homogeneous
model, conditional on the factor structure and the individual-specific effects, as follows:

6%+5§ 2 i 2
SNR .= e —cu) £ _ (7)<t : (53)
var (e4) Q2

where £ is the information set that contains the factor structure and the individual-specific

effects,?! and var (¢;) is the overall average of E (¢2) over i and ¢. Solving for ¢* yields

2 2 2\ !

2=¢? [SNR— pUQ] (ﬁlJ“B;) . (54)
I Po 1 - Py

We set SNR = 4, which lies with the range {3,9} considered by the simulation study of Bun

and Kiviet (2006). We consider all the combinations of (7', N), for T' € {25,50, 100,200} and

N € {25,50,100,200}.

In order to investigate the power of the overidentifying restrictions test, which is defined in
(24), we consider violations of the null due to slope heterogeneity and endogeneity as a result
of the contemporaneous correlation between x;; and €;. For the slope heterogeneity, we use
the DGP specified in (52). For the case of endogeneity, we replace the DGP given by (45) with
Veir = PogVeic—1 + (1 — p2)?wpy + £44, where wy;; is defined previously, ¢ = 1, 2.

All results are obtained based on 2,000 replications, and all tests are conducted at the 5%
significance level. For the size of the “t-test”, Hy : p = p° (or Hy : B = B for £ = 1,2),
where p°, 8%, 89 are the true parameter values. For the power of the test, Hy : p = p°+ 0.1 (or
Hy: B8, =37 +0.1 for £ = 1,2) against two sided alternatives are considered. The power of the
“t-test” reported below is the size-corrected power, for which the 5% critical values used are
obtained as the 2.5% and 97.5% quantiles of the empirical distribution of the t-ratio under the
null hypothesis.??

4.2 Results

Tables 1-4 report the bias and RMSE of IV2°, BC-QMLE of Moon and Weidner (2017), IVMG?,
CCEMG of Chudik and Pesaran (2015a), and the size (nominal level is 5%) and power (size-
adjusted) of the associated t-tests for the panel ARDL(1,0) model with p = 0.5, 8; =3, 52 =1

21The reason we condition on these variables is that they influence both the composite error in the equation
for the dependent variable and the covariates.

22The size adjusted power is employed in this experiment as the finite T bias of the CCEMG and BC-QMLE
estimators and the size distortion of the associated statistical tests often make the power comparison too
confusing.
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with 7, = 3/4.2 To compare the sensitivity of the estimators to the correlation structure of
the factor loadings in x;; and u;;, in Tables 1 and 2 we consider independent factor loadings in
x;; and wu;, and in Tables 3 and 4 we consider correlated loadings.

We have investigated two different instruments sets for our estimators as explained by (36).
IV2¢ (IVMG®) uses 2k instruments and IV2? (IVMG?) 3k. As one might expect, the former has
smaller bias but the latter smaller dispersion. In terms of RMSE, the latter always performed
better. Therefore, we only report results for IV2® and IVMG®.2* Moreover, we do not report
results for BC-CCEMG, since in our experiments it did not reduce bias of CCEMG, neither
mitigated the size-distortion of the associated t-tests.?

Table 1 reports results for the model under slope homogeneity. Panel A corresponds to p
and Panel B to ;. The results for 5, are not reported because they are qualitatively similar
to those for ;.26 As we can see, IV2® appears to have virtually no bias. In particular, the
largest reported value of absolute bias is 0.1 for T" = 50, N = 25. In comparison, absolute
bias of BC-QMLE appears to be much larger, perhaps reflecting that bias correction is not
able to completely remove the bias under these circumstances. However, absolute bias steadily
declines with larger values of N and 7. In terms of RMSE, BC-QMLE outperforms IV2° and
other estimators, which reflects the higher efficiency of the maximum likelihood approach over
IV and least-squares. However, for larger values of N or T (especially N), the RMSE values of
IV2® are very close to those of BC-QMLE. The bias of IVMG? is similar to that of BC-QMLE,
whilst the bias of CCEMG tends to be much larger, especially when N = 25 or T' = 25, 50.
IVMG® mostly outperforms CCEMG in terms of RMSE.

In regards to inference, the size of the t-test associated with IV2? is close to the nominal
value in most cases, with moderate size distortions observed for N = 25. The size of IVMG?
appears to be very accurate unless 7' is much smaller than N. By contrast, both BC-QMLE
and CCEMG exhibit substantial size distortions, which may be partially attributed to the
relatively large bias of these estimators. In view of such size-distortions, size-adjusted power is
reported. As expected, under slope parameter homogeneity, the power of the estimators, IV2°
and BC-QMLE, is higher than MG-type estimators, at least when N and 7" are both relatively
small.

Next, we turn our attention to Panel B of Table 1, which reports results for ;. In com-
parison to Panel A, the bias of IV2? is slightly larger for small N and T, although it remains
smaller relative to other estimators. For instance, absolute bias of BC-QMLE is large when
N = 25 but steadily declines as the sample size increases. As a result, IV2® mostly outperforms
BC-QMLE in terms RMSE. Also, because of the large bias of BC-QMLE, it suffers from large
size-distortions. On the other hand, the properties of the absolute bias of IVMG? and CCEMG
are similar to that for p, in the sense that the former has smaller bias than the latter. In
contrast, the size of the IV2? is close to its nominal level with moderate distortion for N = 25.
The size of the t-test of IVMG? is very close to 5% for all combinations of N and 7', whilst
CCEMG exhibits moderate size distortions even for large values of N or T'.

Table 2 reports results for the model with heterogeneous slopes. Notice that IV2° and
BC-QMLE are not asymptotically justified in this case. This is confirmed in finite samples.
In particular, it is evident that IV2® exhibits systematic bias, fluctuating around 0.01 across
all combinations of N and 7. The bias of BC-QMLE is much larger, reaching values close
to 0.03 for p (Panel A), for large values of N and T'. This outcome is accompanied by large
size distortions for both estimators. By contrast, for IVMG? and CCEMG bias appears to

23The results for the specifications where {p, 81,82} = {0.8,3,1},{0.5,3,0} and m, = 1/4 are qualitatively
very similar. See Tables C1-C6 in Appendix C.

24The results for IV2® and IVMG® are reported in Tables C9 and C10 in Appendix C.

25The results for BC-CCEMG are provided in Tables C11 and C12 in Appendix C.

26These are available upon request from the authors.
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behave in a similar manner to the homogenous case in Table 1. Similarly, IVMG?® continues
to perform well in terms of size, whereas for CCEMG size properties improve substantially
compared to the homogeneous case, although they still deviate from the nominal value to a
significant extent, at least for small values of N or T'. Similar conclusions apply to Panel B,
with the main difference being that the size of the CCEMG estimator is closer to its nominal
level for all combinations of N and T', and power of the t-test appears to be smaller across all
estimators.

Now let us turn our attention to the case in which the factor loadings in z;; are correlated
with those in u;. The results for homogeneous slopes are reported in Table 3 and those for
heterogeneous slopes are shown in Table 4. The performance of IV2? and IVMG? is very similar
to that shown in Tables 1 and 2, which suggests the robustness of our approach against such
correlations in factor loadings. In contrast, for 81, the performance of BC-QMLE and CCEMG
appears to deteriorate when the factor loadings are correlated. For example, for T" = 100
and N = 25,50, 100, 200 the bias(x100) for BC-QMLE equals -4.0, 2.1, -0.5, 0.4, whereas the
corresponding values in the uncorrelated loadings design (Table 1 Panel B) are -1.6, -0.5, 0.2,
0.4. Consequently, in terms of RMSE and the size of the test, IV2® outperforms BC-QMLE.

For the models with heterogeneous slopes, interestingly the bias of the CCEMG estimator
for 81 does not decrease as sample size rises. For example, in the correlated loadings design
with heterogeneous slopes (Table 4 Panel B) the bias(x100) of CCEMG for g, for T'= N =
25,50, 100, 200 are 0.7, -0.8, -1.3, -1.5 whilst in the uncorrelated loadings design (Table 2 Panel
B) those are 2.2, 1.3, 0.1, -0.3. Consequently, IVMG® mostly outperforms CCEMG in terms of
bias, RMSE and size by a substantial margin.

Finally, we look at the finite sample behaviour of the overidentifying restrictions test based
on V2% estimator, which is summarised in Table 5. As emphasised in Remark 7, we would like
the test to reject the null when the exogeneity assumption on x;; is violated and/or when the
slope coeflicients are cross-sectionally heterogeneous. Table 5 contains two column blocks: the
left one entitled IV2® shows results using 2k instruments. In the right block entitled IV2® shows
results using additional instruments, which raises the total number of instruments to 3k. The
latter case provides for more degrees of freedom of the overidentifying restrictions test. As we
can see, the size of the test is sufficiently close to its nominal level for both sets of instruments.
On the other hand, there appear to be substantial differences in terms of the power of the
test against slope heterogeneity. In particular, when 2k instruments are employed, there is
no power, resulting in rejection frequencies equal to 4.7% and 5.0% for N = T = 100 and
N =T = 200. By contrast, when we add two more instruments, power increases dramatically,
such that for N =T = 100 and N = T = 200 power rises to 23.9% and 77.2%, respectively.
Finally the test has substantial power for both sets of instruments when the exogeneity of
x;; is violated - specifically, e;; is correlated with v;. For example, for N = T' = 100 and
N =T = 200 the power of the test with 2k instruments is 45.2% and 95.9%, whilst that with
3k instruments is 36.7% and 91.4%, respectively.

In conclusion, we recommend the use of the (optimal) second-step IV estimator, 01v- defined
by (23) for slope homogeneous models, and the mean group IV estimator, 8,y /¢ defined by (31)
for slope heterogeneous models with a moderate number of degrees of freedom. This is because

0 v is more efficient than ] 1vme for homogeneous slope specification but it becomes unreliable
for the models with heterogeneous slopes. We also note that ] vma and the associated t-test
seem reliable for the models with heterogeneous as well as homogeneous slope coefficients in
our experiment. Both estimators appear to be reasonably precise, and, notably, robust in cases
where factor loadings are mutually correlated. The size of the associated tests typically is
far more accurate compared to BC-QMLE and CCEMG, and they have sound power. The
choice between the two estimators depends on the assertion of heterogeneity in the slope
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coefficients. The overidentifying restrictions test associated with the optimal second-step IV
estimator has good power to reject the null under slope heterogeneity with sufficient degrees
of overidentification, which could be used as a guide.

5 Concluding Remarks

This paper develops two instrumental variable estimators for consistent estimation of homoge-
neous and heterogeneous dynamic panel data models with a multifactor error structure, when
both N and T are large. The proposed approach initially involves extracting the common
factors from the exogenous regressors of the model. Subsequently, the model is defactored,
and defactored regressors are used as instruments to build a consistent first-step IV estima-
tor, denoted as @yy-. For the case of homogeneous slope coefficients, subsequently the factors
entering the disturbance of the y process are extracted from the residuals obtained from the
one-step estimates; next, the entire model is defactored accordingly, and the defactored regres-
sors used in the first stage as instruments, are employed in order to build an optimal two-step

IV estimator, denoted as 6. For the case of heterogeneous slope coefficients, the proposed
approach involves mean group estimation of individual-specific IV regressions, based on the
aforementioned first-step instruments.

The two-step IV estimator is v/ NT-consistent under slope parameter homogeneity. Notably,
it requires no bias correction, unlike Moon and Weidner (2017). Similarly, the proposed mean
group IV estimator does not require any small T bias correction, unlike Chudik and Pesaran
(2015a), which employs a subsampling method for such adjustment.

The finite sample evidence reported in the paper suggests that the proposed estimators
perform reasonably well under all circumstances examined, and therefore it presents a good
alternative method of estimation to existing approaches. In particular, in comparison to al-
ternative methods examined, both IV estimators appear to have little or negligible bias in
most circumstances, and correct size of the t-test. Furthermore, the experimental results of
the overidentifying restrictions test show that it has high power when a key assumption of the
model is violated, namely the exogeneity of z.

Naturally, it is recommended to employ the optimal two-step IV estimator for slope ho-
mogeneous /{nodels, and the mean group IV estimator for slope heterogeneous models. This

is because 1v2 1s more efficient than ] rvme for homogeneous slope specification but it be-
comes unreliable for the models with heterogeneous slopes. We also note that éIVMG and
the associated t-test seem reliable for the models with heterogeneous as well as homogeneous
slope coefficients in our experiment. The choice of the estimators depends on the assertion of
heterogeneity in the slope coefficients. The experimental results show that the overidentifying
restriction test associated with the optimal second-step IV estimator in general has good power
to reject the null of slope homogeneity, unless the degrees of freedom of the test is very small.
Thus, the development of a direct test for slope heterogeneity is of importance. We leave this
avenue for future research.

In this paper we assumed that the covariates in the model is strongly exogenous with respect
to its idiosyncratic errors. This assumption may not be too restrictive for many applications,
thought, relaxing to weakly exogenous regressors, such that x; = Fg’ifg,t + Kejy—1 + v with
k = (K1, ..., k) may be of interest and worth a further investigation.

Finally, we note that our approach is quite general and actually applicable to a large class
of linear panel data models. For example, our method is applicable to the model considered
by Pesaran (2006), Bai and Li (2014), and Westerlund and Urbain (2015) among others: y;; =
x;,B + vyify + i with x; = TUf), 4 vi. Comparing our approach to the above mentioned
existing approaches may be an interesting research theme.
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Table 1: Bias, root mean squared error (RMSE) of IV2°, bias-corrected QMLE, IVMG? and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homoge-
neous slopes with {p, 81, f2} = {0.5,3, 1}, m, = 3/4, independent factor loadings in z1; & ug

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4

V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 00 00 00 00 -05 -06 -08 -1.0 -05 -07 -06 -0.7v -32 -34 -3.7 -39
50 -0.1 0.0 0.0 0.0 00 -03 -04 -05 -05 -04 -04 -04 -08 -1.0 -1.2 -1.5
100 0.0 00 00 0.0 0.1 -0.1 -02 -03 -0.2 -02 -0.2 -0.2 04 01 -0.1 -04
200 0.0 0.0 0.0 0.0 02 00 -01 -01 -0.1 -0.1 -0.1 -0.1 09 07 04 0.1
RMSE (x100)
25 3.2 22 1.7 1.1 1.5 1.2 12 1.2 3.3 24 18 14 41 4.0 4.0 4.1
50 21 14 10 0.7 1.0 08 0.6 0.6 23 16 1.2 0.9 1.8 15 15 1.6
100 14 1.0 07 04 07 05 04 0.3 14 1.1 0.7 0.5 1.1 09 06 06
200 1.0 0.7 04 0.3 0.5 04 03 0.2 1.0 07 05 04 1.2 09 07 04
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 95 74 6.9 48 183 227 37.4 59.1 55 6.1 7.5 10.7 282 51.1 81.3 97.7
50 10.2 6.0 6.0 5.7 13.5 15.1 228 45.0 6.5 6.4 6.9 92 13.8 227 49.8 81.8
100 84 64 63 52 135 14.8 174 27.0 56 58 64 73 124 144 184 39.0
200 98 66 57 56 168 11.6 122 17.2 6.2 49 47 73 328 36.1 34.5 24.7
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 87.5 98.2 99.9 100.0 99.8 100.0 100.0 100.0  80.7 94.8 99.5 100.0 48.2 54.0 57.4 63.2
50  98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0  96.1 99.9 100.0 100.0 99.7 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,82} = {0.5,3,1} and m, = 3/4
V2 QMLE TVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -0.2 -02 -0.1 00 -23 -1.1 -0.5 0.0 1.3 1.0 15 14 29 29 33 32
50 02 01 01 00 -18 -05 -0.1 04 09 07 08 0.7 1.1 14 19 20
100 -01 00 01 00 -16 -05 02 04 03 04 04 04 -06 -0.2 03 0.7
200 -0.2 00 00 00 -15 -03 0.1 0.2 0.0 0.2 01 0.2 -1.8 -1.2 -0.8 -0.2
RMSE (x100)
25 121 86 6.1 44 142 99 71 53 169 11.7 85 6.1 171 11.9 9.0 6.7
50 82 56 40 29 124 80 54 33 102 6.9 51 3.6 97 6.7 51 39
100 57 39 28 19 111 6.6 3.6 2.0 6.4 43 32 23 64 42 32 22
200 41 28 19 14 98 48 23 1.3 44 3.1 22 1.6 4.7 33 23 1.5
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 91 70 59 58 37.8 30.8 27.3 23.2 6.4 58 6.3 6.1 7.2 64 81 88
o0 87 6.1 57 58 446 32.3 22.7 14.6 5.9 52 6.2 6.9 6.8 6.0 6.8 10.1
100 86 6.7 63 62 482 321 16.0 10.2 6.7 53 56 5.9 70 65 72 7.3
200 88 6.1 6.7 6.2 51.6 255 10.5 7.7 5.8 5.0 b7 5.7 78 9.2 9.0 87
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25  17.6 254 43.2 66.8 6.9 124 19.6 404 11.1 18.2 30.7 494 125 21.9 324 54.0
50 27.0 474 722 92.6 8.1 15.6 385 882 223 38.6 59.5 8.0 21.9 414 70.1 89.8
100 47.8 73.6 94.0 100.0 8.4 248 834 99.8 36.3 65.8 90.0 99.5 34.7 62.9 89.8 99.7
200 71.3 95.0 99.8 100.0 9.4 49.0 99.0 100.0 62.7 90.7 99.2 100.0 45.3 76.4 97.5 100.0

Notes: The data generating process is yir = ot +pi¥it—1+> gy Beieir+wit, wir = S0y Y FO+ein, Toie = pei+ D21 V0 Fo% oo
£=1,2;i=1,.,N;t=-50,..,T and the first 50 observations are discarded; f2, = pssf%_; + (1 — p?s)l/cht, (st ~ 1.1.d.N(0,1),
“/soz‘ =vs+7L Ve ~ 1.4.d.N(0,1) for s =1,2,3, g4y = Geoit (€t —1)/V/2, € ~ i.z’.d.x% with o?t = nNipt, Ni ~ i.i.d.x%/Q, and ¢ =t/T
for t =0,1,...,7 and unity otherwise; '7251‘ = s + 7?;,, 'y?:i = p%1s'ygf +(1- ,03715)1/2515:', ’Yg; = p7,2572;* +(1- p3’25)1/2§23i,

Eesi ~ 14.d.N(0,1), iy = pu,eveie—1 + (1= p2 ) 2w, wein ~ i.1.d.N (0,302, )

2
’ gw/m‘,

~3.4.d.U[0.5,1.5] for £ =1,2, s =1,2.

We set p; = p, B1; = 1 and B2; = B2, pfs = py,2s = pu,e = 0.5 and py 15 = 0.0 for all ¢, s. IV2® and IVMG? are given by (23),
(31) with (36), BC-QMLE and CCEMG by (37), (38). The rank condition for CCEMG is met.
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Table 2: Bias, root mean squared error (RMSE) of IV2°, bias-corrected QMLE, IVMG? and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 1, 52} = {0.5,3,1}, m, = 3/4, independent factor loadings in 15 & wu;

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4

Iv2> QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 0.7 0.8 09 08 1.1 08 05 03 -07 -0.7 -06 -07 -31 -33 -3.6 -38
o0 1.1 1.1 11 1.1 20 1.9 18 18 -03 -03 -04 -04 -06 -09 -12 -15
100 1.0 1.2 1.2 1.2 25 25 23 23 -02 -02 -03 -02 04 03 -0.1 -0.3
200 1.1 1.2 13 1.3 27 26 26 26 -01 -0.1 -01 -0.1 1.0 08 05 0.2
RMSE (x100)
25 44 32 23 1.7 41 29 22 1.7 42 30 21 16 48 43 4.1 4.1
50 34 26 20 15 40 31 25 21 31 22 16 12 28 22 19 18
100 3.0 23 18 1.6 41 33 28 26 27 19 14 10 25 19 13 1.0
200 29 2.1 1.8 1.6 41 34 30 28 25 1.7 12 09 26 18 1.3 09
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 10.7 9.9 9.5 10.8 52.0473 474 486 6.2 7.0 7.0 9.2 18.6 30.7 56.7 84.2
50 11.6 12.0 13.1 171 63.6 67.5 73.1 79.7 52 6.3 59 62 83 102 16.2 364
100 12,5 13.3 17.1 277 75080.2 8.9 944 59 63 59 59 73 80 80 96
200 13.6 13.8 20.1 34.8 82.7 8.4 944 989 59 54 50 52 93 80 90 7.1
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 722 91.8 99.9 100.0 69.8 92.7 98.0 99.7 65.1 85.9 99.1 100.0 31.0 40.6 46.9 51.8
50 89.7 98.6 100.0 100.0 82.4 97.6 99.9 100.0 84.5 98.3 99.9 100.0 89.2 98.6 100.0 100.0
100 95.9 100.0 100.0 100.0 82.9 99.2 100.0 100.0 93.1 99.8 100.0 100.0 98.1 100.0 100.0 100.0
200 97.7 100.0 100.0 100.0 88.6 99.6 100.0 100.0 96.4 100.0 100.0 100.0 99.2 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,82} = {0.5,3,1} and m, = 3/4
Iv2> QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -19 -1.1 -13 -1.3 -49 41 -44 37 1.1 1.7 15 16 22 33 29 32
50 -16 -1.3 -11 -13 -54 40 -36 -3.7 05 07 09 04 08 1.3 18 1.9
100 -1.0 -1.2 -1.2 -1.2 -47 -40 -35 -34 05 02 03 03 -04 -04 01 0.6
20 -10 -1.1 -11 -12 -50 40 37 -36 02 01 01 02 -16 -14 -09 -0.3
RMSE (x100)
25 138 97 72 50 16.0121 95 7.3 168 11.9 86 6.1 16.8 122 9.0 6.7
50 96 6.9 48 36 145 98 73 57 104 72 52 36 98 7.2 53 3.8
100 70 50 35 26 126 87 6.0 48 70 49 33 24 6.7 47 32 23
200 5.1 36 28 21 117 7.7 54 44 49 34 25 1.7 53 38 26 1.7
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 11.0 80 81 73 416373 376 370 56 54 61 68 6.7 65 76 7.8
50 9.8 74 64 80 475399 356 412 59 56 60 49 6.1 63 75 9.1
100 95 88 73 86 528474 429 503 54 55 50 54 57 64 53 6.3
200 95 73 95 11.6 604 54.7 56.0 676 6.1 58 53 49 85 94 86 6.8
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25 10.5 15.2 24.2 40.5 41 55 45 74 12.1 194 29.7 47.6 128 19.7 30.9 534
50 14.7 28.5 46.5 70.1 3.3 56 75 13.0 199 33.6 564 83.5 19.8 38.1 62.6 89.9
100 28.1 46.7 73.7 94.5 44 6.4 12.7 224 36.1 579 86.6 99.1 33.4 51.3 87.7 99.5
200 45.3 68.2 924 998 45 64 13.7 275 52.2 81.2 979 100.0 34.6 64.0 94.4 99.9

Notes: The DGP is the same as that for Table 1 except that the slope coefficients are heterogeneous. Specifically,
. 2

pi = p+npi; Bei = Be+npyis Npi ~ 1.4.d.U [=1/5,4+1/5], and ng,; = [(2/5) /12]1/2%557@1‘ +(1- P32 s, where

€s,; is the standardised squared idiosyncratic errors in @y, computed as &g,; = (v3, — v3)/[N~! Zf;l(vz -

E)Q]l/z with vT%i =7 Zthl Vit E =N'Y

(=1,2.

N
i=1

21

TZ, for £ = 1,2, whereas (g,; ~ i.i.d.U (—v/3,V/3) for



Table 3: Bias, root mean squared error (RMSE) of IV2°, bias-corrected QMLE, IVMG? and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homoge-

neous slopes with {p, 81, B2} = {0.5,3,1}, m, = 3/4, correlated factor loadings in 15 & wu;

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4

V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 0.1 0.0 0.0 0.0 -04 -0y -09 -10 -0.7 -0.7 -0.6 -0.7 -3.2 -35 -3.6 -3.8
50 0.0 0.0 0.0 0.0 00 -03 -05 -06 -05 -04 -04 -03 -09 -10 -1.2 -14
100 0.0 0.0 0.0 0.0 0.1 -0.1 -02 -03 -03 -02 -0.2 -0.2 03 02 -01 -04
200 0.0 0.0 0.0 0.0 02 00 -01 -01 -0.1 -0.1 -0.1 -0.1 09 07 04 0.1
RMSE (x100)
25 3.1 22 16 1.1 1.6 14 13 1.3 34 26 19 1.5 43 41 4.0 4.0
50 2.1 14 1.0 0.7 1.1 08 0.7 0.7 23 15 1.1 0.9 1.8 16 15 1.6
100 14 1.0 06 04 07 05 04 04 1.5 1.0 0.7 0.6 1.1 09 07 06
200 1.0 06 04 0.3 06 04 03 0.2 1.0 07 05 04 1.2 09 06 04
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 75 64 6.1 54 185 26.0 39.1 59.2 5.8 7.0 79 11.5 30.2 52.8 77.8 94.9
50 87 70 6.7 49 16.4 17.8 25.5 46.9 59 54 6.5 87 143 255 49.1 76.6
100 89 6.5 5.2 48 13.4 14.2 18.7 30.2 59 64 52 6.6 135 17.1 23.5 40.7
200 86 54 6.1 5.3 16.0 10.7 123 17.1 6.2 54 55 6.6 329 357 334 28.1
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 89.0 98.0 100.0 100.0 99.8 100.0 100.0 100.0 78.9 93.7 99.0 99.9 45.3 48.1 55.7 60.7
50 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.5 99.6 100.0 100.0 99.5 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,82} = {0.5,3,1} and m, = 3/4
V2 QMLE TVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -0.2 0.2 0.0 -0.1 44 -32 -29 -16 1.3 1.7 14 1.5 06 12 13 1.9
50 0.0 0.0 0.0 -0.1 48 -29 -1.1 -0.1 09 07 08 05 -09 -04 02 0.7
100 0.2 -0.1 0.0 0.0 -40 -21 -05 04 06 02 03 04 -26 -23 -14 -05
200 0.0 0.0 0.0 0.0 3.6 -1.6 -0.1 0.3 0.2 02 02 0.2 -39 -33 -24 -14
RMSE (x100)
25 11.8 87 6.1 4.3 16.6 124 99 74 169 11.9 &85 6.2 16.6 124 88 6.4
50 81 5.6 4.0 2.7 145 107 73 47 100 6.8 50 35 101 71 49 3.5
100 58 39 28 1.9 134 86 49 25 6.4 44 32 2.2 72 52 36 23
200 39 28 19 14 122 68 3.1 14 43 3.1 21 15 6.3 48 32 21
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 85 75 6.2 6.1 44.5 40.8 379 32.2 5.8 59 59 6.3 6.8 74 69 7.5
50 88 54 6.3 44 50.4 40.0 27.4 18.9 5.1 49 6.0 5.0 83 78 59 6.8
100 80 6.3 6.4 5.0 52.6 34.7 179 9.9 5.1 44 54 43 108 125 11.1 7.9
200 82 5.7 50 7.0 55.5 30.8 13.0 8.0 5.7 50 46 55 182 248 24.2 215
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25 19.6 26.2 414 66.3 54 4.8 6.0 9.0 13.0 20.3 29.9 50.2 10.2 164 26.2 48.3
50 31.8 47.7 73.1 954 36 44 97 674 223 376 60.8 8.3 15.5 25.5 57.9 87.0
100 504 75.8 94.4 99.9 49 55 586 99.2 432 66.0 89.7 99.6 17.1 29.8 67.6 98.8
200 73.5 94.8 99.7 100.0 3.8 86 98.0100.0 659 91.2 99.2 100.0 14.9 279 73.8 99.7

Notes: The DGP is the same as that for Table 1 except that the factor loadings in x1; & wu; are correlated:
py1s = 0.5 in 7?:2‘ = Pv,ls’Ygf +(1 - p?y,ls)l/lesi-
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Table 4: Bias, root mean squared error (RMSE) of IV2°, bias-corrected QMLE, IVMG? and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 51, 52} = {0.5,3,1}, m, = 3/4, correlated factor loadings in z1;; & u;

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4

Iv2> QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 08 09 09 09 09 08 05 02 -0v -07v -07 -07 -31 -33 -35 -3.8
50 09 1.1 12 1.2 22 21 19 19 -04 -03 -03 -03 -0 -09 -11 -1.3
100 1.1 1.2 1.2 1.2 28 27 26 26 -02 -03 -02 -02 04 02 -0.1 -0.3
200 1.1 1.3 1.3 1.3 3.1 29 28 29 -0.1 -01 -0.1 -0.1 09 08 04 0.2
RMSE (x100)
25 44 3.1 23 1.7 43 3.2 25 20 41 30 22 1.7 48 43 4.1 4.1
50 3.5 26 20 1.6 42 33 26 23 32 22 16 12 29 23 19 18
100 3.0 23 18 1.6 44 35 30 28 27 20 14 10 26 19 14 1.1
200 2.8 22 1.8 1.6 45 3.7 32 31 25 18 13 09 26 19 14 1.0
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 11.7 9.2 9.3 10.5 53.250.6 51.5 53.7 63 66 74 89 17.3 30.0 549 81.9
50 12.7 11.5 129 198 66.2 67.6 723 81.5 6.2 51 68 68 9.0 11.6 17.3 353
100 11.6 13.1 159 263 775820 876 958 59 56 b5 6.2 86 82 83 13.0
200 12.3 14.1 219 333 84.4 893 93.7 990 55 53 49 54 94 10.1 109 9.6
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 719 92.8 99.6 100.0 64.8 90.1 96.6 99.0 61.2 &87.9 98.3 100.0 30.9 41.5 44.3 46.1
50 87.2 98.9 100.0 100.0 78.4 97.3 99.9 100.0 80.7 98.2 100.0 100.0 89.1 98.8 100.0 100.0
100 96.3 100.0 100.0 100.0 83.5 99.0 100.0 100.0 93.6 99.7 100.0 100.0 97.6 100.0 100.0 100.0
200 98.6 100.0 100.0 100.0 84.8 99.7 100.0 100.0 97.3 100.0 100.0 100.0 99.2 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,82} = {0.5,3,1} and m, = 3/4
Iv2> QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -12 -13 -14 -15 -76 -74 -65 -6.2 1.7 14 15 14 07 12 1.5 20
50 -1.0 -1.3 -12 -12 -85 -70 -59 49 09 04 07 07 -08 -08 01 09
100 -1.2 -10 -1.1 -1.2 -80 -6.7 -52 -45 02 05 04 03 -27v -20 -13 -0.6
200 -13 -10 -11 -12 -79 -60 -49 -46 01 03 02 01 -39 -32 -23 -1.5
RMSE (x100)
25 134 98 6.8 5.1 189152 121 103 169 11.9 85 6.1 17.0 123 9.0 6.4
50 96 6.9 48 35 175135 100 76 102 71 52 3.7 102 74 51 3.8
100 69 51 35 26 159114 81 60 67 48 34 23 7.7 55 38 26
200 53 38 27 21 151 97 6.7 55 50 36 25 1.7 69 50 35 24
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 96 7.5 6.5 6.6 481476 46.3 51.7 6.3 58 6.2 67 76 68 7.0 80
50 88 7.5 6.3 7.7 547 50.7 50.2 498 6.2 48 57 b7 82 72 67 84
100 9.0 90 73 82 594549 51.3 59.1 55 55 53 48 107 11.3 106 89
200 10.8 86 86 12.0 67.7 584 62.0 764 6.2 6.5 6.0 4.6 169 20.5 20.0 18.9
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25 14.2 16.6 25.0 39.6 3.1 1.9 09 1.5 11.6 16.5 29.8 474 10.7 16.6 26.4 46.5
50 20.5 28.3 46.9 72.3 1.5 1.6 26 3.0 19.2 35.0 55.0 829 16.1 25.6 51.8 81.8
100 28.5 45.7 74.3 954 20 1.0 2.7 58 33.0 60.2 86.1 99.1 14.8 294 62.9 96.1
200 40.8 66.5 92.6 99.8 22 1.8 26 73 50.3 80.5 98.0 100.0 11.0 24.4 655 97.3

Notes: The DGP is the same as that for Table 2 except that the factor loadings in x1; & wu; are correlated:
py1s = 0.5 in 7?:2‘ = Pv,ls’Ygf +(1 - p?y,ls)l/lesi-
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Table 5: Size and power of the overidentifying restrictions test for the panel ARDL(1,0) model with
{p,B1, B2} = {0.5,3,1}, m, = 3/4, correlated factor loadings in 1, & u

Iv2° V2’
TN 25 50 100 200 25 50 100 200
Slope Homogeneity (Size)
25 72 69 57 64 68 6.0 57 5.5
50 7.7 6.6 65 48 73 6.0 5.5 44
100 6.7 73 59 48 74 6.2 59 5.1
200 7.7 6.6 6.5 56 7.0 59 6.1 4.7
Slope Heterogeneity (Power)
25 75 62 60 54 83 79 88 101
50 6.9 59 54 57 86 104 126 22.0
100 74 56 4.7 49 11.2 13.6 23.9 44.3
200 7.0 59 58 5.0 14.6 24.0 45.3 7.2
Endogeneous Idiosyncratic Error of X (Power)
25 10.1 104 14.6 18.8 10.4 11.0 14.8 18.9
o0 12.3 16.1 23.5 37.8 119 159 200 314
100 17.2 27.6 45.2 70.3 14.4 20.7 36.7 60.2
200 28.2 46.4 73.2 95.9 22.5 37.6 62.8 914

Notes: The table reports the size and the power of overidentifying restrictions tests based on the IV2 estimator
using different set of instruments. IV2® uses (XZ.,XL_l) and IV2° (Xi,XL_l,XL_Q), where X; = Mp, X;
and Xi,_j = Mp, ;X; _j for j = 1,2. The test statistic is defined by (24). The tests for [V2® and Ivab
are referenced to the 95% quantiles of x3 and x3 distributions, respectively. The DGP for Slope Homogeneity
is of Table 3, for Slope Heterogeneity is of Table 4, and for Endogeneous Idiosyncratic Error of X, the DGP
of Table 3 is changed such that vy = py evei—1 + (1 — p%)l/me, it = gt + (1 — Tf)l/ng with op;z ~
1.4.d.N(0,1), £ = 1,2 (see notes to Table 1). We set 73 = 0.5 and 7 = 0 so that the idiosyncratic error of 1
is contemporaneously correlated with ;4

Appendix A: Proofs of Main Results

Lemma 1 Under Assumptions 1-5, as (N, T) 9y 00 such that N/T — ¢ with 0 < ¢ < o0,

T'ZMp Z; — T7 ZMpy Z; = 0,(1), (A1)
71 (z’MF - z;Mpg) W, = 0,(1). (A.2)

Lemma 2 Under Assumptions 1-5, as (N,T) 2y o0 such that N/T — ¢ with 0 < ¢ < o0,

1 R
N7 Y ZMy Zi — ZMpoZ; = o,(1), (A.3)
=1
1 N
2 (z;MFy - z;MFyo) W, = 0,(1). (A.4)

Lemma 3 Under Assumptions 1-5, as (N, T) 9y 00 such that N/T — ¢ with 0 < ¢ < o0,

ﬁ ﬁ:r% (TgkN)_l <F;;‘2> B F, (Zknr — Sinr) Mg w;
prt
=0, (T712) + 0, (535) + VTO, (633) (A.5)
and
1 X L (F F0 N\ _
NI ;Fgg (Y0hn) (T) F, 1 (Zevr—1 = Zpnr—1) Mp W
=0, (T72) +0, (65) + VTO, (533 (A.6)
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_ 1 k N < 1 k N ) , = o k N o
where Bpnt = 5 D0y Zj:l ViV BENT,~1 = R D1 ijl Vij,—1Vp; 1 and Bpnt = Y1 ijl E (VZJVZj>7
S _ 1k N p

SNt 1= § e 2jm B (vzj7,1v¢j7_1>,

Lemma 4 Under Assumptions 1-5, as (N,T) % co such that N/T — ¢ with 0 < ¢ < oo,

N
1 E 07 0/
i=1

N N
1 1 0 0 10
- \/ﬁﬁ Z Z Ty (TIkN) FmJV;MF u;
i=1 j=1
N - -1
1 1 [ FLFY .
- VNT3/2 D T2 (o) < T ) F,ZenrMp ui +o0p (1), (A.7)
i=1
and
| X
07 g0/
/'NT §I‘miFm,—1Mﬁmy_lui
| 1NN .
07 (~0  \~110
= /NTN ZZI‘I/Z (Trk:N) I‘zjV;',flMFx’ilui
i=1 j=1
N -~ 0 1
1 -1 F;,—lFm —1 S
T UNT? > To (Yokn) (T F, e Mg uwi40,(1). (A.8)
i=1
Lemma 5 Under Assumptions 1-5, as (N,T) Iy o0 such that N/T — ¢ with 0 < ¢ < o0,
| X
INT D TUFYM My w; =0, (1), (A.9)
i=1
| X
JNT D TUFY Mg Mg ui=o,(1). (A.10)
i=1

Lemma 6 Under Assumptions 1-5, as (N,T) 2y o0 such that N/T — ¢ with 0 < ¢ < o0,

3~
Z| =
-
NE

T (Yon) D0 ViMp u,

©
I
—
.
I
—

(=)
<

-1
| (TgkN) ngV;‘MF,Q u;

3-
==
hE
hE

-
Il
-
.
Il
-

i
=5
<)~
-
M) =
hE

=1 por
0/ (~r0 “1.0 VIV, 0 ~1 (FVYFY Fu;
Lo (TﬂikN) | T I‘acj (Tsz) T T

o
Il
_
<
Il
N
3
I
—

and

(A.11)
0
zj j,71Mpw,71ui
1 =1
1 N N .
NT N DD T (X)) TV Mg u;

N N N .
Tl -1 Vo1Vi- 1 [(FY_F) FY ju
REs PRI S LR & T

(A.12)
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Lemma 7 Under Assumptions 1-5, as (N,T) 2y o0 such that N/T — ¢ with 0 < ¢ < o0,

1 N

0 0 1 ]?‘/ FO - ~
/ - T T AN . .
N -1
1 0/ (~~0 -1 (FJF] 0§
and
N o/ 0 -1
1 0r 0 -1 Fm,lex,fl & <
W ;Fmi (Tka) (T Fm,—12kNT.,71Mpm,_1ui
N o 0 !
1 07 0 -1 Fz,lez,fl or <
W ; ].-‘:m (’rka) (T Fx77]EkNT,71MF£7_1u’L' + Op (].) . (A14)
Lemma 8 Under Assumptions 1-5, as (N,T) 2y 00 such that N/T — ¢ with 0 < ¢ < o0,
;XN
> VM u
VNT =
1 X
=L S VM,
NT =
N N -1
1 ViV o 1o -1 (FYFO FYu;
- = 221 = Y (Yn) T T T o (1), (A.15)
i=1 j=
and
1 /
NT ZVZ *1MFI W
i=1
T
= = Z;Vz)_lMFo o
=
N N
1 A% 7_1V],71 -1 FO:—lFO,—1 F; _qu
NT > T Ty (Yon) - T ) mT Fop (1) (4.16)
i=1 j=1
Lemma 9 Under Assumptions 1-5, as (N, T) 9y 00 such that N/T — ¢ with 0 < ¢ < 0,
R R
— VIM; M; u; = —— V/MpoMpog; + 0, (1), A7
JAT 2 ViMeMp i = S D ViMipMage: + o, (1) (A.17)
and

N
]' /
VNT Zvi,—lMﬁ
=1

x,—1

N
1 /
Mﬁyui = \/ﬁ i:E 1 Vz’,—lMF;’,f]MFSEi + 0p (1) , (A.18)

Proof of Proposition 1. Consider

(A.19)

=1
where Zl = MFIXZ-, MFI ﬂXZ-,,l}. We begin with the first component of Z-, which is MFI X;. Firstly, note
that

Ol_FO/

1 & 1
—— Y X/Mjui= —— Y IYFS
VNT ; TR UNT ;

N
1
M-: u;, + —— V;M U, A.20
7, T ?:1: P, (A.20)
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By using the results of Lemmas 3, 4, 6 and 7, the first term in (A.20) is given by

— < T T T
i=1 j=1n=1

[T 1 K& “10 VLV, 1 (FYFO\ ' Fy,
+ NTZZZF% (Ykn) lrgn ” jrglj (Y0kn) 1( < m) s
> (e

N
1 _
*WZ i (Yn)  FYEenrMpou; + o0, (1). (A.21)
=1

By making use of Lemma 8, the second term in (A.20) is given by

N -1
[T 1 VIV, 1 (FYFON\ ' Oy,
VNN E E T T3 (Yokn) < xT x) xT +op(1). (A.22)

=1 j=1
N N ¢ -1
T 1 \AZ -1 (FYFQ\ T Fou
_\/;NZZTJF%(TBW) ( ”Tm) T
i=1 j=1
N -1
N 1 -1 (FYF} >
—\ 77 2T (Toww) (T) FSinrMpgui + o (1)
i=1

1 ~ T N
=JNT Z X;MFglli +1/ NbllNT +4/ ?bﬂNT +o0,(1), (A.23)
i=1

where
s 1 <
Xi=Xi—+ Z X, Lo (Yorn) ' Tos,
n=1
By 1 Y
Vi=Vi—+5 D VAT (X)) T,
n=1
N N < —1
1 VIV, FOFO FYMpou;
b - = 7 ]1-10/‘ TO —1 T x x x
11INT N Lzzljgl T a:]( :EkN) T T ;
N -1
1 _, (FYFY =
boinT = NT ng/i(—rgkN) ! <T> FySinvtMpou;.
i=1

27



As for the second component of Zi, which is M~ X, _1, by following the same steps as before and using
again Lemmas 3, 4, 6, 7, 8, and using Mo 71F27_1 = 0, we obtain

| X
=2 XioMp
NT Pl x 1
| X
=—> X, M u
NT =
11 3 (Y% ) 'YX, M
_WNZZ :m( sz) x4 g, —1 FOV u;
i=1 j=1
N N ~7/ 0r -1 0r
T1 Vi Vi1 o o -1 [ Fo1Fo 4 Fy _qu
+\/NN;; T Los (Youn) T T
1

N L (FY_ RO\
0 - -1t S
— WZFI/Z (TgkN) (T) ng—lszT,flMEgy_lui + o0, (1)
=1

N
1 - [T N
= \/ﬁ E X; 1MF0 111 b12NT + b22NT + 0p ) (A24)
=1

where

P

0/ 10
i,—1 = z,fl E Xn,flr a:kN) I‘a:z’

Vi,fl = Vi,fl Z Vn,flrzn(Tsz) II‘O
n_l

i)

N N ~x7/ 0/ -1 0/
1 Vi_1V - [ F2 1Fm -1 F, _ju;
bionr = N E %F%(Tglw) ! ,T ,
i=1

. T
j=1
N o g0 -1
1 — Fa; — Fm — N
boonT = “NT ngli(rgkN) ' <1T1> thflszTflMFé’,flui'
i=1
Hence, we have
R 1 & /
7! _ . . . . .
INT > Ziwi = INT > {MFIXH MFz,ﬂle} u;
i=1 i=1
1 N o S ! T ., ’ ’
= a7 2 (MK My K] iy bl blays
i=1

N
1 ?[ 517> baanr] +0p (1)

1 L. [T N
= ﬁ ZZ;ul + NblNT + \/;bZNT + Op (1),
i=1

where Z; = [MFoXi,MFg X
expression given in Proposition 1. m

[ S

, bine = by nr, Playr) and boyr = [bh v, by nr]’s which provides the

Proof of Proposition 2. Now consider

7'M £, Wis (A.25)

S~
i+

where Z; = MFIXZ-,MFI 71X,»,,1] We start with the first component of Zi, ie. MFIXi, which can be



written as
1 N
—_— E X'Ms M4 u;
iV, VR, Wi
vVNT ]

N N
1 07 107 1 /
=—— Y IYF'M. M, u,+—> VM. M; u
ﬁNT; i+t T F. Fy \/W; i F, E,

1
VN
1
= Z ViMpoMpoe; + 0,(1), (A.26)

where the second and third equalities is due to Lemma 5 and 9, respectively.
As for the second component of Z;, which is Mz~ X; _;, by following the same steps as before and using
again Lemmas 5 and 9, we yield

N N
1 1
\/ﬁ E Xg,*lMFI,,lMﬁyui = \/ﬁ E VgtflMF—(z),—lMFv(/]Ei + Op(l)' (A27)
i=1 i=1

By combining the results above, we obtain the required expression. m

Lemma 10 Under Assumptions 1-5, as (N, T) 3y 00 such that N/T — ¢ with 0 < ¢ < o0,
T3 (Mg, — My ) wi = VTO, (533), (A.28)

T*l/zngpm’_

1

(M, ~ Mg ) w; = VTO, (33%) . (A.29)
72X (My, | = Mpy ) Mpou; = VTO, (633) (A.30)

x,—1

Proof of Proposition 3. Consider T’l/QZQMﬁIui where Zl = [MFIXZ-,MFI - Xi’,l]. Let us start with

1

the first component of Mg Z;, ie. M X;. By adding and subtracting we get

T7VAXM 0 = 72X Mpow; + T7/2X (M, — Mg ) w,
=T 2XMpou; + VTO, (557) (A.31)

where the second equality is due to result in (A.28) stated in Lemma 10.
Next is the second component of My Z;, which is My My~ X; . Again, by adding and subtracting

1
and using Lemma 10, we get

1M,

z,—1

Mg u;

=T 12X\ Mp  Mpow; + T7V2XIM (MF - MFg) w;

— T—1/2x’,)71MFL71MF§ui + ﬁop (5&%“)

_ T71/2X/‘7_1MF’£~71MF£ui 4 T*1/2X;7_1 (1\/[}%%171 — MFﬁ,,l) Mpgui + \/TOp (51T/2T)

=T 12X _Mpo_ Mpou; +VTO, (037) - .
Finally, by combining the results, we get

TV2ZM vy = T2 ZMpou; + VTO, (03%) , (A.33)

where Z; = |[MpoX,, MF,Q 71Xi,_1}, which provides the expression given in Proposition 3. =
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Lemma 11 Under Assumptions 1-5, as (N, T) 9y o0 such that N/T = c with0 < ¢ < 00, w7 Zf\il éFZTéleT =
N 5 ; 5 N
NT 2ic1 Epir€pr +op (1), where &y = Z;Mﬁyui and € pip = ZQMFZ,UZ"

Lemma 12 Under Assumptions 1-5, as (N, T) oo such that N/T — c with 0 < ¢ < 00, 77 Zl Vi€ —
Q =0, (1), where @ = plimy ;. LN B ( 1ziMngieiMngi).

Proposition 4 Under Assumptions 1-5, as (N, T) 2y 00 such that N/T — ¢ with 0 < ¢ < o0,

T—>N (0,Q2).

||Mz

Proof. Proposition 2 and Lemma 12, together with Lemma B.2, yield the required result. =

Lemma 13 Under Assumptions 1-5, as (N,T) Iy o0 such that N/T = ¢ with 0 < ¢ < 00, Ayr B A, Byr &
A 1 N —1r1 ® 1 N —1rps ’, : 1 N

B, where Ay = > o, T ZiMﬁyWi, Byr =5 T ZiMﬁyZi and A = limN 1500 7 D _imq B (Ai1),

B =limn 100 & Sty B (Bix), Asr =T ZMpoW;, Bip = T ZMpoZ;.

Lemma 14 (Lemma 2.2.10 of Van der Vaart and Wellner (1996)) Letx,--- ,zxn be arbitrary random
variables that satisfy the tail bound:

1 22
P(|z;] > z) < 2exp 3 X b

for all z (and all i) and fized a,b > 0. Then,

E‘ sup gA(bxln(N+1)+ axln(N+1))

1<i<N

for some positive constant A.

Lemma 15 Under Assumptions 2 to 4, and Assumption 7, we have

N
(a) NTIT7HY XM w; = XM pow; | = Op(937) -
=1

N
() NN XL Mg Mg wi =X Mpo Mpoui|| = O,(337) -

(¢) sup [T7'X[Mg X; — T X MpoX;| = Op(N'2657) -

1<i,j<N

(@) swp 77X My Mp My Xio = T7X My MpoMpg | Xi ]| = Op(N'2633)
47>

(e) 1<S;I§EN 177X Mz Mg X = T7'X)  Mpo MpoXi| = O,(NY2532).

30



Lemma 16 Under Assumptions 1 to 7, we have
(@) | swp T XMp yio =T X{Mapyi
= Op(NY2532) 4+ O, (N¥AT7V265.2) 4 O,(NTL632) + Op(NVAT~1/2)
) sup IT7X[ Mg Mpyios =T 7'X{ Mpy_ Mppyioa
= Op(NY2533) + Op(N*/ATH2532) + O, (NT 1 035) + Op(NV/AT1/2)

Lemma 17 Under Assumptions 1 to 7, we have

(@) sup [IT'X[MpoX; — T E(VIV,)| = Op(NYVAT712) 4 O (N/2T71)
1<i<N
(b) S ”TﬁlX;:,—lMFQ,flMFQMFQ’AXZ',—l — T E(V} V1)l = Op(NVAT71/2) 4+ O, (N7

(@ sup 77X, Mps MpgX, =T E(V} V)| = Op(NYAT™12) + 0,(NY2T ),

(d) sup 1T X Mpoyi—1 — T~ E(ViV;_)B:p; || = Op(NYAT1/2) 4+ O, (N7 7).
=2 s=1

() sw |77, Myo_ Mpoyios —T7' 3" B(VL (Vi )Bioi | = O,(NYT71/%) + 0,(N'T ).
SIS s=1

Lemma 18 Define

Ao ((TTEZ e IB(VIV B TTIE(VIV))
T L T E(V] G Vi)B TTUE(V] V)

s=1Fi

)

B..._ ((TTE(VIV))  TT'E(V(Vi_1)
TEA\TE(V] V) TYE(V]_ Vi)

under Assumptions 1 to 7, we have

(@ sup [RorBrAir) R - (R B A AL B
= O0,(NYAT=121nN) + 0,(NY2(InN)?632.)

(®)  sw (AL B3 Aur) AL B = 0p(0N)?),

() sup I[(A] 7B +A; ) 'A] 7B : — (AL B LA 7) AL 7B 1|
= 0, (NYAT=12(InN)5) + O, (NY/2T~1(InN)?).

Proof of Theorem 1. By using the expression in (16), the result of Proposition 1 from which \/]{TT Eil Z/u;

tends to a multivatiate random variable and is therefore O,(1), and \/%bl NT together with Q/%bQNT are
Op(1) as T/N tends to a finite positive constant ¢ (0 < ¢ < oo) when N and T — oo jointly. And so,

VNT (é;v — 0) = 0,(1), which implies the required result. m

2 o . - -1 . .
Proof of Theorem 2. () VNT (6rv-0) = (AnsBrvAnr) AnBih (422N &)
= (A/B—IA)—l A'B-! (\/}\TT Zi\;l €FiT) + 0, (1), by the results of Proposition 2 and Lemma 13. Next,

by the result of Proposition 4, we have vV NT (élv — 0) 4N (0,%), as required. (ii) ¥ — ¥ = o, (1) follows
immediately from Lemmas 11, 12 and 13. =
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Proof of Theorem 3. Under Assumptions 1-5, noting 1:11 =u,—W; (51V2 — 0) we have \/JI\TT Ziil ZQMF?/ 1:11 =
w2 ZMy wi=AneVNT (01v2 — 0). Since VNT (812 — 0) = (A'27'A) T A7 Lo SN ZiM e
+0, (1) by Corollary 1 and defining L = 2~ /? A we have QNl/ — T Zj\; Z;Mpy a; = MLQ’l/Zﬁ vazl Z:Mpoe;

+o, (1) with My =Ip—L (L'L)™ 'L’ whose rank is k—1, which yields ﬁ Zil ﬁ;Mﬁy Z;QJ_\rlT Zf\;l Z;MFy i KA
X%ﬂ as required. m

Proof of Theorem 4. By Proposition 3 T_l/QZgMpxui = T~Y2Z;Mpou; + o0, (1) as (N, T) 4 0 as
N/T — ¢ for 0 < ¢ < co. Tt is immediate that, under Assumptions 1-8, for each i, T—/2Z’u; AN (0,%;). A
similar line of the argument in the proof of Lemma 7 ensures that ;n‘,T — Ai,T 2 0 and ]§in — ]~3i,T 20 as
T — oo, and togther with Assumption 8 we see that plimy_. oo XLT = A, and plimp_, ]§in = B;, thus the

required result follows. =

Proof of Theorem 5. Note that the instrumental variable (IV) or two-stage least squares estimator of 8; is
al 2—1 2 al ~—1

Orvi= (A, rB;rA;r)"'A; 1B, 18, then we have
Orvamg —0=N"" Z(BIV,i ~-0)=N"" Z(QIVJ —60)+ N Zni

i=1 i=1 i=1
where the first term is

N N oo a-12 2 2-1 .
N_l Z(OIV,i - 01) = N_l Z(Az TBZ TA’L T) Az TB’L T(T_IZ;MF'Iui)
i =1

N
=N"! Z(A:‘,TBZ%ALT)_1A;,TEZ%(T_1Z2MF3W)

Al a—1a

+ NS [(AueBrAir) A oB - (Al B Aur) AL B | (T Zi M)
; 2 o3 2 2 =

+ N7t Z {(Ai TBi,TAi,T)_lAi,TBz r— (A TB'L A7) A TBZ T} (T_IZQMFQE u; — T_1Z;ME,‘3ui)
i=1
N

+ N~ 12 i) AL B (T ZiMp vy — T Z M pou;)

:G1+G2+G3+G4
We first consider the terms Go, G3, and G4. With Lemma 15 (a)-(b), we have

N
NI T ZM g w; — T Z M pows || = O, (537) (A.34)
i=1
With the above facts, G2 is bounded in norm by
1N Loyt 514 13 & X B-1% 13/ R”-1
N~ Z 17 ZiMF;?ui” : 12u<p1\/ H(Az TBz A, T)” A TB7, T (Ai,TBi_,TAi,T)_ Ai,TBi_,TH
i=1 ==
=0,(NYATUInN) + O,(NY2T~Y2(InN)®542)
Analogously, with (A.34), we can show that Gz = O,(NY4T1/2InN§y%) + Op(NY?(InN)%5y7.) and Gy =
O,((InN)26,2). Consider G;. Define

H,, = Y;Fy'yyi H,, = _V/FO,(EOIFO) 1F0’115‘y;)'y7
’ ViaFyvy,) Vi F) (FY_F) )T FY L Fyy, )

Vfé‘z - _V/FO(FO/FO) lFO/Ei
1€ ) 0 AT V/71Fg (FO/ 1Fm—1) ng:—lsi ’

Hs; = <
Hs; = 0 H 0
5 Vg,—lPFFT’,Fy'Vyi 6= V;71Fg —1(F0/ 1Fm 1)~ 1F2’,—1PF2Fy’Yyi ’
0 _— 0
V'.,flegei I8 — —Vg’leO (FO’_lFJL _1) 1F2'7_1PFg€i ’

z,—1
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with u; = Fy’yyi + &;, we have

N L »
! Z[(A;,TB;,Z}”A%T) A B — (A;,TBi_Jl“ALT) Al B, (T ZiMpou,)
i—1
8

N
-1
. Z N7 Z (A;TBZ%ALT) Al BT Hy,.
=1 =1

With (18), we can show that the first term is O,(NY4(InN)°T~1) + O,(N'/2(InN)>T—3/2). Tt’s easy to show
that the fifth term, the eighth term and the ninth term both are O,((InN)*T~!). For the second term, we have

N —
BINT'SY (AL BibAr) AL B AT
i=1

:tr(N_2T_2 ZE{ (A;’TBZ-T%Ai,T)_l ’ }Bz %E[HhH’lj}B;}E{Aj’T (A;,TB;%A]',T)ﬁb
i#]

N -1 1
+tr(N2 T2 B (AlrBiFAr)  ALrB B [HGHL B Ar (ALBFA) )
( 7, TB

aur) ]|

N p— p—
—a| vyt E([ (A;TB;;AZ«,T) AlrB| @ {(A;TB;}ALT> Al B; TDvec(E [EH))|
i=1

SAHN_QT_QZN: Evec[(A’TB Ai’T) A’TBlTE{HUH’h} _

N 1 —1
ANy HE([ (AlrBidAyr)  AlrBib| @[ (ALBbAT) AQ’TBL}D ||z,
i=1

N
SANTET2Y E|(Af B r Avr) " AL |PI1B; 2| E(HLGHY)|| < ANT2T- QZIIE (L H, )|

=1 =1
N T T
SANTETEY (IEvisvi)ll + 2| EVis Ve )| + 1E(Vig-1v),_)l) < AN'T
1=1 s=1 t=1
because
B (Ey,s7y7yi.0)| < /B[4 B 7,401 < A
and

E(HUH’ )

Zé 1Zt 1 (stv )E(yS'sz’Yy]fy +) Zé 1Zt 1 E(visv gtfl)E(fyﬁp}/y'prlyjfg/; ¢)
Zs 1275 1E(vis- 1V DEE,, S'Yyﬂygf/ t) 23:1 Zt:l (vl,s—lvj,tfl)E(f%s’sza/yjf/ )

which indicates that E(Hy;Hj;) = 0 for i # j, then the second term is O,(N~'/2T~1/2). Consider the third
term. Note that

7y, (VIFY)vec (FYFY) T FYF,
Hy; = vec(Ha;) = yi i
? vee(Hz:) (%n ® (VI —le 71)Vec[(Fg’771F2’71) 1Fgl,—1Fy]
_ (’yiﬂ ® (VIFY) , 9 . ) ( vecO[I(FO/FO)ﬂ]i;‘g,gy] )
0 Vi @ (Vi _1F3 1) Vec[(F 1Fm 1) Fz,—le]

= Hlpsq X Higgp.

It’s easy to prove that Hy;, = O,(1). Following the argument in the proof of the second term, we can prove
that

N
_ar—1 ’ —1 A -1 —1lp—1mp . _ —1/2—1/2
N Z(ALTBLTALT) AL By T Hyiy = Op(N~V2T71/2),
i=1

Then the third term is Op(N*1/2T’1/2). Analogously, the forth term, the sixth term and the seventh term can
be proved to be O,(N~Y2T=1/2). Thus, G; = O,(NV4(InN)>T~1)4+0,(NY2(InN)>T~3/2)+0,(N~1/2T7-1/2),
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Combining the above terms, we can show that

N
N~ (Brvi — 0;) = Op(NYV4(InN) T 1) + O, (NY2(InN)*T=3/2) + 0, ((InN)557.).

i=1

Note that N=2 SN m, = O,(N~1/2), if N3+ /T4 5 0 for any § > 0, we have

N
VN(@Oryme—0) =N Zm +0p(1)
=1

and R 4
\/N(GIVMG — 0) — 1\7(07 277)'

Next, we consider the consistency of f),,. By decomposition, we have

N
Z(élv,i —-0+06— éIVMG)(éIW —0+60—01vuc)
i=1
N N N N
= an; + Z(OIV,i —0;)(0rvi—0:) + Z(Olw —0:)n; + Z"h(alv,i -0,)
i=1 i=1 i=1 i=1
— N0 —01vic) (0 — 01vic).
Then
f:n -3,
N N, X , LN
Z n,m; — m Z (91\/,1' - 9i> (GIV,i - 01‘) + N_1 Z (GIV,i - 91‘) n;
i=1 i=1 i=1
1 A ! N A .
+ Zm (OIV,i - 91') — (0= 0rvmc) (0 - Orvmc)
N -1 pt N -1
=J1 4+ -+ Js.
Easily, we can derive that J; = O,(N~/2), J5 = O,(N~1). Consider J3, which is
1 &L
—_— Orv;—0;
N1 ;( 1V, )n;
1 Lo, - - \la, =
> (A;TB;}ALT) A, B HT Z M pou,)n),
i=1
N
1 2/ 2-1lz2 —12/ 2 —1 / 1A/ —1rg/ /
+ ﬁz [(Ai,TBi,TAi,T) Az‘,TBzT (A TB Az‘, )~ A TBZ T} (T ZiMFgui)nz
i=1
1 N a2l 2-12 2/ 2-1 ~ ~ ~ ~
ty -1 > [(Ai,TBi,TAi,T)ilAi,TBz r— (A B Ai,T)flAQ,TBZﬂ (T7'ZiM ;= T Z M powy)m;
i=1
AN
+ mZ(A;TB;}Am) YA, B (T ZiM vy — T Z M pouy)n
i=1
With sup;; || = O,(N'*), we can follow the argument in the proof of the terms Gy to Gy, to
1<i<N [1T]; P g

prove that the second term is O,(N3/4(InN)>T—1/2§2), the third term is O,(N3/4(InN)5557.), the forth
is O,(NY/4(InN)25,2). By Lemma 18 (b), the first term is bounded in norm by

N
(V=17 I B Mg - swp (AL B A T AL B swp sl = OV (NPT,

i=1

Then J3 = O,(N3/4(InN)>T~V2632) + O, (N3/4(InN)%5y7) + Op(NV4(InN)2557) + O, (NY4(InN)2T—1/2).
J4 is the same order of J3 since it is transpose of J3.
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Consider Jz, with (a +b+ ¢+ d)? < 4(a® + b2 + ¢? + d?), it is bounded in norm by

Z 101v.: — 6]

N-1
i=1
N
4 2 aThs —1:/ 5! / A 1x/ —1rg/ 2
+HZH|:(A1‘,TBZ‘,TALT) A, B, — (A Ai,) ATBzT:|(T Z;:Mpou;)
=1
4 N 2/ 2-laz 1A/ 21 / 1 1x/ —1/ —lg/ ?
+ﬁZH{(AlTBzTA1T) A By — (A B EA ) "AL B }(T Z/ M, — T~ Z)Mpou,)
; —~ —~
+ v Z (A B 1 A7) AL B 1 (T ZM gy — T ZiMpouy) ||,

By Lemma 18 (b), the first term is bounded in norm by

N
AN =17 T 2 Ml - ( sup I(A] 7B; 7Ai 1) Af 7B 11)? = Op(InN)*T 1)

i—1 1<i<

similarly, we can show that the second term is O,(N(InN)°T~'§}). Following the argument in the proof
of Lemma 15 (a) and (b), we can show that N~1 SN IT'Z\M u; — T~ Z{Mpou;||* = Oy(dy7). Then
similar to the argument in the proof of the first term, we can prove that the third term is O,(N(InN)'%§ %) and
the forth term is O,((InN)*dx7). Then Jo = O,((InN)*T~1) 4+ O, (N (InN)°T=157) + O, (N (InN)05 %) +
O, ((InN)*6557).

Combining the terms J; to J5, we can derive that in — 3, = 0,(1). Thus, we complete the proof. B
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Supplemental Material to

“Instrumental Variable Estimation of Dynamic Linear Panel Data
Models with Defactored Regressors and a Multifactor Error
Structure”

by Milda Norkute, Vasilis Sarafidis, Takashi Yamagata and Guowei
Cui

Appendix B: Proofs of Lemmas

Lemma B.1 Suppose {X, r} are independent across i = 1,2,....N for all T with E(X;r) = pir and
E |Xi,T\1+5 < A < 0o for some § >0 and all i, T. Then N~1 Zf\]:l (Xir — pir) 20 as (N, T) % .

Proof of Lemma B.1. See Proof of Lemma 1 in Appendix, Hansen (2007). ®
Lemma B.2 Suppose {x; 1}, h x 1 random wvectors, are independent across i = 1,2,..,N for all T with
E(xir) = 0, E(xinx;’T) = 3,7 and E||xi,;p||2+‘S < A < oo for some & > 0 and all i, T. Assume

Y =limy,r—oo Nt ZZI\; X1 is positive definite and the smallest eigenvalue of 3 is strictly positive. Then,
N2 Zil Xi,T = N(0,%) as (N, T) % oo.

Proof of Lemma B.2. See Proof of Lemma 2 in Appendix, Hansen (2007). =

Lemma B.3 Under Assumptions 1-5, the following statements hold for £ =1,2,....k and s =1,2,...,T:

2

N
1
E||—= Z ZZ £0, [veitveis — E (i 4veis)] wis|| < A < o0, (B.1)
VNT i=1 t=1 s=1
| NoToT 2
E|— Z Z Z £0, i veis — B (vei1vei )] £Y || < A < o0 (B.2)
VNT i=1 t=1 s=1

Proof of Lemma B.3. The proof of Lemma B.3 can be obtained in a similar manner based on the proof of
Lemma A.2 provided in Bai (2009a, p.1268). m

Lemma B.4 Under Assumptions 1-5, as (N, T) 9y o0 such that N/T — cwith0 < c¢<oo, fori =1,2,..,. N
and £ =1,2,..,k,

b A

T
Tr/2 \ F,—FG,|| =T |t - GLE,|| =0, (035), r=12, (B.3)
t=1
(Fore) R
T =0, ((5&T) ) (B-4)
N li
( Y Fng) FO ,
T =0, (Oy7) » (B.5)
/
(F. - FG, ) F) ,
T =0y (5;/T) ’ (B.6)
A 0 !
(Fw B F“LGL) & — 0. (62 B.7
= p( NT)’ (B.7)




!

(Fz — FgGI) Ves

0, (53). (B.5)
. 1
(F - FgG) W, )
T =0y (Oy7) » (B.9)
R I
1 (Fm B Fng) Ve o 1
7 I —1/2 —2
> - ¥ =0(N"2) +0,(5:%) (B.10)
00\ 1
G.G) — (F}F) =0, (057) ; (B.11)
[\ .
o o P Ay as (N,T) 2 oo, (B.12)

where we define Fy, = FOG, and T';= G, 'T'?

wis Where G, and Ay are invertible m, x m, matrices.

Proof of Lemma B.4. The proof of (B.3) is given in Bai (2009a, Proposition A.1). No modification is required
because of our assumption of cross-sectional independence and serial correlation of v;p, see Assumption 2. A
similar point applies to the proofs of (B.4)-(B.11), which are given by Bai (2009a) as proofs of corresponding
Lemmas A3(ii), A4(i), A4(ii), A3(iv), A4(iii) and A7(i). The result (B.12) is given as part of Proposition 1 in
Bai (2003) with its proof therein. m

Lemma B.5 Under Assumptions 1-5, as (N, T) 9y 00 such that N/T — cwith0 < ¢ < oo, fori=1,2,..,N,
(=1,2,...k andr=1,2

12, - BG, | =72 gf; [f — @8] = 0n (535) + 0, (180 —61F) . (B3

(7, - FZ%Gy) P 0, (53) + 0y (61v — 0)., (B.14)

(7, - FEGy) R 0, (33%) + 0, (01— 8), (B.15)

(B, - F;Gy> By _ 0, (333 + 0y (6rv ~ 0), (B.16)

(%, FﬁGy) 0, (5:2) + %0, (61v-0), (B.17)

(P, FEG@’)I 20, (61— 0) +0, (533). (B.18)

B G)Wi ) (010 —6) <0, (653), (519

1Nj_i: (.- FEG”)I Z = N0, (81— 0) +T71120, (61 - 0) +0 (N12) +0, (533) . (B.20)
G, G, - <FTF> o, (61v ~6) + 0, (533, (B.21)

FiFy 54, (B.22)

where we define F,, = FgGy and v,;= G;lqlgi, with Gy being any invertible m, x m, matriz, whereas A, is
also an tnvertible m, x m, matriz.
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Proof of Lemma B.5. The proof is analogous to that of Lemma B.4 and is therefore omitted. m

Lemma B.6 Under Assumptions 1-5, as (N, T) 2y 0o such that N/T — ¢ with 0 < ¢ < oo,
Op(oxk), [Pr,_, ~Pro | = 0p0% — 0,(1).

i —Pro

Proof of Lemma B.6. HPFT —Pro

2 2
= tr [(Ppm ~Pr) } = tr [Py~ Py Pro~ PPy + Py =
tr [Pr. |-2tr [P Pry|+tr [Pry] = 2m—2tr [T, P B, |, where 7B, ProF, = T-'F,FIG, (GLFVFIG,) " GLFY

72 (F;Fgcx) (G;Fg’Fx). By making use of (B.5), we have TG, FVF, = T~ 'G.FYF0G, +T~'G/F (Fx - Fng) -
2

I, + O, (0n%). Hence, we have ’PFJL —Ppo|l = 2m, —2tr {(T‘lf‘;FgGw> (T‘lG;Fg’f‘wﬂ = 2m, —

2tr [Imm + O, (5;,%)} =0, (5;,2T) Following similar arguments, it can be shown that HPFT — PFo

2
0, (On7)- HPFy —Pro|| =0, (1) is shown by the same steps as in the proof of Proposition 1 in Bai (2009a)

and the result of Theorem 1. m

Proof of Lemma 1. We begin with (A.1), which is given by

~15InNg . . _ =l o Qi1 Qi
T'ZM;, Z; — T Z My Z; [Q21 QQQ}, (B.23)

where
Qu =T7' XMy Mp Mg X; — T X MpoMpoMpo X,
Q12 = TﬁlX;MﬁmMﬁyMFzﬁ,lxi,—l - TﬁlX;MFQMFgMFQﬁIXq:,—h
Qo =T7'X] My MpMp X;—T7'X] ;Mg MpoMpoX;,
Qoo = TﬁlX;,—lMﬁm,flMﬁyMﬁm,f Xi’_l o T71X;7_1MF'$0,71MFyOMF2771XZ‘,_1-

1

Consider first Q1;. By adding and subtracting the terms we have

1Qull = ||771X] My, Mg Mg X =T

<[ (o0, s

T XM My, (M, - MF;)) X;

+ HT—lngEo (M - MFO)

[1X]] H ’
< e, e
VT I
/
inrom, | P _p ||Xi||
VT Py, F
XM o M poX, H

f Op(axf;“),

= 0y(0y) and |[P5, — Pry|| = O,(33) by Lemma B.6,

from using again HPFz —Pro
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by Assumptions 2, 3, 4 as discussed above, and also

< IXill H ‘ 1]

+ =0,(1), B.24
< (1) (B.24)

Mg X [Mpo Vi H W || Vil
- Pl — o (1), B.25
VT N Pl =0 @ (B:25)
< i p. |1 _0o ), B.26
VT =T H B VT » () (B.26)

’ Mo X | H Mo X |
AR _ o (1), B.27
VT - T Fy VT b () (B.27)
since HPFv ’ = Hf‘y(ﬁ”y]?‘ )~ 1F’ = HF’ F’ H = HIm || =tr (Imy) =m,. Hence, Q11 = O,(0n7)-

By similar arguments, it can be shown that Q21 = Op(651), Quz = O,(d51) and Qaz = O, (6y%), which

complete the proof of the result in (A.1). The result in (A.2) can be shown in an analogous way. ®

Proof of Lemma 2. The proof is analogous to that of Lemma 1 as the summation over ¢ does not affect the
results. It is therefore omitted. m

Proof of Lemma 3. We start with (A.5). First note that by using My = Ir — T'F, ¥’ the left-hand-side
of (A.5) can be written as

N

L 5 FEO\ . _
VNT3/2 Z v (Tarn) ( T ) F, (Znt — Zinr) M u;
. -1
: FLE\ . _
~ VNT3? Z v (Tarn) ' (T) F, (vt — Zpnr) w

N . —1 .
1 1 { F.FO N — F, F’
- — T (Tsz) ( z z) F, (Sint — Bint) —2u;
V/NT3/2 ; T T
=e] + es.

—1
) GLF) (Zpnr — Zpnr) u

0

B 1 ¥ 1 ' F,

€1 = W lz:: xi ( wkN) T
1 FEO\ . _

+ W Z p (Tka) T (Faj - Fchar> (szT — szT) u;

FYVN (Spnr — Epnr) u
T

~ —1
il < = ZHF )™ (FTF> |G

=0, (T*W) :

(=) =o€ = 0, ),

= 0, (1) by (B.1). Thus, we have a; = O, (T*1/2)_

because ||T%;|| = ) and H 0en) H = O, (1) by Assumption 4,

Fgl\/ﬁ(EkNT*EkNT)ui

and T

As for ay, we have the following

A~ / —_
et 155 g s (222 | B )V B - B
2] = Nl-: ;ckN T T\/T

= Op (513;“) ’

B.4



by using Assumption 4, =0, (1) and

. -1
F.F)
T

~ / —
(Fm — FgGm> VN (Zent — Zpnt) 0

VT

1 & 1 L

<= (fm —G;’ffj) Wis [VeitVris — E (Veitveis
1/2 2y 1/2

1 d P, */ £0 2 1 1 o
<| = Z f.r — GLE,, Z Z Z Z Uis [VeitVeis — B (Veigveis )]

T t=1 / t=1 NT =1 i=1 s=1

-1

= Op (6NT) )

where the second inequality is derived using the Cauchy-Schwarz inequality and the order is determined
by using H\/% Zf 1 va1 ZST 1 Uis [VeitVeis — E (Vestveis)] ‘ = O, (1) and (B.3). Thus, e = O, (T—1/2) +
O, (6 NT) Next, consider e; which is

o < (3 S ) s | (B2 | B Bl B
_ %Op(l) F, (EkNTTSkNT)f‘x 7
because |78 | = \fur [P1B R = Vil ] = vim = o), (000 7| = 0,0, | (5552) 7| =

O, (1), and

NZ| NZIIFO’H 20| 2% anO'

by the same arguments as above and Assumptions 1, 3, 4. We also have

N 1. _ .
H\/ ?TFfp?_l (Bknt — Zent) Fa
N1
< H\/ —GLFY (Zpnr — Epnr) FUG,

+ **G;Fgl (Zient — Zinr) (f‘z - Fng)

OP (1) ’

TT

N1 /4 ! =
+ |\ 77 (Fe = FIG. ) (Sinr — Sunr) FiG.

N1/ / > ;
VEL (5 - p) (o - Su) (B - F)

= [Tl + [zl + [T | 4 [ Tealf -

1
|L.[| < VT |Gl

1G]l =0, (T712),

FYVN (Zypnt — Spnt) F
T

by (B.2), and

FYVN (Sivr — Sivr) (Fa - FOG, )

[Lall = [La] < 1G] T = 0, (431
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because |G| = O, (1) and

FYVN (Sinr — Sivr) (Fe - FOG, )

VT
1 X 1 k N T R ,
3] % 93 30 AT | SCREER |
s=1 =1 i=1 t=1
) T ) 1/2 . . E N T 2y 1/2
< (T Z fﬂ%s G;/f27s ) Z Z Z Z fgg vhtvhs -F (Uéztvim)]
s=1 s:l NT =1 i=1 t=1

where the second inequality is derived using the Cauchy-Schwarz inequality and the order is determined
by using || A S ST, S0 £, [vvivveis — E (vevves))|| = O, (1) and (B.3). Thus, e; = 0, (T1/2) +

Op (O57)-

Ll =

i

Vit E 3 (= 60 (1) 33 b = B )
TTt_ o rt izt xlr.s N 1t Ulis 1t Ulis

=1 1=1

so that, by the Cauchy-Schwarz inequality we have
1/2
FO

Il <V (7 Jf - me ) m X% [IN S o (veit%n]

= VTO, (657) -

Thus, e; = O, (T -1/ 2) +VT O, (5;,%) Collecting all the results, the required expression is obtained. The

result in (A.6) is proved in a similar way. ®

Proof of Lemma 4. We begin with (A.7). Following the discussion in Bai (2009a, p.1266), we have

FmGgl—Foz(E 1+E 2+Ew3)Qm

N ZZFszva Q. + vy I FYEF,Q,

(=1 i=1 8171

k N
PEPSERN
E V@ivéiFwa7

Z:

A ~1
where Q; = (TgkNAon) with X0, v = Zz L iy 99 and Agp, =T 'FYF,.
Then, from (B.28) we have
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Start with d;, which is given by

d; _ 1 07 A — 1 (]
T*ﬁgf Q AkNT |:ch meFx Mpmul-

which is a k x 1 vector, where

(=1 j=1
We have
/
N N _ FO )
72 F vy 30 = 1 ZG/ Fo've N lz (Fx F"”Gx) Ve i
szl e N & T 4

as the first term is O, (T‘1/2N_1/2) by independence of v,; and '72]- and the second term is O, (N_l) +
N*I/ZOP (6;,%) by (B.10) in Lemma B.4. This gives the following

IAnxrl = 0, (T72N712) 4.0, (N7') + N™20, (55%).

Next,

Id,|
T

NTZI‘ Q. Ay (F ~F'G )lui

+

1 A A fa
7 Z QA (P~ FIG, ) BB,
i=1

1 N
< (3 iein)

x

R /
P, — FOGI) FO

T
+ ifZHF‘”H (F.-ri6.) e Q.| Akl
Nz:l T !
1 Y Fm P,
+(F 3 ein) L el
lt\
1 N &€; w Fa: Fa: “
ES LT E o

=0, (533) [0 (T-WN-W) +0, (N) +N7120, (057)]

by (B.4), (B.6), (B.7), Assumptions 1, 3, 4 and |[Axnr|| = O, (T~Y2N"Y2) + 0, (N~1) +N~20, (657) as
shown above. We therefore have

di = VNTO, (333) x [0, (T7V/2N"112) + 0, (N"1) + N~1/20, (633 |

Now consider dy which can be written as

N
_ T (Y0, ) A0V, L
ds = E kazv WjVejMFm u;
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Il
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k
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1 =1
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1
I (Coen) ngV;MFI Wi,
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s
Il
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Consider now dg. Defining Xpnyr = N~ Zz 1 Z] 1 v@jvej, we have

k

1 X1 N
S DP9 35 LAY
=1 =1

(=1j

VNT
1 1 Y "/”/
:ﬁfz 2 QuF o NZZV@V@ Mpg Uy

i=1 =1 j=1
N
- - or A&/ 1/ N .
= T ZerwaszTMqul
=1
1 N
0 1A =1/
= e 2 T (o) A B Bin M
=1

1 LAY
= W ZI‘O/ (‘rsz) ! < ?T r) F/zszTMﬁzui-
i=1

where the definitions of Q, and A, 7, are given above. Hence, the expressions for d;, do and d3 gives the
required result in (A.7). The result in (A.8) is obtained in an analogous manner. m

Proof of Lemma 5. First of all consider (A.9). By adding and subtracting terms and using MFSFS =0
we get

- -
—— ) TYFYM; M, = —— § TYFIM; Mpow;
T = VNT < =
§ jrg;Fg/M M — Mpo)u;,

I‘O/FO/ 13' - MF}E))MF,?Ei

i=1
\/7 Z Lo FY (Mp, —Mpo)(Mp, — Mpo)u;, (B.29)
=1
where the second equality is due to Mo FY =0 and MF3 u; = MFS €;. Let us now begin with the first term in

(B.29). Since ¥/ ¥, /T = 1,,,, we have M —Mpo =Ppo —Pp = — (F F, PFo) Using this result and
by adding and subtracting terms, we get

ZI‘O’FO’ , — Mpo)Mpoe;

0/
F)Mjpe;

x

FO/FO -1
/ Tt
G.G! (T )

:f(e1+e2+e3+e4).
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by Assumptions 1, 3, 4 and (B.5).
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1 F £; z x z x z 1 F'F
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N & \/T T T T
= VNTO, (51\,‘;)
again, by Assumptions 1, 3, 4, (B.5) and (B.6).
N
1 FO’F‘; " /
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1 N FOIEl
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T
by Assumptions 1, 3, 4, and (B.11). Now consider a; and ay in e3. We begin with as which is given by
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< s 2l |5 e (%) || (- m) e
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ot (L5 | ) | o () (2 H -
= VNTO, (6x7) ,

by the same arguments as above and (B.6). As for a;, we have
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T

&
In
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]
o
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R /
F . A k 1 N _ ng Vi
<1 (3 2l | ) s ne)

(Fz - Fng)/ v
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)q 3

( 55 o 2

=1
oo\
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T

T-1/2 [0 (N*W) +0, (5;&)} =0, (N*WT*/?) +T7120, (552) .

0

due to Assumptions 1, 3, 4 and (B.10).

Now consider dy, which is
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As for ey, we have
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1 1 o V)&
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=1 i=1 VT

1 k N T 1 T 1 & N ) .
where ANt = g Pimt Xy Yot VejVtit%i = 7 L (W Dot X 727‘%1&) €it = 7 2i=1 BN 1€,
with Byn; = \/#ﬁ 25:1 ZJI\;él 7ng€jt- Clearly, By = O,(1) for each t, k and N as ’Y% is independent from vy,

by Assumption 4. By the same argument, Aynr; = Op(1) for each ¢, k, N and and T because of independency
of £;+ by Assumptions 2 and 4. And so, due to independency of l" from AinT,i, we have

N
1 -1
le2| = —= | N Z i (X0n)  Awntil| = OP(N’l/z),
VN =
Now consider cg, which is given by
k N N
T1 F Vy V[ MF(JSZ
= _ ]_"0/ I —x ) J
e \/;N ZZZ i Qz T T
£=11i=1 j=1
k N N
= Zi Z Z FO/-Q/ G/ Fg’ng szMFSEi
(=1 1i=1 j=1
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_ 1 Vng F.'ve; A Fy Fy
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where the second equality is because v} M FOE; is a scalar and therefore commutable, and the order is determined
by using Assumptions 1, 2, 3 and 4. ‘

T 1 kK N N A Agﬂ g " _—
RN VERED 5 D) 9 v7e ki i

|
o
=]~
MPT
] =
] =
S
N

|Q.
=1 j=1 NT i=1 T
E N 0 —_ FO )
n T_1/2 i Z Z VZij (F FwGLE Vij
N =1 j=1 VT T
—1
. FO’FO> H FO’EZ
% Qz Y-y Z 0/
( T =1
~-0, (T—1/2) ,

which holds by the same arguments as above and (B.8). By putting the results together, we therefore get

Z L0 FY (M — Mpo)Mpoe; = o, (1).
i=1
By following similar steps it is also shown that the second term in (B.29) is
Z LY FY (Mp — Mpo)(Mp — Mpo)u; = o, (1).
Hence, we have
Z TYFYM, My u; = Z TYFY (M —Mpo)Mpoe;
ZF%FQ’ 7~ Mpo) (Mg — Mpo)u;

op (1). (B.30)
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The result in (A.10) is shown in the same manner. m
Proof of Lemma 6. First consider (A.11). The left-hand-side of (A.11) can be written as

1 1%%
VNT N F (T:L’kN) FO V/M u;
NTN & &0
1 1 LX . k
i=1j=1 =1
1 1LY
- NTN ZZF (kaN) ’ijV[]M u;
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1 kXN 1 N .
= =23 | o () g | M v
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1 L
- NTZZH;MM@VZ“

where Hy; = + Z; LuyY (X9,n) Th;. By adding and subtracting terms we get

1 k
NT ez:; lz:; HIZ,zM Vi
1 kN 1 kN
- Z Z Hj Mpovei + Z Z H) ,(M; — Mpo)vy;. (B.31)
NT =SS VNT =1 i=1

Now, consider the second term in (B.31). Since ¥/ ¥,/T = I, , we have Mg —Mpo = Pro — Py =

— (F F, -P Fo) Using this result and by adding and subtracting terms, we get
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by Assumptions 1, 2, 3, 4. Next, consider a; and as in the expression of e3. Start with as which is as
follows
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by (B.8). By putting the results together, we get
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which provides the required result in (A.11). The result in (A.12) is proved in the same way. ®

Proof of Lemma 7. We first prove (A.13). By noting that AB = AB + (A — A) B+A (B — B), the
left-hand-side of (A.13) can be written as
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The result in (A.14) is proved by following the same steps. m

Proof of Lemma 8. We start with (A.16), which is given by
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Now consider the second term in (B.33). By using Mg —Mpo = — (ﬂ Ppo), and adding and subtracting
terms, we get
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by w =0, (0y7) and (B.8).
FO FLE - FgGI u; —
e - )| _ o, 652,
by using again w =0, (657)-
N
1 V/Fo FO/FO
ol v 3V e - () - VIO, (533).

by (B.11). Consider now e; which can be written as
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L QL Vi (e oFG)
e G F.'u;
' UNT & T at'a
QL Vi (F.Grt - FY) .
/ /
— Vi Z T G,G, F u;
i=1
T .
NT — T T z
N V! (F G—l FO) 0/10 1
1 i T g x F'F
+ Z GmG/ T T FO/UZ
/7NT g [ T T
=a; +az
Start with ap which is given by
) XN: Vi (F.G;1 - ) /FURO
lag| < VNT— GG — ( )
N ~ T
=VNTO, (61?/4’;) )
by (B.8) and (B.11). As for a; we have
a L i M <ﬁzG;1 B FO) FYFO) F'
1 — NT o T T x Y
N kN -1
Lgh 1 SVIR o (RN,
= 7NT ;ﬁ;; T Ye; Ve FaQu ( T ) F,u;
N E N -1
1 1 Vi 4y . 010 Fgng 0
A NT 2 2V Fe Fe Qe (=7 Fou,
i=1 (=1 j=1
N E N -1
1 1 Vv , o ~ (FUFO o
— ey L T ex T F g
- NT;NTH; 7 VFeQe |\ 77 =t
=d; +d; +ds,
|d|
N kE N i -1
1 VIFY 1 viiFe | . <FO’F0> FYq,
< it T - 0 "t - T T x S
vr \washr ) Ur)
N /0 k N v’v(F —-FG ) 00 o
= J xT
N = vT N j=1 T
k N N / —1
11 V/F? 1 Vi F vFo FYu;
e i [T o ( | ) H
vT (=1 i=1 vT \/szl vT vT
= 0y (033) + 0y (N71/2) .0, (T77%) = 0, (63%)
by (B.10)
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FUFY

RN QRLIGELR 19 - -

= W E N E E lT J’Y%’ (TgkN) <T> Fglui
[T 1 L&, 1 (FYFO\ 7! POy,

=\ w22 T T (o) ( T ) T

N k N -1
1 1 Vivg &~ (FoFQ o
b= N Ve () Fiuw
=1 f:l]zl
N k N -1
1 1 Vivy; A ~ (FYF?
== N7 lTJ"Zj(F‘”_FgGI)Q“”< T ) Fow
i=1 =1 j=1
N k N —1
1 1 Vivy; o A (FYFY 0
+WZWZZ 7 VeFaGeQo | =5 ) Fow
i=1 =1 j=1
=c1 +Cg,
N N —1
1 1 V/'VEJ / I 0 A Fg/Fg 0/
L= =N 22 Ve (F. - FlG.) Q. T Fou
=1 i=1 j=1
11 S Vive , (e o FOFON\ ',
= =T 2.2 ZT'V"J'(F“FJEGI)Q% LTJ> Foui
(=1 =1
k N N —1
1 1 ngej ’ 0 Fgng o7
=by + by
e o [
Vv & & lvallve g W)l
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k N N ' (F. _ FO —1 0/0
| L3 se s Vi Yo (e FG) o (mmteve
B NTN =1 i=1 j#i \/T \/T T T v
N zk: XN: i Vive; Vis (F” B Fng) Q (FglF(;)l Fe;
N NT = oy VT VT T VT
I o S (FmFgGQQ (F%Fﬁ)‘l FUF) Vv,
- NT N (=1 i=1 j#i vT ’ T T v VT
. 0 -
NNT = = VT T T\ T VT
1 Véj (FI — FOG FO/FO -1 FO 1 N V/‘Vlj
- NH# T T > Hﬁ m;"yi VT
k L (F, - FOG 00\ — or
V’ng Vej ( z z 70) A F)F, Fe;
IETCDY »3 T Q|| |( 75 -
=1 1=1 j#i
=0y (6;7T) :
by using independency of v;; from v,; when i # j as well as (B.8).
k N N -1
1 1 Vivy, o FYFO 0
—_— F G‘L z x T F / ;
& NTNT;;; v RG,Q (T ) R
k N -1
1 1 V/ FO/FO
= —— FOG . x FY ;
NT NT;; T ViuFiG.Q < T =t
k N N -1
1 1 Vivy; 0 FYFY or
_ Fia - T T F ;
=b1 + by
N
1, v/ z FO/FO w;
b o) (55) I
=1 i=1
=0, (N‘l/Q) ,

and also
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/ 0

k N N —1 RO/|R0
1 1 V;V/ Vi Fg/FT F. F
ool < |y o G (
NTN@:l i=1 j#i \/T \/T T T
VNNT i VT VT 7 T VT
k N N 0 —1 @0/0
< LLZZZV}F@, ey (Fgf}?g) F'”/Fy’)’yiV;VEj
”NTNezl i=1 j#i vT T T VT
k N N 0 -1
. #izzz”ﬂ e () T
NNT == VT VT T VT
IR ol of ¥ (Fi’Fﬁ) F B | 5y, Yire
T VTN == T T VT| | VN <= " VT
1 N1 ii VVZJ 2JF0 FYFO\ Flei
\ﬁTNQ — VT JT

=0, (N"2) +0, (T*W) =0, (55%).

by making use of independency of vy; from vg; when i # j. By adding everything together we therefore
have

FZZV' M, — Mro)u;

(=1 i=1
VA o 1 (FUFO\ ' By,
ZZ “T, IkN) T T
=1 j=1

v mop (332) + 0y (65).

Collecting the results together, we obtain

ZV’ \/J%ZV M pou,
\/? Z Z ViV; 1"0’ ) 1 (Fg/Fg)l Fu;
p 1J ‘ I]CN T T

+VNO, (05%) + Op (55T) »

which is the required result in (A.15). The result in (A.16) can be shown by following the similar steps as
discussed above. ®

Proof of Lemma 9. We begin with (A.17), which is

N
—— > ViM; M, u,

'MZ .

1 1
- VMFoMFouquiZV’( N fMFo) Mpou;
v NT =1 N =1
1 &,
+ 7\/@ ZVZMIZ_‘I (Mﬁ'y — MF;?) u;
=1
R -
= —— Y VIMpMpoe, + —— > V! (MF - MF,Q) M poe;
VNT & v UNT & - v
1
+ > VM, (MF - MFS) w, (B.34)

s
I
—
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where the second equality is because of Mpou; = Mpoe;. Now consider the second term in (B.34).

using M P Mpo = — (F””TF :_p Fg), and adding and subtracting terms, we get
;XN
Vi (M, ~ M) Mpge,
i=1
N A A
1 F.F’
:—ZV;( I _PF,()) MF0€»L‘
NT = T Y
L NV (Fm - FgGI> .
= \/ﬁ Zl T G:ch MF{I’EZ'
A VIR -FG)
- (Fw - Fchw) Mpoe;
VNT = T ‘
1 i VIFO R o\
- k' Yol (Fx — FxGx) M poe;
NT = T ’
N -1
1 ViFy . (FYF o
_W; 0 GIGZ—( T ) Fy'Mpoe;
=—(e1+ex+e3tey),
N V! (F _F'G )
1 i x x
° = /57 7 GLFY Mg,
i=1
gvi(eew)
_ ! _
= \/W; T G, G,F; Mpoe;
N VY (F G:! —FO) orgo 1
1 i A z F'F
_ Z T FO/MFOEZ‘
/NT — T T x y
) \7 (Fxc;;l - Fg)

T

o = v L 3o [V TR ) ey < B
HE TN & T T VT
ot [z E) ey e
- N & T T VT
N V! (f‘a;G_l — FO) FO R0 -1 FO
PNy o Fy :
N~ T T VT T
= \/NOP (5;/2T) )
by (B.8) and
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N B -1 _ w0 _1 0 ‘
ol < vFL S| L (RGP | o (Fme) 7 [ EeMpes
=VAN L T ST\ JT
N v (F G*l—F()) orgo ~1|| | 0
1 i g T F)/F Fe,;
< _ I x x x =1
s e (%) |1
N ' (F,G;' —F? -1 0 oo\ ! 0
VR S G| e A TEA T LA | e
P o\ 71 vl VT
:\/Nop (6;/'%“)’

by (B.8) and (B.11).

\' (Fz ~FG,

. ’
(Fz _ Fng) Mo

)

N

1

<VNT—
lea] < v N; T

T

~ ~ /
LN (Fm - Fng> (Fz —FgGI) e
<VNT—
- N ; T T
/
N ||V (F, —F'G F, —F'G,) F? orpo\ ~H| |10
1 i\f= z z T Tz F'F Fle;
N P T T T VT
=VNTO, (5]7;) J
by (B.6), (B.7) and (B.8).
A O /
el < VRE S [YER 1y (F2 -~ F2G) Mrye,
3 - AT xT
N i=1 VT T
/
N i _ o0 )
1 V/_FO (Fac FxG) &g;
<SVNY =22 G| | ~———
N i=1 VT T
I 0 ! 0 -1
e D) ‘VgFg ‘IIG y (.- F6) By | eoms | [0,
TN~|| VT * T T VT
= \/NOP (%@%“) )
by (B.6) and (B.7).
N —1 07
1 V/F? FYFO F;'Mpoe;
es < VN L GTG’T<I m) Z
N -1
1 V/FY FYFO FV¢;
w2 | ) |5
N -1 -1
1 A FOFO0 FO FO FO/ R0 FO/Ei
N || VT T VIl | vE| |\ "7 VT

by using (B.11). And so, \/% sz\;1 \' (Mﬁm - MF;;) Mpoei = op(1).
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It remains to consider the second term in (B.34). By using My —Mpo = — (Fl’:,jF“

and subtracting terms, we get

N
1
T o VM, (M, ~ Mg ) w,
=1
N ..
1 F,F
- NTZVQMFI < lﬁf Y —PF;)) w;
=1
" 0
1 XM (R, -FiG,) o
- /NT — T yTy
1 L ViMg, (Fv —FgGy) I
_ INT T (FU — FyGy) u;
=1
N !
1 VIM, F) . .
T T G (Fy - 736, ) w
N 0 orgo\ !
1 ZV;MFL Y r_ Fy/ Y F"u
/NT — T Y=y y

:—(e1+e2+e3+e4).

We start with ey, which is

1| vimg, (B -FlG.) ,
s 3 - (FJ: - Fgcw) w
=1

L V;(ﬁ‘w—FgGw> (FI—FOGx)/ui

lea] <

— PF3> , and adding

SVNTS ; T T
~ ~ ~ /
RRERYTIR VORI o R (Fx - Fng) (Fz - F‘;Gw) u;
+VNT+ ; 77 7 0
=VNTO, (6;}) )

by using (B.4), (B.8) and (FaFoGo)us || _ Op (5n7)-

VNT &~ T
N 0
| VIFO
_ > G, (B - FIG, ) w
NT i=1 T
1 N V'E B/ FO 0 ’
A )
_ \/WZ LG, (b, - FIG, ) u;
=1
N
1 VIFO
- > G, (B - FIG, ) w
NT =1 T
N
1 VIFOG, FLFO .
N v (F —FOG.) )]0
1 i T T T Fwa - 0
- = . G, (F,-FG,) w
=1

= aj + az + ag,
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where

R /
N 110 F,-F'G,) u
1 V.F ( Y Y y) i _
lai| < \/Nﬁ ; \/Ty Gyl T = \/NOP (5N2T) )
li
N & F,—F'G,) u
1 V/F? . ||| FY y —Fyly ) W _
|ag] S\/NNZ \1/? G|l T H\/% Gyl ( T ) =VNO, (5N2T),
i=1
/
N V'.(F —FOG) : 0 (F —FOG)u
1 i x P o F, Fy Y y >y i _4
|as| < VNTN; T JT H\/T Gyl T = VNTO, (dx7) -
C o v
which hold by (B.8) and ‘ w ‘ = O, (6y7) as shown above.
N / 0 o0\ !
1 V/M,, F FUF
€4 = Z Fo ¥ GG, — | L2 F%y;
VNT & T v T v
N /0 0/ 0
1 VIF F
- 7T’/ G,G| - ( yT ”) F)'u;
NT Py
N .- 1
o gviER o (B,
VNT<= T T v T v
N 710 oo\ 1
1 ViFy ’ Fy Fy or
= — > 7 |GG, - | T F)'u;
i=1
N £ 10 0/ 0
_ 1 Z V;FgGCE F;Fy GyG/ _ y/Fy FOIUZ
VNT = T T Y T Y
1 V(R -G e AR
xr ! /
- VNT ; T T |9\ Fyw
=a; +az +as,
N IR0 o0\ 07
1 ViFy I Fy Fy Fy u; -2
lai| < \/NN ; T GyGy — ( T e VNO, (557)
1 L | VIR P, ||| F FOFO\ | || B0y, ,
? €T / _ —_
|lag| < \/NN ; T G2l Nl ll Ve G,G), - T 7 = VNO, (657)
N Vf(F —FOG) - 0 orgo\ 1| g0,
1 P(Fe —FOG) || &, ||| F FUF Fo'u,
|33|§VNTNZ T VT Tyf GyG;_< 7 y) || = VNTO, (d57),
i=1

due to (B.8) and (B.21). Now consider e; which is

B.29



1 L ViMpg, (Fu - F.?/Gy)
VNT & T

L vieone)
= G/ F;'u;
SNTT yTy
NT =1 T
1 ZVF £, (F, - F)G,)
\4 _1 T
N V! (F _F'G )
1 2 Yy yy
— Z G/ FOIU‘
yry
VNT = T
1 XN:VFOG i, (F, - F)G, )
- VNT & T
) i \'/ (FI _ FgGI) i (Fq, _ Fgey)
VNT = T T

=a; + az + ag.

_ 1 0r.
e = GyFy u;

G, F)u;

G;Fg’ui

G F)u;

We begin with as, which is given by
1N

lag| < VN N~ z;

= VNO, (037)

074,

#, (F, - F)G,)
T

/

0/
y Wi

T

v (k. - FoG, ) || [ F2 (F, - FoG,)

G

N

|az| < \/NT% >
=1

=VNTO, (5;/%“) )

which holds by (B.8) and (B.14). Now consider a;. By adding and subtracting we get

QL Vi (B, - FIG, )
VNT 2 T

K2

L NV (FyGfl—Fg)G

G;Fg’ui

a; =

5

~

I
~

=b; + ba.

Consider next bo, which is

N ||V! (FUG_l — FO) FO/F0 FO .
1 y Ty y u;
by < VN § : - G,G), - < o y) a

= VNTO, (d57)
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by (B.18) and (B.21). Next is b;. In line with the discussion in Bai (2009a, p.1266), we have

By F = W00 (0-00) WikLQ,

N N
1 ~ o 1 N / A
o Wi (00 ) wiB,Q, + = > w (0- 01 ) WIE,Q,
i=1 i=1
1 & 1 & 1 &
+ NT Z Fg’)’gie;FyQy + NT Z Ei’Y%FgleQy + NT Z eigiFyQy. (B.35)
i=1 i=1 i=1
~ -1 ~ -
with G, = (EyNTQy) where E,y7 is assumed to be an invertible matrix, Q, = (TSNAOFy) and
Ayp, =T 'FYF, and Yy = & A
By making use of (B.35), this term can be written as follows
N N oo\ !
1 1 VW N - ! PR F'F
b; = WW ZZ zT J (9 — 01V) (0 — ij) W;FyQy ( ?JT y> Fglul
i=1 j=1
N N oo\ L

1 1 VW o A A F'F
S v IR el RNy u’FyQy< T ) Fyu;

i=1 i=1
N N 00\ 1

1 1 Viu, 5\ F/ ¥y 0
+WWZZ T (070[\/) WijQy < T Fy’uz

i=1 j=1
N N /g0 oo\ !

1 1 ViFy 0 /o A FU Fu or
+ NT /NT Z Z T 'YyJ'eJFUQy T Fy

i=1 j=1

L NV o o (U g

3 / / /
+ 7 NTZZ =Y FyE,Qy FU'u,
i=1 j=1
N N oo\ !

1 1 Vgej I A FU FU or
i e () we
=c;+cy+c3+cy+cs+cg. (B.36)

N N oo\ !

11 VIW, A N~ [FOF

ol st g oS Y (0 0) (0 0) wit () e
i=1 j=1
N N 2 -

1 1 V; u; 1 W; F
<ar w2 | A A (w2 A IV e-on)] | %
_NTN;ﬁﬁ>N;ﬁ VT

0o\ ~ 0
e |(F) [ 5

=0, (N—1/2T—1/2) 7

where the order is determined by making use of vV NT' (0 — é[m) = Op(1), which holds by Proposition 3.
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lea| = % ;Tiévgj‘jvj (a—éjv) u;FyQy <F2;F2>_ F(y)/ui
. % }éiwg; (0-60) wiQ, (FS}FS) F\%;
- % ;Téﬁ:lu;]?‘y(@y glVZ;VJ (a—ézv)
R S (0 g, ()
< gl ar i) (3 Bl ] ) 1va7 (0-am) )| 52
<]
e (S5 ) (Sl ) v o-em)l| 52

=0, (N72) +0, (T72) = 0, (53,

where the second equality holds because u;f‘yQy'ygi is a scalar, whereas the order is determined by using
again vV NT (0 — 91\/1) = Op(1) by Proposition 3. As for c3, we have

R s oo Con ke 1| YRR o

0
Fy
VT

u;

VT

e
T
~=0, (T*W) :

by similar arguments as above.
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N N 70 A
1 1 VI F A F'F
il = | N7 /AT 2 2 ZTy’y?/JE;FyQy< 7 y) Fyu;
i=1 j=1
N N 0 010
1 1 ViFy 0 0 yoy 0
< NT\/WZZ T Vi€ Fy Gy Qy F)u;
i=1 j=1
N N /g0 oo\ !
1 1 ViFy 0 0 yFy 0
w7 g 2 e (B Fiey ) @ | =7 ) Fy
i=1 j=1
N N -1
" (12 A Fg’m) LS, (FF>
= 7 Y y
T\N = | VT T N = VT T
- -1
+<1§ ViFS F) L & (B, - FIG,) o <FF>
yJ Y
N — VT T \/]ijl T T
O

o (T72) + 0, (05%) + 0y (N712) = 0, (33h) ,

by (B.20). Finally, by similar arguments, we can show that ¢cs = O, ((5&1T) and also cg = O, (T*1/2) +
O, (6;,%) Thus, we have

N N
1 1
Y VM, M ui = =Y VIMpoMpou; + 0,(1) (B.37)
VNT o ’ VNT i ’
The result in (A.18) can be shown as above. ®

Proof of Lemma 10. We begin with (A.28). By using F;FI/T =1,,,, we have Mﬁm —Mpo =Ppo— PF.T =
— (F‘TF; — PF;;). And so, we get

T~2X[ (Mg, — Mpo)u;
=T '2X[(Mp — Mpo)u

1 O

| X (FI—FQG) .
= G'F)Ju
VT T *
| Xi (P, - FG) .
- P _F G) .
JT T ( =)
1 X/FO /. '
- 2itag(f —FOG) w
Vi Ll G
1 X'FO FORON !
1 x GG,* T T FO'ui
VT T ( T > ¢

=— (a1 +ax+ag+ay),
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x; (F, - FG) Fo/
] < VT | = g H u

T
F, (P, - F2G) FO Il w
<VT |Dui|l | ———L| 1G]] || =& J
< VIl | = el | %= |
/(B _ |0
+VT Vi (F” F-”G) u;
T VT
= VTO, (557) .
o/ (fr _ |0 ' _ w0
from F(FTFG)‘ = 0, (552) and ’ V(FTFG)H — 0, (652) by Lemma B, |G| = 0, (1), [Tuill = 0, (1)
. F) .
Zy Assumption 4, ”ﬁ” =0, (1), and ‘ 4 H)\OH L H + Hj%l = O, (1) by Assumptions 1, 3 and

~ ~ /
X! (Fm - FgG) (Fm - F2G> u

<vT
2zl < VT T T
~ ~ !
F (FT - FgG) (FI - FgG) u
< VTl | = -
~ . ’
/7 \' (Fm - FgG) (Fz - FgG) u
T
+ T T
= \/TOP (5;/%“) )

- u}(F.-F)G) (F,-FG) 0 (F,—F2G) e (F,—FOG)
by similar arguments as above and || ——F——*|| < ||’yl # +H>\ T + a =
O, (5;,2T) by Lemma B.4 and Assumption 4.

X/FO (F. - F2G) u
ool < VT X2 160 |2
. /
o FO |12 (F. - F2G) u
< VT ||l || =X G
< VIl | 22| 16 |2
. /
(Fz - FgG) u;
T
= \/TOP (5;/2T) J
from (FFGH =0, (6NT) as shown above by using Lemma B.4 and Assumption 4, [|G,|| = O, (1),
0
Izl = Op (1) by Assumption 4 as well as % = O, (1) by Assumption 3.
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(V%
Fz u;

X’FO
|a4| < \/7H

FO/FO -
GGI _ xT T
()

F |2 FUFO\ 7 || u;
<VT T || =2 GG’—(II> ¢
= VI H f T VT
CG (Fg’Fg>_ u;
T VT
=VTO, (5;VT).
from making use of HGG’ (T7'FYFY) H =0, 5N2T) by Lemma B.4, f = O, (1) by Assumption 2,
0
% = O, (1) by Assumption 3, ||T'y;|| = O, (1) by Assumption 4 and II\qull = O, (1) by Assumptions 1, 3 and
By putting the results together, we therefore have
|7 2X0 M~ Mipo)ug| = VTO, (333 - (B.38)
Thus,
T72XIMp vy = T72X Mpou; + VIO, (05%) - (B.39)
The results in (A.29) and (A.30) can be shown in a similar manner. m
Proof of Lemma 11. Using the identity @; = u; — W; (91\/70) we have
1 & / 1
NT Z Epir€pir = NT Zgﬁmg%n
i=1 i=1
1 & . re
— 7 2 nir (0rv—=0) WM Z,
i=1
1N
7 DM W, (ew—a) .
i=1
1 ., A R ' .
+ o7 D 2 Wi (01v=0) (B1v—0) WiMp, 2,
i=1
= iZe &rip —E1—Ea+ By
= BiTS T ‘
NT pt
We have
Z/ /A 1
il Ao, (%)
B || < VT ||6rv— N - T T A,
since ki < ‘ F;T = 0, (1). Similarly, |Ez|| = O, (ﬁ) Also
IE ||<THO 0H 2R Lo (L
3 v — T 4 N/
Thus,

1 N Y 1 N
NT Z FzTgﬁ'iT = NT Zgﬁ'iTslﬁ‘iT + 01)(1)'
i=1 i=1
as required. m

Proof of Lemma 12. By Lemma 11 and Proposition 2 we have

NTZgF’LTEF'LT NTZZMFOEEMFOZ —|—0p( )
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Noting that E (Z;MpgsieéMFEZi) = 0 for all ¢ # j and using Lemma B.1, ﬁ vazl Z;MFEEiE?gMF;JZi RN
limy 100 2 2, B (z;MFgaie;Mpgzi), which yields i S| € pur€. — Q = 0, (1) when (N, T) — oo

jointly, as required.
]

Proof of Lemma 13. First of all, by Lemma 2, Ay — % Zf\il A1 =0p,(1)and Byr— % Zil B, 7 =0,(1),
then applying Lemma B.1 yields the required results. m

Proof of Lemma 14. See Van Der Vaart and Wellner (1996). m

Lemma B.7 Under Assumptions 2 to 4, and Assumption 7, we have
(a) 1;15]\] | T~ Vi(FY - ﬁngl)H — Op(N1/45;[§1) n Op(Nl/zT—l/ngf%f)
® 1SioN IT7V] _(FS = Fo G h)|| = Op(NY4632) + Op(NV2T 1252
(€ sup IT VIR = Fona G5 Yll = Op(NY4535) + O (NVT1/20,5)
(d) S 1TV (FO — F,Go )| = 0,(NV46,2) + 0p(NV2T 1252,

Proof of Lemma B.7. Consider (a). With the equation (B.28), we have

sup | T7IVI(FY — F, G

x

1<i<N
k N k N

< sup N71T72|| Z Z V;Fg"/gjv}]Fw” [Qq|l + sup N71T72H Z ZV;VMV%FQIF%” Q]|
1<i<N i 1<i<N Pl

k N
+ osup NP2 TN Vive v Fol[|Qall
l<isN =1 j—1

Since Qm = Op(1), we omit Qg: in the following analysis. The first term is bounded in norm by

k N
T2, sup |T-V2VIEO -HN—lT—1 0y F
lgigNH ) xH ;;7@ lj+ x

Since E||T~Y/?V/Fo||* < A by Assumption 7 (ii), we have

sup ||T~H2VIFY| = O,(NY*) (B.40)
1<i<N
Note that N =171 Zif:l Z;\Ll 'ygjvgjl?} = Al yr = Op(N7V2T1/2) 1 O, (N1 4+ 0, (N~1/2557) as shown in

the proof of Lemma 4, and with (B.40), the first term is O, (N /4T =) 40, (N=3/4T=1/2)4+0,(N~V4T-1/252).
The second term is bounded in norm by

N k N
sup NS OS Vv AT PRI F, |
ISish =1 (=1 j=1
k N
= sup N'T7HD 0N Viveadll x 0p(1)
l<isN =1 j=1
k N k N
< sup NI SN CUE(Viv)lvgll+ sup NPT N (Vive — E(Vive))vd) |
1<i<N =1 j=1 1<isN =1 j=1
k k N
<N '. su T E(Vivg)] - su 01 + sup N-I7T1 Vive — E(Vive )Y,
< 1§i£NZ“ (Viva)| 1S(}émpgiglvIIMII @_gN IIZZ( Ve (Vive)vesll

=1 =1 j=1

—0y(N“3/4) 4 Oy (N7 112,
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by Assumption 4 and Assumption 7(iii). Consider the third term. We have

su T-Y2v,|2 = su 71! v
1§£N\\ il uwp ZZ Vit

=1 t=1
k T k T
< 7! E T2 T-1/2 — Ev},) < kA + O, (NY21~1/2
< s TSN B £ T s TESS S (i, — Eid) < kA + O )

(=1 t=1
=0,(1) + Op(N'/2T1/2)

(=1 t=1

since B||T~'/2 Ze 1 Zt l(vm EvZ,)|I*> < A by Assumption 7(iv). With Assumption 2 and 3, we can show
that E||N-1/27-1%F Zj:ﬂ‘%‘%‘ E(vejvy;)FQ|[? < A. Thus, the third term is bounded in norm by

k N
sup TV INTITT Y DS v T AR — B G|
/=1 j=1
k N
+771. sup |N~tT~ IZZVEV@W])FO” 1G]
1< (=1 j=1
k N
+ N~YV2r=120 qup TV2|Vy|| - |INTYRT Y Vv — E(ve vy )JFY Gt
S [Vl - ;; vy — E(ve v IFL 1G]

=0p(y7) + Op(N'2T7H2557) + Op(NVATTH)
where |[N=1T-1 Y05 ZJ L Veivisll = Op(657), which suggests from
T T kN )
T3S B =1 S S B |
=

(=1 j=1 s=1t=1 i=1
k

k N N T T
gAN‘lT_lzZZZ|E(WjS%t :Alez[ PRHILICRR | <a,

1j=1

—
-~

(B.41)

and

k N
EINT2T7EN "N " [vivi — E(vevi)IIP
(=1 j=1

T T kE N ,
:T_QZZE[ QZZUstvéjt ’Ugjs’l)gjt)] <A,

s=1t= =1 j=1

(B.42)

=

given [N~1 Z?:l Z;V:1 E (vgjsveje)| < N71 le:l Z;V:1 \/ Evi; Evjj, < A and Assumption 2(iv). Collecting
the above three terms, the claim (a) holds. Closely follow the proof of (a), we can derive (b), (¢) and (d), thus
details are omitted. This completes the proof. B

Proof of Lemma 15. Consider (a). The left hand is bounded in norm by

N
N7 Z I FY Mg will + N7 [ ViMgow; — ViMe, ui|

i=1

Consider N~'T-1 SN |, FYMg _w|, which is bounded by N~'T~! PO T4 |[FY Mg wfl. Note that
MFgF =0, we have Mg F = (MA — MFo)F0 We expand TMg — TMpo as following

~ ~ ~ A FO/FO 1
~(F, - F’G,)G,FY - F'G,(F, - F'G,) — (F, - F’G,)(F, - F'G,) - F (GmG; — (%) > FY.
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then

N
N7 T [IT 7 FY M
i=1
N N N ~
SN Tl T FY (Fy — FOGL)GLFY | + N1y Ty |[IT°FYFG,(F, — FOG,) uy|
i=1 =1
N
+ NN Ty || T72FY (Fy — FGo)(F, — FOG,) wi|
=1

N FO/FO -1
N Y IR (GGl - () ) R
i=1

=B; + By + B3 + By.
Consider By. Given u; = F)~,; + &;, we have
N
NS 1T P |
i=1

N N
SNTUY D ITailllvys T FYF )+ N1y Tl T FY eil] = Op(1)
i=1 i=1
Thus, B; is bounded in norm by
N A~
N7UY DTl 77 F Y wil| < |77 FY (Fa — FOGo)[|[|Gall = Op(037)
i=1
Similarly, we can show that By = Op(ég,gw).
Consider By. The term is bounded in norm by Nt Zivzl ITwil[| T (Fy — FOG) | - | T~ 2F0 12| G|,
which is O, (1) - N~U SN T[] T~ (F — FOG, ) w;||. Furthermore, the term N~ SN ||T, ||| T~ (F, —
FG,)'u;]| is bounded in norm by

N N
N Tl llIT (B = FOGL)Fy |+ N7 Y ITull| T (FoGL ' — F)eil|[[Ga|
i=1 i=1
:Op(é&g‘)
by Lemmas B.5. Thus, By = O, (6y). Analogously, we have By = O, (7). Collecting the above four terms,
we have N='T-1 o | |T,FYMg wl| = 0, (657).
Next, we tend to prove that N—17—1 Zf\il [Vi(Mg — Mpo)u,|| = Op(65F). Since Mg — Mpo =
~TH (B, FUG, ) GLFY ~T FUG, (B, —FUG, ) ~T~ (F,~FG.)(F,~FUG,) T 'F) (G, G, — (T~'FYF) ') FY,

we have

N
N7 IT'Vi(Mg, — Mo Jui

i=1

N N
NS T VIR, — FUG)GLE Y + NS [T RVIELG, (B, - UG, ) u|
i=1 i=1

N R R N
FNTY TR - FIGL)(Fs — FOGL) w + N [TPVIEY(GL G, — (T EYF) Y|

i=1 i=1

=B5 + Bs + B + Bs
We bound Bjs in norm by

N
NN ITTIVIE, — FOG)|IT ™ FY wil||Ge |

i=1

N N
SN T VIF, = FOG) 1y llI T FYEY |Gl + N1 T Vi(F, — FOG,) [T FYes||Ge |
i=1 i=1

=0p(dy7)
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by Lemma B.4. With Lemmas B.4 and B.5, B¢ is bounded in norm by

N
NS T VIE T By — FOGL) wi |Gl = 0,(TY2533)

=1

Similarly, we can show that By = O,(6y7) and Bg = O,(T~'/2552.). With the stochastic orders of the above
eight terms, we obtain (a). Following the argument in the proof of (a), we can derive (b).
Consider (c). The term is bounded in norm by

sup [|T7' XMz X; — T~ X Mpo X,

1<i,j<N

< sup [T FYMg Folyi|| +2 sup [|T'ViMg Folull + sup  [[T7'Vi(Mg — Mgo) Vi
1<i,j<N 1<i,j<N 1<i,j<N

=Cy +Cy +C5

C; is bounded in norm by

sup 77T, FYMg FOT,|| = sup |T7'T,(FY - F,G;')Mg (F) - F,G;")I,
1<ij<N i 1<i,j<N ’

<( sup [[Tqil))? - |77 2(F) — Fo G )|I° = O (NV/?67)
1<i<N

Ignoring the scale 2, Cs is bounded in norm by

sup [|T7'V (Mg — Mp)FoT,|

1<i,j<N

= sup [|TT2V)(F, ~ FIG,)GLFYFIL,| + sup [[T72V/FIG,(F, - FG,) FIT,|

1<4,5<N 1<i,j<N

+ sup [T72VH(E, — FUG,)(F, — FOG,)FOT, | + sup [T 2ViF%(G,G, — (T7'FYF) " FYFIT,,|
1<i,5<N 1<i,j<N

We bound the first term in norm by

sup [|T7'V)(F, —F)G,)| - sup ||Tull||Go|[|T'FYF| = Op(N'257)
1<j<N 1<i<N

With Lemma B.4, the second term is bounded in norm by

sup [T 'ViFS| - sup [Tl Gull| T (Fy — FOG.)FY| = Op(NV2T25%)
1<j<N 1<i<N

Given Lemma B.4 and Lemma B.7(a), the third is bounded in norm by

sup | T7'V)(F, —FG,)||- sup |77 (F, — FOG,) FOT,,| = O,(N'/?51)
1<G<N 1IN

the forth term is bounded in norm by

sup [[T7IVIFQ| - sup |Tuill|Go Gl — (T FYFQ) T IIT T FYFL|| = Op (NPT ~267)
1<j<N 1<iSN

by (B.40) and (B.11). Thus Cy is O,(N'/2§32). C3 is bounded in norm by

sup [|T7'V} (Mg — Mo V|

1<i,j<N F
= sup [T72V)(F, —FUG,)GLFYV, ||+ sup |T2V/FIG,(F, - FIG,) V||
1<i,j<N 1<i,j<N
_ = = _ _ —1
+ Ks;t;gNllT *Vi(F, —FG,)(F, — FOG,) Vil + 1<§123NHT VIFL (GG, — (TT'FYFy) FY Vi

The first term is bounded in norm by

sup ||T71V§-(1?“x —FIG,)||- sup [[T'FYVi| - |G| = Op(N'2T71257)
1<j<N 1<i<N

Similarly, the second term is O,(N'/2T~1/2§2). The third term is bounded in norm by

~ 2
((sw T VI(E, ~ FOG)I) = Op(N/205)
1<i<N
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The fourth term is bounded in norm by

T swp [TTVAVIELE GG, - (TTEYE) T = 0,V AT )

With the above terms, we have Cz = O,(N/2T~1/25.2) 4+ O,(N'/2557). Then, we have (c).
Consider (d). The term is bounded in norm by

e IT7'X5 Mg Mp Mg X = T7'X] _ Mpo MpoMpo X
< 1;’;};};\, ||T71I‘;ng/,—1MFT‘_1MFmMFT‘_ng,—lrriH

+21S§3};N||T71V;,—1Mﬁm,_1MFTMme_ng,—lI‘miH

+ S IT7'V5 (Mg, Mp Mg —Mpo MpoMpo Vi
=C4+C5+Cs

For C4, we have
Ca= sup [T7'T0;(F, - Fo1G7')Mp,  Mp My (FG L —Fo G Tai
1<ij< : :

<( swp ITwill)? - I772(F, _y = Fau 1 GE7H12 = O (NV/2057)

Ignoring the scale 2, Cs is bounded in norm by

S IT7'V5 My Mg Mg (FS _ —Fy G|
= 1;2;21\[ \\T’1V97_1(F27_1 - f‘w,—lGI’il)Fmi“
+3 1;3};]\’ ||T72V;7_1ﬁx,_1ﬁ;7_1(F%_l - f‘x,—lG;‘cil)I‘xiH
+ 1;_31;]\] ||T72V;7_1ﬁrﬁ;(Fg7_1 - f‘x,—leil)Fri”
+ S T3V} Fo 1 F)  FLFL(FS | —Fo 1G5 HTy|
+ S T3V} FoFLFy 1 F)_(FS | —Fo 1G5 Ty
+ S T~V Fo 1 Fl _ FoFLFy o F_((FS _ —Fp Gy Ty

With Lemma 15 (b), the first term is bounded in norm by

sup [[T7'V) L (FS _ —F, 1G37)| sup [Tyl = Op(N/2637)
1<j<N 1<i<N

With Lemma 15 (b), the second term is bounded in norm by

sup [TV _y By ol sup [Tl 1T FL_ (FO_, — B, 1G5
1<jsN 1<i<N

=0, (057) - sup [T~V _Fp 1 sup [T
1<j<N 1<i<N
<Op(SNPIGEI - sup [|T7"V5 _FO 1| sup || Tull
1<j<N 1<i<N
+O0,(05%) - sup [TV} (Fo 1 —F) _G3)| sup [ITai

1<j<N 1<i<N
=0p(NV2057) + Op(N'2557) = Op(N'2637)
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Analogously, other terms can be proved to be O,(N'/255%). Then Cs = O,(N'/255%). Consider Cq, we have

S IT7'V5 1M, M Mg = Mpo MpoMpo Vi |
SN IT7'V5 (Mg~ Mpo JMpoMpo Vi
+ S IT7'V5 i Mpo  (Mp —Mpo)Mpo V|
- 1<Si1;2N ||T71V3’_1MF3,71MF3 (Mp, , =Mpo )Vil
s [TV (M, =M )My, ~ M) Mpy Vi
+ 1;};1;]\, 1TV (M, |~ Mpo )JMpp(Mp  —Mpo Vi
+ S 1T~V Mo (Mg = Mpo)(Mp | —Mpo_ Vi
o IT7'V5 (Mg, = Mpe J(Mp —Mpo)Mp, | —Mpo Vi

Following the argument in the proof of Cs, the first three terms are shown to be O,(NY2T~1/25.2) +
Op(N'Y2557). Note that Mg — Mpo = =T~ 1(F, — F{G,)G,FY — T'F.G,(F, - F{G,)’

~ TR, - FUG,)(F, — FUG,) — T7'FY (G, G, — (T'FYF) " ) FY and Mg — Mgy | =

- Tﬁl(f‘z,—l - Fg,—lGr,—l)G/ 1F Tﬁng,—le —1(/\96 -1 Fg 1Gao 1)

z,—1
~ T Y (Fy 1 —FS Gy 1) (Fa 1 —FO Gy ) = T7'FY (Gm Gy — (TT'FY_,F) ) FY 1. We
can substitute MA — Mpo and MA T MFQ o with the above two equations, then follow the argu-

ment in the proof of Cs to derlve that the other terms are o,(N'/2T=Y/252) + 0,(NY/2657). Thus Cg =
Op(NY2T=125.2) + O,(N'/2557). Collecting the above terms, we have (d). Analogously, we can prove (e),
Thus the details are omitted. Thus, we complete the proof. B

Proof of Lemma 16. Consider (a). Define ppax = SUPj << N |pi|. Note that y; = p;yi—1+X:05; +Fyv, +ei
then

= Z Xi,—sBipi + Z Fy —svyifi + Z €i—sPi » (B.43)
s=0 s=0 s=0
and
) [e%S) [e'S)
Yi—1= Z Xi,—sﬁip?_l + Z Fy,—s’Yyipf_l + Z 51,—spf ! ’ (B44)
s=1 s=1 s=1

With (B.44), we can derive that

sup | T'X[Mp yi 1 — T X{Mpoyi, 1|
1<i j<N :

< sup [T 1ZX’ £~ Mpo)X; B0
1<i,j<N

+ sup [|T7'Y XIMp —Mpo)Fy _ov,i0i 4+ sup |71 Xi(Mgp — Mpo)e; _opi !
1<”<N” Z F, Fm) Y yiP H 1< Z]<N|| ; F, Fx) p ”

=D; + Dy + Dy
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Consider Dy, which is bounded in norm by

su T Xi(Mj —Mpo)F, M
s Z £ — Mpo)Fy _oy,.00 |

< sup [T ZZX/ *Fng)GQFgle,—s’mef_lll
1<i,j<N

+ sup [T 2ZX FUG,(F, — FOG,)'Fy _sv,:p: "

1<i,j<N ——1
b Y XUE, - FUGL)(FL - FUGLF, 0l
1<i,j<N ——1
FUF\ -1
o I X (G, () ) R e

=Ds 1 +Doo + D2.3 + Doy

Note that
sup [|[T7'X}(F, — FIG,)|
1<i<N
< sup |Tuill|T7'FL(F, — FOG,)|| + sup [T 'VL(F, — FOG,)| (B.45)
1<i<N 1<i<N

=0p(NYA037) + Op(NY2T 12057

The term D5 ; is bounded in norm by

o0
sup [|T7'X}(F, — FOG,)| - sup |1yl - sup > T 'FYF, _[lp:* " - [|Gal
1<i<N 1<i<N 1<isN ‘=

:12“£NZ||T FYFy il [Op (VY2037 + Op(N¥AT 12533

:Op(Nl/Q‘SNzT) + OP(N3/4T_1/26]:1T)

since liup Zs‘ 1 ”T 1F0/F *S|||p1|s ! < Ze 1 ”T 1FOIF *S”pmax - OP(]-)’ which is lmphed from

Z ||T 1ITOIF%*S||pmax)

s=1

(B.46)
< meaMEnT V2RO |2 B|[T-1/2F, || < Azp;; <A
With prmax = sup;<;<n [pi| < 1. Similarly, we have Dg 4 = Op(Nl/Q(S;,zT). Because
1k E N
F, - GLFY = o= Z GLQF vy FY + o Z > GLQLELFOY vy,
671 i=1 e 14i=1
LA
I A T /

+ 7 ; Z; GLQLE vyiv),. (B.47)
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the term Dy 5 is bounded in norm by

sup || T~ 2ZX’FO (F, — FOG,)Fy _ov,i0: 7"

1<i,j<N
1~ /10 1 0 / s—1
<1sup 1T XL Ga|l - Sup 17~ Z o = FoGa)'Fy —svyip; |l
=0,(N'*) - sup |T7') (Fo = FG.)Fy _ov,0) "
p(N'Y) - sup | Z vyiPi

55— 1”

Mw
Mz

<OL(NY*) - |G| Q] -  sup N7y

éh7£hF Fyy—é’szp
SN s=1

~
Il

1

>
Il

i

Mg
W

+ Op(NY4) |G || Qul - Sw [P\

Z] s

Fxe’YthMF —e')’yiﬂf

Il
—
o~
> |

AR

i

Mg

+ Op(NY4) - |G [ Qul - S INTIT

0/

F hv[hFJ —97yzp7,
<N

<i,j< s

1/¢=1

>
I
—

Note that N~17~1 Zif:l Z;\le F' vyl = Apnr = Op(N~V2T=1/2) 4 O,(N~1) as shown in the proof of
Lemma 4. With (B.46), the first term is bounded in norm by

k N

Op(NYH) A INTITT NN vy il - sup vyl - T 1ZIIFO/F sl b
—n 1<i<N

:Op(T_l/Z) + Op( /2

Similar to the argument in (B.46), we show .02, [N=1/27-1/25°% SV 40 VI F, . ||lpsal = Op(1). Then
the second term is bounded in norm by

kE N
Op(NTVAT=2) | TR FY| - S II'YleI ZHN VETTEN TN AV Fy sl
s=1 £=1 h=1
:OP(T_l/Z)

The third term is bounded in norm by

k N
Op(N'%) - sup vyl ZHN TN EvaviFy i

s=1 (=1 h=1
Note that
k N
N2 Z Z F v v Fy s
=1 h=1
k N k N
<N“I772 Z G FUvu vy Fy o+ N1T72 ZZ (F, —FG.) E(vinvi,)Fy—s
(=1 h=1 /=1 h=1
k N
TN (F — FUGL) (Vv — E(vinviy))Fy
=1 h=1

then following the argument in (B.46), we can prove that

ZHN 1T QZZF véhvéhF%—SHpmax = (6]:73")

¢=1 h=1

then the third term is O,(N'/263%). Thus, Doo = O,(NY2532). Analogously, Doy = O,(NV255%) +
O, (N3/4T=1/25 %), With the above four terms, Dy = O,(N'/2532.) + O, (N3/4T~1/252).
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Consider D3, which is bounded in norm by

sup |7 1ZX/ 5, — Mgo)ei sp;
1<i,j<N

< sup T 2ZX’ FoG,)GLFYei—opi
1<i,j<N s—1

+ sup [T QZX/FO ﬁ _Fng)lsi,fspfilH

1<i,j <N
+ sup [T QZX/ _Fng)(ﬁx_FgGw)lei,—spf_ln
1<i,j<N
FO/FO —1
b s 1 22X'F” (Goen (7)) Fre
VA

=D31 + D32+ D343 + D34

Note that sup; ;< v |77 X5(F, — FUG,)|| = O,(N/4632) + O,(N/2T~1/2532), the term Dy is bounded in
norm by

sup [|T'X|(F, — FOG,)| - sup meaan FY%, |- |Gl
1<i<N 7,<N

- 1§“£sziwlx”T VIRYe | [0y (NI ) + Op(N AT )

=0, (N*AT1V252) + O,(NT1552%)

because sup Y oo, pil|T7Y2FYe; || = O,(N'/?), which is given by
1<i<N
o0 o0
meax||T_1/2F0/€l,fs” =YD PP EIT ™ VPFY ey |17 ?FYes |
s=1t=1

(B.48)

[SSINe'S)
<33 bstule/ P17 PRy, P BT e <ASY gk < A
s=1t=1 s=1t=1

Similarly, we can prove that D3 4 = O,(N3/4T~1/252). The term D3 5 is bounded in norm by

sup [T~ QZX'FO (Fo — FOG,) e —sp; "

1<i,j<N
o0
< sup [[T7'XIFO|Ge| - sup [T7') (Fo —F)G.) e _opf ||
1<i<N 1<i<N =
o k N
<SOp(NY4) - sup [INT'T2Y NN vy Flei —op |
1<i,j<N s=1¢=1 h=1
oo k N
+O,(NYY) - sup [INTIT2Y NN F FOAYvinei o) |
1<i,j<N s=1¢=1 h=1
c©o k N
F 0N sup INTTTEY ST S Fovaviei o
1<i,j<N s=1¢=1h=1

The first term is bounded in norm by

oo k N
Op(NY4)- sup [INT'T2Y NN Fvay g Fyes—op |

Isi,j<N s=1 (=1 h=1

kN
<O(NYAT™V2) . sup meaxHT_l/QFOIEZ Sl INTTTEY TN T E L veny il
1<i<N 4 =~

:OP(N1/4T71)+OP( 71/4T71/2)



with N=1T-1575 Z;V=1 F' vyl = Ayt = Op(N~Y2T=1/2) 4 O,(N~') and (B.48). Then the second
term is bounded in norm by

[e%s) N
Op(NTVAT=2) | T ELFY| - swp > Pl |INTVET2 Z Z Vonvinei sl
s=1 h=1

7

:OP(N1/4T—1/2)

because E(X°%, psalIN“V2T-1/2505 SV 40V ei s|[)? < A, which can be proved by following the
argument in the proof of (B.48). The third term is bounded in norm by

co k N
Op(NY4) - sup |INT'T2Y NN Fovavinei—op) |
h=

1<i,j<N s—1 f—1 h—1

c k N
SONYAT™) - IGsll - sup NTITTUY NN FvanIvines—sll e
IsijsN s=1 (=1 h=1

00 k N
+ OP(N1/4T71) |[Fe — Fng” SUP N7 Z | Z Z VenViRei, *SHpmax
s=1 (=1h=1

—0,(N'AT V25

Thus, Dy 2 = O, (NYAT=1/2) 4 O,(NV/2T~1/25 L), Similarly, we can show that D3 3 = O, (NYV4T1/252) +
Op(N1/2?112/25X73T) + O1P§N314gpl§&%)' 1C20mliir;irig1 the above terms, we have D3 = O,(N3/4T~1/252) +
Op(NT71535) + Op(NY T— 12) + O (NY2T=1/2550).

Note that X; 5= =F, I +V;_,, we can follow the arguments in the proof of Dy and D3, and then have
Dy = O,(NY253%) + O (N3/4T 1/25;”) + O, (NT~1632) + O,(NY/4T=1/2). Thus, with the above terms,
claims (a) holds.

Analogous to the argument in the proof of (a), we can derive (b). Thus, we complete the proof. B

Proof of Lemma 17. Consider (a). As E|T7Y2[V/V, — E(VIV))]|* < A and E|T~Y2VIFo|* < A,
supy<;<n [IT72[ViVi = B(VIVi)][| = Op(NY*) and sup, ;< v [|T~/*VIFS|* = O,(N'/?). Thus

sup || T 'XMpoX; — T~ E(ViV,)|
1<i<N

=772 sup |T7V2(ViV, = E(ViV)]|+ T sup T >VFQ|P(T'FYFY) |
1<i<N 1<i<N

:OP(N1/4T_1/2) 4 OP(N1/2T_1) .

Similarly, we can prove (b) and (c). Consider (d), which is bounded in norm by

sup |77 XiMpoyi 1 = T7' Y E(ViVi_s)B;p; ||

1<i<N oy

oo
< sup [IT7'ViMpoyi 1 =T > ViVi _Bipi !
1<i<N

o [T SOIVIVL - BVIVL )80
1<i<N s—1

< sup ”T 1V PFOYz —1||+ sup ”T 1V Y, —17 IZVV —sﬂp 1”
1<i<N 1<i<N s—1

s [T VIVL .~ E(VIVL_ )8
1<i<N =1

—F, + F, + F;
As
oo o0 oo o0
Vi1 =Y Fo TuiBipi™ + > Vi By Y Fyavyind D i)
s=1 s=1

s=1 s=1
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The term F; is bounded in norm by

Sup I 1ZV ProF, _T0iBip) 1||+ sup |1 1ZV ProVi_iBip) |l
i s=1 s=1

+ sup |17 1Zv ProFy 7,00 1||+ swp |7 1ZV/PFer_gpl M
H s=1 s=1

The first term is bounded in norm by

T2 Sup (1T~ 2V LTl 18:1) ZIIT‘”QFw sl - (T FYEY) T 2F|

=0,(T™12)- sup (IT~/*VIFS] [Tl 181]) S TR, ok = 0p(N AT

1<i< —1

because
E(|T7AVFIToi[18,)* = BT~ 2 VIFY||*E| o | *E||8;]* < A

and - -
EY IT7Y2F, llppax <D Apik < A
s=1 s=1

Similarly, the third term is O,(N'/4T~1/2). The second term is bounded in norm by

A sup (1T~ 2VFL8:1) Sup ZIIT VERY Vsl i - 1T FYFG) Y|

1<i<

=0,(T71)- sup (1T~ 2VIFL8;) - sup ZIIT VIRV o piax = Op(NV2T7)
1<:i< 1<i<

with B30 |T7Y2FYV, _ollpint)* < A. Similarly, the forth term is O,(N'/27~1). With the above four
terms, By = O,(NY4T~1/2) 4+ O, (NY/2T~1),
The term F5 is bounded in norm by

sup |77 VIF, _ s—1
1<7,£N|| Z xT,—s rzﬁ pz ||

s=1
s TN SOVIE, s T+ s 7 S Ve,
1<i<N —1 s—1

The first term is bounded in norm by

T s ( menT VAV | ITslllBil) = Op(NMAT )

because
meaxHT VAVIF, | ITaall18;])
=E( medx\T_l/QV' eosl)® - EITzl[* BB |I* < A

Similarly, the second and the third terms are O,(N'/4T~1/2). Then Fy = O,(N/4T~1/2). Consider the term
F3, which is bounded in norm by

T2 sup (Y P T2 ViV = E(VIVi o)l IBi]l) = Op(NVAT712)

1<i<N i

since the forth moment of the term in the parenthesis is bounded. Consequently, claims (d) holds. Following
the argument in the proof of (d), we can show that (e) holds. This completes the proof. B
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Proof of Lemma 18. With the definitions of ALT, Bi,T and Lemmas 15, 16 and 17, we can derive that

sup ||Air — Ay
1<i<N
sup ||Bz 7 — Birll = 0,(NV?532)
1<i< (B49)
sup ||Asr — Aip| = Op(NYATY/2) 4 0,(NY/2T71)

1<i<N

1§up HBZ T i7T|| = OP(N1/4T_1/2) + Op(Nl/QT_l)

= O, (N2 + N¥4T71/2 4 NT7635) + Op(NV/4T1/2)

Since B;; -B;} =B ;(Bir — BLT)B;; +B;;(Bir — BZ—,T)(B;} —B; ), we have

27

sup |B; 1 —B; 1l
1<i<N

< sup HBlel sup IBi,r — Bix| sup |B; 7l
1<i< 1<i<N

B R—1 -1 (B.50)
+ SUP HBi,T” sup |Bi,r — Bir| sup ”Bi,T - Bi,T”
1<i< i 1<i<N

=0(1)- sup HBzT— Bzl + [Op(NVAT™2) + O, (NV2T7H)] sup 1B — B 7l

1<i< 1<i<

Given N/T? — 0, the second term is o, (1) - sup; <<y ||]§;% - B;}H, it means that the second term is not the
leading term while the first term is the leading term, thus

sup [BIf — B = O,(NVT712) 4 0, (V2T (B.51)

which further means that sup;;<y ||Bl
Then, analogous to the argument in (B.5O

| = Op(1) by triangular inequality with sup;<;<y ||B;%|| = 0(1).
and (B.51), we have

2 —1 -
sup 1By — Bzl = Op(N'/2037) (B.52)
1<i<N
By Lemma 14 with Assumption 6 (iii), sup;<;<x [7ir| = Op(InN) for 2 <r < k + 1, which further implies
that sup;<;<n [Bir| = Op(InN) for 1 < r < k. Then, we have sup;<,<n [|18B;] < supj<;<n Z:f:l |Bir] <

Zle(suplgig\r |Bir]) = Op(InN). Note that

A — -1 Zs 1 Ps 1E(V Vz,fS) T_lE(ngi) B; O

= St P E(V] L Vies) TTE(VI Vi) \ 0 Lk

it’s easy to show that sup;<;<y [|Ai 7| = Op(InN) with pyax < 1 and sup;<;<y [|3;]| = Op(InN). With (B.49)
and the triangular inequality, we have

S |A; 7]l = Op(InN) (B.53)

Note that sup, <,y [ B; ]| = Op(1), with (B.49), (B.52) and (B.53), we have

2/ 2—1z2 - ~
sup ||A, ;B rAir — Al 1B 1A, 7|
1<i<N

2 ~ ~ ~ 2 —1 ~ ~
<2 sup [|Asr —Air| sup [Air|| sup [Biz|+ sup [B;r—Biz| sup [Air|?
1<i<N 1<i<N 1<i<N 1<i<N

1<i<N
2 - s 2ol o - (B.54)

+ sup 1A;r — Air|® sup IB; 7l +2 sup [[Air —A;r| sup B, —B;z| sup [|A;r]

1<i< 1<i<N 1<i<N 1<i<N 1<i<N

2 - 2—1 -

+ sup [[A;r—A;r|* sup B, —B;l

1<i<N 1<i<N

=0,(N'?(InN)?6 %)

Analogously, with (B.49) and (B.51), we have

sup ||A TBzTAlT A B, TA
1<i<N

O,(NY*(InN)*T~Y2) + O,(NY?(InN)?T~1)

B.47



Suppose sup; «;<y ||(A;,TB;%AZ-7T)*1|| = 0,(InN), we can follow the argument in (B.50) to show that

e I(Af 7B 7 A1) ™" = (Al 7By p A7) 7| = Op(NY*(InN)*T71/2) + O,(N'2(InN)*T~")  (B.55)
given N'*0/T% — 0 for any § > 0. Then with triangular inequality, sup, <;< H(A;TB;%AlT)_lH = O,(InN).
Thus, we have o o

sup_|[(A] 7B; A7) A B 1| = Op((1nN)?) (B.56)
1<i<N ’ ’ ’
Then, we prove (b).
In addition, with (B.54), using the argument in (B.50) again, we can show that

2/ 2—12 - - ~
s (A By rAir) ™ = (AL rB p Aur) 7| = Op(N'2(InN)657) (B.57)

s/ a2—1lz
and sup; ;< v [[(A; 7B; 7A; 7)7![| = Op(InN). Combining (B.52), (B.49) and (B.57), we can derive that

2l 2—1 2 2l a2-—1

151_151\[ H(Ai,TBi,TAi,T)ilAi,TBi,T - (AQ,TB;%ALT)*IAQ,TBZ%H
_1'_

=0, (NYAT7Y2InN) + O, (NY2(InN)?6 %)

Thus, we prove (a). With (B.49), (B.51) and (B.55), we follow the argument in the proof of (a) to prove (c).
This complete the proof. W
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Appendix C: Additional Experimental Results

Table C1: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homoge-
neous slopes with {p, 81, f2} = {0.8,3,1} and m, = 3/4, correlated factor loadings in x1;; & us

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.8,3,1} and m, = 3/4

V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 o0 -01 -01 00 -06 -08 -10 -10 -15 -15 -15 -15 -58 -6.1 -6.1 -6.2
50 -0.1 00 00 00 -0.2 -03 -04 -05 -08 -0.7 -0.7 -0.7 -21 -21 -23 -24
100 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.2 -0.2 -0.5 -04 -04 -04 -04 -06 -0.7 -0.9
200 0.0 0.0 0.0 0.0 01 00 -01 -01 -03 -03 -0.3 -0.3 0.2 0.1 -0.1 -0.2
RMSE (x100)
25 5.2 36 26 1.8 1.5 1.3 14 12 42 32 26 22 6.7 6.7 65 6.5
50 30 21 14 1.0 08 06 06 05 30 21 1.7 1.3 26 24 25 25
100 20 13 09 0.6 05 04 03 03 22 15 1.1 0.9 1.0 09 09 1.0
200 1.3 08 06 04 03 02 02 01 14 10 08 0.6 0.7 05 04 04
SIZE: Hy : p = 0.8 against Hj : p # 0.8, at the 5% level
25 7.5 6.2 46 53 250 34.1 51.8 724 87 9.7 16.1 258 579 834 96.5 994
50 83 63 63 57 163 206 343 56.0 59 6.2 7.6 107 383 61.3 86.8 974
100 91 6.5 50 48 132 142 227 395 6.5 64 64 85 16.1 31.5 54.1 825
200 84 56 59 51 128 11.0 144 214 59 52 64 80 16.6 20.0 25.0 444
POWER (size-adjusted) : Hp : p = 0.9 against Hj : p # 0.9, at the 5% level
25 66.1 81.4 955 99.8 99.6 99.9 99.7 100.0 61.3 79.8 92.8 98.6 136 79 56 2.3
50  89.6 98.8 100.0 100.0 100.0 100.0 100.0 100.0 86.5 96.5 99.7 99.9 93.0 98.8 99.7 99.9
100  99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.6 99.8 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 51, homogeneous slopes {p, 51,82} = {0.8,3,1} and m, = 3/4
V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 03 06 01 01 -82 -9 -84 -64 17 29 20 23 -1.0 -05 -03 0.1
50 03 02 00 -02 -91 -72 -46 -28 18 22 21 1.7 00 06 1.1 1.3
100 0.3 -0.1 0.0 0.1 -78 -59 -27 -04 15 07 10 1.1 -14 -1.3 -0.2 0.5
200 -0.1 01 00 00 -77 -44 -12 01 04 04 05 05 -30 -25 -1.6 -0.7
RMSE (x100)
25 221 159 11.0 7.7 28.7 24.0 21.8 17.0 33.3 24.0 16.3 12.0 30.7 229 164 11.3
50 15.0 101 7.2 49 26.8 222 16.7 11.8 22.0 146 10.8 75 181 127 9.1 6.3
100 104 71 50 34 263 19.1 11.7 6.2 139 94 69 48 116 82 58 3.9
200 72 50 34 25 250 161 76 29 89 62 43 3.1 87 6.3 40 27
SIZE: Hy : f1 = 3 against Hy : f1 # 3, at the 5% level
25 84 69 51 54 582 559 558 495 57 59 52 58 76 77 6.9 5.1
50 75 5.7 59 47 66.1 587 452 29.7 55 bH6 56 5.6 81 6.8 6.0 5.8
100 80 59 69 51 694 56.1 33.0 158 54 50 53 5.2 84 75 75 6.2
200 85 59 52 73 744 527 27.1 115 6.2 45 45 49 114 119 82 83
POWER (size-adjusted) : Hp : 1 = 3.1 against H; : 1 # 3.1, at the 5% level
25 134 12.6 18.0 29.2 36 29 20 24 74 9.1 125 19.3 59 6.8 89 17.7
50 154 21.7 30.6 52.8 27 3.1 28 3.5 105 14.6 22.2 353 8.7 14.0 25.8 43.2
100 22.7 33.6 54.0 85.9 3.1 3.0 48 639 162 241 40.0 66.2 11.9 181 409 77.6
200 36.9 57.3 84.0 97.8 29 3.5 358 964 23.1 455 T71.3 92.0 11.2 209 552 91.7

Notes: The DGP is the same as the one for Table 3, except {p, 1, 82} = {0.8,3,1}.
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Table C2: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 51, 52} = {0.8,3,1} and 7, = 3/4, correlated factor loadings in x1;; &

PANEL A: Results for p, heterogeneous slopes with {p, 51,82} = {0.8,3,1} and m, = 3/4

IvV2b QMLE IVMG? CCEMG

TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)

25 0.3 -06 -05 06 -01 -1.0 28 -39 -15 -14 -14 -15 -53 55 58 -6.0

50 -0.3 -0.1 -0.1 -0.1 55 57 55 58 -08-0.7 -0.7 -0.7 -1.6 -1.9 -2.1 -2.2

100 00 0.1 02 03 96 122 139 147 -04 -05 -05 -04 0.0 -03 -0.6 -0.7

200 0.3 0.6 06 07 126 156 169 175 -0.3 -0.3 -02 -0.3 07 05 02 0.1
RMSE (x100)

25 7.7 55 39 27 70 6.5 68 7.2 46 3.5 28 2.3 6.5 63 6.3 6.3
50 54 36 25 1.8 86 &84 81 8.3 39 27 20 1.6 32 29 26 26
100 3.7 26 19 1.3 11.6 13.3 145 151 3.1 23 16 1.2 25 1.8 14 1.3
200 3.1 23 1.7 13 14.0 16.1 171 176 27 20 14 1.0 24 1.8 1.3 09
SIZE: Hy : p = 0.8 against H; : p # 0.8, at the 5% level

25 109 89 6.8 6.5 732 751 80.1 859 6.6 7.5 11.5 19.3 34.1 57.5 &84.1 95.5
50 123 7.7 66 6.0 81.6 84.6 8.0 89.5 69 53 6.6 9.7 11.6 21.2 372 62.1
100 9.1 75 58 6.1 926 973 989 99.7 56 53 H7 7.0 87 82 100 19.6
200 9.1 80 9.1 114 97.1 99.8 100.0 100.0 55 54 59 60 9.2 78 82 87
POWER (size-adjusted) : Hy : p = 0.9 against H; : p # 0.9, at the 5% level

25 39.0 52.5 72.6 942 31.7 382 3277 30.6 50.4 734 89.0 976 10.1 6.1 4.0 1.9
50 52.2 783 953 99.9 20.8 30.7 35.0 36.1 66.6 93.0 99.4 100.0 752 87.9 96.1 99.2
100 71.3 93.0 99.6 100.0 17.2 25.4 34.7 43.0 84.6 97.5 99.9 100.0 97.2 100.0 100.0 100.0
200 84.2 98.5 100.0 100.0 159 19.9 244 354 92.7 99.7 100.0 100.0 99.4 100.0 100.0 100.0

PANEL B: Results for 1, heterogeneous slopes {p, 51,82} = {0.8,3,1} and 7, = 3/4

V2P QMLE TVMG? CCEMG

TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)

25 50 -5.5 -61 -6.1 -16.1 -185 204 231 18 12 18 19 -14 08 -12 -05

50 -5.6 -6.1 -6.6 -6.8 -22.7-26.6 -290.5 -31.5 2.0 1.0 14 15 -0.6 -04 04 12

100 -5.5 -5.4 -6.1 -6.5 -34.2 -48.8 -59.8 -65.2 0.6 0.9 0.8 08 -21 -08 -0.3 0.1

200 -4.4 -48 -52 -54 -48.8 -67.6 -78.9 -84.0 03 05 05 02 -33 -21 -1.3 -0.8
RMSE (x100)

25 28.6 20.2 14.7 114 34.3 31.5 31.0 31.9 334 23.8 164 11.8 31.3 23.0 16.5 11.6
50 20.8 15.1 11.6 9.6 40.2 41.0 41.8 429 21.5 149 10.7 7.7 180 134 94 6.9
100 15,5 11.7 96 83 51.8 624 69.0 72.0 14.0 9.7 69 48 12.1 87 6.2 4.3
200 12.0 9.2 7.7 6.7 656 780 84.6 874 93 6.9 48 3.2 93 6.5 44 3.2
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level

25 92 95 81 11.1 63.0 65.8 73.2 81.3 5.7 53 44 54 76 6.1 55 54
50 9.7 9.6 10.6 17.2 73.8 77.8 829 86.4 6.5 4.7 53 5.7 69 62 64 74
100 10.2 9.7 139 244 825 89.8 948 972 56 55 53 45 83 80 74 7.0
200 10.6 11.1 16.1 283 90.2 955 98.5 994 58 6.5 6.3 4.6 10.7 104 &85 8.1
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level

25 86 7.2 52 45 23 21 15 12 73 89 132 163 52 69 85 151
50 69 7.8 5.8 27 22 19 24 16 93 14.7 20.8 33.7 84 13.6 209 36.0
100 82 85 7.8 5.0 26 24 15 19 149229 349 64.7 109 19.2 355 63.8
200 11.1 11.8 119 131 24 1.7 21 1.2 210355 61.0 89.2 &7 223 504 83.0

Notes: The DGP is the same as the one for Table 4, except {p, 51,82} = {0.8,3,1}.
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Table C3: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homoge-
neous slopes with {p, 81, f2} = {0.5,3,0} and m, = 3/4, correlated factor loadings in x1; & ug

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,0} and 7, = 3/4

V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 01 00 00O 00 -04 -07Y -09 -11 -07 -07 -06 -07v -34 -36 -3.8 -3.9
50 0.0 0.0 0.0 0.0 00 -03 -05 -06 -05 -04 -04 -03 -09 -1.1 -1.3 -1.5
100 0.0 00 00 0.0 0.1 -0.1 -03 -03 -03 -02 -0.2 -0.2 03 01 -02 -04
200 0.0 0.0 0.0 0.0 02 00 -01 -02 -0.1 -0.1 -0.1 -0.1 0.8 06 03 0.1
RMSE (x100)
25 3.1 22 16 1.1 1.7 14 14 1.3 3.5 25 18 15 45 4.3 4.2 4.2
50 21 14 10 0.7 1.1 09 07 0.7 23 15 1.2 0.9 1.9 1.7 16 1.7
100 14 10 06 04 08 06 05 04 1.5 1.0 0.7 0.6 1.1 09 07 0.7
200 1.0 06 04 0.3 06 04 03 0.2 1.0 07 05 04 1.2 09 06 04
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 83 6.0 6.5 5.7 202 259 41.3 60.8 5.2 7.2 79 125 31.7 54.5 788 94.5
50 92 6.2 63 48 164 183 27.0 484 6.3 53 6.1 83 171 29.5 53.2 78.1
100 90 69 53 47 140 146 20.0 314 5.8 64 57 66 133 17.8 26.5 44.3
200 90 6.0 58 52 166 114 129 18.2 6.0 53 55 60 31.0 344 31.2 286
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 88.4 98.6 100.0 100.0 99.8 100.0 100.0 100.0 80.2 93.9 99.4 100.0 39.8 41.2 47.7 52.1
50 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.2 99.8 100.0 100.0 99.3 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 2, homogeneous slopes {p, 81, 82} = {0.5,3,0} and m, = 3/4
V2 QMLE TVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 02 04 01 00 11.0 94 7.6 5.6 0.1 0.1 0.2 0.0 40 19 14 04
50 0.1 0.1 -0.1 0.0 92 71 39 1.9 03 02 -01 -0.1 42 23 1.0 0.5
100 0.0 0.1 00 0.0 79 48 20 0.3 00 01 00 0.0 3.7 22 11 0.6
200 -0.1 0.1 0.0 0.0 6.5 29 06 0.1 0.0 0.1 0.0 0.0 3.8 22 1.1 0.5
RMSE (x100)
25 10.7 7.6 55 4.0 179 14.7 11.9 9.0 157 109 &1 56 16.1 11.3 82 5.6
50 74 50 36 25 160 122 82 5.3 92 65 46 32 101 6.7 45 3.2
100 50 35 24 16 140 96 59 25 6.2 42 29 21 71 46 29 20
200 35 24 1.7 12 127 72 32 1.6 40 28 20 14 57 35 22 14
SIZE: Hy : 32 = 0 against Hy : B2 # 0, at the 5% level
25 76 6.9 6.1 6.0 51.7 51.6 48.8 43.6 5.0 4.7 53 5.5 6.9 54 57 53
50 103 6.6 54 5.7 557 474 340 21.1 56 53 56 47 103 7.1 59 58
100 85 6.1 6.2 55 586 39.0 206 9.4 6.4 54 57 48 126 104 7.0 6.2
200 87 6.4 6.2 59 579 322 114 73 6.2 52 53 47 199 145 9.9 8.1
POWER (size-adjusted) : Hy : B2 = 0.0 against Hy : B2 # 0.1, at the 5% level
25 234 322 478 741 145 174 21.6 246 11.3 17.1 27.3 446 16.1 224 31.6 48.0
50 36.4 581 788 97.1 16.5 14.8 17.7 394 234 384 599 86.6 269 49.2 69.5 90.0
100 58.1 83.6 98.4 100.0 16.5 13.8 15.9 100.0 404 68.6 91.3 99.9 50.3 77.7 96.2 100.0
200  82.8 97.9 100.0 100.0 14.2 11.4 99.9 100.0 68.5 93.5 100.0 100.0 75.2 96.2 100.0 100.0

Notes: The DGP is the same as the one for Table 3, except {p, 51,82} = {0.5,3,0}.
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Table C4: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 51, 52} = {0.5,3,0} and 7, = 3/4, correlated factor loadings in x1;; &

PANEL A: Results for p, heterogeneous slopes with {p, 51,82} = {0.5,3,0} and 7, = 3/4

TN

25
50
100
200

25
50
100
200

25
50
100
200

25
50
100
200

Iv2> QMLE IVMG? CCEMG
25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
09 10 10 09 10 09 07 03 -08 -07 -06 -07 -34 -35 -3.7 -39
1.0 11 12 12 24 22 21 21 -05-03 -03 -03 -0.8 -1.0 -1.2 -14
1.1 12 12 13 29 29 28 28 -02-03 -03 -02 04 0.1 -02 -04
.2 13 13 13 32 31 30 31 -0.1-0.1 -01 -01 09 07 04 0.1
RMSE (x100)
43 32 23 1.8 44 32 25 20 41 30 22 16 50 45 43 4.3
35 26 20 16 43 33 28 25 32 22 16 12 30 24 20 1.9
30 23 18 16 44 36 32 30 27 20 14 10 26 19 14 1.2
28 22 18 16 46 38 34 33 25 18 13 09 26 19 14 1.0
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
11.9 95 9.2 11.0 53.1 50.7 51.8 55.8 5.8 56 7.3 &8 20.1 33.7 57.0 82.4
13.1 114 13.2 204 652 68.0 758 83.6 64 56 6.3 6.6 100 125 20.2 37.1
11.5 13.0 16.0 27.2 76.6 82.0 90.2 973 5.2 53 6.0 59 &7 78 94 14.2
124 149 222 33.2 84.7 90.0 955 995 53 53 51 52 94 98 105 10.6
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level

74.0 92.6 99.6 100.0
87.8 99.0 100.0 100.0
96.4 100.0 100.0 100.0
98.6 100.0 100.0 100.0

64.5 88.8 96.9 989 62.6 88.4 984 99.9 254 33.3
78.3 97.6 99.8 100.0 81.7 98.4 100.0 100.0 85.6 98.2 100.0 100.0
83.7 98.9 100.0 100.0 94.0 99.7 100.0 100.0 97.6 100.0 100.0 100.0
86.1 99.2 100.0 100.0 97.4 99.9 100.0 100.0 99.1 100.0 100.0 100.0

36.9 40.5

PANEL B: Results for 2, heterogeneous slopes {p, 51,82} = {0.5,3,0} and 7, = 3/4

TN

25
50
100
200

25
50
100
200

25
50
100
200

25
50
100
200

V2P QMLE TVMG? CCEMG
25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
02 02 00 01 106106 94 79 05 00 -0.2 -0.1 39 22 08 04
01 -0 00 00 96 85 65 46 -0.2-02 -01 -02 38 20 1.1 0.5
01 -0 00 01 86 71 47 33 02-01 01 00 39 20 1.1 0.6
00 01 00 01 78 53 37 31 00 00 00 01 38 21 1.1 0.6
RMSE (x100)
126 9.0 6.4 4.7 19.1 156 13.3 10.8 159 11.2 &1 5.8 162 11.4 81 5.8
84 62 42 30 168133 99 69 95 68 47 33 100 69 48 3.2
6.2 44 31 21 153109 73 48 63 44 31 22 73 48 32 22
46 33 23 16 138 89 55 41 46 33 23 16 60 39 25 16
SIZE: Hy : 32 = 0 against Hy : B2 # 0, at the 5% level
86 69 6.2 7.1 51.054.8 572 56.2 53 52 H8 64 65 64 53 54
77 6.7 53 4.5 56.3 55.0 49.8 476 53 60 48 50 76 74 68 5.0
84 68 57 49 61.8552 472 481 6.0 51 56 51 11.3 86 7.7 6.2
81 7.6 5.5 57 64.8 554 522 584 52 58 6.1 4.6 152 125 89 6.7
POWER (size-adjusted) : Hy : B2 = 0.0 against Hy : B2 # 0.1, at the 5% level
18.2 23,5 36.6 584 14.6 17.7 22.6 26.4 12.1 16.6 24.3 40.2 16.3 19.3 28.9 46.8
28.0 39.9 66.6 91.9 155 18.3 25.2 43.0 19.1 30.8 57.8 84.4 28.8 41.7 64.7 90.8
44.2 59.2 91.0 99.8 16.3 21.8 36.1 874 36.2 60.9 87.7 99.3 46.6 71.2 93.6 99.9
60.5 86.7 99.1 100.0 14.6 19.9 71.7 98.3 58.0 85.8 98.8 100.0 65.3 90.2 99.9 100.0

Notes: The DGP is the same as the one for Table 4, except {p, 51,82} = {0.5,3,0}.
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Table C5: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homoge-
neous slopes with {p, 81, f2} = {0.5,3,1} and m, = 1/4, correlated factor loadings in x1; & wug

PANEL A: Results for p, homogeneous slopes with {p, 81,52} = {0.5,3,1} and 7, = 1/4

V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 00 00 00 00 -01 -0.2 -0.2 -0.2 04 04 04 05 -0.7 -09 -1.1 -1.2
50 00 00 00 00 -01 -0.1 -0.1 -01 03 0.2 02 0.2 04 01 -0.2 -04
100 0.0 00 00 0.0 0.0 00 00 0.0 00 01 01 0.1 1.0 06 0.2 0.0
200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 1.2 08 04 0.1
RMSE (x100)
25 25 15 09 0.6 06 05 03 03 29 2.1 1.7 14 24 19 16 1.5
50 1.3 08 0.5 04 04 03 02 0.2 1.9 14 1.0 0.8 1.5 1.2 08 0.6
100 0.8 05 04 0.3 0.2 02 01 0.1 1.4 09 0.7 0.5 1.5 1.1 0.7 0.3
200 05 04 03 0.2 02 0.1 0.1 0.1 09 06 05 0.3 1.6 1.2 07 0.3
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 109 6.6 57 58 11.8 14.1 13.9 22.0 7.4 81 12.0 19.1 195 275 43.3 65.3
50 123 7.6 58 6.2 9.2 85 10.3 15.2 6.3 6.2 7.6 82 203 258 34.5 483
100 109 73 bH7 64 77 83 87 95 5.8 49 49 50 393 38.6 33.7 32.7
200 114 72 6.2 6.0 72 72 65 7.3 46 50 52 52 581 60.1 49.4 36.0
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 95.2 99.8 100.0 100.0 100.0 100.0 100.0 100.0 92.5 99.4 99.9 100.0 94.5 99.6 100.0 100.0
50 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,52} = {0.5,3,1} and m, = 1/4
V2 QMLE TVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -0.2 -01 -0.1 00 -0.8 -0.2 0.1 0.2 09 08 07 09 -49 -34 -20 -0.9
50 01 01 00 00 -03 00 02 0.2 03 00 -01 -01 -6.0 -45 -2.8 -1.1
100 00 -0 00 00 -02 00 01 0.1 00 -05 -02 -03 -73 -55 -34 -1.7
200 01 00 00 00 -02 00 0.1 0.0 00 -01 -02 -01 -79 -63 -39 -1.9
RMSE (x100)
25 83 b4 36 24 105 59 38 26 16.1 11.2 79 58 150 9.7 59 3.8
50 50 34 23 1.6 66 36 22 15 102 70 49 36 11.2 77 47 25
100 34 23 16 1.1 45 23 15 1.0 6.3 44 32 23 106 7.1 43 23
200 23 16 1.1 0.8 32 16 1.0 0.7 41 29 21 14 105 74 45 2.3
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 88 6.9 6.2 51 231 132 99 80 49 54 53 55 126 114 85 6.7
50 81 82 63 59 162 89 7.8 6.9 53 55 42 59 19.2 235 21.5 122
100 97 72 52 63 140 7.2 6.9 5.7 50 55 56 5.1 340 43.0 41.8 29.9
200 101 71 55 60 144 74 63 5.0 49 43 46 4.8 50.0 68.9 72.5 55.3
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25  36.9 56.8 834 98.3 121 487 83.9 984 13.5 179 30.2 51.7 6.3 10.9 29.3 70.7
50 64.2 87.6 99.0 100.0 43.3 8&85.3 99.0 100.0 22.7 33.3 b57.5 787 6.1 11.1 40.6 95.2
100  86.3 98.5 100.0 100.0 75.8 98.6 100.0 100.0 39.1 579 85.7 984 49 7.8 458 979
200  98.6 100.0 100.0 100.0 91.8 99.9 100.0 100.0 67.1 91.7 99.5 100.0 6.6 9.7 48.1 979

Notes: The DGP is the same as the one for Table 3, except m, = 1/4.
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Table C6: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 51, 52} = {0.5,3,1} and 7, = 1/4, correlated factor loadings in x1;; &

PANEL A: Results for p, heterogeneous slopes with {p, 51,82} = {0.5,3,1} and m, = 1/4

Iv2> QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 0.8 0.7 08 0.9 1.5 1.7 16 1.7 05 04 04 04 -0.7 -0.8 -1.0 -1.1
50 1.0 09 11 1.1 24 24 26 25 0.2 0.1 03 0.2 0.5 0.2 -0.1 -0.3
100 1.0 1.2 1.2 1.3 26 2.7 29 3.0 0.0 01 0.0 0.1 1.2 0.8 03 0.0
200 1.0 1.2 13 1.3 28 30 31 31 -0.1 0.0 0.0 0.0 1.4 09 05 0.2
RMSE (x100)
25 43 3.0 22 1.7 46 3.6 3.0 2.8 3.6 27 21 1.6 3.5 29 23 19
50 35 24 19 15 4.8 3.8 34 3.0 3.0 2.1 15 1.2 3.1 23 18 14
100 29 23 18 1.6 4.7 3.8 34 3.3 27 19 13 1.0 32 24 18 13
200 2.8 22 1.8 1.6 48 39 36 3.3 25 1.8 1.2 09 32 24 18 13
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 11.0 9.0 88 122 65.0655 723 782 6.3 &80 9.2 122 129 185 245 33.9
50 13.2 11.2 126 19.6 76.7 774 8.0 919 6.6 57 55 73 128 143 171 214
100 13.4 14.3 18.7 29.8 84.0 8.4 928 98.1 6.1 5.7 53 5.7 154 16.6 19.7 21.7
200 13.5 154 21.6 36.9 &87.9 909 959 987 59 6.3 56 45 16.6 189 20.0 19.6
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 76.1 94.4 99.4 100.0 62.9 86.9 96.6 99.0 82.5 96.0 99.8 100.0 74.0 87.9 98.3 99.8
50 90.3 99.1 100.0 100.0 64.7 93.9 99.6 100.0 89.4 99.6 100.0 100.0 91.5 99.4 100.0 100.0
100 96.5 100.0 100.0 100.0 72.5 96.4 99.9 100.0 94.3 99.8 100.0 100.0 94.3 99.6 100.0 100.0
200 98.7 100.0 100.0 100.0 73.7 96.9 100.0 100.0 97.4 100.0 100.0 100.0 96.0 99.9 100.0 100.0
PANEL B: Results for 1, heterogeneous slopes {p, 51,82} = {0.5,3,1} and 7, = 1/4
Va2 QMLE TVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -14 -16 -12 -15 -66 -73 -6.7 -6.4 1.1 0.7 1.0 07 -41 -32 -20 -0.9
50 -1.3 -1.3 -12 -13 -78 -6.6 -58 -55 -02 -0.1 0.0 -0.1 -6.1 46 -2.7 -1.1
00 -10 -11 -1.2 -1.1 -6.8 -5.7 -53 -49 -0.2 -0.2 -03 -0.1 -72 -52 -3.5 -1.6
20 -10 -11 -11 -11 -72 -56 -52 -47 -02 -0.1 -0.2 -0.1 -79 -6.1 -3.9 -2.0
RMSE (x100)
25 128 9.0 6.2 4.7 208 173 144 12,5 16.3 11.5 &80 5.7 153102 64 3.9
50 9.2 64 45 34 195152 116 99 103 72 5.0 3.7 11.8 80 49 3.0
100 6.6 46 33 24 174127 98 8.1 6.8 46 34 24 110 7.3 49 28
200 49 35 25 20 178124 91 7.0 48 33 24 1.7 109 77 51 29
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 82 6.9 59 7.1 512500 528 57.2 57 58 52 53 114103 84 64
50 10.0 81 6.5 7.8 BH7.7 553 55.8 61.6 63 5.0 4.7 59 19.119.7 174 153
100 94 9.1 83 95 63.660.0 63.7 679 58 4.7 49 49 289 33.6 36.9 27.1
200 11.5 9.0 10.0 12.1 73.3 685 725 769 55 50 52 49 395510 51.9 414
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25 145 187 319 474 3.6 2.8 3.0 2.6 10.8 183 299 498 6.2 10.0 26.6 65.4
50 21.4 33.1 53.8 791 24 29 32 3.0 19.3 31.1 553 76.1 52 88 342 86.3
100 35.2 54.8 80.9 96.6 3.2 35 22 28 334 56.9 823 97.8 4.0 85 294 884
200 53.5 79.2 957 998 23 3.0 1.7 2.6 54.2 82.7 978 100.0 4.0 5.7 289 885

Notes: The DGP is the same as the one for Table 4, except 7, = 1/4.
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Table C7: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with homoge-
neous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4, zero mean factor loadings

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4

V2P QMLE IVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -0.1 -0.1 -0.1 -0.1 -0.6 -08 -1.0 -1.3 -0.7 -0.8 -0.7 -0.8 -2.6 -2.7 -2.7 -28
50 0.0 -0.1 0.0 0.0 00 -03 -06 -0 -04 -04 -04 -04 -03 -03 -03 -0.3
100 0.0 0.0 0.0 0.0 02 -01 -03 -04 -02 -03 -02 -0.2 09 08 08 09
200 0.0 0.0 0.0 0.0 03 00 -02 -02 -01 -0.2 -0.1 -0.1 1.3 1.3 13 1.3
RMSE (x100)
25 3.1 23 16 1.1 1.8 16 15 1.6 3.5 26 19 15 39 36 33 3.3
50 2.0 14 1.0 0.7 1.1 09 09 09 22 15 1.1 0.9 1.7 14 1.2 1.1
100 14 09 06 04 0.8 06 05 0.5 1.5 1.0 0.7 0.6 14 13 1.1 1.1
200 1.0 06 04 0.3 0.7 04 03 0.3 1.0 0.7 05 04 1.6 15 15 14
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 94 83 6.0 5.2 21.2 27.8 435 654 6.7 81 9.1 120 241 39.9 582 7438
50 83 6.2 6.5 5.8 15.9 189 32.2 55.9 57 57 6.7 8.0 12.1 189 25.7 38.1
100 89 6.8 56 6.5 16.2 16.2 21.7 35.8 51 53 64 7.1 23.6 32.7 45.7 62.9
200 94 70 56 5.5 20.2 13.5 16.5 21.3 5.2 55 47 64 53.9 74.2 90.1 96.1
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 89.7 98.2 100.0 100.0 99.1 99.9 100.0 100.0 76.5 92.1 99.3 100.0 54.5 66.8 78.2 &83.9
50 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.9 99.7 100.0 100.0 99.9 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,82} = {0.5,3,1} and m, = 3/4
V2 QMLE TVMG? CCEMG
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 03 03 00 0.1 08 06 12 14 1.2 20 1.6 14 27 25 28 25
50 -03 01 01 -01 -0.1 0.2 1.0 1.1 0.5 08 07 0.6 06 07 05 0.5
100 -0.1 -0.1 0.1 0.0 -0.r 03 05 0.7 03 03 05 0.3 -1.2 -1.3 -1.1 -1.3
200 0.1 0.0 0.0 0.0 -0.7 03 03 0.3 03 02 02 02 -2.3 -25 -24 -24
RMSE (x100)
25 11.6 84 6.0 4.2 146 11.3 9.2 7.1 16.8 11.8 &85 5.9 164 12.1 94 7.6
50 79 57 39 28 13.0 98 6.8 44 98 68 49 3.5 103 79 6.1 4.9
100 55 40 28 1.9 117 7.7 46 24 6.3 44 3.1 2.2 85 6.1 48 4.0
200 4.0 26 20 1.3 10.3 6.1 29 1.5 43 29 22 14 74 5.8 4.7 3.9
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 90 73 65 54 36.1 35.7 35.1 33.8 9.2 56 59 6.3 81 9.2 11.5 16.0
50 86 6.5 54 52 43.4 39.1 28.3 19.5 51 43 4.7 54 79 88 11.2 159
100 82 74 57 5.7 48.6 34.5 18.5 104 6.2 48 39 5.5 9.0 86 12.0 18.2
200 9.1 54 75 54 51.1 29.9 123 8.1 5.0 4.7 56 3.8 94 12.1 17.0 26.0
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25 209 28.0 452 70.7 109 15.7 193 29.3 134 19.8 31.6 50.6 122 18.3 28.2 39.0
50 32.0 52.3 753 94.0 10.9 134 225 683 229 40.5 63.8 86.5 183 29.3 39.9 60.2
100 51.7 753 96.1 99.9 94 153 685 99.6 386 674 92.1 994 189 32.0 46.9 56.0
200 779 96.2 99.9 100.0 10.6 19.6 985 100.0 68.1 91.9 99.7 100.0 16.6 26.7 35.3 50.5

Notes: The DGP is the same as the one for Table 3, except all factgor loadings have mean zero hence the rank
condition for CCEMG is not satisfied.
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Table C8: Bias, root mean squared error (RMSE) of IV2?, bias-corrected QMLE, MGIV® and CCEMG
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 51, 52} = {0.5,3,1} and 7, = 3/4, zero mean factor loadings

PANEL A: Results for p, heterogeneous slopes with {p, 51,82} = {0.5,3,1} and m, = 3/4

Iv2> QMLE IVMG? CCEMG

TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)

25 05 06 07 08 07 03 -01 -04 -08 -07 -08 -08 -25 -2.7 2.7 27

50 08 09 10 1.1 20 1.6 14 12 -04 -04 -04 -04 -03 -04 -02 -0.3

100 1.0 1.1 12 12 25 22 1.9 18 -03 -02 -02 -02 09 09 08 08

200 1.1 12 13 1.3 26 24 22 22 -01 -01 -01 -02 15 14 14 13
RMSE (x100)

25 4.2 3.1 22 1.7 42 3.3 25 21 4.2 3.0 22 1.7 44 38 35 3.3
50 34 25 19 1.6 42 3.0 23 18 33 23 16 1.2 29 21 16 14
100 3.0 23 19 1.6 41 33 26 2.2 27 19 14 1.0 27 20 16 14
200 2.8 22 1.8 1.6 41 3.2 26 24 24 1.8 1.3 09 28 22 19 1.7
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level

25 10.8 8.2 &85 10.6 51.7 49.8 50.2 51.1 59 6.3 80 103 158 244 409 59.3

50 11.9 11.2 119 17.8 63.8 60.2 62.7 649 64 6.6 56 6.1 9.5 9.6 10.2 17.7

100 13.6 12.6 174 26.3 74.7 75.8 79.7 867 6.1 58 58 6.2 102 11.0 15.2 228

200 12.3 139 209 321 &81.1 84.6 89.0 96.1 5.1 54 50 54 129 149 26.0 39.1
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level

25 759 93.6 99.5 100.0 66.9 85.7 96.2 98.4 64.5 86.5 97.7 100.0 42.5 55.2 65.2 76.9
50 88.8 99.4 100.0 100.0 76.3 97.4 100.0 100.0 82.6 97.5 100.0 100.0 89.6 99.6 100.0 100.0
100 95.4 100.0 100.0 100.0 85.2 98.7 100.0 100.0 92.2 99.8 100.0 100.0 97.7 100.0 100.0 100.0
200 98.4 100.0 100.0 100.0 86.5 99.5 100.0 100.0 98.0 100.0 100.0 100.0 99.4 100.0 100.0 100.0

PANEL B: Results for 1, heterogeneous slopes {p, 51,82} = {0.5,3,1} and 7, = 3/4

Iv2> QMLE IVMG? CCEMG

TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)

25 -11 -09 -1.2 -12 -20 20 -1.8 -19 16 16 15 13 22 23 23 25

50 -1.0 -1.1 -0.9 -1.1 -3.2 -25 -22 -19 08 08 08 07 07 07 06 0.7

100 -1.0 -1.0 -1.0 -1.0 -35 -27 -21 -21 04 04 05 04 -14 -1.3 -1.3 -12

200 -1.0 -1.1 -1.1 -1.1 -38 -28 24 -23 01 01 01 02 -26 -23 -24 -23
RMSE (x100)

25 134 93 6.9 49 158125 98 76 173 11.6 &84 6.3 163 12.0 9.2 7.5
50 9.3 6.7 46 34 144105 79 55 102 72 49 36 109 80 6.2 5.1
100 6.8 48 34 25 130 93 6.0 4.3 6.8 45 33 24 89 6.3 48 4.1
200 50 36 26 21 124 78 49 3.6 49 33 24 1.7 7.8 58 48 4.0
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level

25 9.7 75 80 6.2 382383 364 374 54 52 58 T.1 7.6 80 10.2 16.1

50 94 T4 57 6.2 451429 36.8 33.8 59 59 48 55 8.3 9.2 11.0 16.3

100 95 81 70 7.2 525464 371 376 58 3.7 44 4.5 8.5 88 104 17.1

200 94 7.8 87 121 61.3 50.8 444 50.1 6.0 49 4.8 48 8.7 9.1 15.1 23.6
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level

25 12,5 19.1 248 470 7.7 95 109 143 134 21.0 293 47.1 12.8 199 273 384
50 21.5 304 53.1 788 7.9 11.3 101 214 19.2 343 61.5 85.0 16.6 27.1 40.4 56.2
100 319 49.8 79.7 975 5.7 85 203 499 325 648 89.7 99.3 169 26.6 44.2 60.7
200 46.4 714 942 997 6.1 9.5 342 65.0 525 84.5 98.8 100.0 15.8 24.2 34.8 50.5

Notes: The DGP is the same as the one for Table 4, except all factgor loadings have mean zero hence the rank
condition for CCEMG is not satisfied
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Table C9: Bias, root mean squared error (RMSE) of IV2?, TV2Y IVMG®, IVMG? estimates and size
and power of the associated t-tests, for the panel ARDL(1,0) model with homogeneous slopes with
{p, b1, B2} = {0.5,3,1} and m, = 3/4, correlated factor loadings in 1 & wu;

PANEL A: Results for p, homogeneous slopes with {p, 81, f2} = {0.5,3,1} and 7, = 3/4

IV2? Iv2? IVMG® IVMG®
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 -0.2 0.0 0.0 -0 -0.7 -0.6 -0.7
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.5 -04 -04 -0.3
100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.3 -0.2 -0.2 -0.2
200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1
RMSE (x100)
25 34 24 1.8 1.2 3.1 22 16 1.1 6.4 54 3.4 3.6 3.4 26 19 1.5
o0 2.3 1.6 1.1 0.8 2.1 1.4 1.0 0.7 3.0 21 15 1.1 2.3 1.5 1.1 0.9
100 1.5 1.0 0.7 0.5 1.4 1.0 06 04 1.7 1.2 0.8 0.6 1.5 1.0 0.7 0.6
200 1.0 0.7 0.5 0.3 1.0 06 04 0.3 1.1 0.7 0.5 04 1.0 0.7 0.5 04
SIZE: Hy : p = 0.5 against Hy : p # 0.5, at the 5% level
25 8.0 6.6 6.1 5.5 7.5 6.4 6.1 54 4.7 4.4 4.8 4.7 5.8 70 7.9 115
50 84 6.8 54 52 8.7 7.0 6.7 4.9 9.9 4.7 51 4.2 5.9 54 6.5 8.7
100 9.3 6.9 54 5.1 8.9 6.5 52 4.8 9.9 5.2 3.8 54 5.9 6.4 52 6.6
200 8.8 6.0 55 5.3 8.6 54 6.1 5.3 5.1 4.7 51 5.3 6.2 54 55 6.6
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level
25 85.0 97.1 100.0 100.0 &89.0 98.0 100.0 100.0 60.6 79.2 90.3 96.2 789 93.7 99.0 99.9
50 98.3 100.0 100.0 100.0 99.1 100.0 100.0 100.0 91.9 98.3 99.2 99.7 96.5 99.6 100.0 100.0
100  99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.8 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PANEL B: Results for 1, homogeneous slopes {p, 81,82} = {0.5,3,1} and m, = 3/4
Iv2¢ Iv2? IVMG® IVMG®
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -0.2 0.2 0.0 -0.1 -0.2 0.2 0.0 -0.1 1.4 1.3 10 14 1.3 1.7 14 1.5
50 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 0.2 0.1 0.3 0.0 0.9 0.7 08 0.5
100 0.2 -0.1 0.0 0.0 0.2 -0.1 0.0 0.0 0.2 -0.3 0.0 0.0 0.6 0.2 03 04
200 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2
RMSE (x100)
25 11.9 87 6.2 4.4 11.8 87 6.1 4.3 23.7 209 13.2 13.0 169 11.9 85 6.2
50 8.2 56 4.1 2.8 8.1 5.6 4.0 2.7 11.5 80 55 45 10.0 6.8 5.0 3.5
100 5.9 40 28 1.9 5.8 39 28 19 6.7 46 3.3 2.2 6.4 44 3.2 2.2
200 4.0 28 19 14 3.9 28 19 14 4.4 3.1 22 1.6 4.3 3.1 21 1.5
SIZE: Hy : 3 = 3 against H; : 31 # 3, at the 5% level
25 8.6 76 6.2 6.2 8.5 7.5 6.2 6.1 5.2 4.8 5.2 5.0 9.8 9.9 59 6.3
o0 8.2 56 6.1 4.5 8.8 54 6.3 44 5.0 4.3 5.1 4.5 9.1 49 6.0 5.0
100 8.7 6.5 59 5.1 8.0 6.3 64 5.0 5.3 45 53 4.0 5.1 44 54 4.3
200 8.2 6.1 4.7 6.9 8.2 5.7 5.0 7.0 5.4 46 4.5 5.3 5.7 5.0 4.6 5.5
POWER (size-adjusted) : Hy : 81 = 3.1 against Hy : 1 # 3.1, at the 5% level
25 19.4 25.6 41.2 66.1 19.6 26.2 414 66.3 10.7 17.6 23.1 385 13.0 20.3 29.9 50.2
50 314 454 72.0 94.6 31.8 47.7 73.1 954 193 34.1 53.5 77.0 223 37.6 60.8 86.3
100 494 74.3 94.0 99.9 504 75.8 94.4 999 383 60.5 84.5 99.2 43.2 66.0 89.7 99.6
200 73.8 944 99.6 100.0 73.5 94.8 99.7 100.0 61.3 89.8 99.0 100.0 65.9 91.2 99.2 100.0

Notes: The DGP is identical to that of Table 3. The IV2 and IVMG estimators are defined by (23) and (31),
respectively. IV2% and IVMG* use the instruments set (X,,X; _;) and IV2® and IVMG? (XX 21, X, _a),
where X; = My, X; and X, = Mg X, for j =1,2.
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Table C10: Bias, root mean squared error (RMSE) of IV2%, IV2? IVMG®, IVMG? estimates and size
and power of the associated t-tests, for the panel ARDL(1,0) model with heterogeneous slopes with
{p, b1, B2} = {0.5,3,1} and 7, = 3/4, correlated factor loadings in 1 & wu;

PANEL A: Results for p, heterogeneous slopes with {p, 51,82} = {0.5,3,1} and m, = 3/4

TN

25
50
100
200

25
50
100
200

25
50
100
200

25
50
100
200

Ivae

V2P IVMG® IVMG?

25 50 100 200 25
BIAS (x100)

o0 100 200 25 50 100 200 25 50 100 200

03 04 04 04 038

04 05 06 06 09

05 07 07 07 1.1

06 07 08 08 1.1
RMSE (x100)

09 09 09 01 00 -01 -0.1 -0.7 -0.7 -0.7 -0.7
1.1 12 12 -0.1 00 00 00 -04 -03 -0.3 -0.3
1.2 12 12 00 00 00 00 -02 -03 -0.2 -0.2
13 13 13 00 00 00 00 -01 -01 -0.1 -0.1

45 32 23 16 44
35 25 18 13 35
29 21 16 12 3.0
26 19 15 12 28
SIZE: Hg : p = 0.5 against H;

3.1 23 1.7 74 54 6.0 3.5 4.1 3.0 22 1.7
26 20 16 4.0 2.7 20 14 3.2 22 16 1.2
23 1.8 1.6 28 21 14 1.0 27 20 14 1.0
22 18 1.6 25 1.8 1.3 0.9 25 1.8 1.3 09
p # 0.5, at the 5% level

106 73 6.6 6.9 11.7
112 89 79 9.1 127
92 93 89 125 116
9.9 87 121 157 123

POWER (size-adjusted) : Hy :

9.2 93 105 53 4.2 43 438 6.3 66 74 89
11.5 129 198 58 52 5.2 6.0 6.2 5.1 6.8 6.8
13.1 159 26.3 5.8 55 b5 54 59 56 55 6.2
14.1 219 333 59 53 49 55 55 53 49 54
p = 0.6 against Hy : p # 0.6, at the 5% level

67.2 89.8 99.1 100.0 71.9
85.1 98.6 100.0 100.0 87.2
95.4 99.9 100.0 100.0 96.3
98.4 100.0 100.0 100.0 98.6

92.8 99.6 100.0 52.8 74.2 89.0 95.5 61.2 87.9 98.3 100.0
98.9 100.0 100.0 77.6 95.3 98.7 99.8 80.7 98.2 100.0 100.0
100.0 100.0 100.0 92.8 99.6 99.9 100.0 93.6 99.7 100.0 100.0
100.0 100.0 100.0 97.0 99.9 100.0 100.0 97.3 100.0 100.0 100.0

PANEL B: Results for 1, heterogeneous slopes {p, 51,82} = {0.5,3,1} and 7, = 3/4

TN

25
50
100
200

25
50
100
200

25
50
100
200

25
50
100
200

Ivae

V2 IVMG* IVMG?

25 50 100 200 25
BIAS (x100)

o0 100 200 25 50 100 200 25 50 100 200

08 08 -08 -10 -12
02 -05 -04 -04 -1.0
0.3 -0.1 -02 -02 -1.2
03 00 -01 -02 -13
RMSE (x100)

-13 -14 -15 18 09 14 13 1.7 14 15 14
-13 -12 -12 05 -01 02 03 09 04 07 0.7
-10 -11 -12 -02 01 00 -01 02 05 04 0.3
-10 -11 -12 -01 01 00 -01 01 03 02 0.1

134 99 68 5.0 134
9.7 69 47 34 96
6.9 51 34 24 69
52 36 25 18 5.3
SIZE: Hy : p1 = 3 against H;

9.8 6.8 5.1 239192 16.6 129 169 11.9 85 6.1
69 48 35 122 80 6.2 43 102 7.1 52 3.7
51 35 26 70 51 35 24 6.7 48 34 23
3.8 27 21 51 36 25 17 50 36 25 17

: B1 # 3, at the 5% level

92 74 63 59 96
86 69 57 69 88
88 80 58 6.0 9.0
96 74 64 56 10.8

POWER (size-adjusted) : Hp :

75 6.5 0.6 55 5.3 b7 b4 6.3 5.8 6.2 6.7
75 6.3 7.7 59 4.7 56 6.0 6.2 48 5.7 5.7
90 7.3 82 51 56 49 48 5.5 5.5 53 4.8
86 86 120 6.1 6.8 58 4.2 6.2 6.5 60 46
B1 = 3.1 against Hy : 81 # 3.1, at the 5% level

14.0 17.7 28.4 453 14.2
23.2 322 533 80.8 205
32.8 50.6 82.5 98.0 285
47.5 79.0 97.1 100.0 40.8

16.6 25.0 39.6 10.6 15.2 21.8 344 11.6 16.5 29.8 474
28.3 469 723 18.0 30.0 474 70.7 19.2 35.0 55.0 82.9
45.7 743 954 31.1 53.1 824 981 33.0 60.2 86.1 99.1
66.5 92.6 99.8 479 789 97.2 100.0 50.3 80.5 98.0 100.0

Notes: The DGP is identical to that of Table 4. The IV2 and IVMG estimators are defined by (23) and (31),
respectively. IV2% and IVMG* use the instruments set (X,,X; _;) and IV2® and IVMG? (XX 21, X, _a),
where X; = My, X; and X, = Mg X, for j =1,2.

C.10



Table C11: Bias and root mean squared error (RMSE) of CCEMG, BC-CCEMG, CCEMG*, BC-
CCEMG* estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with
homogeneous slopes with {p, 81, 82} = {0.5,3,1} and 7, = 3/4, independent factor loadings in x1;; &
Uit

PANEL A: Results for p, homogeneous slopes with {p, 81,82} = {0.5,3,1} and m, = 3/4

MGCCE BC-MGCCE MGCCE* BC-MGCCE*

TN ~25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)

25 32 34 37 -39 34 29 28 25 59 65 69 -74 05 02 -03 -08

50 -08 -10 -1.2 -15 19 18 15 13 -19 -22 -27 -31 48 46 42 37

100 04 01 -01 -04 15 13 10 07 01 -03 -07 -1.1 24 20 16 1.1

200 09 07 04 01 15 12 09 06 1.1 06 02 -03 20 15 11 0.6
RMSE (x100)

25 41 40 4.0 4.1 16.8 87 7.0 5.1 72 72 73 7.6 13.3 103 81 7.1
50 1.8 15 15 1.6 30 25 20 1.6 29 28 3.0 3.3 6.4 56 49 4.2
100 1.1 09 06 0.6 20 17 1.3 09 14 12 11 1.3 3.1 26 19 14
200 1.2 09 07 04 1.7 14 1.1 0.8 1.6 1.1 0.7 0.5 24 19 13 0.8
SIZE: Hy : p = 0.5 against H; : p # 0.5, at the 5% level

25 282 bH1.1 81.3 97.7 56.7 60.8 64.3 69.2 41.8 T1.5 92.7 99.8 525 56.6 63.6 065.8
50 13.8 22.7 49.8 81.8 35.1 43.9 51.9 61.1 229 46.2 80.0 97.2 54.1 67.8 80.1 87.9
100 124 144 184 39.0 42.2 52.1 56.2 581 125 194 409 804 49.6 58.1 62.3 65.9
200 32.8 36.1 345 247 587 68.1 73.0 73.1 31.5 294 255 375 624 651 62.4 54.0
POWER (size-adjusted) : Hy : p = 0.6 against H; : p # 0.6, at the 5% level

25 48.2 54.0 574 632 542 61.8 785 895 51 28 08 0.0 165 179 26.7 31.5
50 99.7 100.0 100.0 100.0 99.4 100.0 100.0 100.0 86.2 93.0 96.5 98.6 93.0 98.4 99.9 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PANEL B: Results for 1, homogeneous slopes {p, 81,2} = {0.5,3,1} and m, = 3/4

MGCCE BC-MGCCE MGCCE* BC-MGCCE*

TN ~25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)

25 29 290 33 32 78 69 78 78 39 44 44 43 223 193 175 158

50 11 14 19 20 -04 -02 08 13 28 29 37 38 20 20 40 49

100 -06 -02 03 07 -22 -19 -12 -07 -01 05 13 19 -31 -22 -1.1 -03

200 -1.8 -12 -08 -02 -29 -22 -18 -1.1 -21 -1.1 -03 05 -38 -2.7 -1.8 -0.9
RMSE (x100)

25 17.1 11.9 9.0 6.7 82.1 46.1 355 24.3 20.6 14.8 11.3 8.3 70.6 55.5 444 354
50 9.7 6.7 51 3.9 129 9.1 6.7 5.0 11.1 78 6.3 5.3 19.8 14.1 10.8 8.8
100 64 42 32 22 78 53 39 26 6.8 46 3.7 3.0 91 64 45 3.0
200 4.7 33 23 1.5 56 4.0 29 20 51 3.5 23 1.7 6.5 4.7 32 20
SIZE: Hy : 81 = 3 against H; : 31 # 3, at the 5% level

25 72 64 81 88 51.9 54.4 56.0 61.8 73 6.7 85 8.6 54.4 58.2 61.5 65.6
50 6.8 6.0 6.8 101 16.6 17.1 17.5 19.3 7.8 6.9 114 194 31.1 324 354 42.6
100 7.0 65 72 7.3 13.4 12.0 129 12.5 6.8 65 93 160 174 177 16.3 14.6
200 7.8 9.2 9.0 87 14.6 15.8 18.5 18.6 9.1 10.3 88 9.6 19.7 21.2 20.8 16.9
POWER (size-adjusted) : Hy : $1 = 3.1 against Hy : 81 # 3.1, at the 5% level

25 125 219 324 540 76 7.8 87 105 119 177 246 421 86 89 9.6 11.1
50 219 414 70.1 89.8 13.2 19.1 40.5 61.2 203 40.1 639 844 119 15.7 243 39.2
100 34.7 629 89.8 99.7 17.0 33.8 645 93.1 33.8 61.8 879 99.2 12.7 259 524 90.0
200 453 764 97.5 100.0 24.0 498 8.4 99.9 353 70.9 97.3 100.0 13.7 359 771 99.4

Notes: The DGP is identical to that of Table 1. The CCEMG and BC-CCEMG estimators are defined by
(38) and (40), respectively. CCEMG uses cross-section average of (Y, ..., Yir—p; Xy; 1), whilst CCEMG™ uses
(Yity o> Yit—p} Xy oens x;t_p; 1) with p being the interger part of T'/3. BC-CCEMG* is the bias-corrected version
of CCEMG*.
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Table C12: Bias, root mean squared error (RMSE) of CCEMG, BC-CCEMG, CCEMG*, BC-CCEMG*
estimates and size and power of the associated t-tests, for the panel ARDL(1,0) model with hetero-
geneous slopes with {p, 51,82} = {0.5,3,1} and m, = 3/4, independent factor loadings in z1; &

Uit

PANEL A: Results for p, heterogeneous slopes with {p, 51, 52} = {0.5,3,1} and 7, = 3/4

MGCCE BC-MGCCE MGCCE* BC-MGCCE*
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 -3.1 -33 -36 -3.8 3.2 29 31 26 -59 -6.2 -6.7 -71 02 -0.1 -0.3 -0.8
50 -0.6 -09 -1.2 -15 2.2 20 1.7 13 -15 -20 -2.5 -3.0 5.2 49 4.2 3.8
100 0.4 03 -0.1 -03 1.6 1.4 1.1 0.8 0.3 0.0 -0.6 -1.0 2.6 23 1.7 1.3
200 1.0 0.8 0.5 0.2 1.5 1.3 1.0 0.7 1.1 0.8 0.3 -0.1 2.1 1.7 1.2 0.7
RMSE (x100)
25 4.8 43 41 4.1 132 13.7 7.7 5.6 7.6 72 72 74 134 102 82 6.6
50 2.8 22 19 1.8 4.0 3.1 24 1.8 3.4 3.1 3.0 3.2 7.0 6.0 5.1 44
100 2.5 1.9 1.3 1.0 3.0 24 1.8 1.3 2.7 20 16 14 3.9 3.2 23 1.7
200 2.6 1.8 1.3 0.9 2.9 21 16 1.2 2.8 1.9 14 1.0 3.3 25 1.8 1.2
SIZE: Hy : p = 0.5 against H; : p # 0.5, at the 5% level
25 18.6 30.7 56.7 84.2 43.6 50.3 55.8 59.9 32.5 54.2 83.9 97.6 484 52.1 56.5 62.9
50 83 10.2 16.2 364 194 225 28.2 32.0 10.7 19.7 428 79.1 40.6 53.8 64.3 77.0
100 7.3 80 &80 9.6 149 184 18.0 19.7 8.6 83 11.8 23.2 225 295 30.7 314
200 9.3 80 90 7.1 123 142 162 165 11.8 95 9.0 &1 17.8 20.0 20.1 18.0
POWER (size-adjusted) : Hp : p = 0.6 against Hj : p # 0.6, at the 5% level
25 31.0 40.6 46.9 51.8 37.8 50.5 69.9 85.5 5.5 3.0 09 0.1 14.1 17.1 24.2 30.5
50 89.2 98.6 100.0 100.0 91.3 99.3 100.0 100.0 70.6 80.4 90.2 94.0 76.5 93.2 99.3 100.0
100 98.1 100.0 100.0 100.0 98.0 100.0 100.0 100.0 95.7 99.9 100.0 100.0 94.1 99.9 100.0 100.0
200 99.2 100.0 100.0 100.0 99.1 100.0 100.0 100.0 98.4 100.0 100.0 100.0 97.9 100.0 100.0 100.0
PANEL B: Results for 1, heterogeneous slopes {p, 81, 82} = {0.5,3,1} and m, = 3/4
MGCCE BC-MGCCE MGCCE* BC-MGCCE*
TN 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200
BIAS (x100)
25 2.2 3.3 29 3.2 7.3 9.1 6.8 9.2 3.3 44 3.9 43 229 214 178 17.3
50 0.8 1.3 1.8 19 -09 00 06 1.1 2.2 26 3.4 3.6 1.4 23 3.4 4.7
100 -04 -04 01 06 -2.1 -21 -14 -08 -0.1 00 1.0 16 -29 -27 -15 -05
200 -16 -14 -09 -03 -27 -25 -18 -12 -19 -14 -06 03 -3.7 -3.1 -21 -1.1
RMSE (x100)
25 16.8 12.2 9.0 6.7 63.7 46.2 34.4 28.7 20.5 152 11.0 &85 70.8 583 43.9 344
50 9.8 72 53 38 135 97 6.7 48 109 82 64 52 201 14.6 10.8 8.7
100 6.7 4.7 3.2 2.3 7.9 5.8 4.0 2.7 7.1 50 3.5 29 9.2 6.8 45 3.0
200 5.3 3.8 26 1.7 6.1 45 3.2 2.2 5.6 4.0 2.7 1.8 6.9 5.1 3.6 2.3
SIZE: Hy : 1 = 3 against Hy : f1 # 3, at the 5% level
25 6.7 6.5 7.6 7.8 50.0 55.1 57.3 61.0 6.7 6.7 7.0 9.7 56.5 59.4 62.8 67.3
50 6.1 63 75 9.1 166 16.1 16.6 18.1 6.5 7.6 11.0 17.8 29.2 31.0 34.9 42.7
100 5.7 6.4 53 6.3 11.8 126 124 11.1 6.4 6.7 6.9 12.2 153 16.6 14.6 12.8
200 8.5 94 86 6.8 12.8 159 16.8 14.7 94 9.3 88 7.1 16.7 20.2 19.7 15.0
POWER (size-adjusted) : Hp : 1 = 3.1 against H; : 81 # 3.1, at the 5% level
25 12.8 19.7 30.9 534 84 8.8 89 11.2 109 16.7 255 41.4 9.7 9.0 9.2 11.9
50 19.8 38.1 62.6 89.9 126 18.0 37.5 63.8 19.5 35.7 59.2 83.6 11.2 15.0 25.0 42.0
100 33.4 51.3 87.7 99.5 17.0 29.4 56.5 92.7 30.7 52.2 8.0 99.2 10.2 19.1 46.9 &86.5
200 34.6 64.0 944 999 19.8 384 73.2 99.1 29.2 60.4 93.3 100.0 10.9 24.4 63.5 97.7

Notes: The DGP is identical to that of Table 2. The CCEMG and BC-CCEMG estimators are defined by
(38) and (40), respectively. CCEMG uses cross-section average of (Yit, ..., Yit—p; Xjy; 1), whilst CCEMG* uses
(Yits s Yit—p; Xigs -+ Xjy_p3 1) with p being the interger part of T'/3. BC-CCEMG* is the bias-corrected version
of CCEMG*.
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