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Abstract
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where the seller benefits v from objects. Our study focuses on the multi-object
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proofness, individual rationality and no-subsidy. Our result is an extension of that of
Morimoto and Serizawa (2015), and so we can consider more general situation than
them. Moreover, we characterize the minimum price Walrasian rules by efficiency,
strategy-proofness and two-sided individual rationality.

JEL classification: D82, D47, D63.

Keywords: Multi-object allocation problem, Strategy-proofness, Efficiency, Mini-
mum price Walrasian rule, Non-quasi-linear preference, Heterogeneous objects, Reserve
prices.

∗We are grateful to Masaki Aoyagi, Noriaki Matsushima, Hiroki Shinozaki and various seminar partici-
pants for the comments. We also gratefully acknowledge financial support from the Joint Usage/Research
Center at ISER, Osaka University, Osaka University’s International Joint Research Promotion Program
(Type A), and the Japan Society for the Promotion of Science (15H05728, 19J10221, 20H05631)

†Independently, Wakabayashi and Serizawa have studied the rules with reserve prices and Sakai and
Serizawa (2021) have studied the rules for an arbitrary number of agents and objects. Our paper combines
their works because there are many things in common.

‡Graduate School of Economics, Osaka University. Email: u690485a@ecs.osaka-u.ac.jp
§Graduate School of Economics, Osaka University. Email: tge012sr@student.econ.osaka-u.ac.jp
¶Institute of Social and Economic Research, Osaka University. Email: serizawa@iser.osaka-u.ac.jp

1



1 Introduction

Auctions are popular methods to allocate public assets efficiently. Recent examples in-
cludes spectrum license auctions, vehicle ownership auctions, land auctions, etc. An
important features of such auctions is that several objects are sold simultaneously, which
promotes the efficiency of allocations. Another feature is that winning prices are ex-
tremely high.1 This second feature causes nonnegligible income effects of bidders or faces
then with nonlinear borrowing costs. These factors make bidders’ quasi-linear preferences
implausible. Quasi-linearity is a standard assumption of auction theory, and it simplifies
the analysis. In contrast, non-quasi-linear preferences complicate designs of auction rule
for efficient allocations. We analyze efficient multi-object auction rules in non-quasi-linear
environments.

In the non-quasi-linear environments, one of prominent rules is the minimum price
Walrasian (MPW) rule (Demange and Gale, 1985). In the settings where bidders have
unit-demand preferences, the MPW rule satisfies not only efficiency, but also strategy-
proofness, individual rationality and no subsidy. Strategy-proofnesss is an incentive com-
patibility property that achieves efficient allocations in dominant-strategy equilibria. In-
dividual rationality is a property to encourage voluntary participations of bidders. No
subsidy is a property that the payment of each agents is always nonnegative. Moreover,
in cases where the number of agents is greater than objects and the seller benefits nothing
from objects, the MPW rule is the unique rule satisfying efficiency, strategy-proofness,
individual rationality and no-subsidy (Morimoto and Serizawa, 2015).

This result implies the distinguished theoretical merit of the MPW rule. However, it
often happens that the seller fails to invite an enough number of bidders, and consequently
the number of agents is equal to or less than objects. Besides typically, objects to be
auctioned are previously utilized by public or private sectors for different purposes. It
goes without saying that lands and spectrum frequency licenses are such examples. Those
sectors have benefitted from auctioned objects, and their benefits should be taken into
account to allocate objects efficiently. These factors violate the assumption of Morimoto
and Serizawa (2015) and make their result inapplicable. Thus, this article investigates
whether a similar result holds in cases where the number of agents is not necessarily more
than objects, and the seller may benefits from objects to be auctioned.

In our model, there are n bidders (hereafter “agents”) and m heterogenous objects.
Each agent obtains at most one object (unit-demand) and pays to the seller. The benefits
from the previous utilizations of objects are counted as the seller’s benefits, i.e., the seller
benefits vx ≥ 0 from each object x. His net revenue is the sum of agents’ payments
minus the sum of the benefits of the objects sold to agents. An allocation is efficient if
no allocation can increase seller’s net revenue without worsening off agents’ welfare.

1For example, in the 3G Spectrum license auction in U.K. (2000), the total revenue for five licenses
amounted to £22.5 billion, which is approximately 2.5% of the GDP of U.K. in 2000. See Binmore and
Klemperer (2002) for the details.
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An (allocation) rule determines, for each preference profile, the object each agent
receives and how much each agent pays. We mainly focus on the four desirable properties,
efficiency, strategy-proofness, individual rationality and no subsidy, but we also consider
two-sided individual rationality ; it requires in addition to individual rationality that each
agent pay at least the benefit the seller enjoys from the object the agent receives.

For each preference profile, Walrasian equilibrium with reserve prices exists (Alkan
and Gale, 1990), and the set of Walrasian prices has a lattice structure, so that there is
the MPW equilibrium with reserve prices (Demange and Gale, 1985). The MPW rule with
reserve prices is the rule which assigns to each preference profile the MPW equilibrium
with reserve prices. When reserve prices are adjusted to v = (v1, . . . , vm), the MPW rule
with the reserve prices satisfies efficiency in this setting. (Proposition 1)

Extending Morimoto and Serizawa’s (2015) result, we show that the minimum price
Walrasian rule with reserve prices equal to v = (v1, . . . , vm) is the only rule satisfying
efficiency, strategy-proofness, individual rationality and no subsidy (Theorem 1). We also
show that the minimum price Walrasian rule with reserve prices equal to v = (v1, . . . , vm)
is the only rule satisfying efficiency, strategy-proofness, and two-sided individual rational-
ity (Theorem 2).

We emphasize that reserve prices equal to v = (v1, . . . , vm) in Theorem 1 do not
directly follow from efficiency and the seller’s benefits from objects. Efficiency and seller’s
benefits from objects, only when combined with strategy-proofness, individual rationality
and no subsidy, imply reserve prices equal to v = (v1, . . . , vm).2 Although it is inevitable
to take the seller’s benefits into account for practical applications, its consequence is not
straightforward. This article analyzes such factors and establishes results that can be
applied to more general environments than the previous literature.

We also emphasize that although our results are the extensions of Morimoto and
Serizawa’s (2015), there are several points in which their proof fails to work in our model.3

Such points necessitates the develop of our own proof techniques to establish our results,
and makes our extensions far from trivial.

This article is organized as follows. Section 2 introduces the model and basic concepts
and checks the properties of minimum price Walrasian rules. Our results are in Section
3. We discuss the challenging points in the proofs in Section 4. Section 5 provides proofs.
Section 6 discusses related literatures, and Section 7 concludes.

2 The model

Let N ≡ {1, · · · , n} be the set of agents (or buyers) and M ≡ {1, · · · ,m} be the set of
indivisible and heterogeneous objects. Not consuming an object in M is called consuming
the “null object.” Let L ≡ M ∪ {0} = {0, 1, . . . ,m}, where 0 denotes the null object.

2We demonstrate this point by an example in Section 3.
3See Subsection 4.1 for the detailed explanation.
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Note that we impose no constraint on n and m. We assume that each agent consumes at
most one object (unit demand). A typical (consumption) bundle for agent i is a pair
zi ≡ (xi, ti) ∈ L× R: agent i receives object xi and pays ti. Let 0 ≡ (0, 0) ∈ L× R.

Each agent has a complete and transitive preference relation Ri over L × R. Let Ii
and Pi be the indifference relation and strict preference relation associated with Ri. A
typical class of preferences is denoted by R. We call Rn a domain. We introduce some
properties of preferences.

Continuity: For each zi ∈ L×R, the sets {z′i ∈ L×R : z′i Ri zi} and {z′i ∈ L×R : zi Ri z
′
i}

are closed.

Finite compensation: For each (a, t) ∈ L × R and each b ∈ L, there exist t′, t′′ ∈ R
such that (b, t′) Ri (a, t) and (a, t) Ri (b, t

′′).

Money monotonicity: For each a ∈ L and each t, t′ ∈ R, if t < t′, then (a, t) Pi (a, t
′).

Object Monotonicity: For each a ∈ M and each t ∈ R, (a, t) Pi (0, t).

Definition 1. A preference Ri ∈ R is classical if it satisfies continuity, finite compensa-
tion, money monotonicity and object monotonicity.

Let RC be the set of all classical preferences. Classical preference Ri implies that all
objects are goods for agent i. On the other hand, the preferences in Definition 2 below
allow for an agent to have some bads.

Definition 2. A preference Ri ∈ R is extended if it satisfies continuity, finite compen-
sation and money monotonicity.

Let RE be the set of all extended preferences. Note that RC ⊊ RE. We assume that
R ⊆ RE.

A preference profile is a list of preferences R ≡ (R1, · · · , Rn). Given i ∈ N and
N ′ ⊆ N , let R−i ≡ (Rj)j ̸=i and R−N ′ ≡ (Rj)j∈N\N ′ .

An object allocation is an n-tuple x ≡ (x1, . . . , xn) ∈ Ln such that for each i, j ∈ N ,
if xi = xj, then xi = xj = 0, which means that each real object is assigned to at most one
agent. Let X be the set of all object allocations. A (feasible) allocation is an n-tuple
z ≡ (z1, . . . , zn) = ((x1, t1), . . . , (xn, tn)) ∈ (L× R)n with (x1, . . . , xn) ∈ X. Let Z be the
set of all feasible allocations. We also write an allocation as z = (x, t). We denote the
object allocation and payments at z′ ∈ Z by x′ = (x′

1, . . . , x
′
n) and t′ = (t′1, . . . , t

′
n).

In this model, the seller benefits va ∈ R+ from each object a ∈ M . Let v ≡
(v1, . . . , vm) ∈ Rm

+ and v0 = 0. Then, given z ∈ Z, seller’s net revenue is denoted by∑
i∈N (ti − vxi). We assume that v is common knowledge among agents.
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An allocation z′ ∈ Z (Pareto-)dominates z ∈ Z for R ∈ R if (i) for each i ∈ N ,
z′i Ri zi and (ii)

∑
i∈N
(
t′i − vx

′
i

)
>
∑

i∈N (ti − vxi). An allocation z ∈ Z is (Pareto-
)efficient for R ∈ Rn if there is no allocation that dominates z.4

An (allocation) rule is a mapping f = (x, t) : Rn → Z. Given a rule f = (x, t)
and a preference profile R ∈ Rn, we denote agent i’s assigned object and payment by
fi(R) = (xi(R), ti(R)) ∈ L× R. Also, we write f (R) = (f1 (R) , · · · , fn (R)) ∈ Z.

We introduce some desirable properties of allocation rules.

(Pareto-)Efficiency: For each R ∈ Rn, f(R) is efficient for R.

Strategy-proofness: For eachR ∈ Rn, each i ∈ N and eachR′
i ∈ R, fi(R)Ri fi(R

′
i, R−i).

(Buyer-sided) individual rationality: For each R ∈ Rn and each i ∈ N , fi(R)Ri 0.

No-subsidy: For each R ∈ R and each i ∈ N , ti(R) ≥ 0.

Seller-sided individual rationality: For each R ∈ Rn and each i ∈ N , ti(R) ≥ vxi(R).

Two-sided individual rationality: For each R ∈ Rn and each i ∈ N , fi(R)Ri 0 and
ti(R) ≥ vxi(R).

A price (vector) is an m-tuple p ≡ (p1, . . . , pm) ∈ Rm
+ . Given p ≡ (p1, . . . , pm) ∈ Rm

+ ,
we abuse notation and let p denote the (m + 1)-tuple (p0, p1, . . . , pm), where p0 = 0 is
the price of the null object, when it causes no confusion. Given i ∈ N , Ri ∈ R and
p ∈ Rm

+ , agent i’s demand set D(Ri, p) is the set of his most preferred objects among
{(0, 0), (1, p1), . . . , (m, pm)}, that is,

D(Ri, p) ≡
{
a ∈ L : ∀b ∈ L, (a, pa)Ri (b, p

b)
}
.

Next, we define the concept of Walrasian equilibrium with a reserve price (vector)
r ≡ (r1, . . . , rm) ∈ Rm

+ , where r0 = 0. It is a pair of an allocation and a price vector such
that each agent receives an object he demands and pays its price, the price of each object
is not less than its reserve price, and the price of an unassigned object is equal to the
reserve price of it. Given r ≡ (r1, . . . , rm) ∈ Rm

+ , the set of all price vectors such that the
price of each object is not less than its reserve price is denoted by Rm

r+, that is,

Rm
r+ ≡ {p ∈ Rm

+ : ∀a ∈ M, pa ≥ ra}.

Definition 3. Given R ∈ Rn and r ∈ Rm
+ , a pair (z, p) = ((xi, ti)i∈N , (p

a)a∈M) ∈ Z×Rm
r+

is a Walrasian equilibrium with (a reserve price) r for R if

(WE-i) for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi ,

4This condition is equivalent to the following: there is no z′ ∈ Z such that (i) for each i ∈ N , z′i Ri zi,

(ii) there is j ∈ N such that z′j Pj zj and (iii)
∑

i∈N (t′i − vx
′
i) ≥

∑
i∈N (ti − vxi).
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(WE-ii) for each a ∈ M \ {xi}i∈N , pa = ra.

Given R ∈ Rn and r ∈ Rm
+ , let W (R, r) be the set of Walrasian equilibria with r for

R, and define
Z(R, r) ≡ {z ∈ Z : ∃p ∈ Rm

r+, (z, p) ∈ W (R, r)}

and
P (R, r) ≡

{
p ∈ Rm

r+ : ∃z ∈ Z, (z, p) ∈ W (R, r)
}
.

Fact 1 (Alkan and Gale, 1990). For each R ∈ Rn and each r ∈ Rm
+ , there is a Walrasian

equilibrium, that is, W (R, r) ̸= ∅.

By Fact 1, Z(R, r) ̸= ∅ and P (R, r) ̸= ∅ for each R ∈ Rn and each r ∈ Rm
+ .

Fact 2 (Demange and Gale, 1985). For each R ∈ Rn and r ∈ Rm
+ , there is p ∈ P (R, r)

such that for each p′ ∈ P (R, r), p ≤ p′.5

Fact 2 shows the existence of the minimumWalrasian equilibrium price. Given R ∈ Rn

and r ∈ Rm
+ , we denote the minimum Walrasian equilibrium price with r for R by

pmin(R, r), and we define the set of the minimum price Walrasian allocations with r for
R by

Zmin(R, r) ≡ {z ∈ Z : (z, pmin(R, r)) ∈ W (R, r)}.

A set of objects is overdemanded if the number of agents who demand only objects in
the set is larger than the number of objects in the set.

Definition 4. Given p ∈ Rm
r+ and R ∈ Rn, M ′ ⊆ M is (weakly) overdemanded at p

for R if
|{i ∈ N : D(Ri, p) ⊆ M ′}|(≥) > |M ′|.

A set of objects is underdemended if the number of agents who demand at least one
object in the set is smaller than the number of objects in the set.

Definition 5. Given p ∈ Rm
r+ and R ∈ Rn, M ′ ⊆ M is (weakly) underdemanded at

p for R if

[∀a ∈ M ′, pa > ra] and |{i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}|(≤) < |M ′|.

If objects are (weakly) underdemanded, by decreasing prices of these objects, we can
balance demand and supply. However, if the price of some object is equal to the reserve
price of it, then we cannot decrease the price of it any more. Hence, in the definition of
(weak) underdemand, we don’t consider such objects.

By the above two definitions, we characterize the minimum Walrasian equilibrium
price.

5p ≤ p′ means that pa ≤ p′a for each a ∈ M .
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Fact 3 (Morimoto and Serizawa, 2015). 6 Let n,m ∈ N and R = RE. Then, for each R ∈
Rn, each r ∈ Rm

+ and each p ∈ Rm
r+, p = pmin(R, r) if and only if no set is overdemanded

at p for R and no set is weakly underdemanded at p for R, that is, for each M ′ ⊆ M ,

(i) |{i ∈ N : D(Ri, p) ⊆ M ′}| ≤ |M ′|,

(ii) [∀a ∈ M ′, pa > ra] =⇒ |{i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}| > |M ′|.

An allocation rule is a minimum price Walrasian rule with reserve prices if for each
preference profile, the outcome of the rule is in the set of minimum price Walrasian
allocations with reserve prices.

Definition 6. Given r ∈ Rm
+ , an allocation rule f is a minimum price Walrasian rule

with (a reserve price) r if for each R ∈ Rn, f(R) ∈ Zmin(R, r).

We discuss the properties of the minimum price Walrasian rule with reserve prices.7

For each reserve prices, the minimum price Walrasian rule with reserve prices satisfies (i)
strategy-proofness, (ii) individual rationality and (iii) no-subsidy.

Fact 4. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Then, for each r ∈ Rm

+ , The minimum price
Walrasian rule with r on Rn satisfies (i) strategy-proofness (Demange and Gale, 1985),8

(ii) individual rationality, and (iii) no-subsidy.

Note that a reserve price vector with which the minimum price Walrasian rule is asso-
ciated are not necessarily equal to seller’s benefits. Thus, the minimum price Walrasian
rule with a reserve price is not necessarily efficient or seller-sided individual rational.
Proposition 1 shows that (i) it is efficient if and only if the reserve price of each object is
equal to the benefit of it, and (ii) it is seller-sided individual rational if and only if the
reserve price of each object is larger than or equal to the benefit of it.

Proposition 1. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Let r ∈ Rm

+ . Then, the following
statements hold.

(i) The minimum price Walrasian rule with r on Rn satisfies efficiency if and only if
r = v.

(ii) The minimum price Walrasian rule with r on Rn satisfies seller-sided individual
rationality if and only if r ≥ v.

6Precisely, Morimoto and Serizawa (2015) shows the above statement in the only case of r = (0, . . . , 0).
However, the proof in the case of r ≥ (0, . . . , 0) is almost same as their proof. The proof of Fact 3 is
given in Appendix.

7The proofs of Fact 4 is given in Appendix.
8Precisely, they show that the minimum price Walrasian rule f is group strategy-proof : that is, for

each R ∈ Rn and each N ′ ⊆ N , there is no R′
N ′ ∈ R|N ′| such that for each i ∈ N , fi(R

′
N ′ , R−N ′)Pi fi(R).
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Note that in a competitive market, the seller sells each object if and only if its price
is greater than the benefit from the object. Thus, the “if” part of Proposition 1 (i) is
essentially First Welfare Theorem. On the other hand, the “only if” part of Proposition
1 (i) is not straightforward. The discrepancies between the reserve prices of objects and
the benefits from them, if exist, might distort allocations and cause inefficiency. However,
since objects are indivisible, small discrepancies may not distort object allocations but
only change payments, keeping allocations efficient. Thus, the “only if” part of Proposition
1 (i) holds for the minimum price Walrasian rules with reserve prices, but not for a fixed
preference profile.

The “if” part of Proposition 1 (ii) is straightforward, but the “only if” part of Propo-
sition 1 (ii) also holds only for the minimum price Walrasian rules with reserve prices,
but not for a fixed preference profile.

The formal proof of Proposition 1 is relegated to Section 5.

3 Characterizations

In this section, we give two characterizations. Theorem 1 says that the minimum price
Walrasian rule with the reserve prices equal to seller’s benefits is the unique rule satisfying
efficiency, strategy-proofness, individual rationality and no-subsidy.

Theorem 1. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Then, a rule f on Rn satisfies

efficiency, strategy-proofness, individual rationality and no-subsidy if and only if it is a
minimum price Walrasian rule with the reserve price r = v.

Morimoto and Serizawa (2015) assume that m < n and r = v = (0, . . . , 0), and show
that a rule f on the classical domain Rn satisfies efficiency, strategy-proofness, individual
rationality and no-subsidy if and only if it is a minimum price Walrasian rule. Our result
generalizes their result for any n,m ∈ N and v ∈ Rm

+ .
We emphasize that r = v is not straightforward from the properties of Theorem 1.

Proposition 1 says that seller-sided individual rationality implies r ≥ v (Proposition 1-ii),
but Theorem 1 does not assume seller-sided individual rationality. Proposition 1 also says
that r = v is necessary for a minimum price Walrasian rule with a reserve price r to be
efficient (Proposition 1-i), but it is not true for non-Walrasian rules. Example 1 below
demonstrates this point.

Example 1 (Efficiency and no-subsidy). Let N = {1, 2}, M = {a, b} and v ∈ R2
+

with va = vb = 2ε > 0. Let R = (R1, R2) ∈ R2 be such that for each i ∈ N ,
(0,−ε) Ii (a, ε) Ii (b, ε).

Let f be such that f(R) = ((a, ε), (b, ε)) and for each R′ ∈ R2 \{R}, f(R′) ∈ Z(R′, v).
Then, f satisfies efficiency and no-subsidy, but not r = v.
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In Theorem 1, r = v does not follow from efficiency only, but together with strategy-
proofness, individual rationality and no-subsidy. Thus, it is not trivial to obtain r = v
from the properties of Theorem 1.

The proposition below says that if the rule satisfies efficiency and strategy-proofness,
then no-subsidy ensures that each agent pays at least the benefit the seller enjoys from
the object the agent receives.

Proposition 2. Let n,m ∈ N, v ∈ Rm
+ and R = RC . If a rule f on Rn satisfies efficiency,

strategy-proofness and no-subsidy, then f satisfies seller-sided individual rationality.

Note that in Example 1, by t1(R) = ε < vx1(R) and t2(R) = ε < vx2(R), f violates
seller-sided individual rationality. Thus, this example also demonstrates that if strategy-
proofness is dropped, then Proposition 2 dose not hold.

The following example says that if efficiency is dropped, then Proposition 2 dose not
hold.9

Example 2 (Strategy-proofness and no-subsidy). Let n = m ∈ N and v ∈ Rm
+ such that

for each a ∈ M , va > 0.
Let f be such that for each R ∈ Rn and i ∈ N , fi(R) = (i, 0). Then, f satisfies

strategy-proofness and no-subsidy, but violates seller-sided individual rationality.

Since for each a ∈ L, va is nonnegative, seller-sided individual rationality implies
no-subsidy. Hence, by Proposition 2, no-subsidy is equivalent to seller-sided individual
rationality if the rule satisfies efficiency and strategy-proofness. By adding buyer-sided
individual rationality, we get the following theorem.

Theorem 2. Let n,m ∈ N, v ∈ Rm
+ andR = RC . Then, a rule f onRn satisfies efficiency,

strategy-proofness and two-sided individual rationality if and only if it is a minimum price
Walrasian rule with r = v.

The following examples show the independence of each properties.

Example 3 (Dropping efficiency). Let v ∈ Rm
+ and r ∈ Rm

+ be such that r ≥ v and r ̸= v.
Then, the minimum price Walrasian rule with r satisfies strategy-proofness, individual
rationality and no-subsidy (or seller-sided individual rationality), but violates efficiency
(by Proposition 1).

Example 4 (Dropping strategy-proofness). Let v ∈ Rm
+ . Let r = v. Then, the maximum

price Walrasian rule with r satisfies efficiency, individual rationality and no-subsidy (or
seller-sided individual rationality), but violates strategy-proofness (Demange and Gale,
1985).

9We omit the counterexample dropping no-subsidy, since it is obvious that if the rule dose not satisfy
no-subsidy, then it also dose not satisfy seller-sided individual rationality.
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Given R ∈ R, r ∈ Rm
+ and e ∈ R, (z, p) ∈ Z×Rm

r+ is a Walrasian equilibrium with
a reserve price r and a entry fee e if (WE-i*) for each i ∈ N , xi ∈ {a ∈ L : ∀b ∈
L, (a, pa+e)Ri (b, p

b+e)} and ti = pxi+e, and (WE-ii) for each a ∈ M \{xi}i∈N , pxi = rxi

(Morimoto and Serizawa, 2015). Note that if r = v, for each e ∈ R, the minimum price
Walrasian rule with r and e satisfies efficiency and strategy-proofness.10

Example 5 (Dropping individual rationality). Let v ∈ Rm
+ . Let r = v and e > 0. Then,

the minimum price Walrasian rule with r and e satisfies efficiency, strategy-proofness and
no-subsidy (or seller-sided individual rationality), but violates individual rationality.

Example 6 (Dropping no-subsidy or seller-sided individual rationality). Let v ∈ Rm
+ .

Let r = v and e < −maxa∈L v
a (or e < 0). Then, the minimum price Walrasian rule

with r and e satisfies efficiency, strategy-proofness and individual rationality, but violates
no-subsidy (or seller-sided individual rationality).

4 Challenging points in the proofs

By Fact 4 and Proposition 1, in order to prove Theorem 1, it suffices to show that if an
allocation rule on Rn satisfies efficiency, strategy-proofness, individual rationality and no-
subsidy, then it is the minimum price Walrasian rule with reserve prices equal to seller’s
benefits. To prove this, we show the following propositions.

Proposition 3 says that if f satisfies the four axioms, then for each agent, the outcome
of f is at least as good as the minimum price Walrasian allocation with reserve prices
equal to seller’s benefits.

Proposition 3. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Assume that f satisfies efficiency,

strategy-proofness and individual rationality and no-subsidy, and let R ∈ Rn and z ∈
Zmin(R, v). Then, for each i ∈ N , fi(R)Ri zi.

Proposition 4 says that if f satisfies the four axioms, then for each agent, his payment
is larger than or equal to the minimum Walrasian equilibrium price with reserve prices
equal to seller’s benefits of the object he receives.

Proposition 4. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Assume that f satisfies Pareto-

efficiency, strategy-proofness and individual rationality and no-subsidy, and let R ∈ Rn

and p = pmin(R, v). Then, for each i ∈ N , ti(R) ≥ pxi(R).

Figure 1 illustrates Proposition 3 and 4. In Figure 1, the vertical line corresponds to
objects and the horizontal line corresponds to payments. A point in each horizontal line
is a consumption bundle of the object. Payments are expressed by the distance from the
vertical line. Note that the minus distance means that the agent receives money. The red

10
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Figure 1: Illustration of Proposition 3 and 4

curve in this figure is the indifference curve of Ri. By money monotonicity, bundles in the
left hand side of the indifference curve are preferred to those in the right hand side of it.

Hence, by Proposition 3, fi(R) must be in the left hand side of the difference curve
which is thorough zi, where zi is the minimum Walrasian equilibrium allocation of agent
i. This relation is expressed by green arrows in this figure. On the other hand, by
Proposition 4, the payment should be larger than or equal to the price of the object he
receives. This relation is expressed by orange arrows. By these two relations, fi(R) must
be (a, pa) or (b, pb) in this figure, and so (WE-i) holds for agent i. (WE-ii) also holds
because if there exist some unassigned object a with pa > va under f , then z dominates
f for R since a is assigned to some agent under z, which is a contradiction.11 From this
illustration, we can see that Proposition 3 and Proposition 4 prove our theorem.

Morimoto and Serizawa (2015) also use the parallel results of Proposition 3 and 4 to
prove that the allocation rule satisfying our four properties is a minimum price Walrasian
rule. Although we owe them this basic structure of proof, there are several points that
make their proof inapplicable to our model. We explain such points to clarify the novelties
of our proofs. To distinguish Morimoto and Serizawa’s lemmas from ours, we attach the
superscript ∗ to their lemmas. For example, Lemma 1∗ is Lemma 1 of Morimoto and
Serizawa (2015).

10The proof is given in the same way of Fact 4 and Proposition 1.
11See the formal proof in Subsection 5.8.
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4.1 Challenging points in the proofs of Proposition 3

Lemma 10∗ of Morimoto and Serizawa (2015) provides a sufficient condition for an agent
to get an object. It says that given i ∈ N and a ∈ M , if i’s compensated valuation of
b ∈ M \ {a} from 0 is smaller than the mth highest valuation among N \ {i}, and i’s
compensated valuation of a from 0 is larger than the highest valuation among N \ {i},
then i gets object a.12 This sufficient condition is a key to prove Proposition 3 since the
proof of Proposition 3 repeatedly uses the condition.

Lemma 10∗ is in turn based on Lemma 4∗ of Morimoto and Serizawa (2015), which says
that all objects are assigned to some agent under the rule satisfying efficiency, individual
rationality and no-subsidy for losers.13 If an agent satisfies the sufficient condition of
Lemma 10∗ but dose not get the object, Lemma 4∗ implies that some other agent get the
object. The proof of Lemma 10∗ uses this fact to derive a contradiction. Lemma 4∗ is
simple and intuitive, but is a basis of the proof of Proposition 3.

However, in our model, Lemma 4∗ dose not hold. To see this point, consider Case (i)
m > n, or Case (ii) m ≤ n but the reserve price of some object is so high that no agent
demand it. In Case (i), it is obvious that Lemma 4∗ dose not hold. Case (ii) happens for
R ∈ Rn and a ∈ M such that for each i ∈ N , Vi(a;0) < va, which implies 0Pi (a, v

a).
If some object a is assigned to some agent i, then by Proposition 2, 0Pi (a, v

a)Ri fi(R),
but this violates individual rationality. Thus, Lemma 4∗ dose not hold in Case (ii). The
fact that there are unassigned objects in Cases (i) and (ii) is a hurdle to apply the proof
of Morimoto and Serizawa (2015) to our model.

To overcome this hurdle, we need to come up with new proof techniques that are
applicable whether the all objects are assigned to agents or not. In Subsection 5.4, we
introduce “(a, t)ε-favoring preferences.” This type of preferences plays important roles in
our proof.

4.2 Challenging points in the proofs of Proposition 4

In the proof of Proposition 4, Morimoto and Serizawa (2015) use “z-indifferent prefer-
ences.” A z-indifferent preference Ri is a preference such that for each j, k ∈ N , zj Ii zk.
Their Lemma 11∗ says that the minimum price does not change after replacing some
agents’ preferences with z-indifferent preferences.14 This lemma is repeatedly used to pin

12Lemma 10∗. Let f satisfy efficiency, strategy-proofness, individual rationality and no-subsidy for
losers. Let R ∈ Rn, a ∈ M , i ∈ N and z ∈ Z such that ∀j ∈ N, zj Rj 0. Assume (a) ∀b ∈ M \
{a}, Vi(b;0) < Vk(b;0), where k has the mth highest valuation among {Vj(b;0) : j ∈ N \ {i}}, (b)
∀j ∈ N \ {i}, fj(R)Rj zj , and (c) Vi(a;0) > max{Vj(b;0) : j ∈ N \ {i}}. Then, xi(R) = a.

13Lemma 4∗. Let f satisfy efficiency, individual rationality and no-subsidy for losers. Then, ∀R ∈ Rn

and ∀a ∈ M , ∃i ∈ N with xi(R) = a.
14Lemma 11∗. Let f satisfy efficiency, strategy-proofness, individual rationality and no-subsidy for

losers. Let R ∈ Rn and (z, p) ∈ Wmin(R, v). Let N ′ ⊆ N , RN ′ ∈ RI
v(z)

|N ′| and R′ ≡ (R′
N ′ , R−N ′), where

RI
v(z) is the set of z-indifferent preferences. Then, (a) (z, p) ∈ Wmin(R

′, v) and (b) ∀i ∈ N , fi(R
′)R′

i zi.

12



down the allocation of the rule satisfying strategy-proofness, efficiency, individual ratio-
nality and no-subsidy for losers. Accordingly, z-indifferent preferences play essential parts
of their proof of Proposition 4.

However, in our model, there are cases where z-indifferent preferences are not available.
In our model, as discussed above, some objects may be unassigned, or even if all objects
objects are assigned, some object’s price may be zero. For an allocation z where the
price of an object xi is zero, z-indifferent preferences violate object monotonicity since
(xi, 0) = zi Ii zj = (0, 0). This fact makes us dispense with z-indifferent preferences in
our proof of Proposition 4. Thus, instead of z-indifferent preferences, we introduce “p-
indifferent preferences” in Subsection 5.6. These preferences enable us to establish a result
(Lemma 6 in Subsection 5.6) similar to Lemma 11∗.

Lemma 12∗ plays an important role in Morimoto and Serizawa’s (2015) proof of Propo-
sition 4.15 It implies that if Proposition 4 does not hold, then there is an allocation that
Pareto-dominates the allocation of the rule satisfying strategy-proofness, efficiency, in-
dividual rationality and no-subsidy for losers. Similar arguments are applied to derive
contradictions in several points in their proofs. Thus, Lemma 12∗ is an essential part
of Morimoto and Serizawa’s (2015) proof. However in our model, Lemma 12∗ does not
hold.16 It is challenging to establish Proposition 4 via a different proof route without
Lemma 12∗.

It is also worth mentioning that our proof of Proposition 4 is more straightforward
than the proof of Morimoto and Serizawa (2015). In their proof, in order to derive a
contradiction, they use z-indifferent preferences at first and after this, they replace z-
indifferent preferences with positive income effect for the null object.17 This procedure is
very complicated. In fact, the related proposition in their paper, Proposition 3∗, requires
very intricate conditions.18 We simplify this complicated procedure by taking p-indifferent
with positive income effect for reserve-priced objects preferences19 at first in our proof.
This new route of the proof is also our novelty.

15Lemma 12∗. Let f satisfy efficiency, strategy-proofness, individual rationality and no-subsidy for
losers. Let R ∈ Rn and (z∗, p) ∈ Wmin(R, v). Let N ′ ⊆ N with 1 ≤ |N ′|, R′

N ′ ∈ RI(z∗)|N
′| and

R′ ≡ (R′
N ′ , R−N ′). Assume that (12-i) ∀i ∈ N \N ′, xi(R

′) ̸= 0 =⇒ ti(R
′) ≥ pxi (R

′), and (12-ii) ∀j ∈ N ′,
xj(R

′) ̸= 0. Then, ∃{ik}Kk=1 ⊆ N such that (i) xi1(R
′) = 0, (ii) ∀k ∈ {2, . . . ,K}, xik(R

′) ̸= 0, (iii) ∀k ∈
{1, . . . ,K − 1}, ik ∈ N \N ′ and iK ∈ N ′, and (iv) ∀k ∈ {1, . . . ,K − 1}, {xik(R

′), xik+1
(R′)} ⊆ D(Rik , p).

16The counterexample is given in Appendix.
17Ri ∈ RI(z) such that ∀(a, t) ∈ M × R+ with t < pa, −Vi(0; (a, t)) < pa − t.
18Proposition 3∗. Let f satisfy efficiency, strategy-proofness, individual rationality and no-subsidy

for losers. Let R ∈ Rn, (z, p) ∈ Wmin(R, v) and N ′ ⊆ N . Assume that ∀R̄N ′ ∈ RI
v(z)

|N ′|, ∀i ∈ N \ N ′

and ∀a ∈ M , xi(R̄N ′ , R−N ′) = a ⇒ ti(R̄N ′ , R−N ′) ≥ pa. Then, ∀R′
N ′ ∈ RI

v(z)
|N ′|, ∀i ∈ N ′ and ∀a ∈ M ,

xi(R
′
N ′ , R−N ′) = a ⇒ ti(R

′
N ′ , R−N ′) ≥ pa.

19See the formal definition in Definition 11 in Subsection 5.6.
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5 Proofs

Let n,m ∈ N be any numbers and v ∈ Rm
+ be any benefits of the seller. In this section,

we assume R = RC . We give the proofs of Proposition 1-4 and Theorem 1.

5.1 Preliminary results

Given Ri ∈ RE, a ∈ L and (b, t) ∈ L × R, Vi(a; (b, t)) is the compensated valuation
of a from (b, t) for Ri which is defined by (a, Vi(a; (b, t))) Ii (b, t). The compensated
valuation for R′

i is denoted by V ′
i .

Fact 5 (Lemma 5 in Morimoto and Serizawa, 2015). Let R ∈ Rn and z ∈ Z. For each
i, j ∈ N , if ti+ tj < Vi(xj; zi)+Vj(xi; zj), then there exists z′ ∈ Z that dominates z for R.

Definition 7. Given (a, t) ∈ M ×R+, a preference Ri ∈ R is (a, t)-favoring if for each
b ∈ L \ {a}, Vi(b; (a, t)) < 0.

Given (a, t) ∈ M ×R+, let RF ((a, t)) be the set of all (a, t)-favoring preferences. Note
that RF ((a, t)) ⊊ RC .

Fact 6 (Lemma 8 in Morimoto and Serizawa, 2015). Let f satisfy strategy-proofness and
individual rationality and no-subsidy. Let R ∈ Rn and i ∈ N be such that xi(R) ̸= 0.
Then, for each R′

i ∈ RF (fi(R)), fi(R
′
i, R−i) = fi(R).

5.2 Proof of Proposition 1

Proposition 1. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Let r ∈ Rm

+ . Then, the following
statements hold.

(i) The minimum price Walrasian rule with r on Rn satisfies efficiency if and only if
r = v.

(ii) The minimum price Walrasian rule with r on Rn satisfies seller-sided individual
rationality if and only if r ≥ v.

Proof. Let f be the minimum price Walrasian rule with r. First, we show (i).

If. Assume r = v. Let R ∈ Rn, z ≡ f(R) and p = pmin(R, r). Suppose to the contrary
that there is some z′ ∈ Z such that (i) for each i ∈ N , z′i Ri zi, and (ii)

∑
i∈N(t

′
i − vx

′
i) >∑

i∈N(ti − vxi). Then, for each i ∈ N ,

(x′
i, t

′
i) = z′i Ri

(i)
zi = (xi, p

xi) Ri
xi∈D(Ri,p)

(x′
i, p

x′
i),

14



which implies t′i ≤ px
′
i . Hence,∑

i∈N

(px
′
i − vx

′
i) ≥

px
′
i≥t′i

∑
i∈N

(t′i − vx
′
i) >

(ii)

∑
i∈N

(ti − vxi) =
(WE-i)

∑
i∈N

(pxi − vxi). (1)

Also, by {xi}i∈N ⊇ {a ∈ M : pa > ra},
∑

i∈N(p
xi − rxi) = maxx′′∈X

∑
i∈N(p

x′′
i − rx

′′
i ).

Hence, ∑
i∈N

(pxi − vxi) =
r=v

∑
i∈N

(pxi − rxi) ≥
∑
i∈N

(px
′
i − rx

′
i) =

r=v

∑
i∈N

(px
′
i − vx

′
i).

However, this inequality contradicts (1).

Only if. Assume that f satisfies efficiency. We show r = v in the following two steps.

Step 1 r ≥ v. Suppose to the contrary that there is some a ∈ M with ra < va. Let
ε ∈ (0, v

a−ra

2
). Let R ∈

(
RQ
)n

be such that for each i ∈ N and each b ∈ M \ {a},
(a, ra + 2ε) Ii (b, r

b + ε) Ii 0 and p = pmin(R, r).
First, we show that there is some j ∈ N with xj(R) = a. Suppose to the contrary

that for each i ∈ N , xi(R) ̸= a. Then, by (WE-ii), pa = ra. Let i ∈ N . Note that
by xi(R) ̸= a, D(Ri, p) \ {a} ̸= ∅. By the definition of Ri ∈ RQ and p ≥ r, for each
b ∈ M \ {a},

(a, pa) = (a, ra)Pi

{
(a, ra + ε) Ii (b, r

b)Ri (b, p
b)

(a, ra + 2ε) Ii 0
.

Hence, D(Ri, p) = {a}, but this contradicts D(Ri, p)\{a} ̸= ∅. Thus, there is some j ∈ N
with xj(R) = a.

Next, we derive a contradiction. By Rj ∈ RQ,

(a, ra + 2ε) Ij 0 ⇐⇒ (a, pa) Ij (0, p
a − ra − 2ε).

Also, by the definition of ε,

2ε < va − ra ⇐⇒ −va < −ra − 2ε ⇐⇒ pa − va < pa − ra − 2ε.

Let z′ ∈ Z be such that z′j = (0, pa− ra− 2ε) and for each i ∈ N \ {j}, z′j = fj(R). Then,

by fj(R) Ij z
′
j and tj(R) − vxj(R) < t′j − vx

′
j , z′ dominates f(R) for R. However, this is a

contradiction. (End of Step 1)

Step 2 r = v. By Step 1, v ≤ r. Suppose to the contrary that there is some a ∈ M with
va < ra. Let M0 ≡ {b ∈ M : rb = 0}, r ≡ min{rb}b∈M\M0 and ε ∈ (0,min{r, ra−va

2
}). Let

R ∈
(
RQ
)n

be such that for each i ∈ N and each b ∈ M \ {a}, (a, va+2ε) Ii (b, ε) Ii 0 and
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p = pmin(R, r). Note that a ∈ M \M0 and {xi(R)}i∈N ⊆ M0 ∪{0} since 0 < va+2ε < ra

and for each b ∈ M \M0, ε < rb.
First, we show that for each i ∈ N , xi(R) ̸= 0. Suppose to the contrary that there

is some j ∈ N with xj(R) = 0. Then, by fj(R) = 0 Ij (a, v
a + 2ε) and tj(R) − vxj(R) =

0 < 2ε = (va + 2ε) − va, ((a, va + 2ε), f−j(R)) dominates f(R) for R. However, this is a
contradiction. Thus, for each i ∈ N , xi(R) ̸= 0.

Next, we derive a contradiction. By {xi(R)}i∈N ⊆ M0, there is some j ∈ N and
b ∈ M0 with xj(R) = b. By Rj ∈ RQ,

(b, ε) Ij (a, v
a + 2ε) ⇐⇒ (b, pb) Ij (a, v

a + ε+ pb).

Also, by 0 ≤ vb ≤ rb (Step 1) and b ∈ M0,

pb − vb =
vb=rb=0

pb <
0<ε

pb + ε = (va + ε+ pb)− va.

Let z′ ∈ Z be such that z′j = (a, va + ε+ pb) and for each i ∈ N \ {j}, z′i = fi(R). Then,

by fj(R) Ij z
′
j and tj(R) − vxj(R) < t′j − vx

′
j , z′ dominates f(R) for R. However, this is a

contradiction. Thus, r = v holds.

Next, we show (ii).

If. Assume r ≥ v. Let R ∈ R and i ∈ N . By f(R) ∈ Zmin(R, r), there is some p ∈ Rm
r+

with (f(R), p) ∈ Wmin(R, r). By ti(R) = pxi(R), p ∈ Rm
r+ and r ≥ v, ti(R) ≥ rxi(R) ≥ vxi(R).

Only if. Assume that f satisfies seller-sided individual rationality. Suppose to the
contrary that there is some a ∈ M with ra < va. Let ε ∈ (0, v

a−ra

2
). Let R ∈

(
RQ
)n

be such that for each i ∈ N and each b ∈ M \ {a}, (a, ra + 2ε) Ii (b, r
b + ε) Ii 0 and

p = pmin(R, r).
First, we show that there is some j ∈ N with xj(R) = a. Suppose to the contrary

that for each i ∈ N , xi(R) ̸= a. Then, by (WE-ii), pa = ra. Let i ∈ N . Note that by
xi(R) ̸= a, D(Ri, p) \ {a} ̸= ∅. By Ri ∈ RQ and p ≥ r, for each b ∈ M \ {a},

(a, pa) = (a, ra)Pi

{
(a, ra + ε) Ii (b, r

a)Ri (b, p
b)

(a, ra + 2ε) Ii 0
.

Hence, D(Ri, p) = {a}, but this contradicts D(Ri, p)\{a} ̸= ∅. Thus, there is some j ∈ N
with xj(R) = a.

Next, we derive a contradiction. By xj(R) = a, a ∈ D(Rj, p). Then,

(a, pa) Rj
a∈D(Rj ,p)

0 Ij
def. ofR

(a, ra + 2ε) Pj
ra+2ε<va

(a, va).

Thus, tj(R) = pa < va = vxj(R), but this contradicts seller-sided individual rationality. □

16



5.3 Proof of Proposition 2

Proposition 2. Let n,m ∈ N, v ∈ Rm
+ and R = RC . If a rule f on Rn satisfies efficiency,

strategy-proofness and no-subsidy, then f satisfies seller-sided individual rationality.

Proof. Let f satisfy efficiency, strategy-proofness and no-subsidy. Let R ∈ Rn and
i ∈ N . We show ti(R) ≥ vxi(R). Suppose to the contrary that ti(R) < vxi(R). By
ti(R) < vxi(R) and no-subsidy, fi(R) ∈ M × R+. Let R′

i ∈ RF (fi(R)) be such that
−V ′

i (0; fi(R)) < vxi(R) − ti(R). Then, by Fact 6, fi(R
′
i, R−i) = fi(R). Let z′ ∈ Z be

such that z′i ≡ (0, V ′
i (0; fi(R

′
i, R−i))) and for each j ∈ N \ {i}, z′j ≡ fj(R

′
i, R−i). Then,

z′i I
′
i fi(R

′
i, R−i) and for each j ∈ N \ {i}, z′j Ij fj(R′

i, R−i). Also,∑
j∈N

(
t′j − vx

′
j

)
= V ′

i (0; fi(R
′
i, R−i)) +

∑
j∈N\{i}

(
tj(R

′
i, R−i)− vxj(R

′
i,R−i)

)
>
(
ti(R

′
i, R−i)− vxi(R

′
i,R−i)

)
+

∑
j∈N\{i}

(
tj(R

′
i, R−i)− vxj(R

′
i,R−i)

)
by def. of R′

i

=
∑
j∈N

(
tj(R

′
i, R−i)− vxj(R

′
i,R−i)

)
.

However, these equations contradict that f(R′
i, R−i) is efficient for (R′

i, R−i). Therefore,
we have ti(R) ≥ vxi(R). □

5.4 Preliminary results for Proposition 3

Definition 8. Given (a, t) ∈ M × R+ and ε ∈ R++, a preference Ri ∈ R is (a, t)ε-
favoring if

(i) Ri is (a, t)-favoring,

(ii) Vi(a;0) = t+ 2ε,

(iii) for each b ∈ M \ {a}, Vi(b;0) = ε.

Given (a, t) ∈ M × R+ and ε ∈ R++, let RF ((a, t); ε) be the set of all (a, t)ε-favoring
preferences. Note that RF ((a, t); ε) ⊊ RF ((a, t)) ⊊ RC .

Figure 2 illustrates the (a, t)ε-favoring preference. Ri in Figure 2 is the (a, t)ε-favoring
preference because it satisfies that (i) Vi(0; (a, t)) = −2ε < 0 and Vi(b; (a, t)) = −ε < 0
(Ri is (a, t)-favoring), (ii) Vi(a;0) = t+ 2ε, and (iii) Vi(b;0) = ε.

Definition 9. A preference Ri ∈ R is quasi-linear if for each (a, t), (b, t′) ∈ L× R and
each δ ∈ R,

(a, t) Ii (b, t
′) ⇐⇒ (a, t− δ) Ii (b, t

′ − δ).
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Figure 2: Illustration of the (a, t)ε-favoring preference.

Let RQ be the set of all quasi-linear preferences. Note that RQ ⊊ RC . Also, note
that the indifference curves of a quasi-linear preference are parallel as in Figure 2. Given
(a, t) ∈ M × R+ and ε ∈ R++, a quasi-linear preference Ri is uniquely determined if
we define 0 Ii (a, t + 2ε) and 0 Ii (b, ε) for each b ∈ M \ {a}. This is because the above
relations determines one indifference curve thorough 0 and any other indifference curves
are parallel from the original indifference curve. Thus, we can get the following remark.

Remark 1. For each (a, t) ∈ M×R+ and each ε ∈ R++, a (a, t)
ε-favoring and quasi-linear

preference Ri uniquely exists.

Given (a, t) ∈ M ×R+ and ε ∈ R++, the (a, t)
ε-favoring and quasi-linear preference is

denoted by RQ((a, t); ε). Note that Ri in Figure 2 is RQ((a, t); ε).
Lemma 1 says that if an agent has RQ(zi; εi) under some conditions, then he never

gets xi.

Lemma 1. Let f satisfy strategy-proofness, individual rationality and no-subsidy. Let
R ∈ Rn, i ∈ N and zi ∈ M×R+ be such that zi Pi fi(R). Let εi ∈ (0, 1

2
(Vi(xi; fi(R))− ti))

and R′
i ≡ RQ(zi; εi). Then, xi(R

′
i, R−i) ̸= xi.

Proof. Note that by zi Pi fi(R), ti < Vi(xi; fi(R)), and so we can pick εi ∈ (0, 1
2
(Vi(xi; fi(R))−

ti)). Suppose to the contrary that xi(R
′
i, R−i) = xi. Then,

ti(R
′
i, R−i) ≤

fi(R′
i,R−i)R′

i 0
V ′
i (xi(R

′
i, R−i);0) =

xi(R′
i,R−i)=xi

V ′
i (xi;0) =

(ii) in def. 8
ti+2εi <

def. of εi
Vi(xi; fi(R)).

By xi(R
′
i, R−i) = xi, ti(R

′
i, R−i) < Vi(xi; fi(R)) implies fi(R

′
i, R−i)Pi fi(R). However, this

relation contradicts strategy-proofness. Hence, xi(R
′
i, R−i) ̸= xi. □
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Lemma 2 describes how f allocates objects and payments if some agents haveRQ(zi; εi).

Lemma 2. Let f satisfy Pareto-efficiency, strategy-proofness and individual rationality

and no-subsidy. Let N ′ ⊆ N , z ∈ Z, R ∈ Rn and (εi)i∈N ′ ∈ R|N ′|
++ be such that for each

i ∈ N ′, xi ̸= 0, ti ≥ vxi and Ri = RQ(zi; εi). Then, for each i ∈ N ′, there exists some
j ∈ N such that

(i) xj(R) = xi,

(ii) if j ̸= i, then tj(R) ≥ ti + εi.

Proof. Let i ∈ N ′.
(i) Suppose to the contrary that for each j ∈ N , xj(R) ̸= xi. Let

δi ≡

{
εi if xi(R) ̸= 0

2εi if xi(R) = 0
.

Then, by xi(R) ̸= xi and Ri = RQ(zi; εi), (xi, ti + δi) Ii (xi(R), 0). Moreover, by Ri =
RQ(zi; εi),

(xi, ti + δi + ti(R)) Ii (xi(R), ti(R)).

Also,

(ti + δi + ti(R))− vxi ≥
ti ≥ vxi

δi + ti(R) >
δi > 0

ti(R) ≥
vxi(R) ≥ 0

ti(R)− vxi(R).

Then, since for each j ∈ N , xj(R) ̸= xi, ((xi, ti + δi + ti(R)), f−i(R)) dominates f(R) for
R. However, this is a contradiction. Hence, there exists some j ∈ N such that xj(R) = xi.

(ii) Let j ∈ N be such that xj(R) = xi and j ̸= i. Suppose to the contrary that
tj(R) < ti + εi. Let R

′
j ∈ RF (fj(R)) be such that for each a ∈ L \ {xi}, −V ′

j (a; fj(R)) <
ti + εi − tj(R). Let R′ ≡ (R′

j, R−j). Then, by Fact 6, fj(R
′) = fj(R), which implies

xi(R
′) ̸= xi. Thus, we get −V ′

j (xi(R
′); fj(R

′)) < ti + εi − tj(R
′). Let

δ′i ≡

{
εi if xi(R

′) ̸= 0

2εi if xi(R
′) = 0

.

By xi(R
′) ̸= xi and Ri = RQ(zi; εi), (xi, ti + δ′i) Ii (xi(R

′), 0) if and only if (xi, ti + δ′i +
ti(R

′)) Ii (xi(R
′), ti(R

′)), which implies Vi(xj(R
′); fi(R

′)) = ti + δ′i + ti(R
′). Then, by

−V ′
j (xi(R

′); fj(R
′)) < ti+εi−tj(R

′) and Vi(xj(R
′); fi(R

′)) = ti+δ′i+ti(R
′) ≥ ti+εi+ti(R

′),

V ′
j (xi(R

′); fj(R
′)) + Vi(xj(R

′); fi(R
′))

>− (ti + εi) + tj(R
′) + ti + εi + ti(R

′)

=tj(R
′) + ti(R

′).

By Fact 5, there exists some z ∈ Z that dominates f(R′) for R′. However, this is a
contradiction. Hence, tj(R) ≥ ti + εi. □
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5.5 Proof of Proposition 3

Proposition 3. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Assume that f satisfies efficiency,

strategy-proofness and individual rationality and no-subsidy, and let R ∈ Rn and z ∈
Zmin(R, v). Then, for each i ∈ N , fi(R)Ri zi.

Proof. Suppose to the contrary that for some i ∈ N , zi Pi fi(R). Without loss of generality,
let i = 1. Let ε0 ≡ 1

2
(V1(x1; f1(R))− t1). Then, we show the following claim by induction.

The last condition (iii) derives a contradiction.

Claim 1. For each k ∈ {1, . . . , n}, there exist N(k) ≡ {1, . . . , k} ⊆ N , (εi)i∈N(k) ∈ Rk
++

and R(k) ≡ (R′
N(k), R−N(k)) ∈ Rn such that

(i) for each i ∈ N(k), xi ̸= 0,

(ii) for each i ∈ N(k), 0 < εi < min{εi−1,
1
2
(Vi(xi; fi(R

(i−1)))− ti)} and R′
i = RQ(zi; εi),

(iii) xk(R
(k)) /∈ {xi}i∈N(k).

Induction Base. Let k = 1.
(i) By z1 P1 f1(R), if x1 = 0, 0Pi f1(R). However, this contradicts individual rational-

ity. Hence, x1 ̸= 0.
(ii) By z1 P1 f1(R), we can pick ε1 ∈ (0, 1

2
(V1(x1; f1(R))− t1)), and let R′

1 ≡ RQ(z1; ε1).
(iii) By (i), (ii) and Lemma 1, x1(R

(1)) ̸= x1.

Induction Hypothesis. Let s ∈ {1, . . . , n − 1}. Assume that there exist N(s) ≡
{1, . . . , s} ⊆ N , (εi)i∈N(s) ∈ Rs

++ and R(s) ≡ (R′
N(s), R−N(s)) ∈ Rn such that

(i-s) for each i ∈ N(s), xi ̸= 0,

(ii-s) for each i ∈ N(s), 0 < εi < min{εi−1,
1
2
(Vi(xi; fi(R

(i−1)))− ti)} and R′
i = RQ(zi; εi),

(iii-s) xs(R
(s)) /∈ {xi}i∈N(s).

Induction Argument. We consider the case s+1. By (i-s), (ti)i∈N(s) ≥ (vxi)i∈N(s), (ii-s)
and Lemma 2 (i), for each i ∈ N(s), there exists some j ∈ N such that xj(R

(s)) = xi.
In particular, by (iii-s), there exists some k ∈ N \ N(s) such that xk(R

(s)) ∈ {xi}i∈N(s).
Without loss of generality, let k ≡ s+1. Moreover, let l ∈ N(s) be such that xs+1(R

(s)) =
xl. By s+ 1 ̸= l and Lemma 2 (ii), ts+1(R

(s)) ≥ tl + εl > tl. Then,

zs+1 Rs+1
(WE-i)

zl Ps+1
tl<ts+1(R(s))

(xl, ts+1(R
s)) = fs+1(R

(s)).

(i) By individual rationality and zs+1 Ps+1 fs+1(R
(s)), xs+1 ̸= 0.
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(ii) By (i) and zs+1 Ps+1 fs+1(R
(s)), we can pick εs+1 such that

0 < εs+1 < min

{
εs,

1

2
(Vs+1(xs+1; fs+1(R

(s)))− ts+1)

}
,

and let R′
s+1 = RQ(zs+1; εs+1).

(iii) By (i), (ii) and Lemma 1, xs+1(R
(s+1)) ̸= xs+1. Suppose to the contrary that

xs+1(R
(s+1)) ∈ {xi}i∈N(s). Let l′ ∈ N(s) be such that xs+1(R

(s+1)) = xl′ . Then, by
xs+1 ̸= xs+1(R

(s+1)) = xl′ , s+1 ̸= l′. By s+1 ̸= l′ and Lemma 2 (ii), ts+1(R
(s+1)) ≥ tl′+εl′ .

By tl′ ≥ 0 and εs+1 < εs < · · · < εl′+1 < εl′ , εs+1 + 0 < εl′ + tl′ ≤ ts+1(R
(s+1)). Then,

0 I ′s+1
xl′ ̸=xs+1, (iii) in def. 8

(xl′ , εs+1) P ′
s+1

εs+1<ts+1(R(s+1))

(xl′ , ts+1(R
(s+1))) =

xl′=xs+1(R(s+1))
fs+1(R

(s+1)).

However, this contradicts individual rationality. Hence, xs+1(R
(s+1)) /∈ {xi}i∈N(s), and so

xs+1(R
(s+1)) /∈ {xi}i∈N(s+1). (End of Claim 1)

Let k = n. Then, by Claim 1 (i), (ti)i∈N ≥ (vxi)i∈N , Claim 1 (ii) and Lemma 2
(i), for each i ∈ N , there exists some j ∈ N such that xj(R

(n)) = xi, which implies
{xj(R

(n))}j∈N = {xi}i∈N . Hence, there exists some i ∈ N such that xn(R
(n)) = xi.

However, this contradicts Claim 1 (iii). □

5.6 Preliminary results for Proposition 4

Lemma 3 says that if an agent’s payment is larger than or equal to the minimumWalrasian
price with v of the object he receives, then fi(R) satisfies (WE-i) for him.

Lemma 3. Let f satisfy efficiency, strategy-proofness, individual rationality and no-
subsidy. Let R ∈ Rn and p = pmin(R, v). For each i ∈ N , if ti(R) ≥ pxi(R), then
xi(R) ∈ D(Ri, p) and ti(R) = pxi(R).

Proof. Let i ∈ N be such that ti(R) ≥ pxi(R). By p = pmin(R, v), there exists some z ∈ Z
such that (z, p) ∈ Wmin(R, v). Then,

(xi(R), pxi(R)) Ri
pxi(R)≤ti(R)

(xi(R), ti(R)) = fi(R) Ri
Prop. 3

zi Ri
(WE-i)

(xi(R), pxi(R)).

Hence, we obtain
(xi(R), pxi(R)) Ii fi(R) Ii zi,

which implies that xi(R) ∈ D(Ri, p) and ti(R) = pxi(R). □

Given N ′ ⊆ N , Lemma 4 describes a sufficient condition for constructing a sequence
of agents such that (a) it starts at the agent who gets an object a with pa = va, (b) an
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Figure 3: Illustration of the sequence.

agent in the sequence demands the object of his next agent, and (c) the final agent must
be in N ′. This lemma is closely related to Lemma 5.

Figure 3 illustrates the sequence in Lemma 4. In this figure, there exists a sequence
{i1, i2, i3} such that (a) i1 gets object a = xi1(R) with pa = va, (b) i1 demands b = xi2(R)
and i2 demands c = xi3(R), and (c) i3 ∈ N ′.

Lemma 4. Let f satisfy efficiency, strategy-proofness, individual rationality and no-
subsidy. Let R ∈ Rn, p = pmin(R, v) and N ′ ⊆ N . If

(i) for some j ∈ N ′, pxj(R) > vxj(R),

(ii) for each i ∈ N \N ′, ti(R) ≥ pxi(R),

then there exists {ik}Kk=1 ⊆ N with K ≥ 2 such that

(a) pxi1
(R) = vxi1

(R),

(b) for each k ∈ {1, . . . , K − 1}, {xik(R), xik+1
(R)} ⊆ D(Rik , p) and tik(R) = pxik

(R),

(c) iK ∈ N ′.

Proof. Assume that (i) and (ii) hold. First, we construct {jk}K
′

k=1 ⊆ N with K ′ ≥ 2 as
follows.

Step 1: By (i), we can pick j1 ∈ N ′ such that pxj1
(R) > vxj1

(R) and go to the next step.

Step s ≥ 2: Since for each k ∈ {1, . . . , s−1}, pxjk
(R) > vxjk

(R) and {xj1(R), . . . , xjs−1(R)}
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is not weakly underdemanded at p for R (ii, Fact 3), there exists some js ∈ N \ {jk}s−1
k=1

such that D(Rjs , p)∩{xj1(R), . . . , xjs−1(R)} ̸= ∅. If pxjs (R) = vxjs (R), we stop this process.
Otherwise, we go to the next step.

Since {a ∈ M : pa > va} is not weakly underdemanded at p for R,

|N | ≥ |{i ∈ N : D(Ri, p) ∩ {a ∈ M : pa > va} ̸= ∅}| > |{a ∈ M : pa > va}}|.

Thus, there exists some l ∈ N such that pxl(R) = vxl(R). Hence, the above process finishes
in the finite time. As the result, we get {jk}K

′

k=1 ⊆ N with K ′ ≥ 2 such that

(K ′-i) j1 ∈ N ′,

(K ′-ii) for each k ∈ {2, . . . , K ′}, D(Rjk , p) ∩ {xj1(R), . . . , xjk−1
(R)} ̸= ∅,

(K ′-iii) pxjK′ (R) = vxjK′ (R).

Next, we construct {ik}Kk=1 ⊆ {jk}K
′

k=1 with K ≥ 2 as follows.

Step 1: Let i1 ≡ jK′ . By (K ′-ii), D(Ri1 , p) ∩ {xj1(R), . . . , xjK′−1
(R)} ̸= ∅. Hence, there

exists some i2 ∈ {j1, . . . , jK′−1} such that xi2(R) ∈ D(Ri1 , p). If i2 ∈ N ′, we stop this
process. Otherwise, we go to the next step.

Step s ≥ 2: is ∈ {jk}K
′

k=1 is determined by the previous step. By (K ′-ii), D(Ris , p) ∩
{xj1(R), . . . , xjK′′−1

(R)} ̸= ∅, where jK′′ = is. Hence, there exists some is+1 ∈ {j1, . . . , jK′′−1}
such that xis+1(R) ∈ D(Ris , p). If is+1 ∈ N ′, we stop this process. Otherwise, we go to
the next step.

By j1 ∈ N ′, {jk}K
′

k=1 ∩N ′ ̸= ∅. Thus, since the number of agents is finite and the left
agents in {jk}K

′

k=1 strictly decrease step by step, the above process finishes in the finite
time.20

Hence, we get {ik}Kk=1 ⊆ {jk}K
′

k=1 with K ≥ 2 such that

(K-i) pxi1
(R) = vxi1

(R),

(K-ii) for each k ∈ {1, . . . , K − 1}, xik+1
∈ D(Rik , p),

(K-iii) for each k ∈ {2, . . . , K − 1}, ik ∈ N \N ′,

(K-iv) iK ∈ N ′.

20More precisely, the proof is as follows. By j1 ∈ N ′, {jk}K
′

k=1 ∩ N ′ ̸= ∅. Let I(l) ≡ {jk : il =

jk′ and k < k′}. Then, by the construction of the sequence, I(l + 1) ⊊ I(l) ⊊ · · · ⊊ I(1) ⊊ {jk}K
′

k=1. By

{jk}K
′

k=1 ∩N ′ ̸= ∅, I(l + 1) ⊊ I(l) and finiteness of agents, the above process finishes in the finite time.
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(a) By (K-i), pxi1
(R) = vxi1

(R).
(b) By Proposition 2 and (K-i), ti1(R) ≥ vxi1

(R) = pxi1
(R). Thus, by (ii) and (K-iii),

for each k ∈ {1, . . . , K − 1}, tik(R) ≥ pxik
(R). Hence, by Lemma 3 and (K-ii), for each

k ∈ {1, . . . , K − 1}, {xik(R), xik+1
(R)} ⊆ D(Rik , p) and tik(R) = pxik

(R).
(c) By (K-iii), iK ∈ N ′. □

Lemma 5 says that if there exists a sequence of agents satisfying (a) it starts at the
agent who gets an object a with pa = va, (b) an agent in the sequence demands the object
of his next agent, and (c) the final agent can move a with small compensation, then we
can construct an allocation that dominates the allocation rule outcome.

Figure 3 also illustrates the sequence in Lemma 5. In this figure, {i1, i2, i3} satisfies
(a) i1 gets object a = xi1(R) with pa = va, (b) i1 demands b = xi2(R) and i2 demands c =
xi3(R), and (c) ra−Vi3(a; fi3(R)) < pxi3

(R)−ti3(R), and so ((b, pb), (c, pc), (a, Vi3(a; fi3(R))))
dominates ((a, pa), (b, pb), (c, ti3(R))).

Lemma 5. Let R ∈ Rn and p = pmin(R, v). If there exists {ik}Kk=1 ⊆ N with K ≥ 2 such
that

(i) pxi1
(R) = vxi1

(R),

(ii) for each k ∈ {1, . . . , K − 1}, {xik(R), xik+1
(R)} ⊆ D(Rik , p) and tik(R) = pxik

(R),

(iii) vxi1
(R) − ViK (xi1(R); fiK (R)) < pxiK

(R) − tiK (R),

then there exists some z′ ∈ Z that dominates f(R) for R.

Proof. Assume that there exists {ik}Kk=1 ⊆ with K ≥ 2 which satisfies (i), (ii) and (iii).
Let N− ≡ N \ {ik}Kk=1. Let z

′ ∈ Z be such that

(a) for each k ∈ {1, . . . , K − 1}, z′ik ≡
(
xik+1

(R), pxik+1
(R)
)
,

(b) z′iK ≡ (xi1(R), ViK (xi1(R); fiK (R))),

(c) for each j ∈ N−, z′j ≡ fj(R).

Then, by (ii) and (a), for each k ∈ {1, . . . , K − 1}, z′ik Iik fik(R). Thus, by (b) and (c),
for each j ∈ N , z′j Ij fj(R). Also,∑

j∈N

(t′j − vx
′
j)

=
K−1∑
k=1

(
pxik+1

(R) − vxik+1
(R)
)
+
(
ViK (xi1(R); fiK (R))− vxi1

(R)
)
+
∑
j∈N−

(
tj(R)− vxj(R)

)
by (a, b, c)
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>
K−1∑
k=1

(
pxik+1

(R) − vxik+1
(R)
)
+
(
tiK (R)− pxiK

(R)
)
+
∑
j∈N−

(
tj(R)− vxj(R)

)
by (iii)

=
K−2∑
k=1

(
pxik+1

(R) − vxik+1
(R)
)
+
(
tiK (R)− vxiK

(R)
)
+
∑
j∈N−

(
tj(R)− vxj(R)

)
=
(
pxi1

(R) − vxi1
(R)
)
+

K−1∑
k=2

(
pxik

(R) − vxik
(R)
)
+
(
tiK (R)− vxiK

(R)
)
+
∑
j∈N−

(
tj(R)− vxj(R)

)
by (i)

=
K∑
k=1

(
tik(R)− vxik

(R)
)
+
∑
j∈N−

(
tj(R)− vxj(R)

)
by (ii)

=
∑
j∈N

(
tj(R)− vxj(R)

)
.

Hence, z′ dominates f(R) for R. □

Definition 10. Given r ∈ Rm
+ and p ∈ Rm

r+, Ri ∈ R is p-indifferent (for r) if

(i) [∀a ∈ M, pa > 0] =⇒ [∀a, b ∈ L, (a, pa) Ii (b, p
b)],

(ii) [∃a ∈ M, pa = 0] =⇒ [∀a, b ∈ M, (a, pa) Ii (b, p
b)].

As we discussed in Subsection 4.2, we have to consider two cases: the prices of all
objects are strictly larger than zero; and there is an object whose price is zero. Given
r ∈ Rm

+ and p ∈ Rm
r+, let RI

r(p) be the set of all p-indifferent preferences. Note that
RI

r(p) ⊊ RC .
Figure 4 illustrates p-indifferent preferences. In this figure, there are two prices p

and p′ with (pa, pb, pc) > (0, 0, 0) and p′c = 0. Also, Ri is a p-indifferent preference and
R′

i is a p′-indifferent preference. By (i), the indifference curve of Ri in this figure goes
thorough (0, 0), (a, pa), (b, pb) and (c, pc). On the other hand, by (ii), the indifference
curve of R′

i goes thorough (a, p′a), (b, p′b) and (c, p′c), but not (0, 0). This is because if
(c, 0) = (c, p′c) I ′i (0, 0), then this relation violates object monotonicity.

Lemma 6 says that even if agents’ preferences are replaced by p-indifferent preferences
for any r, the minimum price with r is unchanged.

Lemma 6. Let R ∈ Rn, r ∈ Rm
+ and p = pmin(R, r). Let N ′ ⊆ N , R′

N ′ ∈ RI
r(p)

|N ′| and
R′ ≡ (R′

N ′ , R−N ′). Then, p = pmin(R
′, r).

Proof. It suffices to show (i) and (ii) of Fact 3. Let M ′ ⊆ M .
(i) We consider the following three cases.

25



0

𝑎

𝑏

𝑡

𝑐

𝑅! ∈ ℛ"
# 𝑝𝑅!$ ∈ ℛ"

# 𝑝$

𝑝$%

𝑟& = 𝑝$&

𝑟% 𝑝%

𝑟' = 𝑝$' = 𝑝'

𝑝&

0,0

Figure 4: Illustration of p-indifferent preferences.

Case 1 M ′ ⊊⊊⊊ M . By R′
N ′ ∈ RI

r(p)
|N ′|, for each i ∈ N ′, M ⊆ D(R′

i, p). Thus, by
M ′ ⊊ M , for each i ∈ N ′, D(R′

i, p) ⊈ M ′. Since M ′ is not overdemanded at p for R,

|{i ∈ N : D(R′
i, p) ⊆ M ′}| ≤ |{i ∈ N : D(Ri, p) ⊆ M ′}| ≤ |M ′|.

Case 2 M ′ = M and ∀a ∈ M , pa > 0. For each i ∈ N ′, by D(R′
i, p) = L,

D(R′
i, p) ⊈ M . Thus, since M is not overdemanded at p for R,

|{i ∈ N : D(R′
i, p) ⊆ M}| ≤ |{i ∈ N : D(Ri, p) ⊆ M}| ≤ |M |.

Case 3 M ′ = M and ∃a ∈ M , pa = 0. By object monotonicity, for each i ∈ N ,
(a, pa) = (a, 0)Pi 0, so that D(Ri, p) ⊆ M . Since M is not overdemanded at p for R,
|N | = |{i ∈ N : D(Ri, p) ⊆ M}| ≤ |M |. Thus, we have

|{i ∈ N : D(R′
i, p) ⊆ M}| ≤ |N | = |{i ∈ N : D(Ri, p) ⊆ M}| ≤ |M |.

(ii) Assume that for each a ∈ M ′, pa > ra. By R′
N ′ ∈ RI

r(p)
|N ′|, for each i ∈ N ′,

M ⊆ D(R′
i, p). Thus, for each i ∈ N ′, D(R′

i, p) ∩ M ′ ̸= ∅. Since M ′ is not weakly
underdemanded at p for R,

|{i ∈ N : D(R′
i, p) ∩M ′ ̸= ∅}| ≥ |{i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}| > |M ′|.

Therefore, p = pmin(R
′, r). □
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Given r ∈ Rm
+ and p ∈ Rm

r+, an object a ∈ M is reserve-priced object if pa = ra.
Let M−

r (p) ≡ {a ∈ M : pa = ra} be the set of all reserve-priced objects at p, and let
L−
r (p) ≡ M−

r (p) ∪ {0} and M+
r (p) ≡ M \M−

r (p).
A good has positive income effect if the object is more preferred against other objects

as income increases, or equivalently as payments decreases.21 If (a, pa) Ii (b, p
b) and for

δ > 0, (a, pa − δ)Pi (b, p
b − δ), then the preference exhibits positive income effect for a

against b. The definition below applies this idea to p-indifferent preferences with respect
to reserve-priced objects.

Definition 11. Given r ∈ Rm
+ and p ∈ Rm

r+, a p-indifferent preference Ri ∈ RI
r(p) exhibits

positive income effect for reserve-priced objects if

(i) [∀a ∈ M, pa > 0] =⇒
[
∀a ∈ L−

r (p), and ∀(b, t) ∈ M+
r (p)× R+ with t < pb,

ra − Vi(a; (b, t)) < pb − t

]
,

(ii) [∃a ∈ M, pa = 0] =⇒
[
∀a ∈ M−

r (p), and ∀(b, t) ∈ M+
r (p)× R+ with t < pb,

ra − Vi(a; (b, t)) < pb − t

]
To elucidate the condition (i) above, let Ri ∈ RI

r(p), a ∈ L−
r (p), and (b, t) ∈ M+

r (p)×
R+ with t < pb. By Ri ∈ RI

r(p), (a, p
a) Ii (b, p

b). Let δ ≡ pb − t. Then, the inequality
ra − Vi(a; (b, t)) < pb − t implies (a, pa − δ)Pi (b, p

b − δ). Thus, as income increases by δ,
a is preferred to b. The condition (ii) is similarly elucidated.

Given r ∈ Rm
+ and p ∈ Rm

r+, let RI+
r (p) be the set of all p-indifferent preferences

exhibiting positive income effects for reserve-priced objects. Note that RI+
r (p) ⊊ RI

r(p) ⊊
RC .

In Figure 5, Condition (i) is illustrated for price p. Note that pa > 0, pb > 0 and pc > 0,
and that a, 0 ∈ L−

r (p), b, c ∈ M+
r (p), and t < pb. It holds that ra − Vi(a; (b, t)) < pb − t,

r0 − Vi(0; (b, t)) < pb − t, and so Ri ∈ RI+
r (p). Condition (ii) is similarly illustrated for

price p′. Note that p′a > 0, p′b > 0 and p′c = 0, and that a, c ∈ M−
r (p

′), b ∈ M+
r (p

′),
and t′ < p′b. It holds that ra − Vi(a; (b, t

′)) < p′b − t, rc − Vi(c; (b, t
′)) < p′b − t′, and so

R′
i ∈ RI+

r (p′).
Lemma 7 says that after replacing some agents’ preferences with p-indifference prefer-

ences exhibiting positive income effect for reserve-priced objects, where reserve prices are
equal to seller’s benefits, if the payment of each agent whose preference is not replaced
is larger than or equal to the price of the object he receives, then the payment of each
agent whose preference is replaced is also larger than or equal to the price of the object
he receives.

Lemma 7. Let f satisfy Pareto-efficiency, strategy-proofness, individual rationality and
no-subsidy. Let R ∈ Rn and p = pmin(R, v). Let N ′ ⊆ N , R′

N ′ ∈ RI+
v (p)|N

′| and R′ ≡
(R′

N ′ , R−N ′). If for each i ∈ N \N ′, ti(R
′) ≥ pxi(R

′), then for each i ∈ N ′, ti(R
′) ≥ pxi(R

′).

21Although income is not modeled explicitly, the zero payment corresponds to the endowed income.
When an agent’s income increases by δ > 0, then his payment for each object decreases by δ.
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Figure 5: Illustration of p-indifferent preferences exhibiting positive income effect for
reserve-priced objects.

Proof. Assume that for each i ∈ N \N ′, ti(R
′) ≥ pxi(R

′). Note that by R′
N ′ ∈ RI+

v (p)|N
′| ⊆

RI
v(p)

|N ′| and Lemma 6, p = pmin(R
′, v).

Suppose to the contrary that for some j ∈ N ′, tj(R
′) < pxj(R

′). By Proposition
2, vxj(R

′) ≤ tj(R
′) < pxj(R

′). Thus, since for each i ∈ N \ N ′, ti(R
′) ≥ pxi(R

′), by
vxj(R

′) < pxj(R
′) and Lemma 4, there exists {ik}K

′

k=1 ⊆ N with K ′ ≥ 2 which satisfies the
following conditions:

(a) pxi1
(R′) = vxi1

(R′),

(b) for each k ∈ {1, . . . , K ′ − 1}, {xik(R
′), xik+1

(R′)} ⊆ D(R′
ik
, p) and tik(R

′) = pxik
(R′),

(c) iK′ ∈ N ′.

We construct {ik}Kk=1 from {ik}K
′

k=1 as follows: If tiK′ (R
′) < pxiK′ (R

′), let K ≡ K ′

and {ik}Kk=1 ≡ {ik}K
′

k=1. If tiK′ (R
′) ≥ pxiK′ (R

′), let K ≡ K ′ + 1, iK = j and {ik}Kk=1 ≡
{ik}K

′

k=1 ∪ {iK}. Note that if tiK′ (R
′) ≥ pxiK′ (R

′), then by tj(R
′) < pxiK

(R′), iK′ ̸= j = iK .
We show that {ik}Kk=1 satisfies the following conditions:

(i) pxi1
(R′) = vxi1

(R′),

(ii) for each k ∈ {1, . . . , K − 1}, {xik(R
′), xik+1

(R′)} ⊆ D(R′
ik
, p) and tik(R

′) = pxik
(R′),

(iii) iK ∈ N ′ and tiK (R
′) < pxiK

(R′).
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(i): It follows from (a).

(ii): If tiK′ (R
′) < pxiK′ (R

′), then (ii) follows from (b). Thus, let tiK′ (R
′) ≥ pxiK′ (R

′).

Note that by vxj(R
′) < pxj(R

′), xiK (R
′) = xj(R

′) ∈ M . Thus, by iK′ = iK−1, Lemma
3 and R′

iK′ ∈ RI+
v (p) ⊆ RI

v(p), it holds that {xiK−1
(R′), xiK (R

′)} ⊆ D(R′
iK−1

, p) and

tiK−1
(R′) = pxiK−1

(R′). Thus, (ii) also holds.

(iii): If tiK′ (R
′) < pxiK′ (R

′), then (iii) follows from (c). Thus, let tiK′ (R
′) ≥ pxiK′ (R

′). By

tj(R
′) < pxj(R

′) and iK = j, tiK (R
′) < pxiK

(R′). Thus, by iK = j ∈ N ′, (iii) holds.
Finally, in order to derive a contradiction, we apply Lemma 5 to {ik}Kk=1, which con-

cludes that there is an allocation Pareto-dominating f(R′) for R′. Note that by (i) and
(ii), to apply Lemma 5, we only need to show

vxi1
(R′) − V ′

iK
(xi1(R

′); fiK (R
′)) < pxiK

(R′) − tiK (R
′). (2)

Note that by (i), (iii) and Proposition 2, xi1(R
′) ∈ L−

v (p), xiK (R
′) ∈ M+

v (p) and tiK (R
′) <

pxiK
(R′).
If for each a ∈ M , pa > 0, then by R′

iK
∈ RI+

v (p), (2) holds obviously. Hence, we
assume that for some a ∈ M , pa = 0. Then,

fi1(R
′) =

(ii)

(
xi1(R

′), pxi1
(R′)
)

R′
i1

xi1
(R′)∈D(R′

i1
, p)

(a, pa) = (a, 0) P ′
i1

objectmonotonicity

(0, 0).

Thus, if xi1(R
′) = 0, then by money monotonicity, ti1(R

′) < 0, contradicting no-subsidy.
Hence, xi1(R

′) ̸= 0. By xi1(R
′) ∈ L−

v (p), this implies xi1(R
′) ∈ M−

v (p). Thus, by
xiK (R

′) ∈ M+
v (p), tiK (R

′) < pxiK
(R′) and R′

iK
∈ RI+

v (p), (2) holds. □

5.7 Proof of Proposition 4

Proposition 4. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Assume that f satisfies Pareto-

efficiency, strategy-proofness and individual rationality and no-subsidy, and let R ∈ Rn

and p = pmin(R, v). Then, for each i ∈ N , ti(R) ≥ pxi(R).

Proof. Let R′ ∈ RI+
v (p)n. We prove the following claim by induction.

Claim 2. For each S ⊆ N and each i ∈ N , ti(RS, R
′
−S) ≥ pxi(RS ,R

′
−S), where R′

−S =
(R′

i)i∈N\S.

Induction Base. Let j ∈ N and S = {j}. By Lemma 7, it suffices to show that
tj(Rj, R

′
−j) ≥ pxj(Rj ,R

′
−j). Suppose to the contrary that tj(Rj, R

′
−j) < pxj(Rj ,R

′
−j).

If xj(Rj, R
′
−j) = 0, then tj(Rj, R

′
−j) < pxj(Rj ,R

′
−j) = 0. However, this contradicts

no-subsidy. Hence, xj(Rj, R
′
−j) ̸= 0.

By Lemma 7, for each i ∈ N , ti(R
′) ≥ pxi(R

′). Thus, by p = pmin(R
′, v) and Lemma 3,

for each i ∈ N , ti(R
′) = pxi(R

′). In particular, tj(R
′) = pxj(R

′). Then,

fj(Rj, R
′
−j)P

′
j

(
xj(Rj, R

′
−j), p

xj(Rj ,R
′
−j)
)

by tj(Rj, R
′
−j) < pxj(Rj ,R

′
−j)
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R′
j

(
xj(R

′), pxj(R
′)
)

by xj(Rj, R
′
−j) ̸= 0 and def. 10

= fj(R
′) by tj(R

′) = pxj(R
′).

Thus, fj(Rj, R
′
−j)P

′
j fj(R

′), but this contradicts strategy-proofness. Hence, tj(Rj, R
′
−j) ≥

pxj(Rj ,R
′
−j).

Induction Hypothesis. Let n′ ≤ n. Assume that for each S ′ with |S ′| ≤ n′ − 1 and

each i ∈ N , ti(RS′ , R′
−S′) ≥ pxi(RS′ ,R′

−S′ ).

Induction Argument. Let S ⊆ N be such that |S| = n′. By Lemma 7, it suffices to
show that for each i ∈ S, ti(RS, R

′
−S) ≥ pxi(RS ,R

′
−S). Suppose to the contrary that for

some k ∈ S, tk(RS, R
′
−S) < pxk(RS ,R

′
−S).

Note that xk(RS, R
′
−S) ̸= 0. Let S ′ ≡ S \ {k}. By |S ′| = n′ − 1 and the Induction

Hypothesis, for each i ∈ N , ti(RS′ , R′
−S′) ≥ pxi(RS′ ,R′

−S′ ). Then, by p = pmin(RS′ , R′
−S′ , v)

and Lemma 3, for each i ∈ N , ti(RS′ , R′
−S′) = pxi(RS′ ,R′

−S′ ). In particular, tk(RS′ , R′
−S′) =

pxk(RS′ ,R′
−S′ ). Then, we have

fk(RS, R
′
−S)P

′
k

(
xk(RS, R

′
−S), p

xk(RS ,R
′
−S)
)

by tk(RS, R
′
−S) < pxk(RS ,R

′
−S)

R′
k

(
xk(RS′ , R′

−S′), p
xk(RS′ ,R′

−S′ )
)

by xk(RS, R
′
−S) ̸= 0 and def. 10

= fk(RS′ , R′
−S′) by tk(RS′ , R′

−S′) = pxk(RS′ ,R′
−S′ ),

which implies fk(RS, R
′
−S)P

′
k fk(RS′ , R′

−S′), but this contradicts strategy-proofness. Hence,

for each i ∈ S, ti(RS, R
′
−S) ≥ pxi(RS ,R

′
−S). (End of Claim 2)

Let S = N , then for each i ∈ N , ti(R) ≥ pxi(R). □

5.8 Proof of Theorem 1

Theorem 1. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Then, a rule f on Rn satisfies

efficiency, strategy-proofness, individual rationality and no-subsidy if and only if it is a
minimum price Walrasian rule with r = v.

Proof. Let f satisfy efficiency, strategy-proofness, individual rationality and no-subsidy.
By Fact 4, it suffices to show that f is a minimum price Walrasian rule. Let R ∈ Rn

and p = pmin(R, v). First, we show that (f(R), p) satisfies (WE-i). By Lemma 3 and
Proposition 4, xi(R) ∈ D(Ri, p) and ti(R) = pxi(R). Hence, (f(R), p) satisfies (WE-i).

Next, we show that (f(R), p) satisfies (WE-ii). Suppose to the contrary that for some
a ∈ M \ {xi(R)}i∈N , pa > va.
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By p = pmin(R, v), there exists some z ∈ Z such that (z, p) ∈ Wmin(R, v). For each
i ∈ N , by {xi, xi(R)} ⊆ D(Ri, p), ti = pxi and ti(R) = pxi(R), we have zi Ii fi(R). Let
M+ ≡ {b ∈ M : pb > vb}. Then,∑

i∈N

(ti − vxi) =
∑
b∈M+

(pb − vb) by (z, p) ∈ Wmin(R, v)

>
∑

b∈M+\{a}

(pb − vb) by pa − va > 0

≥
∑
i∈N

(ti(R)− rxi(R)). by M+ \ {a} ⊇ M+ ∩ {xi(R)}i∈N

Hence, z dominates f(R) for R. However, this contradicts efficiency. Thus, (f(R), p)
satisfies (WE-ii).

Therefore, (f(R), p) ∈ W (R, v), and by p = pmin(R, v), f(R) ∈ Zmin(R, v). Hence, f
is a minimum price Walrasian rule with r = v. □

6 Related literatures

In the seminal work of Myerson (1981), the reserve price has an important role in char-
acterizing optimal auctions. In a symmetric environment where there is a single object
and preferences are quasi-linear, the Vickrey auction rule with a suitably set reserve price
maximizes seller revenues. Since his article, a vast number of articles analyzes optimal
auctions in environments of single object and quasi-linear preferences. However, there are
several strands of literature analyzing auction rules of multiple objects in environments
where preferences are non-quasi-linear. We discuss such strands of literature.

The first strand of the literature we discuss analyzes efficient auction rules of homoge-
neous goods for non-quasi-linear but unit-demand preferences. In the cases where objects
are homogeneous, Saitoh and Serizawa (2008), and Sakai (2008) characterize the general-
ized Vickrey rule by efficiency, strategy-proofness, individual rationality and no-subsidy.

The second strand of the literature extends the setting of the first strand to hetero-
geneous objects. Morimoto and Serizawa (2015) show that in cases where the number
of agents is greater than objects, the MPW rule is the unique rule satisfying efficiency,
strategy-proofness, individual rationality and no-subsidy. Zhou and Serizawa (2018) main-
tain the assumption of unit-demand, but focus on the special class of preferences, “the
common-tiered domains.” It says that objects are partitioned into several tiers, and if
objects are equally priced, agents prefer an object in a higher tier to one in a lower tier.
They show that when the tier including nth highest objects is singleton, the MPW rule
is the only rule satisfying the above four properties on the common-tiered domains.

The third strand of the literature analyze efficient auction rules with non-quasi-linear
preferences admitting multi-demand. Kazumura and Serizawa (2016) study classes of

31



preferences that include unit-demand preferences and additionally includes at least one
multi-demand preference, and show that no rule satisfies the four properties on such a
domain. Malik and Mishra (2021) study the special classes of preferences, “dichotomous”
domains. A preference is dichotomous if there is a set of objects such that the valuations of
its supersets are constant and the valuations of other sets are zero. A dichotomous domain
includes all such dichotomous preferences for a given set of objects. They show that no rule
satisfies the four properties on a dichotomous domain, but that the generalized Vickrey
rule is the only rule satisfying the four properties on a class of dichotomous preferences
exhibiting positive income effects.

This strand includes Baisa (2020). He assumes that objects are homogeneous, and
preferences are non-quasi-linear and multi-demand, and shows that on the class of prefer-
ences exhibiting decreasing marginal valuations, positive income effect, and single-crossing
property, if the preferences are parametrized by one dimensional types, there is a rule sat-
isfying efficiency, strategy-proofness, individual rationality and no-subsidy, but that if
types of preferences are multi-dimensional, no rule satisfies these properties.

The above three strands of literature on efficient auction rules in non-quasi-linear
environments takes no account of the seller’s benefits from objects to be auctioned, and
excludes reserve prices. Our article is different from these strands of literature in this
point.

The fourth strand of literature works on optimal auctions for non-quasi-linear prefer-
ences. On the unit-demand setting, Kazumura et al. (2020) and Sakai and Serizawa (2020)
show that the MPW rule maximizes ex-post revenue among the class of auction rules sat-
isfying strategy-proofness, individual rationality, no-subsidy, non-wastefulness and equal
treatment of equals, and such a revenue maximizing rule is unique. These works also
excludes reserve prices by non-wastefulness, which means that no agent prefers his own
bundle to unassigned object with no payment.

The fifth strand works on efficient auction rules with reserve prices. Sakai (2013)
studies strategy-proof auction in the single object setting on the quasi-linear domain,
and assumes “non-imposition,” which requires that the payment of the agent with zero
valuation be zero. He shows that the allocation rule satisfies weak efficiency, strategy-
proofness and non-imposition if and only if it is the Vickrey auction rule with a reserve
price or no-trade rule, where no-trade rule is the rule such that for each preference profile,
each agent gets no object and pays nothing.

Andersson and Svensson (2014) study a housing allocation model where preferences
are non-quasi-linear and unit demand, and rents are bounded not only below by reserve
prices but also above by price ceilings by governments. They introduce “rationing price
equilibrium (RPE),” which a hybrid of Walrasian equilibrium and a rationing mechanism
with fixed prices for a given priority structure. A RPE is not Pareto-efficient, but con-
strained efficient for a given priority structure. They show that the minimum RPE price
uniquely exists, and that the minimum RPE mechanism is group strategy-proof. Our re-
sult is different from this strand in that we derive reserve prices from the seller’s benefits
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from objects.

7 Conclusion

We extended the result of Morimoto and Serizawa (2015) to the settings where there is
an arbitrary number of agents and objects, and the seller may benefit from objects to
be auctioned, and showed 1) the minimum price Walrasian rule with reserve prices set
equal to the benefits the seller enjoys from objects is a unique rule satisfying efficiency,
strategy-proofness, individual rationality and no-subsidy, and 2) it is also a unique rule
satisfying efficiency, strategy-proofness, and two-sided individual rationality. Our result
demonstrates that the minimum price Walrasian rule has distinguished theoretical merits
and applicabilities in a variety of environments.

Appendix

A The counterexample of Lemma 12∗

We give Lemma 12∗.

Lemma 12∗. Let f satisfy efficiency, strategy-proofness, individual rationality and no-
subsidy. Let R ∈ Rn and (z∗, p) ∈ Wmin(R, v). Let N ′ ⊆ N with 1 ≤ |N ′|, R′

N ′ ∈
RI(z∗)|N

′| and R′ ≡ (R′
N ′ , R−N ′). Assume that

(12-i) ∀i ∈ N \N ′, xi(R
′) ̸= 0 =⇒ ti(R

′) ≥ pxi(R
′), and

(12-ii) ∀j ∈ N ′, xj(R
′) ̸= 0.

Then, ∃{ik}Kk=1 ⊆ N such that

(i) pxi1
(R′) = vxi1

(R′),

(ii) ∀k ∈ {2, . . . , K}, xik(R
′) ̸= 0,

(iii) ∀k ∈ {1, . . . , K − 1}, ik ∈ N \N ′ and iK ∈ N ′,

(iv) ∀k ∈ {1, . . . , K − 1}, {xik(R
′), xik+1

(R′)} ⊆ D(Rik , p).

We give the following counterexample of Lemma 12∗.

Example 7. Let N = {1, 2}, M = {a, b}, va = 0 and vb > 0. Let R = (R1, R2) be such
that (a, va)P1 (b, v

b)P1 0 and (a, va) I2 (b, v
b)P2 0. Then, (z, p) = (((a, pa), (b, pb)), (va, vb))

is the only minimum price Walrasian equilibrium for R. Let N ′ = {2}, R′
2 = R2 and

R′ = (R1, R
′
2). Note that R′

2 ∈ RI
v(p).
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By p = v and Proposition 2, t1(R
′) ≥ vx1(R′) = px1(R′). Hence, (12-i) holds. If

x2(R
′) = 0, by individual rationality and no-subsidy, f2(R

′) = 0. This implies z2 =
(b, vb)P ′

2 0 = f2(R
′), contradicting Proposition 3. Hence, x2(R

′) ̸= 0, and so (12-ii) holds.
However, there is no sequence {i1, i2} satisfying (i)-(iv). In fact, by (iii), i1 = 1 but

D(Ri1 , p) = {a} violates (iv).

B Preliminary results for Fact 3

Fact 7 (Hall, 1935). For each i ∈ N , let Di ⊆ M . Then, there exists x′ ∈ X such that
for each i ∈ N , x′

i ∈ Di if and only if for each N ′ ⊆ N , |N ′| ≤
∣∣∪

i∈N ′ Di

∣∣.
Proof. “Only if.” Assume that there exists x′ ∈ X such that for each i ∈ N , x′

i ∈ Di.
Let N ′ ⊆ N . We show that |N ′| ≤ |

∪
i∈N ′ Di|. Since for each i, j ∈ N ′ with i ̸= j,

x′
i ≠ x′

j, we have |N ′| = |{x′
i}i∈N ′ |. Also, since for each i ∈ N ′, x′

i ∈ Di, we get
{x′

i}i∈N ′ ⊆
∪

i∈N ′ Di, and so |{x′
i}i∈N ′ | ≤ |

∪
i∈N ′ Di|. Combining these two equations, we

obtain |N ′| ≤ |
∪

i∈N ′ Di|.

“If.” Assume that for each N ′ ⊆ N , |N ′| ≤
∣∣∪

i∈N ′ Di

∣∣. We prove by induction for the
number of agents. Hence, we can arbitrarily pick the set of objects. This set of objects
is denoted by M ′ ≡ {1, . . . ,m′} and m′ is not always equal to m. Then, for each i ∈ N ,
let D′

i ⊆ M ′. In the following Induction Base and Induction Hypothesis step, we consider
M ′ instead of M . Futhermore, for each S ⊆ N , let XS ≡ {xS ∈ L|S| | ∀i, j ∈ S, xi = xj ⇒
xi = xj = 0}.

Induction Base. Pick i ∈ N . Assume that |{i}| ≤ |D′
i|. Then, since |{i}| = 1, there

exists some x′
i ∈ D′

i.

Induction Hypothesis. Assume that for each S ′ ⊊ N , if for each S ′′ ⊆ S ′, |S ′′| ≤
|
∪

i∈S′′ D′
i|, then there exists x′

S′ ∈ XS′ such that for each i ∈ S ′, x′
i ∈ D′

i.

Induction Argument. Let S ⊆ N . Assume that for each S ′ ⊆ S, |S ′| ≤
∣∣∪

i∈S′ Di

∣∣. We
consider the following two cases.

Case 1 ∀S′ ⊊⊊⊊ S, |S′|+ 1 ≤ |
∪∪∪

i∈S′ Di|. We pick an arbitrary agent i ∈ S. Without
loss of generality, let 1 ≡ i. By |{1}| ≤ |D1|, there exists some a ∈ D1. Let x′

1 ≡ a,
S ′ ≡ S \ {1} and M ′ ≡ M \ {x′

1}. For each i ∈ S ′, let D′
i ≡ Di \ {x′

1}. Then, for each
i ∈ S ′, D′

i ⊆ M ′. Let S ′′ ⊆ S ′. We show that |S ′′| ≤ |
∪

i∈S′′ D′
i| in order to use the

Induction Hypothesis. By the assumption of Case 1 and S ′′ ⊆ S ′ ⊊ S ⊆ N ,

|S ′′|+ 1 ≤

∣∣∣∣∣ ∪
i∈S′′

Di

∣∣∣∣∣ . (3)
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Moreover, since for each i ∈ S ′′, D′
i ≡ Di \ {x′

1}, we have |
∪

i∈S′′ Di| = |
∪

i∈S′′ D′
i| or

|
∪

i∈S′′ Di| = |
∪

i∈S′′ D′
i|+ 1, which implies that∣∣∣∣∣ ∪

i∈S′′

Di

∣∣∣∣∣ ≤
∣∣∣∣∣ ∪
i∈S′′

D′
i

∣∣∣∣∣+ 1. (4)

Thus, by (3) and (4), we get |S ′′| ≤ |
∪

i∈S′′ D′
i|. Hence, by S ′ ⊊ S ⊆ N and the

Induction Hypothesis, there exists some x′
S′ ∈ XS′ such that for each i ∈ S ′ ≡ S \ {1},

x′
i ∈ D′

i ≡ Di \ {x′
1}. Let x′

S ≡ (x′
1, x

′
S′), then x′

S ∈ XS and for each i ∈ S, x′
i ∈ Di.

Case 2 ∃S′ ⊊⊊⊊ S, |S′| = |
∪∪∪

i∈S′ Di|. Let S ′ ⊊ N be such that |S ′| = |
∪

i∈S′ Di|. Since
S ′ ⊊ S and for each S ′′ ⊆ S ′, |S ′′| ≤ |

∪
i∈S′′ Di|, by the Induction Hypothesis, there exists

some x′
S′ ∈ XS′ such that for each i ∈ S ′, x′

i ∈ Di. Let T ≡ S \S ′ and M ′ ≡ M \ {x′
i}i∈S′ .

Moreover, for each i ∈ S, let D′
i ≡ Di \ {x′

i}i∈S′ . Then, for each i ∈ T , D′
i ⊆ M ′.

Let T ′ ⊆ T . We show that |T ′| ≤ |
∪

i∈T ′ D′
i|. By |S ′| = |

∪
i∈S′ Di|,∪

i∈S′

Di = {x′
i}i∈S′ .

Then, we have

∪
i∈T ′∪S′

Di =

(∪
i∈T ′

Di

)
∪

(∪
i∈S′

Di

)

=

(∪
i∈T ′

D′
i

)
∪ {x′

i}i∈S′ .

Thus, by
{∪

i∈T ′ D′
i

}
∩ {x′

i}i∈S′ = ∅ and |{x′
i}i∈S′| = |S ′|, we obtain∣∣∣∣∣ ∪

i∈T ′∪S′

Di

∣∣∣∣∣ =
∣∣∣∣∣∪
i∈T ′

D′
i

∣∣∣∣∣+ |S ′|. (5)

Furthermore, by T ′ ∩ S ′ = ∅ and T ′ ∪ S ′ ⊆ S,

|T ′|+ |S ′| = |T ′ ∪ S ′| ≤

∣∣∣∣∣ ∪
i∈T ′∪S′

Di

∣∣∣∣∣ (6)

Hence, by (5) and (6), we have |T ′| ≤ |
∪

i∈T ′ D′
i|. Then, by T ⊊ S ⊆ N and the

Induction Hypothesis, there exists some x′
T ∈ XT such that for each i ∈ T ≡ S \ S ′,

x′
i ∈ D′

i ≡ Di \ {x′
i}i∈S′ . Let x′

S ≡ (x′
S′ , x′

T ), then x′
S ∈ XS and for each i ∈ S, x′

i ∈ Di.
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Let S = N , then we complete the proof. □

Let N ′ ⊆ N and M ′ ⊆ M . Sometimes, we consider an economy E ′ ≡ (N ′,M ′). Then,
the any notation A in the original economy E ≡ (N,M) is replaced by AE′

or AE′ in
the economy E ′ ≡ (N ′,M ′). N ′ or M ′ is also used instead of E ′. For example, given
RN ′ ∈ R|N ′|, the set of Walrasian equilibria in the economy E ′ ≡ (N ′,M ′) is denoted by
WE′

(RN ′ , rM
′
).

Fact 8 (Mishra and Talman, 2010). Let n,m ∈ N and R = RE. Then, for each R ∈ Rn,
each r ∈ Rm

+ and each p ∈ Rm
r+, p ∈ P (R, r) if and only if no set is overdemanded at p for

R and no set is underdemanded at p for R, that is, for each M ′ ⊆ M ,

(i) |{i ∈ N : D(Ri, p) ⊆ M ′}| ≤ |M ′|,

(ii) [∀a ∈ M ′, pa > ra] =⇒ |{i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}| ≥ |M ′|.

Proof. Let R ∈ Rn, r ∈ Rm
+ and p ∈ Rm

r+.

“Only If.” Assume that p ∈ P (R, r). Then, there exists some z ∈ Z such that (z, p) ∈
W (R, r). We show that (i) and (ii) hold. Let M ′ ⊆ M .

(i) Let N ′ ≡ {i ∈ N : D(Ri, p) ⊆ M ′}. Since for each i ∈ N ′, xi ∈ D(Ri, p) ⊆ M ′, we
have {xi}i∈N ′ ⊆ M ′ and so

|{xi}i∈N ′ | ≤ |M ′|. (7)

Since for each i, j ∈ N ′ with i ̸= j, xi ̸= xj, we get

|N ′| = |{xi}i∈N ′ |. (8)

By (7) and (8), we obtain |N ′| ≤ |M ′|, that is, |{i ∈ N : D(Ri, p) ⊆ M ′}| ≤ |M ′|.
(ii) Assume that for each a ∈ M ′, pa > ra. Let N ′ ≡ {i ∈ N : D(Ri, p) ∩ M ′ ̸= ∅}.

Suppose to the contrary that |N ′| < |M ′|. Then, there exists some b ∈ M ′ such that
b /∈ {xi}i∈N ′ . Moreover, since for each i ∈ N \ N ′, D(Ri, p) ∩ M ′ = ∅, b /∈ {xi}i∈N\N ′ .
Hence, by b /∈ {xi}i∈N ′ and b /∈ {xi}i∈N\N ′ , b ∈ M\{xi}i∈N . Then, by (WE-ii), pb = rb, but
this contradicts pb > rb. Thus, we obtain |N ′| ≥ |M ′|, that is, |{i ∈ N : D(Ri, p) ∩M ′ ̸=
∅}| ≥ |M ′|.

“If.” Assume that for each M ′ ⊆ M , (i) and (ii) hold. We show that there exists some
z ∈ Z such that (z, p) ∈ W (R, r), which implies that p ∈ P (R, r).

Let N ′ ≡ {i ∈ N : D(Ri, p) ⊆ M} and E ′ ≡ (N ′,M). Assume that there exists
z′N ′ ∈ ZN ′ be such that (z′N ′ , p) ∈ WE′

(RN ′ , r). Let z ∈ Z be such that for each i ∈ N ′,
zi ≡ z′i and for each i ∈ N \N ′, zi ≡ 0. Then, since for each i ∈ N \N ′, 0 ∈ D(Ri, p) and
(z′N ′ , p) ∈ WE′

(RN ′ , r), (z, p) ∈ W (R, r). Hence, we only consider the case that for each
i ∈ N , D(Ri, p) ⊆ M .
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Let Z∗ ≡ {z ∈ Z : ∀i ∈ N, xi ∈ D(Ri, p) and ti = pxi}. We show that there exists
some z ∈ Z∗ such that (z, p) ∈ W (R, r) in the following two steps.

Step 1 Z∗ ̸= ∅. Let N ′ ⊆ N and M ′ ≡
∪

i∈N ′ D(Ri, p). We show that |N ′| ≤ |M ′| to use
Fact 7. Since for each i ∈ N ′, D(Ri, p) ⊆ M ′, we have N ′ ⊆ {i ∈ N : D(Ri, p) ⊆ M ′},
and so

|N ′| ≤ |{i ∈ N : D(Ri, p) ⊆ M ′}|. (9)

Since M ′ is not overdemanded at p for R,

|{i ∈ N : D(Ri, p) ⊆ M ′}| ≤ |M ′|. (10)

By (9) and (10), we get |N ′| ≤ |
∪

i∈N ′ D(Ri, p)|. Then, by Fact 7, there exists some

x′ ∈ X such that for each i ∈ N , x′
i ∈ D(Ri, p). For each i ∈ N , let t′i ≡ px

′
i , then z′ ∈ Z∗.

Thus, Z∗ ̸= ∅. (End of Step 1)

Step 2 There exists some z ∈ Z∗ such that (z, p) ∈ W (R,r). Since for each
z′ ∈ Z∗, (z′, p) satisfies (WE-i), we only show that there exists z ∈ Z∗ such that (z, p)
satisfies (WE-ii).

Let M+ ≡ {a ∈ M : pa > ra} and let

z ∈ argmax
z′∈Z∗

|{a ∈ M+ : ∃i ∈ N, x′
i = a}|.

Suppose to the contrary that for some b ∈ M \ {xi}i∈N , pb > rb.
First, we construct {jk}K

′

k=1 ⊆ N as follows. Let xj0 ≡ b. Since {xj0} is not underde-
manded at p for R, there exists j1 ∈ N such that D(Rj1 , p) ∩ {xj0} ̸= ∅. If pxj1 = rxj1 ,
then we stop this process and get a sequence {j1}. If pxj1 > rxj1 , since {xj0 , xj1} is not
underdemanded at p for R, we can pick j2 ∈ N \{j1} such that D(Rj2 , p)∩{xj0 , xj1} ̸= ∅.
We repeat this process and stop if pxjt = rxjt in some step t. Note that by N ⊇ {i ∈ N :
D(Ri, p) ∩M+ ̸= ∅} and |{i ∈ N : D(Ri, p) ∩M+ ̸= ∅}| ≥ |M+|, we have |N | ≥ |M+|.
Then, by b ∈ M+, b /∈ {xi}i∈N and |N | ≥ |M+|, there exists some j ∈ N such that
pxj = rxj . Hence, the above process finishes in the finite time and we can get {jk}K

′

k=1 ⊆ N
such that for each k ∈ {1, . . . , K ′}, D(Rjk , p) ∩ {xj0 , . . . , xjk−1

} and pxjK′ = rxjK′ .
Next, we construct a sequence {ik}Kk=1 ⊆ N as follows. Let i1 ≡ jK′ . If xj0 ∈ D(Ri1 , p),

then we stop this process and get a sequence {i1}. If xj0 /∈ D(Ri1 , p), by D(Ri1 , p) ∩
{xj0 , xj1 , . . . , xjK′−1

} ̸= ∅, we can pick i2 ∈ {j1, . . . , jK′−1} such that xi2 ∈ D(Ri1 , p). We
repeat this process and stop if xj0 ∈ D(Rit , p) in some step t. By xj0 ∈ D(Rj1 , p), this
process finishes in the finite time and we can get {ik}Kk=1 ⊆ N such that pxi1 = rxi1 and
for each k ∈ {1, . . . , K}, {xik , xik+1

} ⊆ D(Rik , p), where xiK+1
≡ xj0 .

Finally, we derive a contradiction. Let z′ ∈ Z be such that for each k ∈ {1, . . . , K},
z′ik ≡ (xik+1

, pxik+1 ) and for each i ∈ N \ {ik}Kk=1, z
′
i ≡ zi. Then, since for each i ∈ N ,

x′
i ∈ D(Ri, p) and t′i = px

′
i , we have z′ ∈ Z∗. Also, since pxi1 = rxi1 and for each k ∈
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{2, . . . , K+1}, pxik > rxik , |{a ∈ M+ : ∃i ∈ N, x′
i = a}| = |{a ∈ M+ : ∃i ∈ N, xi = a}|+1.

However, this equation contradicts z ∈ argmaxz′′∈Z∗ |{a ∈ M+ : ∃i ∈ N, x′′
i = a}|. Hence,

for each b ∈ M \{xi}i∈N , pb = rb. Therefore, (z, p) ∈ W (R, r), which implies p ∈ P (R, r).
□

C Proof of Fact 3

Given i ∈ N , Ri ∈ R and di ∈ R, the di-truncation of Ri is the preference R′
i such

that for each zi ∈ M × R, V ′
i (0; zi) = Vi(0; zi) + di. Note that R′

i ∈ RE and for each
zi, z

′
i ∈ M × R, zi R′

i z
′
i if and only if zi Ri z

′
i.
22

Fact 3 (Morimoto and Serizawa, 2015). Let n,m ∈ N and R = RE. Then, for each R ∈
Rn, each r ∈ Rm

+ and each p ∈ Rm
r+, p = pmin(R, r) if and only if no set is overdemanded

at p for R and no set is weakly underdemanded at p for R, that is, for each M ′ ⊆ M ,

(i) |{i ∈ N : D(Ri, p) ⊆ M ′}| ≤ |M ′|,

(ii) [∀a ∈ M ′, pa > ra] =⇒ |{i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}| > |M ′|.

Proof. Let R ∈ Rn, r ∈ Rm
+ and p ∈ Rm

r+.

“If.” Assume that for each M ′ ⊆ M , (i) and (ii) hold. Since no set is weakly underde-
manded at p for R, no set is underdemanded at p for R. Thus, by Fact 8, p ∈ P (R, r).
We show that p = pmin(R, r). Suppose to the contrary that there exists some q ∈ P (R, r)
such that q ≤ p and q ̸= p.

Let M ′ ≡ {a ∈ M : qa < pa} and N ′ ≡ {i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}. First, we show
that |M ′| < |N ′|. Note that M ′ ̸= ∅. For each a ∈ M ′, by ra ≤ qa, ra < pa. Thus, since
M ′ is not weakly underdemanded at p for R, |M ′| < |N ′|.

Next, we show that N ′ ⊆ {i ∈ N : D(Ri, q) ⊆ M ′}. Let i ∈ N ′ and a ∈ D(Ri, q). By
D(Ri, p) ∩M ′ ̸= ∅, there exists some b ∈ D(Ri, p) ∩M ′. Then,

(a, qa) Ri
a∈D(Ri,q)

(b, qb) Pi
qb<pb

(b, pb) Ri
b∈D(Ri,p)

(a, pa).

Thus, qa < pa, which implies a ∈ M ′. Hence, we obtain D(Ri, q) ⊆ M ′, and so N ′ ⊆ {i ∈
N : D(Ri, q) ⊆ M ′}.

Finally, we derive a contradiction. Note that by q ∈ P (R, r) and Fact 8, M ′ is not
overdemanded at q for R. By N ′ ⊆ {i ∈ N : D(Ri, q) ⊆ M ′}, |N ′| ≤ |{i ∈ N : D(Ri, q) ⊆
M ′}|. Then, by |M ′| < |N ′|, |M ′| < |{i ∈ N : D(Ri, q) ⊆ M ′}|. However, this inequality

22In fact, for each zi, z
′
i ∈ M × R

zi R
′
i z

′
i ⇐⇒ V ′

i (0; zi) ≥ V ′
i (0; z

′
i) ⇐⇒ Vi(0; zi) + di ≥ Vi(0; z

′
i) + di ⇐⇒ Vi(0; zi) ≥ Vi(0; z

′
i) ⇐⇒ zi Ri z

′
i.
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contradicts that M ′ is not overdemanded at q for R. Hence, p = pmin(R, r).

“Only if.” Assume that p = pmin(R, r). By p ∈ P (R, r) and Fact 8, no set is overde-
manded at p for R and no set is underdemanded at p for R. Hence, we only show that no
set is weakly underdemanded at p for R. Suppose to the contrary that there exists some
M ′ ⊆ M such that for each a ∈ M ′, pa > ra and |{i ∈ N : D(Ri, p) ∩M ′ ̸= ∅}| ≤ |M ′|.
Without loss of generality, we assume that M ′ is minimal, that is, for each M ′′ ⊊ M ′, it is
not weakly underdemanded at p for R. Let N ′ ≡ {i ∈ N : D(Ri, p)∩M ′ ̸= ∅}. Since M ′ is
not underdemanded (|N ′| ≥ |M ′|) but weakly underdemanded (|N ′| ≤ |M ′|) at p for R, we
have |N ′| = |M ′|. Without loss of generality, let M ′ ≡ {1, . . . ,m′} and N ′ ≡ {1, . . . ,m′}.
By p = pmin(R, r), there exists some z ∈ Z such that (z, p) ∈ Wmin(R, r).

Step 1 ∀i ∈ N ′, xi ∈ M ′. Suppose to the contrary that for some i ∈ N ′, xi /∈ M ′.
Then, by |N ′| = |M ′|, there exists some a ∈ M ′ such that a /∈ {xi}i∈N ′ . Moreover, since
for each i ∈ N \N ′, D(Ri, p)∩M ′ = ∅ and a ∈ M ′, a /∈ {xi}i∈N\N ′ . Hence, a ∈ M \{xi}i∈N
and, by a ∈ M ′, pa > ra, but this contradicts (WE-ii). Hence, for each i ∈ N ′, xi ∈ M ′.
(End of Step 1)

For each a ∈ M ′, let ua ≡ max ({Vj(a; zj) : j ∈ N \N ′} ∪ {ra}).

Step 2 ∀a ∈ M ′, ua < pa. Suppose to the contrary that for some a ∈ M ′, ua ≥ pa.
Then, by pa > ra, ua > ra. Hence, there exists some j ∈ N \ N ′ such that Vj(a; zj) =
ua. Thus, by pa ≤ ua, pa ≤ Vj(a; zj), which implies that (a, pa)Rj zj. Then, by xj ∈
D(Rj, p), zj Rj (a, p

a)Rj zj and so zj Ij (a, p
a). Hence, we get a ∈ D(Rj, p). However, this

contradicts j ∈ N \N ′, that is, D(Rj, p) ∩M ′ = ∅. Therefore, for each a ∈ M ′, ua < pa.
(End of Step 2)

By Step 2, we can let R0 ∈ RE be such that for each a ∈ M ′, V0(a;0) ∈ (ua, pa).
Note that for each a ∈ M ′, by ra ≤ ua, ra < V0(a;0) < pa. We consider the economy
E ′ ≡ (N ′′,M ′), where N ′′ ≡ N ′ ∪ {0}. Let z0 ≡ 0 and zN ′′ ≡ (z0, zN ′).

Step 3 (zN ′′, pM ′
) ∈ WE′

min(RN ′′, rM ′
).

Step 3.1 (zN ′′, pM ′
) ∈ WE′

(RN ′′, rM ′
). First, we consider an agent i ∈ N ′. By Step

1, xi ∈ M ′. Moreover, by xi ∈ D(Ri, p), for each a ∈ M ′ ⊆ M , (xi, p
xi)Ri (a, p

a). Hence,
xi ∈ D(Ri, p

M ′
). Next, we consider the agent 0. For each a ∈ M ′, by V0(a;0) < pa,

0P0 (a, p
a). Hence, D(R0, p

M ′
) = {0}, and so x0 ∈ D(R0, p

M ′
). Thus, since for each

i ∈ N ′′, ti = pxi , (zN ′′ , pM
′
) satisfies (WE-i). Since for each i ∈ N ′, xi ∈ M ′ (Step

1) and |N ′| = |M ′|, M ′ \ {xi}i∈N ′ = ∅. Hence, (zN ′′ , pM
′
) satisfies (WE-ii). Therefore,

(zN ′′ , pM
′
) ∈ WE′

(RN ′′ , rM
′
). (End of Step 3.1)
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Let (z̃N ′′ , p̃M
′
) ∈ WE′

min(RN ′′ , rM
′
). Let M− ≡ {a ∈ M ′ : p̃a < pa} and N− ≡ {i ∈ N ′ :

D(Ri, p
M ′

) ∩M− ̸= ∅}. We show that M− = ∅. Suppose to the contrary that M− ̸= ∅.

Step 3.2 ∀i ∈ N−, x̃i ∈ M−. Let i ∈ N−. By D(Ri, p
M ′

)∩M− ̸= ∅, there exists some
a ∈ D(Ri, p

M ′
) with p̃a < pa. Then,

(x̃i, p̃
x̃i) Ri

x̃i∈D(Ri,p̃M
′ )

(a, p̃a) Pi
p̃a<pa

(a, pa) Ri
a∈D(Ri,pM

′ )

(x̃i, p
x̃i),

which implies that p̃x̃i < px̃i , and so x̃i ∈ M−. Hence, for each i ∈ N−, x̃i ∈ M−. (End
of Step 3.2)

Step 3.3 N− = N ′ and M− = M ′. Note that N− ≡ {i ∈ N ′ : D(Ri, p
M ′

)∩M− ̸= ∅}.
First, we show that N− = {i ∈ N : D(Ri, p) ∩ M− ̸= ∅}. For each i ∈ N \ N ′, by
D(Ri, p) ∩M ′ = ∅ and M− ⊆ M ′, D(Ri, p) ∩M− = ∅. Thus, {i ∈ N : D(Ri, p) ∩M− ̸=
∅} = {i ∈ N ′ : D(Ri, p) ∩ M− ̸= ∅}. Hence, it suffices to show that N− = {i ∈ N ′ :
D(Ri, p) ∩M− ̸= ∅}.

Let j ∈ N−. By D(Rj, p
M ′

)∩M− ̸= ∅, there exists some a ∈ D(Rj, p
M ′

)∩M−. Also,
by j ∈ N− ⊆ N ′, D(Rj, p) ∩M ′ ̸= ∅. Thus, there exists some b ∈ D(Rj, p) ∩M ′. Then,

(a, pa) Rj

a∈D(Rj ,pM
′ ), b∈M ′

(b, pb) Rj
b∈D(Rj ,p)

(a, pa),

which implies that (a, pa) Ij (b, p
b). Thus, a ∈ D(Rj, p). By a ∈ M−, a ∈ D(Rj, p) ∩M−.

Hence, j ∈ {i ∈ N ′ : D(Ri, p) ∩M− ̸= ∅}, and so N− ⊆ {i ∈ N ′ : D(Ri, p) ∩M− ̸= ∅}.
Let j ∈ {i ∈ N ′ : D(Ri, p) ∩ M− ̸= ∅}. By D(Rj, p) ∩ M− ̸= ∅, there exists some

a ∈ D(Rj, p) ∩M−. By Step 3.1, xj ∈ D(Rj, p
M ′

). By M− ⊆ M ′, a ∈ M ′ Then,

(a, pa) Rj
a∈D(Rj ,p)

(xj, p
xj) Rj

xj∈D(Rj ,pM
′ ), a∈M ′

(a, pa),

which implies that (a, pa) Ij (xj, p
xj). Thus, a ∈ D(Rj, p

M ′
). By a ∈ M−, a ∈ D(Rj, p

M ′
)∩

M−. Hence, j ∈ N−, and so {i ∈ N ′ : D(Ri, p) ∩M− ̸= ∅} ⊆ N−. Therefore, N− = {i ∈
N : D(Ri, p) ∩M− ̸= ∅}.

Next, we show that M− = M ′. Note that by Step 3.2, |N−| ≤ |M−|. Suppose to
the contrary that M− ⊊ M ′. Since M ′ is minimal, M− is not weakly underdemanded
at p for R, that is, |{i ∈ N : D(Ri, p) ∩ M− ̸= ∅}| > |M−|. Then, by N− = {i ∈ N :
D(Ri, p)∩M− ̸= ∅}, we have |N−| > |M−|, but this contradicts to |N−| ≤ |M−|. Hence,
M− = M ′. Also, by N− = {i ∈ N : D(Ri, p) ∩ M− ̸= ∅} and M− = M ′, we obtain
N− = N ′. (End of Step 3.3)

Step 3.4 ∀a ∈ M ′, ua < p̃a. Suppose to the contrary that there exists some a ∈ M ′

such that p̃a ≤ ua. Note that, by Step 3.2, Step 3.3 and |N ′| = |M ′|, x̃0 = 0. By
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p̃a ≤ ua < V0(a;0), (a, p̃
a)P0 0 = z̃0. However, this contradicts x̃0 ∈ D(R0, p̃

M ′
). Hence,

for each a ∈ M ′, ua < p̃a. (End of Step 3.4)

Let (z̄, p̄) ∈ Z×Rm
r+ be such that z̄N ′ ≡ z̃N ′ , z̄−N ′ ≡ z−N ′ , p̄M

′ ≡ p̃M
′
and p̄−M ′ ≡ p−M ′

.
Note that for each i ∈ N , t̄i = p̄x̄i since for each i ∈ N ′, x̃i ∈ M ′ and for each i ∈ N \N ′,
xi ∈ M \M ′ (by D(Ri, p) ∩M ′ = ∅).

Step 3.5 (z̄, p̄) ∈ W (R,r). First, we show that (z̄, p̄) satisfies (WE-i). Let i ∈ N ′.
Note that x̄i = x̃i and t̄i = p̃x̃i , and by xi ∈ M ′ = M− (Step 1 and Step 3.3), p̃xi < pxi .
If a ∈ M ′,

(x̄i, p̄
x̄i) = (x̃i, p̃

x̃i) Ri
x̃i∈D(Ri,p̃M

′ )

(a, p̃a) =
a∈M ′

(a, p̄a).

If a /∈ M ′,

(x̄i, p̄
x̄i) = (x̃i, p̃

x̃i) Ri
x̃i∈D(Ri,p̃M

′
)

(xi, p̃
xi) Pi

p̃xi<pxi
(xi, p

xi) Ri
xi∈D(Ri,p)

(a, pa) =
a/∈M ′

(a, p̄a).

Hence, for each a ∈ M , (x̄i, p̄
x̄i)Ri (a, p̄

a) and so x̄i ∈ D(Ri, p̄).
Let i ∈ N\N ′. Note that for each a ∈ M ′, by ua ≡ max {{Vj(a; zj) : j ∈ N \N ′} ∪ {ra}}

and Step 3.4, Vi(a; zi) ≤ ua < p̃a. If a ∈ M ′,

(x̄i, p̄
x̄i) = (xi, p

xi) Pi
Vi(a;zi)<p̃a

(a, p̃a) =
a∈M ′

(a, p̄a).

If a /∈ M ′,
(x̄i, p̄

x̄i) = (xi, p
xi) Ri

xi∈D(Ri,p)
(a, pa) =

a/∈M ′
(a, p̄a).

Hence, for each a ∈ M , (x̄i, p̄
x̄i)Ri (a, p̄

a), and so x̄i ∈ D(Ri, p̄). Therefore, (z̄, p̄) satisfies
(WE-i).

Next, we show that (z̄, p̄) satisfies (WE-ii). Suppose to the contrary that for some
a ∈ M \ {x̄i}i∈N , p̄a > ra. If a ∈ M ′, by {x̃i}i∈N ′ = {x̄i}i∈N ′ ⊆ {x̄i}i∈N , x̃0 = 0
and p̄a = p̃a, a ∈ M \ {x̃i}i∈N ′′ and p̃a > ra. However, this contradicts (z̃N ′′ , p̃M

′
) ∈

WE′
min(RN ′′ , rM

′
). If a /∈ M ′, by {xi}i∈N\N ′ = {x̄i}i∈N\N ′ , {xi}i∈N ′ = M ′ (Step 1) and

p̄a = pa, a ∈ M \ {xi}i∈N and pa > ra. However, this contradicts (z, p) ∈ Wmin(R, r).
Thus, for each a ∈ M \ {x̄i}i∈N , p̄a = ra. Hence, (z̄, p̄) ∈ W (R, r). (End of Step 3.5)

By Step 3.5 and M− ̸= ∅, p̄ ∈ P (R, r) and for some a ∈ M− = M ′, p̄a = p̃a < pa.
However, this contradicts p = pmin(R, r). Hence, (zN ′′ , pM

′
) ∈ WE′

min(RN ′′ , rM
′
). (End of

Step 3)

Let π = {i(k)}m′

k=1 be a permutation of N ′ and let Π be the set of permutations.
Given, π = {i(k)}m′

k=1 ∈ Π, let Q(π) be the set of qM
′ ∈ Rm′

r+ with q0 = 0 such that
for each k ∈ {1, . . . ,m′}, qxi(k) ≤ Vi(k−1)(xi(k); (xi(k−1), q

xi(k−1))), where i(0) ≡ 0 and so
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xi(0) = 0. In particular, given π = {i(k)}m′

k=1 ∈ Π, let qM
′
(π) ∈ Q(π) be an price vector

such that the above inequality holds with equality, that is, for each k ∈ {1, . . . ,m′},
qxi(k)(π) = Vi(k−1)(xi(k); (xi(k−1), q

xi(k−1)(π))). Let Q ≡
∪

π∈ΠQ(π).

Step 4 There exists some b < px1 such that ∀qM ′ ∈ Q, qx1 < b.

Let π = {i(k)}m′

k=1 ∈ Π and q̂M
′
= qM

′
(π).

Step 4.1 ∀qM ′ ∈ Q(π) and ∀k ∈ {1, . . . ,m′}, qxi(k) ≤ q̂xi(k). Let qM
′ ∈ Q(π). By

xi(0) = 0, qxi(0) = q̂xi(0) = 0. Then,

qxi(1) ≤
by def. of qM′

Vi(0)(xi(1); (xi(0), q
xi(0))) =

q
xi(0)=q̂

xi(0)
Vi(0)(xi(1); (xi(0), q̂

xi(0))) =
by def. of q̂M′

q̂xi(1) .

Let s ∈ {1, . . . ,m′ − 1}. Assume that qxi(s) ≤ q̂xi(s) . Then,

qxi(s+1) ≤
by def. of qM′

Vi(s)(xi(s+1); (xi(s), q
xi(s))) ≤

q
xi(s)≤q̂

xi(s)

Vi(s)(xi(s+1); (xi(s), q̂
xi(s))) =

by def. of q̂M′
q̂xi(s+1) .

Thus, for each k ∈ {1, . . . ,m′}, qxi(k) ≤ q̂xi(k) . (End of Step 4.1)

Step 4.2 ∀k ∈ {1, . . . ,m′}, q̂xi(k) < pxi(k). Note that by xi(1) ∈ M ′ (Step 1),
V0(xi(1);0) < pxi(k) . Then,

q̂xi(1) =
by def. of q̂M′

Vi(0)(xi(1); (xi(0), q̂
xi(0))) =

i(0)=0
V0(xi(1);0) < pxi(1) .

Let s ∈ {1, . . . ,m′−1}. Assume that q̂xi(s) < pxi(s) . Note that by q̂xi(s+1) = Vi(s)(xi(s+1); (xi(s), q̂
xi(s))),

(xi(s+1), q̂
xi(s+1)) Ii(s) (xi(s), q̂

xi(s)). Then,

(xi(s+1), q̂
xi(s+1)) Ii(s) (xi(s), q̂

xi(s)) Pi(s)

q̂
xi(s)<p

xi(s)

(xi(s), p
xi(s)) Ri(s)

xi(s)∈D(Ri(s),p)

(xi(s+1), p
xi(s+1)),

which implies q̂xi(s+1) < pxi(s+1) . Thus, for each k ∈ {1, . . . ,m′}, q̂xi(k) < pxi(k) . (End of
Step 4.2)

By Step 4.2, for each π ∈ Π, qx1(π) < px1 . Since the number of permutations is finite
(m′!), maxπ∈Π qx1(π) exists, and maxπ∈Π qx1(π) < px1 holds. Note that by Step 4.1, for
each qM

′ ∈ Q, qx1 ≤ maxπ∈Π qx1(π). Let b ∈ R be such that maxπ∈Π qx1(π) < b < px1 .
Then, for each qM

′ ∈ Q, qx1 < b < px1 . (End of Step 4)

Let R′
1 ∈ RE, be a d1-truncation of R1 such that b < V ′

1(x1;0) < px1 and let
(ẑN ′′ , p̂M

′
) ∈ WE′

min(R
′
1, RN ′′\{1}, r

M ′
).

Step 5 x̂1 ̸= 0. Suppose to the contrary that x̂1 = 0. Then, we show that the following
claim by induction and the last condition derives a contradiction.
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Claim 3. There is some {i(k)}m′

k=1 ∈ Π such that for each k ∈ {1, . . . ,m′}, (a) p̂x̂i(k−1) <
px̂i(k−1) , (b) x̂i(k−1) = xi(k) and (c) i(k) ̸= 1.

Induction Base. We find i(1) ∈ N ′ satisfying (a) to (c). First, we show that x̂i(0) ̸= 0.
Suppose to the contrary that x̂i(0) = 0. Then, by x̂1 = 0 and (WE-ii), there is some
a ∈ M ′ \ {x̂i}i∈N ′′ with p̂a = ra. By ra < Vi(0)(a;0), (a, p̂

a)Pi(0) 0 = ẑi(0). However, this
contradicts x̂i(0) ∈ D(Ri(0), p̂

M ′
). Hence, x̂i(0) ̸= 0.

(a) Note that by x̂i(0) ∈ M ′, Vi(0)(x̂i(0);0) < px̂i(0) . Then,

(x̂i(0), p̂
x̂i(0)) Ri(0)

x̂i(0)∈D(Ri(0),p̂
M′ )

0 Pi(0)

Vi(0)(x̂i(0);0)<p
x̂i(0)

(x̂i(0), p
x̂i(0)),

which implies that p̂x̂i(0) < px̂i(0) .
(b) Note that by Step 1 and |N ′| = |M ′|, M ′ = {xi}i∈N ′ . By x̂i(0) ∈ M ′ = {xi}i∈N ′ ,

there is some i(1) ∈ N ′ such that x̂i(0) = xi(1).
(c) Suppose to the contrary that i(1) = 1. Let π = {j(k)}m′

k=1 ∈ Π and qM
′ ∈

Rm′
r+ be such that j(1) = i(1) and qxj(1) = p̂xj(1) , and for each k ∈ {2, . . . ,m′}, j(k) ≡

minN ′ \ {j(s)}k−1
s=1 and qxj(k) = Vj(k−1)(xj(k); (xj(k−1), q

xj(k−1))), where j(0) = 0. Then, by
x̂j(0) = xj(1) ∈ D(Rj(0), p̂

M ′
) and xj(0) = 0, qxj(1) = p̂xj(1) ≤ Vj(0)(xj(1); (xj(0), p̂

xj(0))), and
so qM

′ ∈ Q(π) ⊆ Q. Thus, by Step 4, qx1 < b. Then, by p̂x1 = qx1 < b < V ′
1(x1;0),

(x1, p̂
x1)P ′

1 0 = ẑ1. However, this contradicts x̂1 ∈ D(R′
1, p̂

M ′
). Hence, i(1) ̸= 1.

Induction Hypothesis. Let s ∈ {1, . . . ,m′ − 1}. Assume that there is {i(k)}sk=1 such
that for each s′ ∈ {1, . . . , s}, (a-s) p̂x̂i(s′−1) < px̂i(s′−1) , (b-s) x̂i(s′−1) = xi(s′) and (c-s)
i(s′) ̸= 1.

Induction Argument. (a) By (a-s), it suffices to show that p̂x̂i(s) < px̂i(s) . By x̂i(s−1) =
xi(s) and p̂x̂i(s−1) < px̂i(s−1) , we have p̂xi(s) < pxi(s) . Then,

(x̂i(s), p̂
x̂i(s)) Ri(s)

x̂i(s)∈D(Ri(s),p̂
M′ )

(xi(s), p̂
xi(s)) Pi(s)

p̂
xi(s)<p

xi(s)

(xi(s), p
xi(s)) Ri(s)

xi(s)∈D(Ri(s),p)

(x̂i(s), p
x̂i(s)),

which implies p̂x̂i(s) < px̂i(s) .
(b) By p̂x̂i(s) < px̂i(s) and p̂0 = p0 = 0, x̂i(s) ̸= 0. Hence, by {xi}i∈N ′ = M ′, there is

some i(s+ 1) ∈ N ′ \ {i(s′)}ss′=1 such that x̂i(s) = xi(s+1).
(c) Suppose to the contrary that i(s+ 1) = 1. Let π = {j(s′)}m′

s′=1 ∈ Π and qM
′ ∈ Rm′

r+

be such that for each s′ ∈ {1, . . . , s+1} j(s′) = i(s′) and qxj(s′) = p̂xj(s′) , and for each s′ ∈
{s+2, . . . ,m′}, j(s′) ≡ minN ′ \{j(s′′)}s′−1

s′′=1 and qxj(s′) = Vj(s′−1)(xj(s′); (xj(s′−1), q
xj(s′−1))).

Then, for each s′ ∈ {1, . . . , s+ 1}, by x̂j(s′−1) = xj(s′) ∈ D(Rj(s′−1), p̂
M ′

), qxj(s′) = p̂xj(s′) ≤
Vj(s′−1)(xj(s′); (xj(s′−1), p̂

xj(s′−1))), and so qM
′ ∈ Q(π) ⊆ Q. Thus, by Step 4, qx1 < b. By

p̂x1 = qx1 < b < V ′
1(x1;0), (x1, p̂

x1)P ′
1 0 = ẑ1. However, this contradicts x̂1 ∈ D(R′

1, p̂
M ′

).
Hence, i(s+ 1) ̸= 1. (End of Claim 3)
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By Claim 3, we get {i(k)}m′

k=1 ∈ Π such that for each k ∈ {1, . . . ,m′}, p̂x̂i(k−1) < px̂i(k−1) ,
x̂i(k−1) = xi(k) and i(k) ̸= 1. Thus, we have 1 /∈ {i(k)}m′

k=1. However, this contradicts
{i(k)}m′

k=1 = N ′. Hence, we obtain x̂1 ̸= 0. (End of Step 5)

Step 6 (ẑN ′′, p̂M ′
) ∈ WE′

(RN ′′, rM ′
). By (ẑN ′′ , p̂M

′
) ∈ WE′

(R′
1, RN ′′\{1}, r

M ′
), for each

i ∈ N ′′ \ {1}, x̂i ∈ D(Ri, p̂
M ′

) and t̂i = p̂x̂i . Since t̂1 = p̂x̂1 and (WE-ii) does not depend
on preferences, it suffices to show that x̂1 ∈ D(R1, p̂

M ′
).

First, we show that d1 > 0. By (x1, p
x1)R1 0, V1(0; (x1, p

x1)) ≤ 0. Also, by V ′
1(x1;0) <

px1 , 0P ′
1 (x1, p

x1), and so 0 < V ′
1(0; (x1, p

x1)). Hence, we get V1(0; (x1, p
x1)) < V ′

1(0; (x1, p
x1)).

Then, by V ′
1(0; (x1, p

x1)) = V1(0; (x1, p
x1)) + d1, we obtain d1 > 0.

Next, we show that x̂1 ∈ D(R1, p̂
M ′

). By x̂1 ̸= 0 (Step 5), for each a ∈ M ′,
(x̂1, p̂

x̂1)R′
1 (a, p̂

a) if and only if (x̂1, p̂
x̂1)R1 (a, p̂

a). Moreover, by x̂1 ∈ D(R′
1, p̂

M ′
) and

d1 > 0, V ′
1(0; (x̂1, p̂

x̂1)) ≤ 0 < d1. Then, by V ′
1(0; (x̂1, p̂

x̂1)) = V1(0; (x̂1, p̂
x̂1)) + d1,

V1(0; (x̂1, p̂
x̂1)) < 0, and so (x̂1, p̂

x̂1)P1 0. Hence, x̂1 ∈ D(R1, p̂
M ′

). Therefore, (ẑN ′′ , p̂M
′
) ∈

WE′
(RN ′′ , rM

′
). (End of Step 6)

By pM
′
= pE

′
min(RN ′′ , rM

′
) (Step 3) and p̂M

′ ∈ PE′
(RN ′′ , rM

′
) (Step 6), pM

′ ≤ p̂M
′
.

In particular, we have px̂1 ≤ p̂x̂1 . Also, by x̂1 ∈ D(R′
1, p̂

M ′
) and V ′

1(x1;0) < px1 ,
we get (x̂1, p̂

x̂1)R′
1 0P

′
1 (x1, p

x1). Thus, by x̂1 ̸= 0, x1 ̸= 0 and (x̂1, p̂
x̂1)P ′

1 (x1, p
x1),

(x̂1, p̂
x̂1)P1 (x1, p

x1). Then, by x1 ∈ D(R1, p
M ′

), (x̂1, p̂
x̂1)P1 (x1, p

x1)R1 (x̂1, p
x̂1), which

implies p̂x̂1 < px̂1 . However, this inequality contradicts px̂1 ≤ p̂x̂1 . Therefore, M ′ is not
weakly underdemanded at p for R. □

D Proof of Fact 4

Fact 4. Let n,m ∈ N, v ∈ Rm
+ and R = RC . Then, for each r ∈ Rm

+ , The minimum price
Walrasian rule with r on Rn satisfies (i) strategy-proofness (Demange and Gale, 1985),
(ii) individual rationality, and (iii) no-subsidy.

Proof. Let r ∈ Rm
+ and f be the minimum price Walrasian rule with r. Also, let R ∈ R

and i ∈ N .
(i) Suppose to the contrary that there is some R′

i ∈ R such that fi(R
′
i, R−i)Pi fi(R).

Let z ≡ f(R) and z′ ≡ f(R′
i, R−i). Then, by z ∈ Zmin(R, r) and z′ ∈ Zmin(R

′
i, R−i, r),

there exist p, p′ ∈ Rm
r+ such that (z, p) ∈ Wmin(R, r) and (z′, p′) ∈ Wmin(R

′
i, R−i, r).

First, we show that p′x
′
i < px

′
i . Note that z′i = fi(R

′
i, R−i)Pi fi(R) = zi. Then,

(x′
i, p

′x′
i) = z′i Pi zi = (xi, p

xi) Ri
xi∈D(Ri,p)

(x′
i, p

x′
i).

Hence, we get p′x
′
i < px

′
i .

Next, we derive a contradiction. By rx
′
i ≤ p′x

′
i < px

′
i and Fact 3 (ii), |{i ∈ N : D(Ri, p)∩

{x′
i} ̸= ∅}| > |{xi}|. Hence, there is some j1 ∈ N \ {i} such that D(Rj1 , p) ∩ {x′

i} ̸= ∅.
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Then,
(x′

j1
, p′x

′
j1 ) Rj1

x′
j1
∈D(Rj1

,p′)

(x′
i, p

′x′
i) Pj1

p′x
′
i<px

′
i

(x′
i, p

x′
i) Rj1

x′
i∈D(Rj1

,p)

(x′
j1
, px

′
j1 ).

Hence, we get p′x
′
j1 < px

′
j1 . Then, by rx

′
j1 ≤ p′x

′
j1 < px

′
j1 and Fact 3 (ii), |{j ∈ N :

D(Rj) ∩ {xi, x
′
j1
} ̸= ∅}| > |{xi, x

′
j1
}|. Thus, there is some j2 ∈ N \ {i, j1} such that

D(Rj2 , p) ∩ {x′
i, x

′
j1
} ̸= ∅. Let a ∈ {x′

i, x
′
j1
} be such that a ∈ D(Rj2 , p). Then,

(x′
j2
, p′x

′
j2 ) Rj2

x′
j2
∈D(Rj2

,p′)

(a, p′a) Pj2
p′a<pa

(a, pa) Rj2
a∈D(Rj2

,p)

(x′
j2
, px

′
j2 ).

Hence, we get p′x
′
j2 < px

′
j2 . Repeating this argument, we can get {jk}Kk=1 ⊆ N such that

{jk}Kk=1 = N \ {i} and for each k ∈ {1, . . . , K}, p′x
′
jk < px

′
jk . Then, for each i ∈ N ,

rx
′
i < px

′
i , which implies that |N | ≤ |{b ∈ M : pb > rb}|. However, this inequality

contradicts that {b ∈ M : pb > rb} is not weakly underdemanded at p for R, that is,
|N | ≥ |{j ∈ N : D(Rj, p) ∩ {b ∈ M : pb > rb} ̸= ∅}| > |{b ∈ M : pb > rb}|.

(ii) By f(R) ∈ Zmin(R, r), there is some p ∈ Rm
r+ with (f(R), p) ∈ Wmin(R, r). By

xi(R) ∈ D(Ri, p), fi(R) = (xi(R), pxi(R))Ri 0.
(iii) By f(R) ∈ Zmin(R, r), there is some p ∈ Rm

r+ with (f(R), p) ∈ Wmin(R, r). By
ti(R) = pxi(R), p ∈ Rm

r+ and r ∈ Rm
+ , ti(R) = pxi(R) ≥ rxi(R) ≥ 0. □
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