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Abstract

A platform matches agents from two sides of a market to create a trading opportunity

between them. The agents subscribe to the platform by paying subscription fees which are

contingent on their reported private types, and then engage in strategic interactions with their

matched partner(s). A matching mechanism of the platform specifies the subscription fees as

well as the matching rule which determines the probability that each type of agent on one side

is matched with each type on the other side. We characterize optimal matching mechanisms

which induce truthful reporting from the agents and maximize the subscription revenue. We

show that the optimal mechanisms for a one-to-one trading platform match do not necessarily

entail assortative matching, and may employ an alternative matching rule that maximizes the

extraction of informational rents of the higher type. We then study an auction platform that

matches each seller to two agents, and show that the optimal mechanism entails the combination

of negative and positive assortative matching.

Key words: assortative, random, auction, subscription, revenue maximization, complementarity.

JEL Codes: D42, D47, D62, D82, L12

1 Introduction

Platforms that match agents flourish in modern economies with the development of information

technologies. They realize gains from trade and other forms of interactions by providing agents

access to each other: an internet auction house matches sellers and buyers who would otherwise

not be able to find trading partners, a job matching platform matches firms and workers who

would otherwise face under-utilization of their resources, and a crowd-funding platform matches

entrepreneurs with investors to create new businesses. While there is now sizable literature on

matching platforms, one important aspect of matching platforms yet to be explored concerns the

facts that the interactions between their subscribers are often strategic, and that their strategic
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incentives in such interactions are determined by how a match is formed by the platforms. Sellers

of items in a trading platform post prices that are optimal given the expected willingness to pay of

subscribing buyers for his goods, and bidders in an auction platform choose bids that are optimal

given their beliefs about the valuations of other subscribing bidders. Put differently, subscribers to

a platform play a game against each other, and the outcome of their interactions is an equilibrium

of the game. In particular, when the subscribers are privately informed about their types, they play

incomplete information games, and the value of a match to each of them is endogenously determined

by their Bayes Nash equilibrium (BNE) payoffs. This uncertainty creates room for the platform to

manipulate the subscribers’ beliefs as well as the match values. For example, an auction platform

may attempt to restrict subscription to high valuation bidders so as to create competition among

them and charge a high subscription fee to sellers. The objective of this paper is to study how

a matching platform can maximize its subscription revenue by controlling a matching rule which

determines the subscribers’ beliefs in the game played amongst its subscribers. Our approach marks

a departure from the literature on a matching platform which assumes that the match value to each

subscriber is an exogenous function of their own type as well as those of the matched subscribers.

In our baseline model, a trading platform creates one-to-one matches of sellers and buyers. The

sellers have two cost types, whereas the buyers have two valuation types. These types are overlapped

so that efficient trading is possible within a match only when it involves a high-valuation buyer

or a low-cost seller. The matching mechanism of the platform specifies the matching rule, which

determines the probability with which each seller type is matched with each buyer type, and type-

contingent subscription fees. Put differently, the matching mechanism is a simultaneous screening

device of buyers and sellers based on a matching rule and subscription fees.1

We suppose that trade in each match takes the form of a buyer’s take-it-or-leave-it offer to a

seller, and characterize the incentive compatible matching mechanism that maximizes the platform’s

subscription revenue. The agents’ incentives in the reporting stage depend on both the required

transfer as well as the value of the match they expect to obtain upon subscription. Importantly,

this match value is the BNE payoff of the game they play, and will depend on the agent’s own

type as well as their belief about the type of the agent they are matched with. In particular, a

high-valuation buyer’s optimal bid is low if his belief weight on the low-cost seller is above a certain

threshold, but it is high otherwise. We show that the matching rule under the optimal mechanism

takes one of three forms depending on the proportion of the agents’ types in the population. Two of

them are positive assortative matching (PAM) that matches a high-valuation buyer with a low-cost

seller as much as possible, and random matching (RM) that generates matches according to the

proportion of types in the underlying population. Under the third matching rule referred to as

B-squeeze matching (BSM), a high-valuation buyer is matched with a low-cost seller more often

than a low-valuation buyer is, but not to the maximal extent as under PAM. It instead squeezes

the high-valuation buyers by minimizing their informational rents. The suboptimality of PAM for

1Screening of subscribers based on both matching and pricing is a common practice. For example, eBay offers

sellers and buyers the option “eBay plus” in some countries that their raises visibility to the other side of the market,

and a matchmaking platform Vidaselect offers a premium membership which allows men better access to women.

One question concerns whether or not potential subscribers know the matching rule adopted by a platform. Casual

evidence suggests that potential subscribers to a dating platform have very good ideas about what to expect based

on their extensive search for the experiences of past subscribers through various review sites.
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some type distributions is in contrast with the finding in the literature, and is a direct consequence

of the strategic action choice of the buyers in the game against matched sellers.

To see the effect of the game protocol, we next study the optimal mechanism with seller-offer

bargaining, and compare its performance with that under buyer-offer bargaining described above.

We find that the mechanism with random matching under buyer-offer bargaining is dominated by

the optimal mechanism with PAM under seller-offer bargaining. However, the matching rule of the

squeeze type remains optimal when the market has high quality in the sense that the proportions

of low-cost sellers and high-valuation buyers are both high. Most surprisingly, even when the

proportion of the high-valuation buyers equals that of the low-cost sellers, the platform finds it

optimal to create mismatches provided that those types are abundant in the market.

In light of the prevalence of one-to-many matchings in the real world, we then turn to the

analysis of an auction platform which matches each seller with two buyers. In this model, each

seller has two types which now represent the quality of the good they possess. Each buyer, which is

one of two valuation types as in the baseline model, competitively bids for the good of the matched

seller upon observing its quality. We consider both the first-price and second-price auction as sales

formats, and derive the optimal mechanism. We show that the optimal matching rule depends

on the proportion of types in the population, but not on the auction format. Under the optimal

mechanism, a high-quality seller is matched with high-valuation buyers more often than a low-

quality seller is, and a high-valuation buyer is matched with a high-quality seller more often than

a low-valuation buyer is. The optimal matching rule, however, is not PAM in the sense that

the probability that a high-quality seller is matched with a pair of high-valuation buyers is not

maximized. Instead, we show that the optimal mechanism has an interesting assortative property:

First, it entails negative assortative matching (NAM) between two buyers so that a high-valuation

buyer is matched with a low-valuation buyer to the maximal extent. Second, subject to the NAM

property of matching between buyers, it entails PAM between a seller and a pair of buyers so that

a high-quality seller is matched with a high-high buyer pair as much as possible, and then matched

with a high-low buyer pair as much as possible. This matching rule is shown to be also first-best

efficient and maximize the social surplus from trade.

The paper is organized as follows. In Section 2, we discuss the related literature. Section 3

introduces a model of a trading platform, and Section 4 presents a benchmark case of non-strategic

interaction commonly discussed in the literature. A characterization of an optimal matching mech-

anism is given in Section 5 under the buyer-offer bargaining protocol. Section 6 performs a com-

parison of optimal mechanisms under seller-offer and buyer-offer protocols, and Section 7 discusses

some extensions of the baseline model including the analysis of a fee scheme that is contingent on

the outcome of the transaction. Analysis of a model of an auction platform is presented in Section

8. We conclude with a discussion in Section 9.

2 Related Literature

The key component of the matching models in the literature is a production function, which deter-

mines the value of a match to each member as a function of their types. The critical observation by

Becker (1973) is that when the production function is supermodular on the set of agents’ type pro-

files, the match allocation is in the core if it entails positive assortative matching (PAM), whereby
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the highest type on one side is matched with the highest type on the other side, the second-highest

type is matched with the second-highest type, etc. Legros & Newman (2002) identify a condition on

the production function weaker than supermodularity for PAM to be the core outcome, and Legros

& Newman (2007) establish a sufficient condition for PAM to be in the core in an environment

without full transferability of payoffs between the matched agents. Shimer & Smith (2000) show

that the supermodularity of a production function is necessary but not sufficient for PAM to be

the equilibrium outcome of a search model where each agent engages in continuous-time search for

his partner.

The use of an exogenously specified production function for each agent is maintained in the

literature on platforms that match agents with private types. Damiano & Li (2007) and Hoppe

et al. (2011) study matching of agents with heterogeneous quality in two-sided markets when the

match quality is the product of the qualities of its members (and hence supermodular), and Gomes

& Pavan (2016) study efficient as well as profit-maximizing platforms for non-exclusive many-to-

many matching in a two-sided market when the value of a match to an agent is the product of his

value type and the average salience type of the matched agents. Board (2009) considers the problem

of grouping agents with variable qualities, and identifies a profit maximizing group structure under

various assumptions on the form of the production function.2 In our model, aggregate surplus

generated by trading within a match is a function of the types of the matched agents, but the

division of surplus is determined endogenously in equilibrium. Specifically, the matched agents

play a Bayesian equilibrium of a non-cooperative game, and the distribution of their types in each

match is controlled by the matching rule of the platform.

Strategic interactions among subscribing agents are studied by Tamura (2016) and Birge et al.

(2019) in models of monopolistic trading platforms. Tamura (2016) considers a platform that

matches a single seller with multiple buyers when the seller is privately informed about the quality

of his good, and the buyers’ private types are affiliated with the quality. Tamura (2016) assumes

that the platform offers a single subscription price to each side of the market, and shows that

its subscription revenue is higher under the first-price auction than under the second-price auc-

tion. Birge et al. (2019) consider a platform that matches sellers and buyers one-to-one under the

constraint that some type pairs are not feasible. When the agents’ types are public, Birge et al.

(2019) show that uniform pricing is suboptimal, and evaluate the optimal subscription revenue

from discriminatory pricing under complete information. Unlike these models, our model features

screening of privately informed agents through discriminatory pricing and matching. Furthermore,

we present explicit characterizations of optimal matching mechanisms in the presence of strategic

interactions among subscribers.

It is possible to interpret our model as one of information design by a platform. In the infor-

mation design literature, a principal controls the type distribution of each player so as to maximize

his own payoff. In the Bayesian persuasion model of Kamenica & Gentzkow (2011), for example,

a principal controls the distribution of signals about the state of the world that a decision maker

observes, and attempts to maximize the probability with which the decision maker chooses the

action preferred by the principal. In the multi-player information design model of Bergemann &

2Marx & Schummer (2019) focus on the stability of the matching rule when agents have heterogeneous preferences

over other agents on the other side of the market, and study the optimal mechanism that offers a single price for each

side.
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Figure 1: Costs and valuations

Morris (2016), a principal likewise controls the distribution of signals about the state which are pri-

vately observed by the players. The principal in this case attempts to induce the (Bayes) correlated

equilibrium of the game that is most preferable to him. In the present setting, the matching rule

of the platform also controls the type distribution of the agents in the trading game, and is used to

induce the Bayesian equilibrium that would maximize the subscription revenue. The key difference

from the information design literature is the presence of the information collection process by the

platform: The matching rule and subscription fees are chosen so that they induce truth-telling in

reporting of private signals by the agents.

3 Model of a Trading Platform

The market consists of two sides A and B as well as a monopolistic provider of a trading platform.

The side A is a unit mass of sellers of an indivisible good, and the side B is a unit mass of buyers of

the good. Each seller has a single unit of the good and each buyer has a unit demand for the good.

An agent on either side has access to another agent on the other side only through subscription

to the platform. Specifically, the platform sets fees for subscription, and then forms a one-to-one

match between a subscribing seller and a subscribing buyer. A seller’s cost of providing the good is

denoted α, and a buyer’s valuation is denoted β. The types α and β are private information of the

agents, and are randomly drawn from the binary sets A = {α1, α2} and B = {β1, β2}, respectively.
3

We suppose that the types are overlapped α1 < β1 < α2 < β2 so that no efficient transaction is

feasible when a match involves a type β1 buyer and a type α2 seller (Figure 1). For simplicity, we

assume that

α1 = 0, α2 = 1, β1 = γ, and β2 = 1 + γ for γ ∈ (0, 1).4

A seller is type αi with probability λi ∈ (0, 1) and a buyer is type βi with probability µi ∈ (0, 1)

for i = 1, 2. The type realizations are independent across agents so that we may identify λi as the

proportion of type αi sellers on side A, and µi as the proportion of type βi buyers on side B.

Once matched, the seller and buyer play a trading game as specified by the platform. Specifically,

we suppose that they simultaneously submit bids denoted zA and zB for a seller and a buyer,

3Note that the symbols A and B are used to denote the sides of the market as well as the sets of types of agents

on each side.

4The argument goes through with no qualitative change without this simplification.
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respectively. Let z = (zA, zB) be the bid profile. If zB ≥ zA, then the transaction takes place, and

the transaction price is determined by a pricing rule k : R2
+ → R+ which satisfies k(z) ∈ [zA, zB ]

for every z such that zA ≤ zB . If zA > zB , no transaction takes place. Accordingly, under the bid

profile z ∈ R2
+, the payoff gA(z, α) of a seller of type α, and the payoff gB(z, β) of a buyer of type

β in G are given by

gA(z, α) =

{

k(z) − α if zA ≤ zB

0 otherwise,
and gB(z, β) =

{

β − k(z) if zA ≤ zB

0 otherwise.

There are two cases of special interest in our analysis: When k(z) = zB so that the transaction

price equals the buyer’s bid, the seller has a weakly dominant strategy of bidding his own cost

α. This corresponds to the sequential trading game in which the buyer makes a take-it-or-leave-it

offer, which the seller chooses to accept or not. When k(z) = zA, on the other hand, the buyer

has a weakly dominant strategy of bidding his own valuation, and this corresponds to the game in

which the seller makes a take-it-or-leave-it offer.

Note that trade generates surplus unless a high-cost seller (α2) is matched with a low-valuation

buyer (β1). If we denote by

f(α, β) = (β − α)1{β>α} (1)

the aggregate surplus of trade when a type α seller is matched with a type β buyer, then f is

supermodular since it satisfies

f(α1, β2) + f(α2, β1) = β2 − α1 > (β2 − α2) + (β1 − α1) = f(α2, β2) + f(α1, β1).
5 (2)

Formally, the matching mechanism Γ of the platform consists of a matching rule p, a pricing rule

k, a transfer rule t = (tA, tB), and a strategy profile σ = (σA, σB) of the trading game as follows.

First, the matching rule p specifies the distribution of type profiles of matched agents. For each

α ∈ A and β ∈ B, pij ≡ p(αi, βj) is the proportion of the type pair (αi, βj). Denote by P the set

of feasible matching rules:

P ≡ {p ∈ ∆(A×B) :

2
∑

i=1

pij = µj for j = 1, 2, and

2
∑

j=1

pij = λi for i = 1, 2}.

Given the matching rule p ∈ P , we denote by pA(α | β) the probability that a buyer with the

reported type β is matched to a seller with the reported type α, and by pB(β | α) the probability

that a seller with the reported type α is matched to a buyer with the reported type β. We have

pB(βj | αi) =
pij

∑

j′ pij′
and pA(αi | βj) =

pij
∑

i′ pi′j
.

As will be seen, these conditional probabilities determine the agents’ incentives in the reporting

stage, and are the primary objects of our analysis. Since pA(α1 | β1) and pA(α1 | β2) are conditional

probabilities, they must satisfy

µ1pA(α1 | β1) + µ2pA(α1 | β2) = λ1. (3)

5We consider the partial ordering over the set of type profiles (α, β) that is induced by α2 ≺ α1 and β1 ≺ β2.
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Conversely, as long as (pA(α1 | β1), pA(α1 | β2)) satisfies (3), we can recover a feasible matching

rule p ∈ P as seen in the following lemma. This allows us to use (pA(α1 | β1), pA(α1 | β2)) and p

exchangeably.

Lemma 1 For any (pA(α1 | β1), pA(α1 | β2)) ∈ [0, 1]2 that satisfies (3), there exists p ∈ P .

We refer to (3) as the Bayes plausibility condition following Kamenica & Gentzkow (2011), who

use the terminology for the corresponding condition in their analysis of Bayesian persuasion.6

The pricing rule k and matching rule p together determine the Bayesian game played by a

pair of matched agents. The strategy profile σ = (σA, σB) specified by Γ is a (pure) Bayes Nash

equilibrium (BNE) of the incomplete information game that follows truthful reporting by both

agents. Since the joint distribution of type profiles equals p in this game, σ satisfies

πA(σ, α) ≡
∑

β∈B

pB(β | α) gA(σA(α), σB(β), α) ≥
∑

β∈B

pB(β | α) gA(zA, σB(β), α)

for any zA ≥ 0 and α ∈ A,

and

πB(σ, β) ≡
∑

α∈A

pA(α | β) gB(σA(α), σB(β), β) ≥
∑

α∈A

pA(α | β) gB(σA(α), zB , β)

for any zB ≥ 0 and β ∈ B.

Even when there exist multiple BNE in the trading game on the path of play after truthful reporting,

the agents understand that they play σ as suggested by the mechanism.7

Finally, the transfer rule t = (tA, tB) determines the payment from the agents to the platform:

tA(α) is the payment required from a seller whose reported type is α, and tB(β) is the payment

required from a buyer whose reported type is β.

The matching mechanism Γ is incentive compatible (IC) if no unilateral deviation in reporting

and action choice is profitable:

πA(σ, α) − tA(α) ≥
∑

β∈B

pB(β | α′) gA(zA, σB(β), α) − tA(α
′)

for every α, α′ ∈ A and zA ≥ 0,

and

πB(σ, β) − tB(β) ≥
∑

α∈A

pA(α | β′) gB(σA(α), zB , β) − tB(β
′)

for every β, β′ ∈ B and zB ≥ 0.

6It can be readily verified that it is suboptimal for the platform to leave some agents unmatched in our model of

a trading platform.

7Alternatively, we may assume that the mechanism instructs to each agent on which bid to submit as a function

of their reported type. Such instructions are designed so that the agents find it optimal to obey them after truthful

reporting.
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Γ is individually rational (IR) if truthful reporting yields at least as much as the reservation utility,

which is normalized to zero:

πA(σ, α) − tA(α) ≥ 0 for every α ∈ A, and

πB(σ, β)− tB(β) ≥ 0 for every β ∈ B.

When the mechanism Γ is IC and IR, its efficiency is defined by

W (Γ) =
∑

i, j

(βj − αi) pij 1{σA(αi)≤σB(βj)}. (4)

Two matching rules that play important roles in our analysis are as follows: A matching rule p is

(positively) assortative (PAM) if it matches the low-cost sellers with the high-valuation buyers as

much as possible: p ∈ argmaxp̂∈P p̂A(α1 | β2), or equivalently,

(pA(α1 | β1), pA(α1 | β2)) =

{

(λ1−µ2

µ1
, 1) if λ1 > µ2

(0, λ1

µ2
) if λ1 ≤ µ2.

(5)

A matching rule p is random (RM) if the matching is independent of the agents’ types: p(αi, βj) =

λiµj (i, j = 1, 2), or equivalently,

(pA(α1 | β1), pA(α1 | β2)) = (λ1, λ1).

It is intuitive and also can be readily verified that PAM maximizes the aggregate surplus from

transactions. This is formally stated in the following proposition.

Proposition 1 If the matching rule p maximizes
∑

i,j pij(βj − αi)1{βj>αi}, then it is PAM. Fur-

thermore, the maximal social surplus equals

W ∗ =

{

γλ1 + µ2 if λ1 ≥ µ2,

γµ2 + λ1 if λ1 < µ2.
(6)

4 Non-Strategic Interaction

As discussed in the Introduction, it is standard in the platform literature to exogenously specify the

production function for each agent, which determines the value of a match to them as a function of

their types. Exogenously specifying a production function amounts to exogenously specifying the

outcome of interaction between matched agents. In this section, we replicate such an argument by

supposing that each agent non-strategically bids his own type in the trading game. We also assume

the pricing rule k(zA, zB) = kzA + (1− k)zB for some k ∈ [0, 1]. The production function for each

agent is hence given by

fA(α, β) =

{

(1− k)(β − α) if β > α,

0 otherwise,
and fB(α, β) =

{

k(β − α) if β > α,

0 otherwise.
(7)

Since fA = (1 − k) f and fB = kf for the aggregate surplus f defined in (1), both fA and fB

are supermodular by (2). The following proposition shows that the optimal mechanism under this

value specification entails PAM.
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Proposition 2 (Optimal matching under non-strategic interaction) Suppose that the agents’ match

values are given by (7). If Γ is an optimal mechanism, then p is PAM, and the associated revenue

is given by

R(Γ) =

{

k
µ1

{γ(λ1 − µ2) + λ2µ2}+ (1− k)µ2 if λ1 ≥ µ2,
1−k
λ2

{γ(µ2 − λ1) + λ1µ1}+ kλ1 if λ1 < µ2.
(8)

In particular, when the market is symmetric (λ1 = µ2), R(Γ) = λ1 = µ2.

Note that the optimality of PAM is consistent with the findings in the literature on profit

maximizing platforms under the assumption of a supermodular production function for each agent.

5 Strategic Interaction: Buyer-Offer Bargaining

We now return to our main setup where the matched agents play the Bayes Nash equilibrium

(BNE) σ of the trading game. The expected payoff in this BNE will determine their incentives in

the reporting stage of the mechanism. We assume in this section that the good is traded at the

price suggested by the buyer so that k(z) = zB for every z. Let σ = (σA, σB) be a BNE of this

game after truthful reporting by both agents. Since it is a weakly dominant strategy for the seller

to bid his type in this game, we set σA(α) = α for every α. The buyer’s strategy σB is a best

response against σA. Explicitly, let z∗B(β, p̃A) be his optimal bid against σA when his true type is

β, and his belief about the type of the matched seller is given by p̃A:

z∗B(β, p̃A) ∈ argmaxzB∈R+

∑

α∈A

p̃A(α) gB((σA(α), zB), β).

Explicitly, z∗B(β, p̃A) can be written as

z∗B(β, p̃A) =

{

α1 if β = β1, or if β = β2 and p̃A(α1) ≥
β2−α2

β2−α1
= γ

1+γ
,

α2 if β = β2 and p̃A(α1) <
β2−α2

β2−α1
= γ

1+γ
.

In other words, the only viable bid for the low-valuation buyer β1 is α1, whereas the optimal bid for

the high valuation buyer β2 varies with his belief about the type of the matched seller: He either

bids α1 and has the low-cost seller accept it, or bids α2 and has both seller types accept it. After

truthful reporting, his belief is given by p̃A = pA(· | β) so that the BNE strategy σB can be defined

by

σB(β) = z∗B(β, pA(· | β)) for every β.

The agents play the BNE σ = (σA, σB) of the trading game after truthful reporting.

Characterization of an optimal mechanism requires the introduction of another matching rule

as follows. Under this matching rule, the distribution of seller types faced by a low-valuation buyer

(i.e., pA(· | β1)) makes a high-valuation buyer (β2) exactly indifferent between high (α2) and low

(α1) bids. Formally, when (1 + γ)λ1 + µ1 ≤ 1 + γ, we define a matching rule p to be B-squeeze

(BSM) if

(pA(α1 | β1), pA(α1 | β2)) =

(

γ

1 + γ
,
λ1

µ2
−

µ1

µ2

γ

1 + γ

)

.

We can verify that pA(α1 | β1) ≤ pA(α1 | β2) ≤ 1 if and only if (1+γ)λ1+µ1 ≤ 1+γ, and λ1 ≥
γ

1+γ
.

In other words, the probability that a high-valuation buyer β2 is matched with a low-cost seller
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is higher than the probability that a low-valuation buyer is matched with a low-cost seller. The

following proposition identifies the optimal mechanism with buyer-offer bargaining.

Proposition 3 Suppose that Γ is an optimal matching mechanism with buyer-offer bargaining.

Then its matching rule p and revenue R(Γ) are given as follows.

a. If (1 + γ)λ1 + µ1 > 1 + γ, then p is PAM and R(Γ) = (1 + γ)λ1 −
λ1−µ2

µ1
.

b. If µ1 >
γ

1+γ
, λ1 + γµ1 > γ, and (1 + γ)λ1 + µ1 ≤ 1 + γ, then p is PAM and

R(Γ) =

{

λ1−µ2

µ1
γ + µ2 if λ1 ≥ µ2,

(1 + γ)λ1 − µ2γ otherwise.

c. If λ1 >
γ

1+γ
, (1+ γ)λ1 +µ1 ≤ 1+ γ, and µ1 ≤

γ
1+γ

, then p is BSM and R(Γ) = λ1(1+ γ)− γ
1+γ

.

d. If λ1 ≤
γ

1+γ
and λ1 + γµ1 ≤ γ, then p is RM and R(Γ) = γλ1.

Proposition 3, which is illustrated in Figure 2, shows that revenue maximization does not necessarily

imply surplus maximization since PAM is suboptimal for some pair of (λ1, µ1). It hence presents a

sharp contrast with our finding for the non-strategic benchmark.

γ
1+γ

γ
1+γ

0 λ1

µ1

1

1

γ

1 + γ

PAM

BSM
RM

Figure 2: Optimal Matching with Buyer-Offer Bargaining

As mentioned in the Introduction, the suboptimality of PAM is a direct consequence of the

strategic interactions between the subscribing agents. To see this, consider first the optimality of

B-squeeze matching. As is standard in the screening models, the IR condition for the type β1

buyers and the IC condition for the type β2 buyers bind. Hence, the transfer tB(β1) for β1 equals

his expected surplus from trade: tB(β1) = pA(α1 | β1) (β1 − α1) = pA(α1 | β1)γ. On the other

10



hand, the surplus from trade for type β2 after misreporting is given by pA(α1 | β1) (β2 − α1) =

pA(α1 | β1)(1 + γ) if pA(α1 | β1) ≥
γ

1+γ
(from the offer α1 accepted only by α1), and β2 − α2 = γ

if pA(α1 | β1) ≤ γ
1+γ

(from the offer α2 accepted by both seller types). Since β2’s IC condition

is binding, his payoff from subscription with truth-telling equals the payoff he would obtain by

misreporting:

πB(σ, β2)− tB(β2) =

{

γ − tB(β1) = (1− pA(α1 | β1))γ if pA(α1 | β1) ≤
γ

1+γ
,

pA(α1 | β1)(1 + γ)− tB(β1) = pA(α1 | β1) if pA(α1 | β1) ≥
γ

1+γ
.

As indicated in the right panel of Figure 3, this surplus is minimized when pA(α1 | β1) = γ
1+γ

.

When the proportion µ2 of type β2 is sufficiently high in the population (i.e., µ1 is low), hence, the

platform finds it optimal to squeeze their informational rents by setting pA(α1 | β1) = γ
1+γ

(and

then choosing pA(α1 | β2) to satisfy Bayes plausibility).

Consider next the optimality of RM. When the proportion λ1 of low-cost sellers (α1) in the

population is low, the probability that type β2 is matched with α1 cannot be high, and hence type

β2 should optimally bid α2 regardless of whether he reports his type truthfully or not. With IC for

β2 binding, however, we have πB(σ, β2)−tB(β2) = γ−tB(β2) = γ−tB(β1) so that the buyer transfer

must be independent of the report: tB(β1) = tB(β2). This further implies that the matching rule

must also be independent of the reported type, and hence that only RM is feasible.

In the non-strategic benchmark of Section 4, the situation is different. As can be readily seen,

the surplus of type β2 in this benchmark is an increasing linear function of pA(α1 | β1) (the left

panel of Figure 3). It then follows that β2’s surplus is minimized when pA(α1 | β1) is minimized.

The optimality of PAM hence follows.

x

xkγ

k(x+ γ)

0 1

x

xγ

x(1 + γ)

γ

0 1
γ

1+γ

Figure 3: Informational rent of a type β2 buyer in the non-strategic (left) and strategic (right)

interaction: x = pA(α1 | β1)

Does the platform maximize its subscription revenue through the maximization of the surplus

from trade between the sellers and buyers? In order to answer this question, we consider the

efficient mechanism in the class of IC and IR mechanisms with buyer-offer bargaining. Specifically,

the incentive efficient mechanism Γ maximizes max W (Γ) subject to the IC an IR constraints when

the agents play the BNE σ specified above in the buyer-offer bargaining game.
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Proposition 4 Suppose that the matching mechanism Γ maximizes social welfare in the class of

IC and IR mechanisms with buyer-offer bargaining. Then the associated matching rule p and the

corresponding social welfare are given by

a. If λ1 + γµ1 > γ or λ1 ≥
γ

1+γ
, then p is PAM and W (Γ) =

{

γλ1 + µ2 if λ1 ≥ µ2,

(1 + γ)λ1 if λ1 < µ2.

b. If λ1 + γµ1 ≤ γ and λ1 ≤
γ

1+γ
, then p is RM and W (Γ) = λ1(γ + µ2).

γ
1+γ

γ
1+γ

0 λ1

µ1

1

1

γ

1 + γ

PAM

RM

Figure 4: Incentive efficient matching with buyer-offer bargaining

The incentive efficient matching mechanism is illustrated in Figure 4. It can be seen from

Propositions 1 and 4 that the incentive efficient mechanism with buyer-offer bargaining is first-best

efficient when λ1 ≥ µ2. Comparing Figures 2 and 4, we also see that revenue maximization is equiv-

alent to welfare maximization except when the optimal mechanism entails BSM. Put differently,

when the market has a high proportion of high-valuation buyers and a relatively large proportion

of low-cost sellers, the subscription revenue is maximized at the expense of social welfare.

6 Seller-Offer versus Buyer-Offer Bargaining

The analysis in the previous section studies the optimal matching mechanism under the pricing rule

k(z) = zB which corresponds to buyer-offer bargaining. A natural question concerns whether or not

the platform can do better by having the sellers make offers instead. Given the symmetric nature

of the problems, we expect the answer to depend on the proportion of types on each side. We begin

by describing the optimal mechanism with seller-offer bargaining, which is expressed formally by

setting the pricing rule k(z) = zA. Let σ = (σA, σB) be the strategy profile of this game in which

12



a buyer plays a weakly dominant strategy of bidding his own type: σB(β) = β for every β. Given

his belief p̃B about a buyer’s type, a seller’s optimal bid is then given by

z∗A(α, p̃B) =

{

β1 if α = α1 and p̃B(β2) <
γ

1+γ
,

β2 if α = α2, or if α = α1 and p̃B(β2) ≥
γ

1+γ
.

Again, the only viable bid for the high-cost (α2) seller is β2, whereas the optimal bid for the low-cost

(α1) seller is either high or low depending on his belief about the type of the matched buyer. We

specify the seller’s strategy σA by letting σA(α) = z∗A(α, pB(· | α)) for every α. The assortative and

random matching rules are as defined in the previous section.8 As a counterpart to the B-squeeze

matching rule defined in the previous section, when λ1 + (1 + γ)µ1 ≥ 1, we define a matching rule

p to be S-squeeze (SSM) if

(pB(β2 | α1), pB(β2 | α2)) =
(µ2

λ1
−

λ2

λ1

γ

1 + γ
,

γ

1 + γ

)

.

We can verify that 1 ≥ pB(β2 | α1) ≥ pB(β2 | α2) if and only if λ1 + (1 + γ)µ1 ≥ 1 and µ1 ≤ 1
1+γ

.

This rule makes a low-cost seller α1 exactly indifferent between bidding high β2 and bidding low

β1 when he faces the type distribution of a buyer intended for a high-cost seller α2, and minimizes

the informational rent of the low-cost seller by the same logic as in the case of B-squeeze matching.

Proposition 5 Suppose that the mechanism Γ is optimal with seller-offer bargaining. Then its

matching rule p and revenue R(Γ) are given as follows.

i. If λ1 + (1 + γ)µ1 ≤ 1, then p is PAM and R(Γ) = (1 + γ)µ2 −
µ2−λ1

λ2
.

ii. If λ1 ≤
1

1+γ
, γλ1 + µ1 ≤ 1, and λ1 + (1 + γ)µ1 > 1, then p is PAM and

R(Γ) =

{

µ2−λ1

λ2
γ + λ1 if λ1 ≤ µ2,

(1 + γ)µ2 − λ1γ otherwise.

iii. If λ1 >
1

1+γ
, λ1 + (1 + γ)µ1 > 1, and µ1 ≤

1
1+γ

, then p is SSM and R(Γ) = µ2(1 + γ)− γ
1+γ

.

iv. If µ1 >
1

1+γ
and γλ1 + µ1 > γ, then p is RM and R(Γ) = γµ2.

As seen in Figure 5, the optimal configuration with seller-offer bargaining is exactly symmetric

to that with buyer-offer bargaining with respect to the diagonal line λ1 + µ1 = 1 (⇔ λ1 = µ2).

In general, comparison of performance between buyer-offer and seller-offer bargaining is not

straightforward.9 We can however verify that PAM with buyer-offer (resp. seller-offer) bargaining

dominates RM with seller-offer (resp. buyer-offer) bargaining.

8They can alternatively be defined in terms of z = pB(β2 | α1) and w = pB(β2 | α2): p is assortative if

(pB(β2 | α1), pB(β2 | α2)) =







(

1, µ2−λ1

λ2

)

if µ2 > λ1,
(

µ2

λ1

, 0
)

if µ2 < λ1,

and random if (pB(β2 | α1), pB(β2 | α2)) = (µ2, µ2).

9In particular, it is difficult to establish the dominance relationship between PAM with buyer-offer (resp. seller-

offer) bargaining and SSM (resp. BSM) with seller-offer (resp. buyer-offer) bargaining.
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Figure 5: Optimal Matching with Seller-Offer Bargaining

Proposition 6 Let Γ be an optimal mechanism with either seller-offer or buyer-offer bargaining.

Then the associated matching rule p is either PAM, BSM, or SSM.

We next consider a market that deviates from symmetry just slightly. We say that side A has

higher (resp. lower) quality than side B if the proportion of low cost sellers on side A is higher

(resp. lower) than that of high valuation buyers on sideB: λ1 > µ2. The following proposition shows

that in a slightly asymmetric market, the optimal mechanism employs a protocol where the side

with the lower quality makes an offer. Put differently, it is optimal to have seller-offer bargaining

if the proportion of low-cost sellers on side A is lower than the proportion of high-valuation buyers

on side B, and vice versa.

Proposition 7 Take any d ∈ (0, 1). There exists ε > 0 such that if ‖(λ1, µ2) − (d, d)‖ < ε, then

the optimal mechanism Γ entails buyer-offer bargaining if λ1 > µ2 and seller-offer bargaining if

λ1 < µ2.

A clear conclusion is possible regarding the comparison of buyer-offer and seller-offer bargaining

when the market is symmetric.

Proposition 8 Suppose that the market is symmetric (λ1 = µ2). Then the optimal mechanism

with buyer-offer bargaining and that with seller-offer bargaining yield the same revenue.

Proposition 9 Suppose that the market is symmetric with λ1 = µ2 = d. Let Γ be an optimal

mechanism with either seller-offer or buyer-offer bargaining. Then it entails PAM and yields d if

d ≤ 1
1+γ

, and BSM or SSM and yields d(1 + γ)− γ
1+γ

if d > 1
1+γ

.
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Figure 6: Optimal Matching with Seller-Offer or Buyer-Offer Bargaining

PAM: Positive assortative with buyer- or seller-offer

BSM: B-squeeze with buyer-offer

SSM: S-squeeze with seller-offer

Given that PAM in a symmetric market generates no mismatch by matching every low cost

seller with a high valuation buyer and vice versa, the mechanism involving PAM is clearly first-best

and also incentive efficient. In this sense, it is striking to observe that it is optimal only when

the market quality is below a certain threshold, and is dominated by both BSM and SSM when

the quality is above the threshold. In such a market, the creation of a clearly inefficient mismatch

generates a higher revenue.

Combining Propositions 2 and 9 reveals another interesting fact. Recall from Proposition 2

that for any value of d = λ1 = µ2, the platform’s optimal revenue under non-strategic interaction

equals d (as under PAM in Propositions 9). Hence, the maximal revenue under BSM or SSM

under strategic interactions is higher than the maximal revenue with PAM under non-strategic

interactions when d > 1
1+γ

.

7 Extensions of the Baseline Model

We have so far assumed that the bargaining protocol is essentially a sequential game with either

a buyer or seller making a take-it-or-leave-it offer to the other side, and that the latter plays the

weakly dominant strategy in the BNE σ specified by the mechanism. What then happens when

the mechanism specifies the BNE σ most preferred by the platform? We address this question by

15



supposing that the pricing rule k is given by k(z) = kzA + (1 − k)zB for some constant k ∈ [0, 1],

and that the mechanism specifies a strategy profile σ = (σA, σB) such that

σA(α) =

{

ζ if α = α1,

β2 if α = α2,
and σB(β) = ζ for every β, (9)

where ζ ∈ [α1, β1]. σB is the buyer’s best response against σA regardless of his belief p̃A about

α. Furthermore, σA is also the seller’s best response against σB although the high cost type (α2)

will never trade his good under σ. The following proposition shows that when σ is as given in (9)

for ζ = α1, the platform’s revenue in the symmetric market equals the first-best level identified in

Proposition 1.

Proposition 10 Suppose that the mechanism Γ entails PAM and the BNE σ in (9) with ζ = α1.

When the market is symmetric, Γ extracts full surplus from the agents and hence is optimal.

As noted above, σ in Proposition 10 is not the most natural BNE when for example k = 0

(buyer-offer bargaining) or k = 1 (seller-offer bargaining): When k = 0, σA(α2) = β2 is weakly

dominated for the high-cost seller (α2), and when k = 1, σB(β) = α1 is weakly dominated for both

buyer types. In other words, it is not possible to replicate such a σ in a buyer-offer or seller-offer

game while requiring sequential rationality.

We next consider the possibility that the platform can charge subscription fees contingent on

the outcome of the trading game. Specifically, we assume that a subscription fee is contingent on

the reported types of the agents and on whether or not the transaction takes place, but not on the

transaction price. While such a fee scheme is observed in reality, it requires a different institutional

setting from our baseline model. First, the platform needs to monitor whether or not the transaction

has actually taken place. In particular, it should prevent secret exchange arrangements outside the

system.10 Second, the platform needs to enforce the payment of the fee even after the transaction.

With the requirement of interim individual rationality as assumed elsewhere in the paper, it is clear

that the optimal mechanism with outcome-contingent subscription fees generates a weakly higher

revenue than the optimal mechanism in the baseline model since information about the transaction

can always be ignored. The following proposition shows that the optimal outcome-contingent

mechanism with buyer-offer bargaining entails PAM, and strictly dominates the optimal non-PAM

mechanism with buyer-offer bargaining in the baseline model for almost every type distribution of

agents. Denote by tA(α) and tB(β) the transfer payments required of a type α seller and a type β

buyer, respectively, when there is a successful transaction.11

Proposition 11 Suppose that the transfer can be contingent on the outcome of the transaction. If

Γ̃ is an optimal mechanism with buyer-offer bargaining that entails no transfer from sellers (i.e.,

10For example, information about the agents’ addresses need to be withheld so that physical trading of the good

will not be possible until after the payment is made.

11Positive subscription fees only in the event of a successful transaction ensure that the mechanism satisfies the

stronger requirement of ex post individual rationality. The proposition also assumes that no subscription fee is

required from a seller for simplicity. Consideration of a subscription fee for a seller with buyer-offer bargaining

complicates the analysis substantially with little added insight.
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tA(α1) = tA(α2) = 0), then the associated matching rule is PAM, and the revenue is equal to

R(Γ̃) =

{

λ1(1 + γ) if λ1

µ2
≤ 1,

λ1(1 + γ)− λ1−µ2

µ1
if λ1

µ2
> 1.

(10)

Comparison of Propositions 1 and 11 shows that Γ̃ extracts the full social surplus when the

market is symmetric (i.e., λ1 = µ2).
12 The resurgence of PAM as the optimal matching rule

in Proposition 11 is a consequence of changes in the agents’ strategic incentives induced by the

outcome-contingent fees. Specifically, for a high-valuation buyer (β2), the surplus expected from

a high bid α2 and an aggressive bid α1 depends on the transfer payment required in the event of

a successful transaction. The platform finds it optimal to induce type β2 to bid α1 whether he

reports his type truthfully or not: When λ1 ≤ µ2, for example, the optimal fee for type β2 equals

tB(β2) = β2−α1 = 1+γ, inducing type β2 to bid α1 after truthful reporting. Misreporting by β2 is

prevented by never matching β1 with α1 (i.e., pA(α1 | β1) = 0), and setting tB(β1) = β2 − α2 = γ.

Minimization of pA(α1 | β1) is equivalent to the use of PAM.

8 Auction Platform

In this section, we consider a variation of the baseline model and suppose that two buyers are

matched to a single seller and competitively bid for the seller’s good. Specifically, side A has

a mass of sellers indexed by numbers in [0, 1], whereas side B has a mass of buyers indexed by

numbers in [0, 2]. Each seller is endowed with a single unit of a good of quality α, which represents

his type: The good is either high quality α2 or low quality α1.
13 Each buyer has a unit demand for

the good, and has type β that reflects his valuation of the good: The type is either high β2 or low

β1. For a buyer of type β, the value of the good of quality α is given by v(α, β). Denote

v11 = v(α1, β1), v12 = v(α1, β2), v21 = v(α2, β1), and v22 = v(α2, β2).

We assume that v has increasing differences in the sense that

0 ≤ ∆1 ≡ v12 − v11 < v22 − v21 ≡ ∆2. (11)

Equivalently, the marginal increase in utility in response to an increase in quality is higher for the

high-valuation buyer than for the low-valuation buyer. The seller’s valuation of the good equals

zero regardless of its quality.14 Each seller is type αi with probability λi and each buyer is type

βi with probability µi. The type realizations are independent across agents so that we may again

identify λi as the proportion of type αi sellers in side A, and µi as the proportion of type βi buyers

on side B. We assume that the quality α of a seller’s good is observable to the buyers who are

matched with him although it is not directly observable to the platform.

12Proposition 16 in the appendix establishes that Γ̃ dominates the optimal mechanism Γ of the baseline model.

13Uncertainty about the quality of the sellers’ good is also assumed in Tamura (2016).

14It follows that the aggregate surplus from trade in a match involving seller of type αi and buyers of types βj and

βk can be written as f(αi, βj , βk) = max {vij , vik}. (11) is not consistent with the supermodularity of f which would

require v12 − v11 = v22 − v21 = 0 when the ordering on the domain of f is induced by α1 ≺ α2 and β1 ≺ β2.
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Matching between a seller and two buyers is implemented through the allocation of buyers

to two buyer slots: A buyer with index k ≤ 1 is allocated to the first slot while a buyer with

index k > 1 is allocated to the second slot.15 A matching rule p = (p111, . . . , p222) is a probability

distribution over A× B2: pijk (i, j, k ∈ {1, 2}) is the probability that any given match involves a

seller of type αi along with a buyer of type βj in the first slot, and a buyer of type βk in the second

slot. We assume that the platform treats the two buyer slots symmetrically:

pijk = pikj for any i, j, k ∈ {1, 2}. (12)

The matching rule p must also be consistent with the type distribution in the population:

p111 + 2p112 + p122 = λ1 ⇔ p211 + 2p212 + p222 = λ2,

p111 + p112 + p211 + p212 = µ1 ⇔ p121 + p122 + p221 + p222 = µ2.
(13)

(13) is a version of the Bayes plausibility conditions when every seller is matched with two buyers.

The set P of feasible matching rules is hence given by

P = {p ∈ A×B2 : p satisfies (12) and (13)}.

We first suppose that each seller sells his good to the matched buyers through a second-price

auction: Buyers submit sealed bids and the bidder with the higher bid wins and pays the price

equal to the lower bid. We will later analyze the problem when the transaction is through a first-

price auction. In the auction game, buyers choose their bids strategically. When the quality of

the seller’s good α, let σB(· | α) be the bidding strategy specified by the mechanism. Since it is a

weakly dominant strategy for a buyer to bid his true valuation in a second-price auction, we assume

that σB is given by

σB(β | α) = v(α, β) for every (α, β).16

The following proposition identifies the optimal matching mechanism by solving this problem.

Proposition 12 Suppose that the good is traded through a second-price auction. Then the matching

rule p under the optimal mechanism Γ is described as follows.

p111 p112 p122 p211 p212 p222

0 ≤ µ2 ≤
λ2

2 λ1 0 0 λ2 − 2µ2 µ2 0
λ2

2 < µ2 ≤
1
2 1− 2µ2 µ2 −

λ2

2 0 0 λ2

2 0
1
2 < µ2 ≤ 1− λ1

2 0 λ1

2 0 0 µ1 −
λ1

2 1− 2µ1

1− λ1

2 < µ2 ≤ 1 0 µ1 λ1 − 2µ1 0 0 λ2

15Given the independence of type realizations, we may assume that the type distributions of buyers are the same

between the first and second intervals.

16Denote by fB(βj ;α, βk) the value of a match to a buyer in this BNE when his own type is βj , the other bidder’s

type is βk, and the seller’s type is α. The BNE value of a match to agents is not supermodular. In fact, when a

buyer’s type changes from β1 to β2, the difference in his payoff against (α2, β2) is smaller than that against (α1, β1):

fB(β1;α2, β2)− fB(β1;α1, β1) = 0 > −(v12 − v11) = fB(β2;α2, β2)− fB(β2;α1, β1).
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In order to understand the optimal matching rule p in Proposition 12, we consider the probability

that an agent of each type is matched with different types of other agents conditional on his own

type. Specifically, let pBB(βj , βk | αi) denote the probability that a type αi seller is matched with

a buyer type pair (βj , βk), and pA(αi | βj) denote the probability that a type βj buyer is matched

with a type αi seller (i, j, k = 1, 2).17 We also introduce an ordering over the type profile of buyers

such that (β1, β1) ≺ (β1, β2) ∼ (β2, β1) ≺ (β2, β2). The following corollary shows that a high type

seller is more likely to be matched with a buyer pair of higher order, and a high type buyer is more

likely to be matched with a high type seller, both in the sense of stochastic dominance.

Corollary 1 Suppose that Γ is the optimal mechanism. Then its matching rule p satisfies

pBB(· | α2) ≻FOSD pBB(· | α1), and pA(· | β2) ≻FOSD pA(· | β1),

where pBB(· | α) =
(

pBB(β1, β1 | α), 2pBB(β1, β2 | α), pBB(β2, β2 | α)
)

, and pA(· | β) =
(

pA(α1 |

β), pA(α2 | β)
)

.

Despite the above observation, we see from the description of p in Proposition 12 that it is not

positively assortative in the sense that a high type is matched with high types to the fullest extent

possible. For example, p does not maximize the probability that a high type seller is matched with

a pair of high type buyers. However, we make an interesting observation that p is a combination

of positive and negative assortative matching as follows. We say that p entails negative assortative

matching (NAM) between buyers if it matches a high type buyer with a low type buyer as much as

possible, and vice versa:

p ∈ PNAMBB ≡ argmax {p̂B(β1 | β2) : p̂ ∈ P},

where pB(βj | βk) =
∑

i pijk∑
i,j′ pij′k

is the probability that a type βk buyer is matched with a type βj

buyer. Next, p is PAM between a seller and a buyer pair subject to NAM between buyers if among

those rules in PNAMBB, it first maximizes the probability that a type α2 seller is matched with the

buyer type pair (β2, β2), and then maximizes the probability that α2 is matched with the buyer

type pair (β1, β2):

p ∈ argmax {p̂BB(β1, β2 | α2) : p̂ ∈ P 1}, where P 1 ≡ argmax {p̂BB(β2, β2 | α2) : p̂ ∈ PNAMBB}.

The following proposition shows that the optimal matching rule combines PAM and NAM in the

sense described above.

Proposition 13 The matching rule p in the optimal mechanism Γ in Proposition 12 entails PAM

between a seller and a buyer pair subject to NAM between buyers.

NAM between buyers is interpreted as follows. As before, the IC condition for the type β2

buyers is binding so that

πB(σ, β2)− tB(β2) = pB(β1 | β1) (β2 − β1) + pB(β2 | β1) · 0− tB(β1),

17pBB(βj , βk | αi) =
pijk

∑

j′,k′ pij′k′

and pA(αi | βj) =

∑

k pijk
∑

i′,k pi′j,k
.
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where the right-hand side is β2’s payoff when he misreports his type as β1. It follows that β2’s

informational rent is minimized when pB(β2 | β1) is maximized as entailed by NAM between buyers.

We next examine the welfare implication of the optimal matching mechanism Γ identified in

Proposition 12. Note that the efficiency of Γ is expressed in terms of its matching rule p by

W (p) = p111v11 + (2p112 + p122)v12 + p211v21 + (2p212 + p222)v22.

Proposition 14 If p is the matching rule in the optimal mechanism Γ in Proposition 12, then

p ∈ argmax {W (p̂) : p̂ ∈ P}. It follows that Γ is first-best efficient.

Having characterized the optimal mechanism under the second-price auction, we now suppose

that the platform stipulates the use of the sealed-bid first-price auction for transaction. In this

case, we can show by the standard argument that in the BNE of the auction with a type α seller, a

low valuation buyer (β1) bids his value vα1 and a high valuation buyer (β2) submits a random bid.

Specifically, consider the auction game on the path where both buyers have reported their types

truthfully so that the joint distribution of type profiles is given by p. The cumulative distribution

Gα of β2’s random bid has support [vα1, b̄α] for some b̄α. In the Appendix, we show that b̄α and

Gα are given by

bα = Pr(β1 | α, β2)vα1 + Pr(β2 | α, β2)vα2,

and

Gα(b) =
Pr(β1 | α, β2)

Pr(β2 | α, β2)

(

b− vα1

vα2 − b

)

=
pα12

pα22

(

b− vα1

vα2 − b

)

.

Unlike in the case of the second-price auction, a buyer’s bidding strategy depends on his belief

about the type of the other buyer he is matched with. Specifically, when a buyer’s belief places

more weight on the other buyer being the high valuation type (β2), the distribution of his bid

is higher in the sense of stochastic dominance. To solve for the optimal matching mechanism,

we first note that since a type β2 bidder is indifferent over bids in the support of Gα, his BNE

payoff in the game with a type α seller is given by Pr(β1 | α, β2) (vα2 − vα1), which he would

obtain by bidding slightly above vα1. When he misreports, his expected payoff is likewise given by

Pr(β1 | α, β1) (vα2 − vα1). For a type β1 seller, his expected payoff equals zero whether or not he

reports truthfully. We can therefore conclude that the IC and IR conditions for both buyer types

have exactly the same expressions as (32) and (33) for the second-price auction. On the other

hand, a seller’s expected revenue after truthful reporting as well as misreporting can be computed

from the expected payment by a buyer, and is again shown to be the same as that under the

second-price auction. Hence, the IC and IR conditions for both seller types are given by (36) and

(37). Taken together, the agents’ incentives under the two auction formats are exactly the same,

and hence so are the optimal mechanisms in the two cases. The following proposition summarizes

this observation.

Proposition 15 Suppose that the good is traded through the first-price auction. The matching

rule p under the optimal matching mechanism Γ is the same as that in Proposition 12 for the

second-price auction.
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9 Conclusion

The starting point of our analysis is the observation that few platforms in the real world dictate

the terms of trade between their subscribers. When the subscribers play a game against each

other, we note that the value of a match created by the platform is endogenously determined by

the BNE payoff of the game. Since the BNE depends on the type distribution of the players,

there is room for the platform to manipulate the subscribers’ beliefs through its matching rule and

induce its preferred BNE. Exploration of this possibility provides new insights into the functioning

of platforms. In a model of a one-to-one trading platform, we show that the optimal mechanism

entails matching rule that is not PAM depending on the proportion of seller and buyer types in

the population, and discuss that the optimality of these non-PAM rules is a direct consequence of

strategic interactions that are largely ignored in the literature. In a model of an auction platform

that matches each seller with two buyers, we show that the optimal mechanism entails a matching

rule that combines NAM and PAM, and is first-best efficient.

There are a number of interesting extensions of the model studied in this paper. For example,

we may consider a model with continuous type distributions of agents. Although such an extension

would bring the model closer to the standard discriminatory pricing models, a clear difficulty is

with the numerous variations of feasible matching rules. For example, a matching rule may be of

the cutoff type that creates two matching classes: One class consists of agent types above certain

thresholds, and the other class consists of agent types below the thresholds. The platform may

however choose finer partitions of the type space, and match a pair of segments in non-assortative

ways. There are also matching rules that are not based on thresholds and apportion the same type

across different match types. In our model of an auction platform, each seller is matched with

two buyers. We can alternatively consider a platform that varies the number of buyers matched

with each seller depending on their types. We focus on a monopoly platform, and do not discuss

how it has acquired the proprietary status in the market. Monopolization can be the outcome of

competition, and formal analysis is required on if and how competition among multiple platforms

leads to monopolization. An important consideration in modeling such competition is the fact

that the externalities between agents are also determined endogenously by equilibrium strategic

decisions. This is contrary to the standard exogenous specification of externalities in the literature.

Appendix

For simplicity, we use the following notation in the analysis of the trading platform in the Appendix:

x = pA(α1 | β1), y = pA(α1 | β2),

z = pB(β2 | α1), w = pB(β2 | α2).
(14)

Proof of Lemma 1. Take any (x, y) that satisfies the conditions. Define p by

p(α1, β1) = µ1x, p(α1, β2) = µ2y,

p(α2, β1) = µ1(1− x), p(α2, β2) = µ2(1− y).

We then have p ∈ P since
∑

β p(α1, β) = λ1,
∑

β p(α2, β) = 1 − λ1 = λ2,
∑

α p(α, β1) = µ1,

and
∑

α p(α, β2) = µ2. Furthermore, these imply that p satisfies (14): pA(α1 | β1) = µ1x
µ1

= x,

pA(α1 | β2) =
µ2y
µ2

= y, pA(α2 | β1) =
µ1(1−x)

µ1
= 1− x, and pA(α2 | β2) =

µ2(1−y)
µ2

= 1− y.
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Proof of Proposition 1. The mechanism is efficient only if α < β implies σA(α) ≤ σB(β) so

that transaction takes place with probability one between any such pair of agents. In this case, the

social welfare W is described as

W = γ{p11 + p22}+ (1 + γ)p12

= γ{µ1x+ µ2(1− y)}+ (1 + γ)µ2y

= γµ1x+ µ2y + γµ2.

Since µ1

µ2
> γµ1

µ2
, maximization of W with respect to (x, y) subject to the Bayes plausibility condition

(3) implies that y should be maximized subject to it. This shows that p is PAM. Substitution of

(x, y) for PAM in (5) yields (6).

Proof of Proposition 2. For x and y defined in (14), the IC and IR conditions for a type β1

buyer can be written as:

xk(β1 − α1)− tB(β1) ≥ max
{

0, yk(β1 − α1)− tB(β1)
}

,

and those for a type β2 buyer can be written as:

yk(β2 − α1) + (1− y)k(β2 − α1)− tB(β2) ≥ max
{

0, xk(β2 − α1) + (1− x)k(β2 − α2)− tB(β1)
}

.

Since these imply

(y − x)k(β1 − α1) ≤ tB(β2)− tB(β1) ≤ (y − x)k(α2 − α1),

we need y ≥ x for the feasibility of the mechanism. In this case, the optimal transfers are given by

tB(β1) = xkγ and tB(β2) = tB(β1) + (y − x)k.

On the other hand, the IC and IR conditions for a type α1 seller are given by

(1−z)(1−k)(β1−α1)+z(1−k)(β2−α1)−tA(α1) ≥ max {0, (1−w)(1−k)(β1−α1)+w(1−k)(β2−α1)−tA(α2)},

and those for a type α2 seller are given by

w(1− k)(β2 − α2)− tA(α2) ≥ max {0, z(1 − k)(β2 − α2)− tA(α1)}.

Together, these imply

(z − w)(1 − k)(β2 − α2) ≤ tA(α1)− tA(α2) ≤ (z − w)(1 − k)(β2 − β1),

and hence feasibility requires z ≥ w, or equivalently, y ≥ λ1.
18 In this case, the optimal transfers

are given by

tA(α2) =
µ2

λ2
(1− y)(1− k)γ and tA(α1) = tA(α2) +

(

µ2

λ1
y −

µ2

λ2
(1− y)

)

(1− k).

18This holds since z = µ2

λ1

y and w = µ2

λ2

(1− y).
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It follows that the platform’s revenue from both sides of the market under the optimal transfer

functions is given by

R(Γ) = w(1− k)γ + λ1(z − w)(1 − k) + xkγ + µ2(y − x)k

=
µ2

λ2
(1− y)(1− k)γ +

µ2

λ2
(y − λ1)(1− k) + xkγ + µ2(y − x)k

= k(γ − µ2)x+
µ2

λ2
{(1− k)(1 − γ) + kλ2} y +

µ2

λ2
(1− k)(γ − λ1).

Note that the following relationship holds between the gradient vector (µ1, µ2) of the Bayes plau-

sibility condition (3) for x and y, and the gradient vector of R above:

µ1

µ2
>

k(γ − µ2)
µ2

λ2
{(1 − k)(1− γ) + kλ2}

.

This implies that the maximization of R entails the maximization of y subject to Bayes plausibility

(3), and the feasibility constraints y ≥ x and y ≥ λ1. Therefore, the optimal matching rule p is

assortative. When λ1 ≥ µ2, substitution of x = λ1−µ2

µ1
and y = 1 yields the maximized revenue as

in the first line of (8), and when λ1 < µ2, substitution of x = 0 and y = λ1

µ2
yields the maximized

revenue as in the second line of (8).

Proof of Proposition 3. We proceed by separating cases based on the buyer’s belief about the

seller’s type induced by the matching rule p.

1. The optimal bid for the high-valuation buyer β2 is α1 when he has reported type β2 truthfully,

and also when he has misreported his type to be β1:

z∗B(β2, pA(· | β)) = α1 for any β ∈ B.

This requires that x, y ≥ γ
1+γ

. In this case, Bayes plausibility implies that the proportion of

the low-cost seller must be high in the population:

λ1 = Pr(α1) = µ1x+ µ2y ≥
γ

1 + γ
.

The IC and IR conditions for a type β1 buyer are written as

pA(α1 | β1)(β1 − α1) + pA(α2 | β1) · 0− tB(β1)

≥ max {0, pA(α1 | β2)(β1 − α1) + pA(α2 | β2) · 0− tB(β2)}.
(15)

Note that the left-hand side is his expected payoff when he reports β1: The first term corre-

sponds to the event that he is matched against a low-cost seller so that his offer α1 will be

accepted and trade takes place. The second term correspond to the event that he is matched

against a high-cost seller so that his offer will be rejected and no trade takes place. The right-

hand side is the maximum between the buyer’s reservation payoff and his expected payoff

when he reports β2. The IC and IR conditions for a type β2 buyer are similarly given by

pA(α1 | β2)(β2 − α1) + pA(α2 | β1) · 0− tB(β2)

≥ max {0, pA(α1 | β2)(β2 − α1) + pA(α2 | β2) · 0− tB(β1)}.
(16)
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Using the short-hand notation introduced in (14), we can summarize (15) and (16) as

(y − x)(β1 − α1) ≤ tB(β2)− tB(β1) ≤ (y − x)(β2 − α1),

tB(β1) ≤ x(β1 − α1),

tB(β2) ≤ y(β2 − α1).

This is feasible if

y = pA(α1 | β2) ≥ pA(α1 | β1) = x, (17)

and the optimal transfer function tB is given by

tB(β1) = x(β1 − α1) and tB(β2) = tB(β1) + (y − x)(β2 − α1).

Turning now to side A, we note that the seller’s payoff in G equals zero regardless of his type

since both buyer types bid α1 under q. It follows that the only transfer function tA that

satisfies IC and IR for the seller is given by tA(α1) = tA(α2) = 0. The platform’s revenue is

then given by

R(Γ) = µ1tB(β1) + µ2tB(β2)

= x(β1 − α1) + µ2(y − x)(β2 − α1)

= x{γ − µ2(1 + γ)}+ yµ2(1 + γ).

Since R is linear in x and y, comparison of their coefficients against those in the Bayes

plausibility condition µ1x + µ2y = λ1 determines the optimal matching rule. Specifically,

since
µ1

µ2
>

γ − µ2(1 + γ)

µ2(1 + γ)
⇔ 1 + γ > γ,

the optimal p should maximize y subject to the feasibility constraints: x, y ≥ γ
1+γ

, y ≥ x and

µ1x+ µ2y = λ1 ≥
γ

1+γ
. As seen in Figure 7, this yields

(x, y) =







(

γ
1+γ

, λ1

µ2
− µ1

µ2

γ
1+γ

)

if (1 + γ)λ1 + µ1 ≤ 1 + γ,
(

λ1−µ2

µ1
, 1

)

if (1 + γ)λ1 + µ1 > 1 + γ.

The maximized revenue is given by

R∗ =

{

λ1(1 + γ)− γ
1+γ

if (1 + γ)λ1 + µ1 ≤ 1 + γ,

γλ1 +
µ2

µ1
λ2 if (1 + γ)λ1 + µ1 > 1 + γ.

2. The optimal bid for the buyer of type β2 equals α1 when he reports his type truthfully, but

α2 when he misreports his type to be β1. This requires x ≤ γ
1+γ

≤ y.

The IC and IR constraints of the type β2 buyer are given by

y(β2 − α1)− tB(β2) ≥ max {0, β2 − α2 − tB(β1)}.

The IC and IR constraints of the type β1 buyer are given by

x(β1 − α1)− tB(β1) ≥ max {0, y(β1 − α1)− tB(β2)}.
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(γ − µ2(1 + γ), µ2(1 + γ))

(µ1, µ2)

x

y

λ1
γ

1+γ

γ
1+γ

λ1

optimal point in case 1

Figure 7: Optimal choice of (x, y) in case 1

These can be summarized as:

(y − x)γ ≤ tB(β2)− tB(β1) ≤ y(1 + γ)− γ,

tB(β1) ≤ xγ,

tB(β2) ≤ y(1 + γ).

For this to be feasible, we need

(y − x)γ ≤ y(1 + γ)− γ ⇔ γx+ y ≥ γ. (18)

Furthermore, there exists (x, y) that satisfies 0 ≤ x ≤ γ
1+γ

≤ y ≤ 1, γx + y ≥ γ and Bayes

plausibility (3) if and only if

(1 + γ)λ1 + µ1 ≤ 1 + γ, and

either λ1 ≥
γ

1 + γ
or λ1 + γµ1 ≥ γ.

(19)

The optimal transfer function tB for the buyer is then given by

tB(β1) = xγ and tB(β2) = tB(β1) + y(1 + γ)− γ.

The seller’s payoff in G equals zero since both buyer types bid α1 according to q. It follows

that the transfer function for the seller equals tA(α1) = tA(α2) = 0, and that the platform’s

revenue is given by

R(Γ) = xγ + yµ2(1 + γ)− γµ2.

The optimal matching rule pmaximizes R subject to x ≤ γ
1+γ

≤ y, (18), and Bayes plausibility

µ1x + µ2y = λ1. In what follows, we separate cases depending on the values of λ1 and µ1.
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For this, it is useful to note that

µ1 <
γ

1 + γ
⇔ γ >

µ1

µ2
⇔

γ

(1 + γ)µ2
>

µ1

µ2
, (20)

where the second term corresponds to the comparison between the normal vectors of (18)

and Bayes plausibility, and the third term corresponds to the comparison between the normal

vectors of the revenue function R and Bayes plausibility.

(a) λ1, µ1 <
γ

1+γ
. There is no (x, y) that satisfies x ≤ γ

1+γ
≤ y, γx+y ≥ γ, and µ1x+µ2y =

λ1. No p hence satisfies feasibility in this case.

(b) µ1 < γ
1+γ

< λ1. By (20), x should be as large as possible subject to feasibility, and the

optimal matching rule p is such that

(x, y) =

(

γ

1 + γ
,
λ1

µ2
−

µ1

µ2

γ

1 + γ

)

.

The maximized revenue is given by

R∗ = (1 + γ)λ1 −
γ

1 + γ
.

(c) µ1 >
γ

1+γ
. By (20), y should be as large as possible subject to feasibility, and the optimal

matching rule p is such that

(x, y) =







(

λ1−µ2

µ1
, 1

)

if λ1 > µ2,
(

0, λ1

µ2

)

if λ1 < µ2.

The maximized revenue is give by

R∗ =

{

λ1−µ2

µ1
γ + µ2 if λ1 ≥ µ2,

(1 + γ)λ1 − µ2γ otherwise.

Figure 8 illustrates the optimal matching rules when λ1 >
γ

1+γ
.

3. The optimal bid for the type β2 buyer is α2 whether he has reported his type truthfully or

not. This requires x, y ≤ γ
1+γ

.

In this case, Bayes plausibility implies that the proportion of the type α1 seller is low in the

population:

λ1 = µ1x+ µ2y ≤
γ

1 + γ
.

The IC and IR constraints for a type β1 buyer are given by

xγ − tB(β1) ≥ max {0, yγ − tB(β2)},

and those for a type β2 buyer are given by

γ − tB(β2) ≥ max {0, γ − tB(β1)}.
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optimal point in case 2 when µ1 <
γ
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1

0

Figure 8: Optimal choice of (x, y) in case 2

These can be summarized as:

(y − x)γ ≤ tB(β2)− tB(β1) ≤ 0,

tB(β1) ≤ xγ,

tB(β2) ≤ γ.

This is hence feasible if y ≤ x. In this case, the optimal transfer function is given by

tB(β1) = tB(β2) = xγ.

On the other hand, the IC and IR constraints for the type α1 seller are given by

pB(β2 | α1)(α2 − α1)− tA(α1) ≥ max {0, pB(β2 | α2)(α2 − α1)− tA(α2)},

and those for the type α2 seller are given by

−tA(α2) ≥ max {0, −tA(α1)}.

These can be summarized as

0 ≤ tA(α1)− tA(α2) ≤ {pB(β2 | α1)− pB(β2 | α2)}(α2 − α1),

tA(α1) ≤ pB(β2 | α1)(α2 − α1),

tA(α2) ≤ 0.

For this to be feasible, we need

pB(β2 | α1)− pB(β2 | α2) ≥ 0 ⇔
µ2

λ1
pA(α1 | β2) ≥

µ2

λ2
pA(α2 | β2)

⇔ y ≥ λ1.
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In this case, the optimal transfer function is given by

tA(α1) =
µ2

λ1λ2
(y − λ1) and tA(α2) = 0.

It follows that the platform’s revenue equals

R(Γ) = γx+
µ2

λ2
(y − λ1).

The optimal matching rule p maximizes this subject to x, y ≤ γ
1+γ

, x ≥ y ≥ λ1, and

µ1x+µ2y = λ1. The last two conditions however show that the feasible p is unique and such

that x = y = λ1. Therefore, the maximized revenue is given by

R∗ = λ1γ.

4. The optimal bid for a type β2 buyer is α2 when he reports his type truthfully, but α1 when

he misreports. This requires x ≥ γ
1+γ

≥ y.

The IC and IR constraints for the type β1 buyer are given by

xγ − tB(β1) ≥ max {0, yγ − tB(β2)},

and those for the type β2 buyer are given by

γ − tB(β2) ≥ max {0, x(1 + γ)− tB(β1)}.

Since these imply

(y − x)γ ≤ tB(β2)− tB(β1) ≤ γ − x(1 + γ),

feasibility requires

x+ γy ≤ γ.

On the other hand, the IC and IR constraints for the type α1 seller are given by

pB(β2 | α1)(α2 − α1)− tA(α1) ≥ max {0, pB(β2 | α2)(α2 − α1)− tA(α2)},

and those for the type α2 seller are given by

−tA(α2) ≥ max {0, −tA(α1)}.

These together imply

0 ≤ tA(α1)− tA(α2) ≤ {pB(β2 | α1)− pB(β2 | α2)}(α2 − α1).

Feasibility requires

pB(β2 | α1) ≥ pB(β2 | α2) ⇔
µ2

λ1
pA(α1 | β2) ≥

µ2

λ2
pA(α2 | β2)

⇔ y ≥ λ1.

Note that x ≥ γ
1+γ

≥ y ≥ λ1 and µ1x + µ2y = λ1 imply that x = y = λ1 = γ
1+γ

. In

other words, feasibility holds only if λ1 = γ
1+γ

, and the optimal matching rule p is given by

x = y = λ1.
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Summarizing the four cases above, we can conclude:

• If λ1 ≥
γ

1+γ
and (1+γ)λ1+µ1 > 1+γ, then only case 1 is feasible, and the optimal matching

in case 1 is PAM. Hence, PAM is optimal.

• If λ1 ≥ γ
1+γ

and (1 + γ)λ1 + µ1 ≤ 1 + γ, then both cases 1 and 2 are feasible. The optimal

matching in case 1 is BSM, whereas the optimal matching in case 2 is PAM if µ1 >
γ

1+γ
, and

BSM otherwise. Hence, BSM is optimal if µ1 ≤ γ
1+γ

, and comparison of the revenue shows

that PAM is optimal if µ1 >
γ

1+γ
.

• If λ1 <
γ

1+γ
and λ1 + γµ1 < γ, then only case 3 is feasible, and the only feasible matching in

case 3 is RM. Hence, RM is optimal.

• If λ1 < γ
1+γ

and λ1 + γµ1 ≥ γ, then both cases 2 and 3 are feasible. The optimal matching

in case 2 is PAM, and optimal matching in case 3 is RM. Comparison of the revenue under

these two rules shows that PAM is optimal.

This completes the proof.

Proof of Proposition 4. As in the proof of Proposition 3, we separate cases depending on the

values of x and y. Note that (x, y) =
(

p11
µ1

, p12
µ2

)

.

1. x, y > γ
1+γ

. In this case, a type β2 buyer bids α1 according to the BNE: σB(β2) = α1.

Social welfare is hence given by W (Γ) = γp11 + (1 + γ)p12 = γ x
µ1

+ (1 + γ) y
µ2
. The proof of

Proposition 3 shows that there exists an IC and IR mechanism if and only if y ≥ x. W (Γ) is

maximized when y is maximized subject to y ≥ x and Bayes plausibility (3). If follows that

p is PAM.

2. x ≤ γ
1+γ

≤ y. A type β2 buyer bids α1 according to the BNE, and hence social welfare is

again given by W (Γ) = γ x
µ1

+ (1 + γ) y
µ2
. The proof of Proposition 3 shows that there exists

an IC and IR mechanism if and only if γx+ y ≥ γ. The problem hence reduces to:

max
x,y

γ
x

µ1
+ (1 + γ)

y

µ2
subject to γx+ y ≥ γ, x ≤

γ

1 + γ
≤ y, and Bayes plausibility (3).

A feasible (x, y) exists if and only if (1+γ)λ1+µ1 ≤ 1+γ, and either λ1 ≥
γ

1+γ
or λ1+γµ1 ≥ γ.

(a) If γ ≤ λ1

µ2
(⇔ λ1 + γµ1 ≥ γ), then PAM satisfies the constraints and maximizes W .

(b) If γ > λ1

µ2
(⇔ λ1 + γµ1 < γ), then a feasible (x, y) exists only if λ1 ≥ γ

1+γ
. W is

maximized when γx+ y = γ. Solving this and (3) simultaneously, we obtain

(x, y) =

(

γµ2 − λ1

γ − (1 + γ)µ1
,

γ(λ1 − µ1)

γ − (1 + γ)µ1

)

, (21)

and

W (Γ) =
γ{γµ2λ1 − λ1µ1 + µ2(λ1 − µ1)}

γ − (1 + γ)µ1
.

3. x, y ≤ γ
1+γ

. The proof of Proposition 3 shows that RM is the only feasible matching rule.
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4. x ≥ γ
1+γ

≥ y. The proof of Proposition 3 shows that there exists no feasible matching rule.

When (1+γ)λ1+µ1 > 1+γ, only case 1 is feasible and PAM is optimal. When (1+γ)λ1+µ1 ≤

1+γ and λ1 ≥
γ

1+γ
, cases 1 and 2 are feasible: If λ1+γµ1 ≥ γ in addition, PAM is optimal in both

cases. On the other hand, if λ1 + γµ1 < γ, then either PAM or the matching rule specified in (21)

is optimal. Comparison of social welfare associated with each rule shows that PAM is optimal. If

λ < γ
1+γ

and λ1 + γµ1 ≥ γ, then cases 2 and 3 are feasible: PAM is optimal in case 2 and RM is

optimal in case 3. Comparison of social welfare in each case shows that PAM is optimal. If λ < γ
1+γ

and λ1 + γµ1 < γ, then only case 3 is feasible and RM is optimal.

Proof of Proposition 6. We show that if RM is optimal with seller-offer bargaining for (λ1, µ1),

then it is dominated by PAM with buyer-offer bargaining. By Proposition 5, RM is optimal with

seller-offer bargaining when (λ1, µ1) satisfies µ1 >
1

1+γ
and γλ1 + µ1 > γ, and yields

γµ2.

Furthermore, Figure 5 shows that any such (λ1, µ1) satisfies λ1 ≥ 1− µ1 = µ2, and Figure 2 shows

that PAM with buyer-offer bargaining is feasible whenever RM is optimal with seller-offer bargain-

ing. By Proposition 3, we can evaluate the revenue raised by PAM with buyer-offer bargaining as

follows:

1. If (1 + γ)λ1 + µ1 > 1 + γ, then the revenue equals

(1 + γ)λ1 −
λ1 − µ2

µ1
> (1 + γ)λ1 − λ1 = γλ1 ≥ γµ2,

where the first inequality follows since λ1−µ2

µ1
< λ1 ⇔ λ1 < 1.

2. If µ1 >
γ

1+γ
, λ1 + γµ1 > γ, (1 + γ)λ1 + µ1 ≤ 1 + γ, and λ1 ≥ µ2, then the revenue equals

λ1 − µ2

µ1
+ µ2 ≥ µ2 > γµ2.

In both cases, hence, PAM with buyer-offer bargaining yields a higher revenue than RM with seller-

offer bargaining. A similar argument shows that RM with buyer-offer bargaining is dominated by

PAM with seller-offer bargaining.

Proof of Proposition 7.

We will specifically show the following.

• PAM with buyer-offer bargaining if 1
1+γ

> λ1 > µ2,

• BSM with buyer-offer bargaining if λ1 > µ2 >
1

1+γ
,

• PAM with seller-offer bargaining if 1
1+γ

> µ2 > λ1,

• SSM with seller-offer bargaining if µ2 > λ1 >
1

1+γ
.
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1. First fix d < 1
1+γ

. If ‖(λ1, µ2) − (d, d)‖ < ε for a sufficiently small ε > 0, then Figures 2

and 5 show that at (λ1, µ1), B-squeeze matching is optimal with buyer-offer bargaining, and

S-squeeze matching is optimal with seller-offer bargaining. The former yields λ1(1+ γ)− γ
1+γ

in revenue, whereas the latter yields µ2(1 + γ) − γ
1+γ

. It follows that B-squeeze matching

with buyer offer is optimal if λ1 > µ2 and S-squeeze matching with seller offer is optimal if

λ1 < µ2.

2. Next fix d < 1
1+γ

. If ‖(λ1, µ2) − (d, d)‖ < ε for a sufficiently small ε > 0, then Figures

2 and 5 again show that at (λ1, µ1), PAM is optimal with both buyer-offer and seller-offer

bargaining. If λ1 > µ2, then buyer-offer yields λ1−µ2

µ1
γ + µ2 in revenue and seller-offer yields

(1 + γ)µ2 − λ1γ. The former dominates the latter since λ1−µ2

µ1
γ + µ2 > (1 + γ)µ2 − λ1γ ⇔

1 + µ1 > 0. If λ1 < µ2, a similar argument shows that PAM with seller-offer bargaining is

optimal.

3. Finally, fix d = 1
1+γ

and suppose that ‖(λ1, µ2) − (d, d)‖ < ε for a sufficiently small ε > 0

and that λ1 > µ2. If λ1, µ2 > d, then we have the same situation as case 1 above. If λ1 < d

and µ2 < d, then we have the same situation as case 2 above. If λ1 > d and µ2 < d, then S-

squeeze matching is optimal with seller-offer bargaining and PAM is optimal with buyer-offer

bargaining. The former yields µ2(1 + γ)− γ
1+γ

in revenue and the latter yields λ1−µ2

µ1
γ + µ2.

The latter dominates the former since

{λ1 − µ2

µ1
γ + µ2

}

−
{

µ2(1 + γ)−
γ

1 + γ

}

= γ
{λ1 − µ2

µ1
− µ2 +

1

1 + γ

}

> γ(d− µ2) > 0.

A similar argument proves that PAM with seller-offer bargaining is optimal when λ1 < µ2.

Proof of Proposition 10. The IC and IR conditions for β1 are given by

x(β1 − ζ)− tB(β1) ≥ max {0, y(β1 − ζ)− tB(β2)},

and since x ≥ r, those for β2 are given by

y(β2 − ζ)− tB(β2) ≥ max {0, x(β2 − ζ)− tB(β1)}.

For this to be feasible, we need

(y − x)(β1 − ζ) ≤ (y − x)(β2 − ζ) ⇔ y ≥ x. (22)

We can verify that the IR condition for β1 and the IC condition for β2 bind so that tB(β1) = xγ

and tB(β2) = tB(β1) + (y − x)γ. On the other hand, the IC and IR conditions for α1 are given by

ζ − α1 − tA(α1) ≥ max {0, ζ − α1 − tA(α2)},

and those for α2 are given by

0− tA(α2) ≥ max {0, 0− tA(α2)}.
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We obtain from these the optimal transfer function for the seller:

tA(α1) = tA(α2) = 0.

It follows that the platform’s revenue is given by

R = x(β1 − ζ) + µ2(y − x)(β2 − ζ) = {β1 − ζ − µ2(β2 − ζ)}x+ µ2(β2 − ζ)y. (23)

Since this is decreasing in ζ, we set ζ = α1. Furthermore, comparing the gradient vector of R with

the normal vector of the Bayes plausibility condition, we see that PAM is optimal since

µ1

µ2
>

β1 − ζ − µ2(β2 − ζ)

µ2(β2 − ζ)
⇔ β2 > β1. (24)

When λ1 ≥ µ2, substitution of (x, y) = (λ1−µ2

µ1
, 1) yields

R∗ = γλ1 +
λ2µ2

µ1
,

and when λ1 < µ2, substitution of (x, y) = (1, λ1

µ2
) yield

R∗ = λ1(1 + γ).

Note from Proposition 1 that when the market is symmetric (λ1 = µ2), the maximized revenue

above equals the maximal social surplus. It follows that this mechanism is optimal among all

possible mechanisms under symmetry.

Proof of Proposition 11. Since the expected payoff of a type α2 seller in the trading game

equals zero regardless of his report, and since tA(α1) = tA(α2) = 0, the IC and IR conditions of

type α1 always hold with equality. Let

k1 =
γ − tB(β1)

1 + γ − tB(β1)
and k2 =

γ − tB(β2)

1 + γ − tB(β2)
.19

The optimal bid for a type β2 buyer equals α1 if y = pA(α1 | β2) ≥ k2 when he reports his type

truthfully, and if x = pA(α1 | β1) ≥ k1 when he misreports his type. Note also that

x ≤ k1 ⇔ tB(β1) ≤ γ − x
1−x

,

y ≤ k2 ⇔ tB(β2) ≤ γ − y
1−y

.

For any values of x and y, the IC and IR conditions of a type β1 buyer are given by:

x{γ − tB(β1)} ≥ max {0, y{γ − tB(β2)}}. (25)

a) A type β2 buyer optimally bids α2 whether he has reported his type truthfully or not. This

requires x ≤ k1 and y ≤ k2. The IC and IR conditions of type β2 are given by

γ − tB(β2) ≥ max {0, γ − tB(β1)}. (26)

19Let k2 = 0 if 1 + γ − tB(β2) = 0.
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γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(

γ − x
1−x

, γ − x
1−x

)

ICβ1

ICβ2

(a)

γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(

γ − y
1−y

, γ − x
1−y

)

ICβ1

ICβ2

(b)

γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(

γ − x
1−x

, 1 + γ − x
y(1−x)

)

ICβ1

ICβ21 + γ

(c)

γ

γ − y
1−y

γ

γ − x
1−x

tB(β1)

tB(β2)

(

γ, 1 + γ − x
y

)

ICβ1

ICβ2

1 + γ

1 + γ

(d)

Figure 9: Optimal transfer (tB(β1), tB(β2)): (a) x ≤ k1, y ≤ k2, (b) x > k1, y ≤ k2, (c) x ≤ k1,

y > k2, (d) x > k1, y > k2.
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(25) and (27) together show that y ≤ x. As seen in Figure 9, the optimal transfer in this case

is given by

tB(β1) = tB(β2) = γ −
x

1− x
.

On the other hand, the IC and IR conditions of a type α1 seller are given by

z(1 − tA(α1)) ≥ max {0, w(1 − tA(α2))}. (27)

Substitution of tA(α1) = tA(α2) = 0 yields z ≥ w, which in turn leads to

pB(β2 | α1) ≥ pB(β2 | α2) ⇔
µ2

λ1
pA(α1 | β2) ≥

µ2

λ2
pA(α2 | β2) ⇔ y ≥ λ1.

Along with x ≥ y above and Bayesian plausibility, this implies RM: x = y = λ1. It follows that

the maximized revenue of the platform in this case is given by

R∗ = µ1xtB(β1) + µ2tB(β2) = (λ1µ1 + µ2)

(

γ −
λ1

1− λ1

)

.

b) A type β2 buyer optimally bids α2 when he has reported his type truthfully, but α1 when he

has misreported his type. This requires x ≥ k1 and y ≤ k2. The IC and IR conditions of type

β2 are given by

γ − tB(β2) ≥ max {0, x{1 + γ − tB(β1)}}. (28)

Since tB(β1) ≥ γ − x
1−x

, tB(β2) ≤ γ− y
1−y

, and ytB(β2)− xtB(β1) ≥ γ(y− x) by (25), a feasible

transfer (tB(β1), tB(β2)) exists only if

y

(

γ −
y

1− y

)

− x

(

γ −
x

1− x

)

≥ γ(y − x) ⇔ (y − x){1− (1− x)(1− y)} ≤ 0.

Since (1−x)(1−y) < 1 by (3), we must have y ≤ x. In this case, the optimal transfer is given by

(tB(β1), tB(β2)) =
(

γ− y
1−y

, γ− x
1−y

)

, which satisfies the IC conditions of β1 and β2 in (25) and

(28) with equality. It also satisfies the IR conditions of both types, as well as tB(β1) > γ − x
1−x

and tB(β2) ≤ γ − y
1−y

.

On the other hand, the IC and IR conditions of a type α1 seller are the same as in case (a),

and reduce to z ≥ w. This coupled with x ≥ y implies RM: x = y = λ1. It follows that the

maximized revenue of the platform in this case is again given by

R∗ = µ1xtB(β1) + µ2tB(β2) = (λ1µ1 + µ2)

(

γ −
λ1

1− λ1

)

.

c) A type β2 buyer optimally bids α1 when he has reported his type truthfully, but α2 when he

has misreported his type. This requires x ≤ k1 and y ≥ k2. The IC and IR conditions of β2 are

given by

y{1 + γ − tB(β2)} ≥ max {0, γ − tB(β1)}. (29)

Since tB(β1) ≤ γ − x
1−x

, tB(β2) ≥ γ − y
1−y

, and ytB(β2) − tB(β1) ≤ y(1 + γ) − γ by (29), a

feasible transfer (tB(β1), tB(β2)) exists only if

y
(

γ −
y

1− y

)

−
(

γ −
x

1− x

)

≤ y(1 + γ)− γ ⇔ x ≤ y.
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In this case, the optimal transfer is given by (tB(β1), tB(β2)) =
(

γ− x
1−x

, 1+γ− x
y(1−x)

)

, which

satisfies type β2’s IC condition with equality and also x = k1. On the other hand, the IC and

IR conditions of a type α1 seller always hold with equality. Substituting y = λ1−µ1x
µ2

from (3),

we can write the platform’s expected revenue as:

R(Γ̃) = µ1x

(

γ −
x

1− x

)

+ µ2

(

λ1 − µ1x

µ2

) (

1 + γ −
µ2x

(λ1 − µ1x)(1− x)

)

,

which is strictly decreasing in x. This implies that the optimal matching rule in this case is

PAM, and the maximized revenue is given by

R∗ =

{

λ1(1 + γ) if λ1

µ2
≤ 1,

λ1(1 + γ)− λ1−µ2

λ2
if λ1

µ2
> 1.

d) A type β2 buyer optimally bids α1 whether he has reported his type truthfully or not. This

requires x ≥ k1 and y ≥ k2. The IC and IR conditions of β2 are given by

y{1 + γ − tB(β2)} ≥ max {0, x{1 + γ − tB(β1)}}. (30)

(25) and (30) together imply

(y − x)γ ≤ ytB(β2)− xtB(β1) ≤ (y − x)(1 + γ),

so that y ≥ x. In this case, the optimal transfer is given by (tB(β1), tB(β2)) =
(

γ, 1 + γ − x
y

)

,

which satisfies type β2’s IC condition and type β1’s IR condition both with equality. On the

other hand, the IC and IR conditions of a type α1 seller always hold. The expected revenue of

the platform then equals

R(Γ̃) = µ1xtB(β1) + µ2ytB(β2) = µ2(y − x)(1 + γ) + xγ.

By substituting y = −µ1

µ2
x+ λ1

µ2
, we can rewrite this as

R(Γ̃) = (1 + γ)

{

γ

1 + γ
− 1

}

x+ λ1(β2 − α1), (31)

which is a decreasing function of x. Hence, the optimal matching rule is PAM, and the maximized

revenue is given by

R∗ =

{

λ1(1 + γ) if λ1

µ2
≤ 1,

λ1(1 + γ)− λ1−µ2

µ1
if λ1

µ2
> 1.

Comparison of the maximized revenue in the above four cases shows that the optimal mechanism

Γ̃ is one described in case (d), which entails PAM, and transfer given by

(tB(β1), tB(β2)) =







(γ, 1 + γ) if λ1

µ2
≤ 1,

(

γ, 1 + γ − λ1−µ2

µ1

)

if λ1

µ2
> 1.

This mechanism induces a type β2 buyer to bid α1 after both truthful and untruthful reporting,

and yields the expected revenue as described in (10).
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Proposition 16 The optimal outcome-contingent mechanism Γ̃ with buyer-offer bargaining dom-

inates the optimal mechanism Γ with buyer-offer bargaining in the baseline model. In particular,

the dominance is strict when Γ entails non-PAM matching rules for almost every type distribution.

Proof. The claim is established in each case below.

1. λ1 + µ1 > 1 and (1 + γ)λ1 + µ1 > 1 + γ.

R(Γ) = λ1(1 + γ)−
λ1 − µ2

µ1
= R(Γ̃).

2. λ1 + µ1 > 1, (1 + γ)λ1 + µ1 ≤ 1 + γ and µ1 >
γ

1+γ
.

R(Γ) =
λ1 − µ2

µ1
γ + µ2 < R(Γ̃) = λ1(1 + γ)−

λ1 − µ2

µ1
.

3. λ1 + µ1 > 1, (1 + γ)λ1 + µ1 ≤ 1 + γ and µ1 ≤
γ

1+γ
.

R(Γ) = λ1(1 + γ)−
γ

1 + γ
≤ R(Γ̃) = λ1(1 + γ)−

λ1 − µ2

µ1
,

where the equality holds if and only if (1 + γ)λ1 + µ1 = 1 + γ.

4. λ1 + µ1 ≤ 1, λ1 >
γ

1+γ
, and µ1 ≤

γ
1+γ

.

R(Γ) = λ1(1 + γ)−
γ

1 + γ
< R(Γ̃) = λ1(1 + γ).

5. λ1 + µ1 ≤ 1, λ1 + γµ1 > γ, and µ1 >
γ

1+γ
.

R(Γ) = λ1(1 + γ)− µ2γ < R(Γ̃) = λ1(1 + γ).

6. λ1 ≤
γ

1+γ
, and λ1 + γµ1 ≤ γ.

R(Γ) = λ1γ < R(Γ̃) = λ1(1 + γ).

Proof of Proposition 12. A buyer’s IC and IR conditions are then given as follows. For type

β1,

0− tB(β1) ≥ max
{

0− tB(β2), 0
}

, (32)

and for type β2,

Pr(α1, β1 | β2) (v12 − v11) + Pr(α2, β1 | β2)(v22 − v21)− tB(β2)

≥ max
{

Pr(α1, β1 | β1)(v12 − v11) + Pr(α2, β1 | β1)(v22 − v21)− tB(β1), 0
}

.
(33)
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We have from (32) and (33) that

0 ≤ tB(β2)− tB(β1) ≤ {Pr(α1, β1 | β2)− Pr(α1, β1 | β1)}∆1

+ {Pr(α2, β1 | β2)− Pr(α2, β1 | β1)}∆2

=

(

p112

µ2
−

p111

µ1

)

∆1 +

(

p212

µ2
−

p211

µ1

)

∆2.

For the feasibility of these conditions, we hence need
(

p112

µ2
−

p111

µ1

)

∆1 +

(

p212

µ2
−

p211

µ1

)

∆2 ≥ 0. (34)

We can also show that the IR condition for the low type (i.e., β1) and the IC condition for the high

type (i.e., β2) bind. Hence, when (34) holds, the optimal transfer from the buyer is given by

tB(β1) = 0,

tB(β2) =

(

p112

µ2
−

p111

µ1

)

∆1 +

(

p212

µ2
−

p211

µ1

)

∆2.
(35)

Turning now to the seller side, recall that their types are observable by the matched buyers. Hence,

the incentive compatibility and individual rationality conditions for type α1 are given by

{1− Pr(β2, β2 | α1)}v11 + Pr(β2, β2 | α1)v12 − tA(α1)

≥ max {{1− Pr(β2, β2 | α2)}v11 + Pr(β2, β2 | α2)v12 − tA(α2), 0} ,
(36)

and those for type α2 are given by

{1− Pr(β2, β2 | α2)}v21 + Pr(β2, β2 | α2)v22 − tA(α2)

≥ max {{1− Pr(β2, β2 | α1)}v21 + Pr(β2, β2 | α1)v22 − tA(α1), 0} .
(37)

(36) and (37) together imply

{Pr(β2, β2 | α2)− Pr(β2, β2 | α1)}∆1 ≤ tA(α2)− tA(α1)

≤ {Pr(β2, β2 | α2)− Pr(β2, β2 | α1)}∆2,

which is equivalent to
(

p222

λ2
−

p122

λ1

)

∆1 ≤ tA(α2)− tA(α1) ≤

(

p222

λ2
−

p122

λ1

)

∆2.

Since ∆2 > ∆1 by our assumption (11), this implies that the following feasibility condition must

hold:
p222

λ2
−

p122

λ1
≥ 0. (38)

Again, the IR condition for the low type (i.e., α1) and the IC condition for the high type (i.e., α2)

bind. Hence, when (38) holds, the optimal transfer from the seller is given by

tA(α1) = v11 +
p122

λ1
∆1,

tA(α2) = tA(α1) +

(

p222

λ2
−

p122

λ1

)

∆2.
(39)
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(35) and (39) yield the maximal payoff for the platform given the matching rule p:

R(Γ) = λ1tA(α1) + λ2tA(α2) + 2 {µ1tB(β1) + µ2tB(β2)}

= v11 +
p122

λ1
∆1 + λ2

(

p222

λ2
−

p122

λ1

)

∆2

+ 2µ2

(

p112

µ2
−

p111

µ1

)

∆1 + 2µ2

(

p212

µ2
−

p211

µ1

)

∆2.

(40)

The optimal matching rule p = (p111, . . . , p222) is one that solves

max
{

R(p) : p ∈ P satisfies (34) and (38)
}

.

Bayes plausibility (13) allows us to express p111, p211 and p212 in terms of p112, p122 and p222 as:















p111 = λ1 − p122 − 2p112,

p211 = λ2 − 2µ2 + 2p122 + 2p112 + p222,

p212 = µ2 − p222 − p122 − p112.

(41)

We then rewrite the feasibility condition (34) and the platform’s payoff (40) in terms of (p112, p122, p222):

{µ2(∆2 −∆1) + ∆2} p122 + (1 + µ2)(∆2 −∆1) p112 +∆2p222 ≤ µ2{(λ1 + µ2)∆2 − λ1∆1}, (42)

and

R(Γ) = v11 −
2µ2

µ1
λ1∆1 + 2µ2

(

1−
λ2 − 2µ2

µ1

)

∆2

−

{(

λ2

λ1
+ 2 +

4µ2

µ1

)

∆2 −

(

1

λ1
+

2µ2

µ1

)

∆1

}

p122

− 2

(

1 +
2µ2

µ1

)

(∆2 −∆1) p112

−

(

1 +
2µ2

µ1

)

∆2 p222.

Writing κ = 1 + 2µ2

µ1
, we see that this simplifies to

R(Γ) = v11 − (κ− 1)λ1∆1 + 2µ2

(

κ−
λ2

µ1

)

∆2

−

{

κ∆2 +

(

κ+
λ2

λ1

)

(∆2 −∆1)

}

p122 − 2κ(∆2 −∆1) p112 − κ∆2 p222.

(43)

Figure 10 illustrates the feasible combinations of (p122, p222) for p112 < µ2 −
λ2

2 .

1. µ2 ≤ λ2

2 . Let (p112, p122, p222) = (0, 0, 0). It clearly maximizes the platform’s payoff (43)

subject to (p112, p122, p222) ≥ (0, 0, 0). It satisfies (38) and (42) and hence is feasible. By (41),

we have

(p111, p211, p212) = (λ1, λ2 − 2µ2, µ2).
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p122 ≤ λ1 − 2p112

(38)

p222

p122

p122 + p222 ≤ µ2 − p112

2p122 + p222 ≥ 2µ2 − λ2 − 2p112

(42)

Figure 10: Feasible combinations of (p122, p222) (shaded area) when p112 < µ2 −
λ2

2 .

p111 ≥ 0 ⇔ p122 ≤ λ1 − 2p112,

p211 ≥ 0 ⇔ 2p122 + p222 ≥ 2µ2 − λ2 − 2p112,

p212 ≥ 0 ⇔ p222 + p122 ≤ µ2 − p112.

2. µ2 >
λ2

2 . Since the platform’s payoff (43) is decreasing in p112, p122 and p222, if (p112, p122, p222)

is optimal, then it satisfies the constraint 2p112 + 2p122 + p222 ≥ 2µ2 − λ2 > 0 with equality.

Substituting p222 = 2µ2 − λ2 − 2p112 − 2p122 into (43), we obtain

R(Γ) = v11 −
2µ2

µ1
λ1∆1 + 2µ2

(

1−
λ2 − 2µ2

µ1

)

∆2

−

{

κ∆2 +

(

κ+
λ2

λ1

)

(∆2 −∆1)

}

p122 − 2κ(∆2 −∆1) p112

− κ∆2 (2µ2 − λ2 − 2p112 − 2p122)

= v11 −
2µ2

µ1
λ1∆1 + 2µ2

(

1−
λ2 − 2µ2

µ1

)

∆2 − κ∆2(2µ2 − λ2)

+

{

κ∆1 −
λ2

λ1
(∆2 −∆1)

}

p122 + 2κ∆1p112.

(44)

There are three subcases to consider.

(a) λ2

2 < µ2 ≤
1
2 .

Let (p112, p122) =
(

µ2 −
λ2

2 , 0
)

. Since 2κ∆1 > κ∆1 −
λ2

λ1
(∆2 −∆1), this maximizes (44)

subject to the constraints (p112, p122) ≥ (0, 0) and p112 + p122 ≤ µ2 −
λ2

2 (⇔ p222 ≥ 0).

We then have p222 = 2µ2 − λ2 − 2p112 − 2p122 = 0, and also by (41),

(p111, p211, p212) =

(

1− 2µ2, 0,
λ2

2

)

.

39



This p clearly satisfies (38). To see that it also satisfies (42), note that

(42) ⇔ (1 + µ2)(∆2 −∆1)

(

µ2 −
λ2

2

)

≤ µ2{λ1(∆2 −∆1) + µ2∆2}

⇔

{

(1 + µ2)

(

µ2 −
λ2

2

)

− µ2λ1

}

(∆2 −∆1) ≤ µ2
2∆2

⇐ (1 + µ2)

(

µ2 −
λ2

2

)

− µ2λ1 ≤ µ2
2

⇔ µ2
2 −

λ2µ1

2
≤ µ2

2.

(b) 1
2 < µ2 ≤ 1 − λ1

2 . We let (p112, p122) = (λ1

2 , 0). This maximizes platform’s payoff (44)

subject to 2p112 + p122 ≤ λ1 (⇔ p111 ≥ 0). We have p222 = 2µ2 − λ2 − 2p112 − 2p122 =

2µ2 − 1, and hence from (41),

(p111, p211, p212) =

(

0, 0, µ1 −
λ1

2

)

.

This p satisfies (38), and also (42) since

(42) ⇔ (1 + µ2)
λ1

2
(∆2 −∆1) + ∆2(2µ2 − 1) ≤ µ2 {λ1(∆2 −∆1) + µ2∆2}

⇔

{

λ1

2
(1 + µ2)− µ2λ1

}

(∆2 −∆1) ≤ ∆2µ
2
1

⇔
λ1

2
(∆2 −∆1) ≤ ∆2µ1

⇐ 1−
λ1

2
≥ µ2.

(c) µ2 > 1 − λ1

2 . Substituting p222 = 2µ2 − λ2 − 2p112 − 2p122 into the condition p212 ≥ 0

in (41), we obtain p112 + p122 ≤ µ2 − p222 = −µ2 + λ2 + 2p112 + 2p122, or equivalently,

p122 ≥ µ2 − λ2 − p112. This combined with p122 ≤ λ1 − p112 in (41) yields

p112 ≤ µ1.

We let (p112, p122) = (µ1, λ1 − 2µ1). This maximizes the platform’s payoff (44) subject

to 2p112+p122 ≤ λ1 (⇔ p111 ≥ 0) and p112 ≤ µ1. We then have p222 = 2µ2−λ2−2p112−

2p122 = λ2, and hence from (41),

(p111, p211, p212) = (0, 0, 0) .

This p satisfies (38) since p222
λ2

− p122
λ1

= 1− λ1−2µ1

λ1
> 0. To see that it also satisfies (42),

note that

(42) ⇔ {µ2(|Dt2 −∆1) + ∆2}(λ1 − 2µ1) + (1 + µ2)(∆2 −∆1)µ1 +∆2λ2

≤ µ2{λ1(∆2 −∆1) + µ2∆2

⇔ µ2
1(∆2 −∆1)− µ2

1∆2 ≤ 0.
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This completes the proof.

Proof of Corollary 1. Substitution of the values from Proposition 12 yields the following

probability distributions. It is clear that the dominance relations hold in each case.

1. µ2 ∈
[

0, λ2

2

]

.

(p(β1, β1 | α), 2p(β1, β2 | α), p(β2, β2 | α) =







(1, 0, 0) if α = α1,
(

1− 2µ2

λ2
, 2µ2

λ2
, 0

)

if α = α2,

and

(p(α1 | β), p(α2 | β)) =







(

λ1

µ1
, 1− λ1

µ1

)

if β = β1,

(0, 1) if β = β2.

2. µ2 ∈
(

λ2

2 , 1
2

]

.

(p(β1, β1 | α), 2p(β1, β2 | α), p(β2, β2 | α) =







(

1−2µ2

λ1
, 2µ2−λ2

λ1
, 0

)

if α = α1,

(0, 1, 0) if α = α2,

and

(p(α1 | β), p(α2 | β)) =







(

1− λ2

2µ1
, λ2

2µ1

)

if β = β1,
(

1− λ2

2µ2
, λ2

2µ2

)

if β = β2.

3. µ2 ∈
(

1
2 , 1−

λ1

2

]

.

(p(β1, β1 | α), 2p(β1, β2 | α), p(β2, β2 | α) =







(0, 1, 0) if α = α1,
(

0, 2µ1−λ1

λ2
, 1−2µ1

λ2

)

if α = α2,

and

(p(α1 | β), p(α2 | β)) =







(

λ1

2µ1
, 1− λ1

2µ1

)

if β = β1,
(

λ1

2µ2
, 1− λ1

2µ2

)

if β = β2.

4. µ2 ∈
(

1− λ1

2 , 1
]

.

(p(β1, β1 | α), 2p(β1, β2 | α), p(β2, β2 | α) =







(

0, 2µ1

λ1
, 1− 2µ1

λ1

)

if α = α1,

(0, 0, 1) if α = α2,

and

(p(α1 | β), p(α2 | β)) =







(1, 0) if β = β1,
(

1− λ2

µ2
, λ2

µ2

)

if β = β2.
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Proof of Proposition 13. The NAM between buyers implies that

p(β1 | β1) =

{

0 if µ2 ≥ µ1,

1− µ2

µ1
if µ2 < µ1,

and p(β2 | β2) =

{

1− µ1

µ2
if µ2 ≥ µ1,

0 if µ2 < µ1.

It follows that

p(β1, β1) =

{

0 if µ2 ≥
1
2 ,

1− 2µ2 if µ2 <
1
2 ,

p(β2, β2) =

{

1− 2µ1 if µ2 ≥
1
2 ,

0 if µ2 <
1
2 ,

and

2p(β1, β2) =

{

2µ1 if µ2 ≥
1
2 ,

2µ2 if µ2 <
1
2 .

PAM between a seller and a buyer pair then implies the following for the probability of buyer type

profiles matched with a high type seller: When µ2 ≥
1
2 , p(β1, β1 | α2) = 0,

2p(β1, β2 | α2) =

{

1− 1−2µ1

λ2
if 1− 2µ1 < λ2,

0 if 1− 2µ1 ≥ λ2,

and

p(β2, β2 | α2) =

{

1−2µ1

λ2
if 1− 2µ1 < λ2,

1 if 1− 2µ1 ≥ λ2.

On the other hand, when µ2 ≤
1
2 , p(β2, β2 | α2) = 0,

p(β1, β1 | α2) =

{

1− 2µ2

λ2
if 2µ2 < λ2,

0 if 2µ2 ≥ λ2,
and 2p(β1, β2 | α2) =

{

2µ2

λ2
if 2µ2 < λ2,

1 if 2µ2 ≥ λ2,

To summarize, we have

(p211, p212, p222) =



























(λ2 − 2µ2, µ2, 0) if µ2 <
λ2

2 ,

(0, λ2

2 , 0) if λ2

2 ≤ µ2 <
1
2 ,

(0, µ1 −
λ1

2 , 1− 2µ1) if 1
2 ≤ µ2 < 1− λ1

2 ,

(0, 0, λ2) if µ2 ≥ 1− λ1

2 ,

Likewise, the probability of buyer type profiles matched with a low type seller (α1) is given by

(p111, p112, p122) =



























(λ1, 0, 0) if µ2 <
λ2

2 ,

(1− 2µ2, µ2 −
λ2

2 , 0) if λ2

2 ≤ µ2 <
1
2 ,

(0, λ1

2 , 0) if 1
2 ≤ µ2 < 1− λ1

2 ,

(0, µ1, λ1 − 2µ1) if µ2 ≥ 1− λ1

2 ,

This p is identical to that described in Proposition 12.
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Proof of Proposition 14. Using (41), we can rewrite W in terms of (p112, p122, p222) as

W (p) = λ1v11 + λ2v21 + 2µ2∆2 − 2(∆2 −∆1)p112 − (2∆2 −∆1)p122 −∆2p222. (45)

We will identify the socially efficient matching rule p, which solves the following problem.

max
p112,p122,p222

W (p) subject to



























p122 ≤ λ1 − 2p112,

2p112 + 2p122 + p222 ≥ 2µ2 − λ2,

p112 + p122 + p222 ≤ µ2,

p112, p122, p222 ≥ 0.

(46)

As in the proof of Proposition 12, we proceed by separating cases as follows:

1. µ2 < λ2

2 . Set (p112, p122, p222) = (0, 0, 0). This clearly maximizes W (p) in (45) subject to

(p112, p122, p222) ≥ (0, 0, 0). We can also verify that it satisfies other constraints in (46).

Substituting this back into (41), we obtain p111 = λ1, p211 = λ2 − 2µ2, and p212 = µ2.

2. µ2 ≥ λ2

2 . In this case, the constraint 2p112 + 2p122 + p222 ≥ 2µ2 − λ2 should hold with

equality since W (p) in (45) is decreasing in the three variables. Hence, we substitute p222 =

2µ2 − λ2 − 2p112 − 2p122 into W (p) to rewrite the maximization problem as:

max
p112,p122

λ1v11 + λ2v22 +∆1(2p112 + p122) subject to















µ2 − λ2 ≤ p112 + p122 ≤ µ2 −
λ2

2 ,

2p112 + p122 ≤ λ1,

p112, p122 ≥ 0.

(a) µ2 ≤ 1
2 . Since µ2 −

λ2

2 ≤ λ1

2 , the constraint p112 + p122 ≤ µ2 −
λ2

2 holds with equality.

The optimal p is then given by p112 = µ2 − λ2

2 and p122 = p222 = 0. Furthermore,

p111 = 1− 2µ1, p211 = 0 and p212 =
λ2

2 .

(b) 1
2 < µ2 ≤ 1− λ1

2 . If we choose (p112, p122) = (λ1

2 , 0), then it maximizes W (p) subject to

2p112 + p122 = λ1. It also satisfies the other constraints. Hence, we can take p such that

p112 =
λ1

2 , p122 = p111 = p211 = 0, p212 = µ1 −
λ1

2 , and p222 = 2µ2 − 1.

(c) µ2 > 1− λ1

2 . If we choose (p112, p122) = (µ1, λ1 − 2µ1), then it maximizes W (p) subject

to p112+p122 = µ2−λ2 and 2p112+p122 = λ1. Hence, we can take p such that p112 = µ1,

p122 = λ1 − 2µ1, p111 = p211 = p212 = 0, and p222 = λ2.

Proof of Proposition 15.

It is useful to analyze the buyers’ problem in two interim stages: In the reporting stage, a buyer

only knows his own valuation type, whereas in the bidding stage, a buyer also knows the quality

of the good sold by the matched seller.

First, consider the bidding stage on the path after truthful reporting by both buyers. The

auction game is symmetric between the two buyers since pα12 = pα21 for each α, and hence has a

symmetric BNE in which the low valuation buyer (β1) bids vα1 whereas the high valuation buyer

(β2) chooses his bid according to some distribution Gα(b) with support [vα1, bα] for some bα > vα1.

43



Call this strategy σB. Against σB played by the other buyer, when the high valuation buyer β2

chooses bid b ∈ [vα1, bα], his expected payoff is given by

(vα2 − b) {Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)} .

Since type β2 is indifferent over bids in the support of Gα,

(vα2 − b) (Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)) = (vα2 − bα). (47)

When b = vα1, we have (vα2 − bα) = (vα2 − vα1) Pr(β1 | α, β2), which yields

bα = Pr(β1 | α, β2)vα1 + Pr(β2 | α, β2)vα2,

and

Gα(b) =
Pr(β1 | α, β2)

Pr(β2 | α, β2)

(

b− vα1

vα2 − b

)

=
pα12

pα22

(

b− vα1

vα2 − b

)

.

Hence, the BNE payoff to the type β2 buyer in the auction game on the path after truthful reporting

equals

vα2 − bα = Pr(β1 | α, β2)(vα2 − vα1). (48)

It follows that the type β2’s expected payoff in the reporting stage from truthful reporting equals

Pr(α1 | β2) Pr(β1 | α1, β2)(v12 − v11) + Pr(α2 | β2) Pr(β1 | α2, β2)(v22 − v21)− tB(β2)

= Pr(α1, β1 | β2)(v12 − v11) + Pr(α2, β1 | β2)(v22 − v21)− tB(β2).
(49)

Consider now the auction game that follows when a buyer unilaterally misreports his type. If the

buyer is the low valuation type (β1), it is weakly dominant for him to bid vα1, and his expected

payoff equals zero. If the buyer is the high valuation type (β2), his payoff from bidding b ∈ [vα1, bα]

equals

(vα2 − b) {Pr(β1 | α, β1) + Pr(β2 | α, β1)Gα(b)}

= (vα2 − b)

{

pα11

Pr(α, β1)
+

pα21

Pr(α, β1)
Gα(b)

}

= (vα2 − b)
Pr(α, β2)

Pr(α, β1)

[

pα11

Pr(α, β2)
+

pα21

Pr(α, β2)
Gα(b)

]

=
Pr(α, β2)

Pr(α, β1)
(vα2 − bα).

where the last equality follows from (47). Using (48), we can further rewrite this as

Pr(α, β2)

Pr(α, β1)
Pr(β1 | α, β2)(vα2 − vα1) = Pr(β1 | α, β1)(vα2 − vα1). (50)

Hence, type β2’s expected payoff in the reporting stage from unilateral misreporting is given by

Pr(α1 | β1) Pr(β1 | α1, β1) (v12 − v11) + Pr(α2 | β1) Pr(β1 | α2, β1) (v22 − v21)− tB(β1)

= Pr(α1, β1 | β1) (v12 − v11) + Pr(α2, β1 | β1) (v22 − v21)− tB(β1).
(51)

Combining (49) and (51), we see that the IC and IR conditions for type β2 are just the same as

those for the second-price auction. On the other hand, since the expected payoff of type β1 equals
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0 after truthful reporting as well as after misreporting, his IC and IR conditions are again the same

as those for the second-price auction given in (32) and (33).

For the checking of the seller’s incentive in reporting, we first compute the expected payment

by each buyer type in the bidding stage. When the seller is type α, the expected payment by a

type β1 buyer equals

Pr(β1 | α, β1)
1

2
vα1,

and that by a type β2 buyer equals

∫ bα

vα1

b [Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)] dGα(b).

Using (47) and (vα2 − bα) = (vα2 − vα1) Pr(β1 | α, β2), we can rewrite this as

∫ bα

vα1

b [Pr(β1 | α, β2) + Pr(β2 | α, β2)Gα(b)] dGα(b)

= vα2 Pr(β2 | α, β2)

∫ bα

vα1

Gα(b)dGα(b) + Pr(β1 | α, β2)vα1

= Pr(β2 | α, β2)
1

2
vα2 + Pr(β1 | α, β2)vα1.

Hence, when the type α seller reports his type truthfully, the payment he can expect from a single

buyer is

Pr(β1 | α) Pr(β1 | α, β1)
1

2
vα1 + Pr(β2 | α)

[

Pr(β2 | α, β2)
1

2
vα2 + Pr(β1 | α, β2) vα1

]

= Pr(β1, β1 | α)
1

2
vα1 + Pr(β1, β2 | α) vα1 +Pr(β2, β2 | α)

1

2
vα2.

The seller’s expected revenue from two buyers when he reports his type truthfully is then given by

Pr(β1, β1 | α)vα1 + 2Pr(β1, β2 | α)vα1 +Pr(β2, β2 | α)vα2.

On the other hand, when the seller misreports his type, it will only change the probability that he

will be matched with each buyer type since his quality is observed by the buyers. It follows that

the seller’s IC and IR conditions are just the same as those for the second-price auction given in

(36) and (37).
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