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1 Introduction

Whenever a facility is shared by different customers, departments, or other units of an

organization, the problem of how to allocate the costs or the payoffs among players

arises. Relevant examples of this situation include airports, transit systems, water dis-

tribution networks, inventory models, and scheduling. These contexts are well known

as cost or payoff allocation (or sharing) problems.1 Similar sharing problems arise in

the context of “co-opetition” (Brandenburger and Nalebuff, 1996) where competitors

cooperate to achieve a common goal. Usually, in such contexts, two approaches based

on game theoretical concepts may be adopted.

One approach is for the players to bargain among themselves to determine how

costs or payoffs should be shared. However, this implies a strategic interaction, which

may result in unnecessary additional costs if it is conducted in an unrestricted fashion

(see, e.g., the arguments by Roth and Verrecchia, 1979). Instead, many bargaining

procedures follow the tradition of setting up sequential, perfect information games based

on offers, that is, games in which, at each stage, one of the players becomes a proposer

of a cost (payoff) allocation, with a requirement for reaching unanimous agreement.

Such bargaining procedures implement negotiations in the style of the well-known two-

player bargaining over a pie in Rubinstein’s problem (Rubinstein, 1982), which is then

extended to the n-player case.

Alternatively, one can view the problem as a normative one, in which an external

player, a so-called regulator, designs a pricing (rewarding) scheme that maximizes some

measures of social welfare or that imposes axioms of equity or stability. Shubik (1962)

was among the original proponents of the Shapley value (Shapley, 1953) as a method

1Many specific concrete examples of analogous situations come from one of the most typical eco-
nomic phenomena: consumption and the contribution to public goods.
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of joint-cost allocation. At present, this value continues to attract the greatest interest

among the allocation schemes predicated on notions of cooperative game theory (see,

e.g., Littlechild and Owen, 1973; Schulz and Uhan, 2010; Timmer et al., 2013).

Bridging the gap between the strategic and cooperative approaches is recognized as

a fundamental issue of game theory. Attempted resolutions of this issue, well known

as the Nash program (Nash, 1953), have provided many different strategic bargaining

mechanisms that sustain the Shapley value at equilibrium (for example, among others,

Hart and Mas-Colell, 1996; Pérez-Castrillo and Wettstein, 2001). Such mechanisms fit

and unify the two approaches, allowing the players facing an allocation problem (in

our specific context) to bargain in a restricted way, and to converge to a stable solution

without the need for an intermediary.

Both the original normative implementation of the Shapley value by a regulator and

the implementation of classical bargaining mechanisms based on offers that lead to the

Shapley value require complete information, either on the part of the regulator, or the

players. In many contexts, complete, transparent, and accountable information is often

desirable and encouraged. However, in some specific domains, this may represent an

unrealistic assumption, for example, when players are customers of a facility and do

not necessarily know about other customers (Young, 1998), or when computing such

allocations requires data from each player, some of which may be private (McSherry

and Talwar, 2007). We argue that even when such information is publicly available, it is

difficult to guess prices (awards) to charge (give) that are likely to be accepted by every

single player in the bargaining because this requires managing a wide and complex

information set about the structure of the underlying cooperative game and the marginal

contributions of each player.

An alternative but less common approach is to describe a bargaining mechanism
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based on demands rather than offers. A demand-based mechanism was the basis of the

implementation by Nash (1953) of the cooperative bargaining solution by Nash (1950).

Other examples of mechanisms based on demands, though not common, include Young

(1998), who, sharing our concern that complete information may be a difficult assump-

tion in practice, describes a demand revelation mechanism in which potential customers

of a public facility simply bid to be served. Bargaining mechanisms based on demands

resemble oral auctions, in which each player, standing alone, reveals the charges he or

she is ready to pay to be served, or the payoff he or she is ready to accept for offering

collaboration, and waits for such a request to be met. By allowing the players to bargain,

such mechanisms allow them to focus only on their specific role in the organization and

on their expectation of how much they should contribute to or obtain from the facil-

ity. This approach drastically reduces the information a player is required to possess or

process to make a proposal. Moreover, in a demand-based mechanism, acceptance of a

proposal by the organization typically depends on objective feasibility conditions rather

than on subjective approval by its members.

In this paper, we aim to contribute to this dispute concerning demand- vs. offer-

based bargaining mechanisms. We experimentally compare two well-known mecha-

nisms inducing the Shapley value as an ex ante equilibrium outcome of a noncoopera-

tive bargaining procedure. We choose two mechanisms that are based on these opposing

approaches (demand vs. offer) but that remain, in our opinion, similar in terms of their

implementation and the ease with which they can be understood by the participants in a

laboratory experiment.2 The first mechanism is Winter’s demand commitment bargain-

ing mechanism (Winter, 1994, referred to as the Winter mechanism below). The second
2A comparison between offer-based and demand-based mechanisms has been conducted experimen-

tally for voting games by Fréchette et al. (2005a), as well as empirically by, for example, Warwick and
Druckman (2001) and Ansolabehere et al. (2005), employing field data.
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is the Hart and Mas-Colell procedure (Hart and Mas-Colell, 1996, referred to as the

H–MC mechanism below).

Both procedures are described as sequential, perfect information games, where, at

each stage, a player becomes a proposer. In accordance with the theoretical presentation

of the two mechanisms, we illustrate and implement the bargaining procedures to define

a sharing of payoffs rather than an allocation of costs.3 In the first mechanism, which is

defined for cooperative games with increasing returns to scale for cooperation (strictly

convex games), the proposer makes a demand for him- or herself concerning the payoff

that he or she is willing to receive from a possible collaboration. In the second mecha-

nism, which is defined for monotonic games (a much weaker assumption), the proposer

makes a proposal to each of the other players concerning the payoff he or she is willing

to offer them.

Two main issues arise with most strategic bargaining models, as observed by Fréchette

et al. (2005a) in an experimental work implementing some well-known legislative bar-

gaining processes. First, the theoretical predictions that they propose are very sensitive

to variations in the rules of the game, for example, in our case, whether a demand-based

or an offer-based mechanism is considered. Even if experiments show that actual bar-

gaining behavior is not always as sensitive to the different bargaining rules as the theory

suggests, we expect our analysis to confirm such a statement and the two mechanisms to

perform very differently, despite the similar theoretical predictions. Second, the equilib-

rium solution may require an unrealistic degree of rationality on the part of the players,

such that the experimental evidence is very far from the theoretical prediction. We claim

that the degree of rationality required in a demand-based mechanism is much lower than

3It is straightforward to establish the theoretical implementation of a cost allocation bargaining pro-
cedure.
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that for an offer-based mechanism. This is because, as argued above, compared with the

offer-based mechanism, the demand-based mechanism requires a player to know and

process a smaller amount of information to make a proposal, as he or she can focus only

on his or her own specific role in the organization and his or her marginal contributions,

ignoring the role of all other players. Then, we aim at investigating the consequences of

such an issue in the results of our experiment.

It has been argued that the difference between a demand-based vs. an offer-based

mechanism is less relevant when considering two-player games, such as in Rubinstein

(1982)’s bargaining-over-a-pie game (see, Fréchette et al., 2005a). However, it becomes

crucial when considering groups with at least three members. In particular, offer-based

mechanisms are comparable with a voting procedure in which all the other players either

accept or reject the proposed utility share put forward by the proposer. As such, they are

theoretically expected to show a high degree of asymmetry between the proposer and

all the other players. In our case, both mechanisms are expected to show some form of

proposer advantage. In fact, for both mechanisms the ex post predicted solution strongly

depends on the selected proposer. In the case of the Winter mechanism in particular, it

even depends on the complete ordering.

Our analysis mainly focuses on (i) analyzing whether these mechanisms lead to

formation of the grand coalition and (ii) testing the convergence in expected value and,

as predicted by the theory, to the Shapley value.

Our results show that the H–MC mechanism results in a higher frequency of grand

coalition formation and a higher efficiency than does the Winter mechanism. Con-

versely, the Winter mechanism better implements the Shapley value as the average pay-

off provided that the grand coalition is formed. Therefore, our results suggest that an

offer-based H–MC mechanism better induces players to cooperate and to agree on an
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efficient outcome, whereas a demand-based Winter mechanism better implements allo-

cations that reflect players’ effective power.

The remainder of the paper is organized as follows. Section 2 reviews existing

studies that are most relevant to our work. Section 3 presents the general definition and

the properties of a cooperative transferable utility (TU) game, as well as the Shapley

value. Section 4 presents the two mechanisms that we investigate, namely the Winter

and the H–MC mechanisms. Section 5 describes the setting of our experiment. The

results are presented in Section 6, and Section 7 concludes. Additional analyses aimed

at reinforcing our results and at providing new points for reflection are contained in the

Appendix II to V.

2 Related work

Bridging the gap between the noncooperative models, in which the primitives are the

sets of possible actions of individual players, and the cooperative models, in which they

are the sets of possible joint actions of groups of players, has been recognized as a fun-

damental issue of game theory. The very first attempt at this so-called Nash program

dates back almost 70 years to Nash himself (Nash, 1953). His idea was to provide a non-

cooperative foundation for cooperative solution concepts, and he began implementing it

by designing a noncooperative game that sustained the Nash solution of his two-player

bargaining problem (Nash, 1950) as its equilibrium. Following this first attempt by

Nash, many alternative procedures for implementing solutions of two-player bargaining

problems or n-player pure bargaining problems4 have been implemented. Some mech-

anisms intended to obtain the Nash solution, exactly or approximately, at equilibrium
4A pure bargaining problem is a cooperative game in which only the grand coalition N creates a

positive surplus with respect to what each player can achieve if he or she does not cooperate with anyone.
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(see, among others, Binmore et al., 1986; Trockel, 2002). Others aimed instead to ob-

tain the Kalai–Smorodinsky solution (Kalai and Smorodinsky, 1975), that is, the main

alternative solution to such problems (Moulin, 1984b; Trockel, 1999; Haake, 2000).

Many different theoretical mechanisms have been designed with the aim of imple-

menting other cooperative solution concepts via a strategic interaction of the players for

more generic cases, that is, when there are more than two players or when the bargain-

ing problem is not pure. This is the case, for example, in the seminal work of Harsanyi

(1974), who reinterpreted the von Neumann–Morgenstern solution as an equilibrium of

a noncooperative bargaining mechanism, and of the many works sustaining the most fa-

mous axiomatic solution concept by Shapley (1953), the Shapley value. For a relevant

and extensive review of the theoretical literature on the Nash program, we refer readers

to the surveys by Serrano (2005, 2008, 2014, 2021).

In this section, we focus on the literature devoted to testing cooperative game theory

through experiments. To date, this literature has focused mainly on three different direc-

tions. The first direction provides a normative interpretation, as in De Clippel and Rozen

(2021), in which subjects designated as decision-makers express their view on what is

fair for others by recommending a payoff allocation. De Clippel and Rozen (2021)

show that the decision-maker’s choices can be described as a convex combination of the

Shapley value and the equal division solution.

The second direction investigates how an unstructured interaction affects the final

agreement. One example is the paper by Kalisch et al. (1954), in which groups of

players are asked to freely discuss the formation of coalitions and to reach an agree-

ment on how to split the related values. The authors identify many different factors

influencing the final outcome of such a procedure, including personality differences or

the geometrical arrangement of players around the table. Similarly, but with a greater
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focus on voting games, Montero et al. (2008) propose an unstructured bargaining pro-

tocol in which participants propose and vote on how to distribute a fixed budget among

themselves. The paper provides experimental evidence of the so-called paradox of new

members, according to which enlargement of a voting body (i.e., the addition of a new

voter) can increase the voting power of an existing member. Guerci et al. (2014) study

the impact of variations in the experimental protocol of Montero et al. (2008) on the

formation of the so-called minimal winning coalitions, that is, coalitions for which each

player is crucial.

Most experimental works in the literature follow a third direction, studying the out-

come when a more formal (or structured) bargaining protocol is imposed. Our paper

broadens this last direction of research.

Formal bargaining protocols have been implemented to tackle different aspects of

the cooperative inclination of the players under different settings. For example, Murnighan

and Roth (1977) investigate the effect of various communication/information conditions

on the final outcome in a specific game played by a monopolist and two weaker play-

ers. They show how the results over the entire set of conditions closely approximate

the Shapley value, although they often report a clear tendency for an equal split of the

pie. Similarly, Murnighan and Roth (1982) introduce bargaining models to investigate

the influence of information shared by subjects about the games (e.g., payoffs) on the

final outcome. They show that the quality of the information has an impact on the final

outcome and that the Nash bargaining solution has a good predictive performance in

many cases. Bolton et al. (2003) investigate how the communication configuration af-

fects coalition negotiation and show how players with weaker alternatives would benefit

from a more constrained structure, especially if they can be the conduit of communica-

tion, whereas those endowed with stronger alternatives benefit from working within a
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more public communication structure that promotes competitive bidding. Other works

focus more specifically on the coalition formation process, including Nash et al. (2012);

Shinoda and Funaki (2019); Abe et al. (2021). In the first paper, the authors implement

finitely repeated three-person coalition formation games, showing how efficiency re-

quires people’s willingness to accept the agency of others, such as political leaders. The

second paper is then presented as a follow-up, in which the authors maintain the same

value of the coalitions as in Nash et al. (2012), but implement a different bargaining pro-

tocol. They report a rare formation of a grand coalition, which can be induced by some

external factors, such as the presence of a chat window. The third paper presents a com-

parison between two mechanisms that invite players to join a meeting simultaneously or

sequentially. The authors report that the sequential mechanism induces a higher social

surplus than the simultaneous mechanism. Moreover, players make choices consistent

with the subgame perfect Nash equilibrium (SPNE) in the sequential setting and choose

the dominant strategy in the simultaneous setting, when a dominant strategy exists.

Formal bargaining protocols are mostly based on the implementation of theoreti-

cal mechanisms, which are shown to converge to some specific well-known solutions.

This is the case, for example, in Nash (1953) and Harsanyi (1974), which we have re-

ferred to above, or in the case of the bargaining mechanism proposed by Raiffa (1953)

to implement the Raiffa solution (as opposed to the Nash solution) to the Nash cooper-

ative bargaining problem. Several experimental implementations have been proposed,

with the final goal of testing Nash axioms, or of comparing Nash and Raiffa solutions

(see, e.g., Nydegger and Owen, 1975; Rapoport et al., 1977). In addition, there is a

large literature devoted to studying the class of bidding mechanisms. Bidding mecha-

nisms are introduced by Demange (1984) and Moulin (1984a), and Moulin and Jackson

(1992) study them in economic environments. They are developed by Pérez-Castrillo
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and Wettstein (2001) and Ju and Wettstein (2009) to implement solution concepts in the

framework of cooperative TU games.

In particular, many different theoretical mechanisms have been designed specifically

with the aim of implementing the best-known cooperative solution, the Shapley value

(see Shapley, 1953). Because this solution is applied in many economic problems,

supporting it through strategic explanation is considered to be particularly important.

See among others, Harsanyi (1981), Gul (1989), Hart and Moore (1990), Winter (1994),

and Hart and Mas-Colell (1996).5

Despite the large body of existing literature, the Nash program “is not ready for

retirement yet”, but is, on the contrary, “still full of energy” and “waiting for good pa-

pers to be written” (Serrano, 2021). In this paper, we aim to contribute to this research

agenda by providing new insights gained from a controlled laboratory experiment. In

particular, we propose an experimental comparison of two mechanisms. The first mech-

anism is the one-period version developed by Winter (1994) (this simplified version was

also previously used by Bennett and van Damme (1991) to treat Apex games, a type of

weighted majority games). The second mechanism is by Hart and Mas-Colell (1996), in

the specific case in which a proposer whose proposal is rejected leaves the game with a

probability 1. Our work is similar to Fréchette et al. (2005a), who experimentally com-

pare an offer-based model of Baron and Ferejohn (1989) with a demand-based model

of Morelli (1999) in weighted majority voting games. Earlier experimental studies of

the Baron–Ferejohn model include Fréchette et al. (2003, 2005b), and Fréchette et al.

(2005a) provide an experimental study of demand bargaining.6 However, Fréchette

5Krishna and Serrano (1995) deepen the study of the set of subgame perfect equilibria associated with
the bargaining mechanism proposed by Hart and Mas-Colell (1996).

6Fiorina and Plott (1978) propose multiple experiments on committee decision-making under majority
rules to test a wide range of solution concepts of noncooperative games.
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et al. (2005a) present the first work to directly compare the two within an experimental

framework. Their results show that proposers have some first-mover advantage in both

the demand and offer games, but their power does not differ nearly as much between the

two mechanisms as theory predicts.

3 Theoretical model

3.1 Cooperative TU games and solutions

Let N = {1, . . . , n} be a finite set of players. Each subset S ⊆ N is called a coalition,

and N is called the grand coalition. A cooperative TU game (from now on, cooperative

game) consists of a couple (N, v), where N is the set of players and v : 2N → R is the

characteristic function, which assigns to each coalition S ⊆ N the worth v(S), with

the normalization condition v(∅) = 0. The worth of a coalition represents the value

that members of S can achieve by agreeing to cooperate. To simplify the notation if no

ambiguity appears, we consider the set of players N as fixed and we write v instead of

(N, v). We use GN to denote the set of all games with player set N .

A game v ∈ GN is said to be

• monotonic if v(S) ≤ v(T ) for each S ⊆ T ⊆ N ,

• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S ∩ T = ∅, with S, T ⊆ N ,

• convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for each S, T ⊆ N , and strictly

convex if the inequality holds strictly.

We observe that convexity ⇒ superadditivity ⇒ monotonicity. In (strictly) convex

games, cooperation becomes increasingly appealing, and a so-called “snowball effect”
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is expected, leading to the formation of the grand coalition. Another equivalent defini-

tion for convexity can be stated as v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), for each

S ⊆ T ⊆ N \ {i}.

Given a game v ∈ GN , an allocation is an n-dimensional vector (x1, . . . , xn) ∈ RN ,

assigning to player i the amount xi ∈ R. For each S ⊆ N , we assume that x(S) =∑
i∈S xi. The imputation set is defined by:

I(v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},

that is, it contains all the allocations that are efficient (x(N) = v(N)) and individually

rational (xi ≥ v({i})∀i ∈ N ).

The core is the set of imputations that are also coalitionally rational, that is,

C(v) = {x ∈ I(v)|x(S) ≥ v(S) ∀S ⊆ N}.

An element of the core is stable in the sense that if such a vector is proposed as an

allocation for the grand coalition, no coalition will have an incentive to split off and

cooperate on its own. Intuitively, the idea behind the core is analogous to that behind

a (strong) Nash equilibrium of a noncooperative game, namely an outcome is stable if

no deviation is profitable. For the Nash equilibrium, the possible deviation concerns a

single player, whereas in the core, deviations of groups of players are relevant.

A solution is a function ψ : GN → RN that assigns an allocation ψ(v) to every game

v ∈ GN . The Shapley value is the best-known solution concept, which is widely applied
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in economic models, and is defined as:

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns to every player his or her expected marginal contribution to

the coalition of players that enter the game before this player, given that every order

of entrance has equal probability. This solution concept has been defined as respecting

some notion of fairness (see Appendix III for more discussion about its properties), but

it is not necessarily stable. However, if the game is superadditive, the Shapley value is

an imputation, and if the game is convex, it belongs to the core (in particular, it is its

barycenter).

4 Two mechanisms

In this section, we present the demand-based Winter mechanism (Section 4.1) and the

offer-based H–MC mechanism (Section 4.2) in more detail. Section 4.3 compares the

equilibrium predictions of the two mechanisms with a simple example.

4.1 The Winter mechanism

Winter (1994) presented a bargaining model based on sequential demands for strictly

convex cooperative games. As noted, in such games, cooperation becomes increasingly

appealing and a “snowball effect” is expected, leading to the formation of the grand

coalition. Moreover, in convex games, the Shapley value is a central point in the core,

which is always nonempty.

In this model, players announce their demands publicly in turns. That is, the players

14



effectively state “I am willing to join any coalition that yields me...” and wait for these

demands to be met by other players. The bargaining starts with a randomly chosen

player from N , say player i. This player publicly announces his or her demand di and

then points to a second player, who has to state his or her demand. Then, the game

proceeds by having each player introduce a demand then point at a new player to take a

turn. If or when, at some point, a compatible demand is introduced, which means that

there exists a coalition S for which the total demand for players in S does not exceed

v(S), then the first player with such a demand selects a compatible coalition S. The

players in S receive their demands and leave the game, and the bargaining continues

with the rest of the players using the same rule on v restricted on N \ S.

Here, we present the one-period Winter mechanism more formally. This is a sim-

plified version of the more general mechanism in Winter (1994), which allows for more

periods and includes a discount factor. A decision point position at time t of the one-

period demand commitment game is given by the vector (St1, S
t
2, dSt2 , j), where:

St1 ⊆ N is the set of players remaining in the game,

St2 ⊂ St1 is the set of players who have submitted demands that are not yet met,

dSt2 = (di)i∈St2 is the vector of demands submitted by players in St2, (0 ≤ di ≤

maxS⊆N v(S)), and

j ∈ St1 \ St2 is the player taking the decision by introducing a demand dj . His

or her demand dj is said to be compatible if there exists some S ⊆ St2 with

v(S ∪ {j})−
∑

i∈S di ≥ dj . Otherwise, dj is not compatible.

With j’s decision, the game proceeds in the following way:
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1) If dj is compatible, then j specifies a compatible coalition S, each player i ∈

S ∪ {j} is paid di, and a player k 6= j is randomly chosen from St1 \ St2. The new

position is now given by (St+1
1 , St+1

2 , dSt+1
2
, k), with St+1

1 = St1 \ (S ∪ {j}) and

St+1
2 = St2 \ (S ∪ {j}).

2) If dj is noncompatible, then two cases are distinguished:

2a) if St2 = St1 \ {j} (j is the last player to make a demand), then each player

i ∈ St1 (j included) gets his or her individual payoff v({i}), and the game ends;

2b) if St2 ⊂ St1 \ {j}, then j specifies a new player k 6= j in St1 \ St2 and the new

position is (St+1
1 , St+1

2 , dSt+1
2
, k), with St+1

1 = St1 and St+1
2 = St2 ∪ {j}.

The game starts with a randomly chosen player j ∈ N . Then, the initial position is

set to be (N, ∅, d∅, j). It terminates either when there are no more players in the game

(see point 1 above), or when St1 ∪ {j} = St2 (see point 2a above).

As shown by Winter for the more generic case, this mechanism has a unique sub-

game perfect equilibrium, which assigns equal probabilities according to the principle

of indifference. At this equilibrium, the grand coalition forms and the a priori expected

equilibrium payoff coincides with the Shapley value. Moreover, given a specific or-

dering of the players, the a posteriori equilibrium payoff of each player depends on the

order of players only through the set of the player’s successors but it is not influenced by

the way that these players are ordered, as each player demands a marginal contribution

to the set of successors.

4.2 The Hart and Mas-Colell mechanism

Hart and Mas-Colell (1996) proposed a bargaining procedure for monotonic cooperative
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games. This is a much weaker assumption compared with the strict convexity required

by the Winter mechanism. Thus, the H–MC procedure is applicable for a larger set of

cooperative games.

In this mechanism, the bargaining starts with a randomly chosen proposer making

an offer to the other players, with the meaning “If you wish to form a coalition with

me, I will give you...”. Then the other players, who act sequentially, may either accept

or reject the proposal. The requirement for agreement is unanimity. The key modeling

issue is the specification of what happens if there is no agreement and, as a consequence,

the game moves to the next stage. In our implementation, if the proposal is rejected, the

proposer leaves the game with his or her individual value and the bargaining continues

among the rest of the players, with a new player randomly chosen as a new proposer.

We present a more formal description of the H–MC mechanism. A decision point

position at time t is simply given by the vector (St, j), where:

St ⊆ N is the set of players remaining in the game,

j ∈ St is the player making an offer to the remaining players (ti)i∈St\{j} such

that
∑

i∈St\{j} ti ≤ v(St).

With j’s proposal, the game proceeds now in the following way:

1) If all i ∈ St \ {j}, who decide sequentially, accept the proposal one after

the other, then players in St \ {j} are paid (ti)i∈St\{j}, player j is paid v(St) −∑
i∈St\{j} ti, and the game ends;

2) If at least one player i ∈ St \ {j} refuses the offer, then two cases are distin-

guished:
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2a) if |St| = 2 (only one more player is left, together with j), then they both

receive their individual value v({i}) for each i ∈ St, and the game ends;

2b) if |St| > 2, then player i is removed from the game, he or she receives his or

her individual payoff v({i}), a new proposer k ∈ St+1 = St \ {j} is randomly

selected, and the new position is (St+1, k).

The game starts with a randomly chosen player j ∈ N . Then, the initial position is

set to be (N, j). It terminates either when there are no more players in the game (see

point 2a above), or when the proposal is unanimously accepted (see point 1 above).

Hart and Mas-Colell (1996) show that this game has a unique subgame perfect equi-

librium. At this equilibrium, the grand coalition forms and the a priori expected equi-

librium payoff coincides with the Shapley value. In contrast to the Winter mechanism,

given a specific initial proposer j ∈ N (in the previous mechanism, it was necessary to

specify the order of all the players, whereas in this case only one player, the proposer,

needs to be specified at equilibrium), the a posteriori equilibrium payoff assigns to each

other player his or her Shapley value in the cooperative game, reduced to the set of play-

ers N \ {j}, and the proposer is assigned his or her marginal contribution to the grand

coalition v(N)− v(N \ {j}).

4.3 A comparison between the Winter and the H–MC mechanisms

We illustrate the two mechanisms using the strictly convex three-player game shown

in Table 1. Although our experiment is based on four-player games, a three-player

game example is of particular interest because it allows us to graphically represent the

imputation set, the core, and the different solutions, as illustrated in Figure 1.
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Table 1: A three-player game

S 1 2 3 1,2 1,3 2,3 N

v(S) 20 20 30 45 55 60 100

As we have already observed, the convexity assumption implies the monotonic-

ity. Thus, the game satisfies the assumptions of both the Winter and H–MC mecha-

nisms. The Shapley value of this game is given by the vector φ(v) =
(
170
6
, 185

6
, 245

6

)
=

(28.33, 30.83, 40.83), which corresponds to the a priori equilibrium payoff for both the

Winter and H–MC mechanisms.

We suppose now that player 1 is chosen randomly as the first proposer in both mech-

anisms. Independently of the order of the following players in the Winter mechanism,

the proposer will receive an a posteriori equilibrium payoff equal to 40 in both mech-

anisms, which corresponds to his or her marginal contribution to the grand coalition

v(N)− v(N \ {1}). We can see that both mechanisms lead to a proposer advantage, as

40 > 170
6

, meaning that, as the first proposer, player 1 can obtain more than his or her

Shapley value.

Suppose now that the total ordering of the players in the Winter mechanism is given

by 1, 2, and 3. The a posteriori equilibrium payoff of the Winter mechanism is given by

the vector SOLW (v) = (40, 30, 30), in which player 2 demands his or her marginal con-

tribution v({2, 3})− v({3}), and player 3 demands his or her individual value v({3}).

Conversely, in the case of the H–MC mechanism, the proposer offers the Shapley

value of the reduced game to players 2 and 3. Thus, the a posteriori equilibrium payoff

is given by the vector SOLHMC(v) = (40, 25, 35). Even with the disadvantage of not

being the first mover, player 2, as the second mover, manages to obtain more under the
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Figure 1: The core of the three-player game
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Inputation Set
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Winter mechanism than under the H–MC mechanism even if, in both cases, he or she

obtains less than his or her Shapley value.

Figure 1 shows the imputation set I(v) = co 〈(20, 50, 30), (50, 20, 30), (20, 20, 60)〉,

the coreC(v) = co 〈(40, 30, 30), (40, 20, 40), (25, 20, 55), (20, 25, 55), (20, 45, 35), (25, 45, 30)〉,

the Shapley value φ(v), and possible a posteriori solutions SOLW (v) (6 black dots)

and SOLHMC(v) (3 white dots). A point in the simplex corresponds to an allocation

(x1, x2, x3). For example, the height of a point from the edge that is opposite to the

apex labeled (100, 0, 0) represents the payoff allocated to player 1. Thus, a point on the

bottom edge represents an observed allocation that gives a zero payoff to player 1. Sim-

ilarly, the height of a point from the edge that is opposite to the apex labeled (0, 0, 100)

represents the payoff allocated to player 3.

We make the following observation to conclude this example and the comparison

between the two mechanisms.
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Table 2: The games

S 1 2 3 4 1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4 N

v1(S) 0 5 5 10 20 20 25 20 25 25 50 60 60 60 100
v2(S) 0 20 20 30 20 20 30 45 55 60 45 55 60 100 100
v3(S) = v1(S) + v2(S)
v4(S) = 2v1(S)

Observation 1. The core is always a convex polyhedron. The a posteriori equilibrium

of the Winter mechanism always coincides with a vertex of this polyhedron. The a

posteriori equilibrium of the H–MC mechanism always provides a vector on a face of

this polyhedron.

5 The experimental setting

5.1 The games

For our analysis, we implement the four four-player games shown in Table 2. These

games are chosen to test the properties of the Shapley value that are presented in Ap-

pendix III. Note that:

• games 1, 3, and 4 are strictly convex, whereas game 2 is only convex. All four

games are, by consequence, monotonic. Therefore, all four games respect the

assumptions for the implementation of the H–MC mechanism, whereas all except

game 2 respect the assumption for the implementation of the Winter mechanism.

However, with game 2 being only convex, we consider that “strict convexity”

could be relaxed and the mechanism could still be implemented in such a case;

• in games 1 and 4, players 2 and 3 are symmetric;
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Table 3: The Shapley values of games 1, 2, 3, and 4

φ1(v) φ2(v) φ3(v) φ4(v)

Game 1 22.08 23.75 23.75 30,42
Game 2 0 28.33 30.83 40.83
Game 3 22.08 52.08 54.58 71.25
Game 4 44.16 47.5 47.5 60.83

• in game 2, player 1 is a null player. This is the reason why the game is only

convex, but not strictly convex, as the presence of a null player does not allow, by

definition, the possibility of having a strictly increasing marginal contribution for

such a player;

• game 3 is defined as the sum of games 1 and 2;

• game 4 is defined as twice game 1 and it preserves the symmetry of players 2 and

3;

• the marginal contributions of player 1 are always higher in game 1 than in game

2, and higher in game 4 than in game 3.

The Shapley values of the four games are presented in Table 3. The equal division

payoff vector is simply equal to ED(vk) = (25, 25, 25, 25) when k = 1, 2, and to

ED(vk) = (50, 50, 50, 50) when k = 3, 4.

6 Results

The experiment was conducted at the Institute of Social and Economic Research (ISER),

Osaka University, in January and February 2019 (Winter mechanism) and January and
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February 2022 (H–MC mechanism).7 A total of 176 students, who had never partic-

ipated in similar experiments before, were recruited as subjects of the experiment, 96

playing the Winter mechanism and 80 playing the H–MC mechanism.8 The experiment

was computerized with z-Tree (Fischbacher, 2007) and participants were recruited using

ORSEE (Greiner, 2015).

To control for potential ordering effects, each participant played all four games twice

in one of the following four orderings: 1234, 2143, 3412, and 4321.9 Between each

play of a game (called a round), players were randomly rematched into groups of four

players, and participants were randomly assigned a new role within the newly created

group.10 At the end of the experiment, two rounds (one from the first four rounds and

another from the last four rounds) were randomly selected for payments. Participants

received cash rewards based on the points that they earned in these two selected rounds,

with an exchange rate of 20 JPY = 1 point, as well as a 1,500 JPY participation fee.

On average, the experiments lasted for 1 hour 40 minutes for Winter and 1 hour 45

minutes for H–MC, including the instructions (15 minutes for Winter and 11 minutes

for H–MC), a comprehension quiz (5 minutes), and payment.11 The average earnings

7The experiments were conducted in 2019 and 2022 because the original H–MC experiment con-
ducted in December 2019 (which we refer to as the pseudo-H–MC or H–MCsim in Appendix V) did not
reflect the H–MC model precisely, and we have redone the H–MC experiment to correct this. Appendix V
compares the outcomes of the pseudo-H–MC conducted in December 2019 and the (corrected) H–MC
conducted in January–February 2022.

8The difference in the number of participants between the two mechanisms is a result of variations in
the show-up rate among experimental sessions.

9We let participants play all four games, instead of just one, in each session. Although this design
choice may have meant participants were slower in learning how to play the game, we consider that
having within-session variations is desirable because the tests of the axioms involve comparing outcomes
across different games.

10We implemented random reassignment of the roles across rounds instead of fixing the role. Again,
this may make learning the game slower for players given that their roles change, as Guerci et al. (2014)
suggest. However, given the existence of the null player in one of the four games considered, we chose
reassignment of the role to avoid participants feeling the experiment was unfair.

11Participants received a copy of instruction slides, and a prerecorded instruction video was played.
The quiz was given on the screen after the explanation of the game. The user interface was explained
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were 2,650 JPY for Winter and 2,850 JPY for H–MC.

We first compare the Winter and H–MC mechanisms in terms of the frequency of

grand coalition formation and efficiency. Then, we analyze whether the resulting alloca-

tions from the two mechanisms match the Shapley values. We contrast the experimental

results with the allocation predicted under the SPNE as well as under an equal division.

Additional analyses of our experimental results are presented in the Appendix II to IV.

6.1 Grand coalition formation and efficiency

Figure 2 presents the results concerning the grand coalition formation under the H–MC

and Winter mechanisms for the four games.12

We observe that for game 2 and the Winter mechanism, the grand coalition never

forms (because player 1 is a null player and, consequently, the game is only convex and

not strictly convex13). Therefore, for game 2, we consider the partition {{1}, {2, 3, 4}}

as a realization of the grand coalition for both the H–MC and Winter mechanisms.

Considering the four games together, the grand coalition (in the case of game 2,

either the grand coalition or the {2, 3, 4} coalition) is formed in 61.9% of the cases under

the H–MC mechanism, but only in 40.1% of the cases under the Winter mechanism. In

particular, we observe that the grand coalition is formed more frequently under the H–

MC mechanism than under the Winter mechanism in games 3 and 4 at the 1% and 5%

during the practice rounds, referring to the handout about the computer screen. See Appendix VI for
English translations of the instruction materials and the comprehension quiz.

12The figure is created based on the estimated coefficients of the following linear regressions: gci =
β1HMCi+ β2Winteri+µi where gci is a dummy variable that takes a value of 1 if the grand coalition
is formed, and zero otherwise, in group i, HMCi (Winteri) is a dummy variable that takes a value of
1 if the H–MC (Winter) mechanism is used, and zero otherwise. The standard errors are corrected for
within-session clustering effects. The statistical tests are based on the Wald test for the equality of the
estimated coefficients of two treatment dummies.

13Recall that the Winter mechanism is theoretically defined for strictly convex games. In this game,
Player 1 always has a zero marginal contribution and, as such, can be left out of any coalition at no cost
for either him/her or the other players.
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Figure 2: Proportion of times the grand coalition is formed
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the proportion of times that the

formation of the grand coalition is significantly higher for the H–MC mechanism compared with the Winter mechanism at the 1%,

5%, and 10% significance levels (Wald test), respectively.

significance levels, respectively.

As a direct consequence of the grand coalition being formed in less than 100% of

the cases, both mechanisms fail to achieve full efficiency. Efficiency is computed as the

sum of the payoffs obtained by the four players as a proportion of the value of the grand

coalition of the considered game (100 for games 1 and 2, and 200 for games 3 and 4).

As Figure 3 shows, efficiency is significantly higher under the H–MC mechanism than

under the Winter mechanism in games 1 and 4 (both at the 10% level).14

Therefore, we conclude as follows.
14The figure is created based on the estimated coefficients of the following linear regressions: Effi =

β1HMCi + β2Winteri + µi, where Effi ≡
∑

i πi

v(N) is the efficiency measure for group i, HMCi
(Winteri) is a dummy variable that takes a value of 1 if the H–MC (Winter) mechanism is used, and zero
otherwise. The standard errors are corrected for within-session clustering effects. The statistical tests are
based on the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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Figure 3: Efficiency
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the efficiency for the H–

MC mechanism is significantly higher than for the Winter mechanism, at the 1%, 5%, and 10% significance levels (Wald test),

respectively.

Result 1. Although the grand coalition is not always formed under the two mechanisms,

it is more frequently formed under the H–MC mechanism than under the Winter mech-

anism. Consequently, efficiency is higher under the H–MC mechanism than under the

Winter mechanism.

Note that under the H–MC mechanism, the proposer is forced to offer feasible de-

mands, that is, if S is the set of players remaining in the game, the proposer has to

propose a total distribution of payoffs no larger than v(S). Conversely, under the Win-

ter mechanism, the players, speaking one after the other, may make unfeasible demands.

As a result, the formation of a coalition under the H–MC mechanism is simply deter-

mined by whether the players choose to accept the proposal or reject it, whereas under

the Winter mechanism, the formation of the coalition can be blocked by unfeasibility
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conditions. Such a difference between the two mechanisms can cause the significantly

higher frequency of the grand coalition formation under the H–MC mechanism com-

pared with the Winter mechanism.15

6.2 Allocations

We use πHMC(vk) to denote a vector of payoffs obtained by the players in the H–MC

mechanism in game k, with k = 1, 2, 3, 4. Analogously, let πW (vk) denote a vector of

payoffs obtained by the players under the Winter mechanism. The ex ante theoretical

prediction for both mechanisms states that the mean of such vectors (based on many re-

alizations with different orderings of the players) should converge to the Shapley value.

When players fail to form the grand coalition, the total payoff obtained by the players

is smaller than the value under the grand coalition. As a result, the average realized

payoff vectors are significantly different from the Shapley value, as shown in Figure I.1

of Appendix I. Therefore, we focus our analyses on those groups that formed the grand

coalition.16

Our main analyses are based on a set of ordinary least squares (OLS) regressions

(using only the data from groups that formed the grand coalition) for the following

15In Appendix II, we report the frequency of the grand coalition formation and efficiency by separating
the data for the first half (rounds 1–4) and the second half (rounds 5–8) of the experiment. We observe
an increase in both the frequency of the grand coalition formation and efficiency, at least in some of the
games, for both mechanisms. A significantly higher frequency of grand coalition formation and efficiency
is observed under the H–MC mechanism than under the Winter mechanism even in the second half of the
experiment.

16In Appendix IV, we report the results based on all groups using payoff shares, instead of restricting
our attention to groups that formed the grand coalition.
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Table 4: Results of linear regression based only on the groups that formed the grand
coalition

H–MC Winter
π1 π2 π3 π4

g1 23.44 25.48 25.00 26.08
(1.23) (0.50) (0.59) (1.29)

g2 13.00 25.8 28.08 33.12
(1.98) (0.63) (0.91) (0.80)

g3 45.53 48.68 50.53 55.26
(3.82) (0.65) (2.28) (3.19)

g4 47.10 51.53 50.03 51.33
(2.46) (1.02) (1.15) (1.27)

R2 0.95 0.98 0.98 0.98
Obs. 99 99 99 99

π1 π2 π3 π4
g1 23.09 24.57 22.43 26.65

(2.28) (1.11) (1.01) (3.11)
g2 0.0 29.15 31.56 38.81

- (1.03) (0.54) (0.73)
g3 21.00 52.67 57.33 68.00

(3.57) (5.42) (4.11) (5.19)
g4 44.24 48.14 45.57 56.86

(3.22) (4.12) (8.58) (4.68)
R2 0.90 0.93 0.91 0.95

Obs. 77 77 77 77

Note: The standard errors are corrected for within-group clustering effects.

system of equations:

π1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π4 = d1g1 + d2g2 + d3g3 + d4g4 + u4

(1)

where πi is the payoff of player i, gj is a dummy variable that takes a value of 1 if the

game j ∈ {1, 2, 3, 4} is played, and zero otherwise. Because participants play all four

games twice, we correct the standard errors for within-group clustering effects. Note

that the estimated coefficients aj , bj , cj , and dj are the average payoffs in game j for

players 1, 2, 3, and 4, respectively. Table 4 reports the results of these regressions,

showing the H–MC (Winter) mechanism in the left (right) panel.

Figure 4 shows the average payoffs obtained by each player in the four games con-
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Figure 4: Mean payoffs based only on the groups that formed the grand coalition
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* indicate the frequency with which the average normalized payoff is significantly different from the Shapley values at the 1%, 5%,

and 10% significance levels (Wald test), respectively.
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ditional on the grand coalition being formed. The horizontal lines indicate the Shapley

values for each game. It can be observed that for the Winter mechanism, the average

payoffs are not significantly different from the Shapley values for all four players in

games 1, 3, and 4. Conversely, for the H–MC mechanism, they are significantly dif-

ferent from the Shapley values for almost all players in all four games. This indicates

that provided that the grand coalition is formed, the average payoffs under the Winter

mechanism are closer to the Shapley values than those under the H–MC mechanism.

To compare the two mechanisms in terms of how close their average payoffs are to

the Shapley values, we employ the following measure:

Dis2φ =

√∑
i

(πi − φi)2 (2)

where πi and φi are the average payoff and Shapley value for player i, respectively, in

the given game.

To conduct a statistical test, we employ a bootstrapping technique. For each itera-

tion, we use a sub-sample (with replacement) of our data, and run the system of regres-

sions (Eq. 1). Based on the obtained estimated coefficients (i.e., the average payoffs for

the sub-sample), we compute Dis2φ.

Figure 5 shows the result based on the outcomes of 1,000 repetitions. For all four

games, Dis2φ is statistically significantly smaller under the Winter mechanism than

under the H–MC mechanism.17

Result 2. Provided the grand coalition is formed, the average payoffs follow the Shapley

17Based on two-sample t-test with unequal variance using the sample generated by the bootstrap. The
means Dis2φ (standard errors) for the H–MC mechanism are 5.13 (0.035) in game 1, 15.70 (0.064)
in game 2, 28.99 (0.074) in game 3, and 11.34 (0.047) in game 4. For the Winter mechanism, the
corresponding values are 4.99 (0.047) for game 1, 2.61 (0.030) for game 2, 10.60 (0.178) for game 3, and
7.85 (0.094) for game 4.
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Figure 5: Distance from Shapley
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H–MC and the Winter mechanisms at the 1%, 5%, and 10% significance levels (two-sample t-test), respectively.

values more closely under the Winter mechanism than under the H–MC mechanism.

6.3 Realized allocations and a posteriori equilibria

Now, let us analyze the realized payoffs in the light of the a posteriori equilibrium

payoff vectors. We continue to focus only on the groups that formed the grand coali-

tion. We measure the distance between the realized payoff vectors and the allocation

under the SPNE for the four games by their Euclidean distance. Let eqi be the equilib-

rium payoff for player i for the given game, the realized order of the players (making

a proposal or demand), and the mechanism. The distance of the realized payoff from

the equilibrium is computed as Dis2NE =
√∑

i(πi − eqi)2.18 We also consider the

distance between the realized payoff vectors and equal division payoffs, defined by

Dis2ED =
√∑

i(πi − EDi)2 where EDi is the equal division payoff for player i for

18For the sake of simplicity, we omit the specifications about the considered mechanism and the game.
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Figure 6: Mean of the distances of the realized payoff vectors from the SPNE and the
equal division
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payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H–MC and the

Winter implementation, at the 1%, 5%, and 10% significance levels (Wald test), respectively.

the given game.

Figure 6 shows the mean Dis2NE and the mean Dis2ED for the two mechanisms

in the four games.19 We observe that the distance to the equal division is significantly

smaller (at the 1% level) for the H–MC mechanism than for the Winter mechanism in all

four games. This may not be surprising because, as Observation 1 states, the a posteri-

ori equilibrium payoff vectors tend to be less unequal under the H–MC mechanism than

under the Winter mechanism. In fact, as we can observe, the distance to the equilibrium

allocation is significantly smaller for the H–MC mechanism than for the Winter mecha-

19The figure is created based on the estimated coefficients of the following linear regressions: Disi =
β1HMCi+β2Winteri+µi, whereDisi is the relevant distance measure for group i,HMCi (Winteri)
is a dummy variable that takes a value of 1 if the H–MC (Winter) mechanism is used, and zero otherwise.
The standard errors are corrected for within-session clustering effects. The statistical tests are based on
the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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nism in games 1 and 4 (in which the equilibrium payoffs are less unequal than in games

2 and 3) at the 1% level. For games 2 and 3, however, the distance to the equilibrium

allocations is not significantly different between the two mechanisms.

Figure 6 shows that, on the one hand, the payoff vectors realized under the H–MC

mechanism are significantly closer to the equal division than to the equilibrium ones in

all but game 2 (in which Dis2NE and Dis2ED are not significantly different). On the

other hand, under the Winter mechanism, the realized payoff vectors are significantly

closer to the equal division than to the equilibrium ones only in games 1 and 4, but the

opposite is the case for game 2. In game 3, Dis2NE and Dis2ED are not significantly

different under the Winter mechanism.

Result 3. The H–MC mechanism more often results in payoffs that are closer to the

equal division than to the equilibrium payoffs compared with the Winter mechanism.

This indicates that, albeit imperfectly, the Winter mechanism achieves the allocation

that better reflects the power of the players than does the H–MC mechanism.

7 Conclusions

We have experimentally compared two of the best-known bargaining procedures in the

Nash program, the H–MC and the Winter mechanisms. Our main rationale for this

choice is simplicity, which is a key desideratum when considering possible applicability

to the real world. These two mechanisms are simple and similar in their implementation,

making them suitable for a direct comparison. They differ mainly in the way that they

implement bargaining, as the H–MC mechanism is based on offers, and the Winter on

demands.
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Previous studies have found a certain closeness of the experimental results when

making a similar comparison (see Fréchette et al., 2005a), despite the sharply different

theoretical predictions. Our findings partially contradict these results, showing how two

very similar mechanisms can behave differently, despite the close theoretical predic-

tions. In particular, the H–MC mechanism results in higher frequencies of the grand

coalition formation and, consequently, higher efficiency than the Winter mechanism.

We suggest that the H–MC mechanism is better suited to bargaining over cost or payoff

allocation problems when the main target is efficiency, or when full cooperation repre-

sents a crucial goal for society (e.g., full cooperation in the airport problem (Littlechild

and Owen, 1973) results in one single airport being built instead of many, and this

is certainly desirable for environmental reasons). Conversely, provided that the grand

coalition is formed, the Winter mechanism results in average payoffs that are closer to

the Shapley values and better satisfy various axioms. We suggest that the Winter mech-

anism is best suited to allocation problems in which it is important to value players’

effective power (e.g., production games (Owen, 1975), or in which arguments such as

social welfare and symmetry are inescapable (e.g., allocation of resources in health or

social care (Kluge, 2007)).

Our findings suggest that when facing a cost or payoff allocation problem, the choice

of which bargaining procedure to implement, one based on offers or on demands, may

have some unexpected effects, regardless of the theoretical prediction. This should be

taken into account when making such a choice in various applications. In fact, different

bargaining mechanisms, even when equivalent from the theoretical point of view, favor

different properties that are reflected in the resulting allocations. An example of such

effects may be found in the verification of the null player property of the Shapley value

in Appendix III. Theoretically, a player who always has a zero marginal contribution
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should receive a zero payoff, according to Shapley. According to the theoretical pre-

diction, in a demand-based mechanism, nonnull players should systematically refuse a

strictly positive demand by a null player. However, we find that nonnull players seem to

be uncomfortable with making a zero offer to a null player in an offer-based mechanism,

and this contributes to a final payoff share that is closer to the equal division solution.

A deeper analysis of how different mechanisms can lead players toward respecting or

violating some properties would be a fruitful direction for future research.

Many potentially important complementary questions can be addressed in future

research. Among others, an analysis of the more complex versions of our proposed

mechanisms (e.g., the Winter mechanism with more periods and a discount factor, or

the H–MC mechanism where the proposer whose offer is refused then leaves the game

with a probability strictly smaller than one) can be compared with our actual results.

Comparing the outcomes of the experiments based on noncooperative mechanisms with

those of unstructured bargaining experiments would be an interesting topic for future

research.
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Appendix

I The average payoffs

Figure I.1 shows the mean realized payoffs based on all groups in each of the four

games, and the horizontal lines indicate the Shapley values for each game.20

Figure I.1: Mean payoffs, all groups
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the average payoff is significantly

different from the Shapley values at the 1%, 5%, and 10% significance levels, respectively (Wald test).

20As in Figure 4, the mean and the standard errors are obtained by running the system of linear regres-
sions that take each player’s payoff as the dependent variables and four game dummy variables without
the constant. The standard errors are corrected for session-level clustering effects. The statistical tests are
based on these regressions.
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II Effect of learning and bargaining dynamics

II.1 Grand coalition formation and efficiency

We have already shown in Section 3 that both mechanisms fail to achive an efficient

outcome. However, H–MC mechanism performs significantly better in this matter. A

possible explanation is because, as we have already observed in Section 3 and with

Result 1, H–MC mechanism forces feasible offers, while Winter mechanism allows for

unfeasible demands which, as a result, lead to inefficiencies. This also naturally leads

to the fact that the grand coalition is formed more often under the H–MC mechanism,

than under the Winter mechanism.

One may hypothesize that this generalized failure (more for Winter, but partially also

for H-MC) in reaching an efficient outcome can explained by some limited rationality

arguments: even if we chose two mechansims that are in our opinion simple, the games’

optimal dynamics is hard to understand for participants to the experiment especially in

the beginning.

We check this hypothesis by investigating the presence of a learning effect by com-

paring the outcomes in the first half of four rounds (1-4) and the second half of four

rounds (5-8). Because the number of groups that formed a grand coalition becomes

Table II.1: Number of groups with Grand Coalition

game 1 game 2 game 3 game 4
Winter early 10 10 1 9
Winter late 13 17 5 12
H–MC early 10 12 11 17
H–MC late 15 13 8 13
Note: game 2 allows {2, 3, 4} to be the grand coalition.
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Figure II.2: Proportion of times the grand coalition formed in early and late rounds
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small if we separate the data into the first half and second half (see Table II.1), we

do not report the results of the analyses comparing the distance between the average

realized payoff vectors and the Shapley values, or whether realized payoff vectors sat-

isfy various axioms characterizing the Shapley value. Instead, we investigate only the

frequency of grand coalition formation and efficiency.

Figures II.2 and II.3 show the frequency of the grand coalition formation and the

average efficiency (i.e., the average total payoff / value of the grand coalition) for the

first half and the second half (i.e., the first four rounds vs. the second four rounds) of

each game. For H–MC, the frequency of the grand coalition formation and the average
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Figure II.3: Efficiency in early and late rounds
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efficiency are significantly higher in the later rounds only in game 1; for the remaining

three games, there are no significant differences between the early and late rounds. For

the Winter mechanism, both the frequency of the grand coalition formation and the

average efficiency are significantly higher in the later rounds only in game 3, with no

significant differences in other games.

As conclusion, we report no statistically significant learning effect, when imple-

menting either the H–MC or the the Winter mechanism. This does not rule our the

possibility that by implementing a higher number of repetitions, a significant learning

effect could be observed.
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II.2 Departure from the Shapley payoff share

Here, we investigate some possible dynamics that could lead the experimental results

of H–MC mechanism to be closer to the equal division solution (Result 3), when com-

pared to the experimental results of the Winter mechanism that are instead closer to the

Shapley value (Result 2).

In Section 6, we have already shown that accepted proposals in the H–MC mech-

anism go in the sense of equal division. This result is not surprising, as experimental

results of offer-based mechanisms (such as the well-known two-player bargaining over a

pie of Rubinstein (1982)) often show that, contrary to the theoretical prediction, players

tend to go for an equal split of the pie. We show that, in our experiment, this behavior

becomes more evident after a first rejection of a proposal, as second proposals are closer

to the equal share than the first ones.

In Figure II.2, we show the distance from equal division, devEQL =
∑

i |aL,i−ED|

where aL,i is the proposed allocation for player i in Lth proposal (for a group) and ED

is the equal division payoff for the game, for the first (L = 1, horizontal axis) and the

second (vertical axis) proposals (top) and the second (L = 2, horizontal axis) and the

third (vertical axis) proposals (bottom) for each game. Each dot corresponds to a pair

of the proposals of a group.

We observe a clear tendency for either the second proposal to be more equal than the

first one (devEQ1 > devEQ2) or the second proposal to be more equal than the third

one (devEQ2 > devEQ3) depending on the game.
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Figure II.4: H–MC mechanism: Distance from equal division for the first and the second
proposals (top) and the second and the third proposals (bottom)
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p-values are based on the Signed-Rank test (two-tailed) with the null hypothesis devEQL = devEQL+1.
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III Testing for the axioms of the Shapley value

We test the axioms that are historically the most relevant to characterizing the Shapley

value. In doing so, we aim to provide greater insight into whether a demand-based

bargaining mechanism is more appropriate than an offer-based bargaining mechanism

for cost or payoff allocation problems when the allocation scheme is constructed on the

main axiomatic solution notion of cooperative game theory, that is, the Shapley value.

First, we provide two definitions, which are used in the following.

Players i and j are symmetric in v ∈ GN , if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \ {i, j}. Player i is a null player in v ∈ GN if v(S) = v(S \ {i}) for all S ⊆ N .

In the literature, we find various axiomatic characterizations of cooperative solutions

and, in particular, of the Shapley value. Given a solution ψ : GN → RN , we list some

of the most commonly used axioms to provide a characterization.

Axiom 1 (Efficiency): for every v in GN ,
∑

i∈N ψi(v) = v(N).

Axiom 2 (Symmetry): if i and j are symmetric players in game v ∈ GN , then

ψi(v) = ψj(v).

Axiom 3 (Additivity): for all v, w ∈ GN , ψ(v + w) = ψ(v) + ψ(w).

Axiom 4 (Homogeneity): for all v ∈ GN and a ∈ R, ψ(av) = aψ(v).

Axiom 5 (Null player property): if i is a null player in game v ∈ GN , then

ψi(v) = 0.

Axiom 6 (Strong monotonicity): if i ∈ N is such that v(S ∪ {i}) − v(S) ≤

w(S ∪ {i})− w(S) for each S ⊆ N , then ψi(v) ≤ ψi(w).
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Axiom 7 (Fairness): if i, j are symmetric in w ∈ GN , then ψi(v +w)− ψi(v) =

ψj(v + w)− ψj(v) for all v ∈ GN .

Fairness states that if we add a game w ∈ GN , in which players i and j are

symmetric, to a game v ∈ GN , then the payoffs of players i and j change by the

same amount.

In particular, among many others, the axiomatization of Shapley (1953), which is the

most classical one, involves axioms 1, 2, 3, and 5. The axiomatization of Young (1985)

involves axioms 1, 2, and 6, whereas that of van den Brink (2002) involves axioms 1, 5,

and 7. Note that axiom 4, even if not directly involved in any of these axiomatizations,

is crucial because, together with axiom 3, it guarantees the linearity of the solution.21

We noted in Section 6 that both mechanisms fail to satisfy efficiency (axiom 1) if we

examine overall data. Here, we examine the remaining six axioms. These axioms are

tested based on the estimated coefficients obtained from running the regression of Eq. 1

as follows.

• Symmetry (axiom 2) requires b1 = c1 and b4 = c4.

• Additivity (axiom 3) and homogeneity (axiom 4) require that x3 = x1 + x2 and

x4 = 2x1 for x ∈ {a, b, c, d}, respectively.

• Null player property (axiom 5) requires that a2 = 0.

• Strong monotonicity (axiom 6) requires that a1 > a2 and a4 > a3.

21The equal division solution satisfies 1, 2, and 3, but does not satisfy the null player property in 5.
However, it satisfies a similar property when null players are replaced with nullifying players. Player i
is a nullifying player if v(S) = 0 for each S ⊆ N such that i ∈ S. Then, we can state the following
additional axiom that can be called the nullifying player property: if i is a nullifying player in game
v ∈ GN , then ψi(v) = 0. Replacement of the null player property in the axiomatization of the Shapley
value in Shapley (1953) with the nullifying player property characterizes the equal division solution (see
van den Brink, 2006).
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Table III.2: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
a grand coalition)

H–MC Winter

Axiom H0 χ2 p-value χ2 p-value

Symmetry a2 = a3 0.35 0.552 1.85 0.174
d2 = d3 1.60 0.206 0.06 0.811

Additivity c1 = a1 + b1 6.69 0.001 0.13 0.721
c2 = a2 + b2 3.23 0.072 0.02 0.878
c3 = a2 + b3 2.16 0.142 0.47 0.492
c4 = a4 + b4 1.52 0.218 0.78 0.376

Homogeneity d1 = 2a1 0.00 0.946 0.10 0.749
d2 = 2a2 0.08 0.772 0.11 0.745
d3 = 2a3 0.00 0.983 0.00 0.947
d4 = 2a4 0.06 0.813 0.82 0.365

Null player a2 = 0 42.91 0.000 . .
Strong monotonicity a1 = b1 10.76 0.001 102.24 0.000
(H0 should be rejected) c1 = d1 0.16 0.692 26,84 0.000
Fairness b3 − b2 = c3 − c2 0.62 0.433 0.74 0.391

• Fairness (axiom 7) requires that b3 − b2 = c3 − c2.

In Table III.2, we present the results of the Wald tests for the verification of these axioms,

together with the null hypothesis (H0).

Note that the symmetry (according to which H0 should not be rejected) is confirmed

for the two cases under both the Winter and the H–MC mechanisms. The additivity

(according to which H0 should not be rejected) is always confirmed under the Winter

mechanism, but is confirmed in only two of four cases under the H–MC mechanism.

The homogeneity (according to which H0 should not be rejected) is always confirmed

for both mechanisms. The null player property (according to which H0 should not be

9



Table III.3: Tests of axioms (based only on the groups that formed a grand coalition)

Axiom H–MC Winter

Symmetry + +
Additivity - +
Homogeneity + +
Null player property - +
Strong monotonicity - +
Fairness + +
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

rejected) is not confirmed in the H–MC mechanism, but it is confirmed (respected 100%

of the time) for the Winter mechanism. The strong monotonicity (according to which

H0 should be rejected) is confirmed for the Winter mechanism but only for half of the

time for the H–MC mechanism. The fairness (according to which H0 should not be

rejected) is confirmed for both mechanisms.

Let us consider that the axiom is satisfied on average if it is confirmed for strictly

more than half of the cases being tested. Table III.3 summarizes whether each axiom is

satisfied on average (+) or not (-) for two mechanisms. We can state the following.

Result 4. Provided the grand coalition is formed, the Winter mechanism better satisfies

axioms that characterize the Shapley value than the H–MC mechanism.
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IV Additional results based on payoff shares

In this section, we report the results based on all the groups using the payoff share

instead of restricting our attention to those that formed the grand coalition. Payoff shares

are defined as π̃i
W (vk) =

πWi (vk)∑
j∈N πWj (vk)

×vk(N) and π̃i
H−−MC(vk) =

πH−−MC
i (vk)∑

j∈N πH−−MC
j (vk)

×

vk(N) for each i = 1, 2, 3, 4.

As in the main text, our analyses are based on running a set of OLS regressions

shown by Eq. 1 but using payoff shares as dependent variables. Table IV.4 shows the

results of the regression.

Table IV.4: Results of linear regression for normalized payoffs

H–MC Winter
π̃1 π̃2 π̃3 π̃4

g1 22.98 24.29 25.01 27.72
(0.96) (0.44) (0.67) (0.73)

g2 8.91 26.38 28.51 36.21
(1.27) (0.38) (0.82) (0.42)

g3 28.11 50.92 53.45 67.52
(4.25) (0.60) (1.42) (3.27)

g4 47.55 48.39 48.78 55.28
(1.48) (2.22) (0.92) (2.10)

R2 0.81 0.95 0.95 0.95
Obs. 160 160 160 160

π̃1 π̃2 π̃3 π̃4
g1 21.99 21.91 23.39 32.80

(2.78) (3.80) (2.12) (2.09)
g2 0.0 28.70 30.75 40.55

- (0.61) (0.44) (0.51)
g3 8.95 54.09 61.52 75.55

(2.16) (3.86) (2.84) (4.57)
g4 42.18 48.13 45.57 64.13

(3.15) (2.34) (5.14) (4.51)
R2 0.73 0.90 0.92 0.93

Obs. 192 192 192 192

Figure IV.5 shows the mean of the normalized payoffs in the four games, where the

horizontal lines indicate the Shapley values for each game. It can be observed that for

the Winter mechanism, the average normalized payoffs are not significantly different

from the Shapley values for all four players in games 1, 2, and 4. However, for the

H–MC mechanism, the average normalized payoffs for all four players do not respect

the Shapley values in any of the games at the 10% significance level.
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Figure IV.5: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **, and

* indicate the frequency with which the average normalized payoff is significantly different from the Shapley values at the 1%, 5%,

and 10% significance levels, respectively (Wald test).

Figure IV.6 shows the mean Dis2φ (based on the normalized payoff). As in the

main text, we use a bootstrapping technique with 1,000 repetitions to create the figure

and conduct the statistical tests. In contrast to the analyses restricted to the groups that

formed a grand coalition, we now observe that Dis2φ is significantly smaller for the

H–MC mechanism than for the Winter mechanism in games 1 and 3. For the other two

games, as before, Dis2φ is significantly smaller for the Winter mechanism than for the
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Figure IV.6: Distance of the normalized payoffs from Shapley
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the significant difference between the

H–MC and Winter mechanisms at the 1%, 5%, and 10% significance levels, respectively (two-sample t-test).

H–MC mechanism.22

Tables IV.5 and IV.6 summarize the results of testing the six axioms. Based on

the normalized payoff, on average, the symmetry, strong monotonicity, and fairness

axioms are now satisfied under the H–MC mechanism. For the Winter mechanism, with

normalized payoffs, the fairness axiom is no longer satisfied.

Thus, if we consider all the groups and normalized payoffs, the Winter and H–

MC mechanisms are comparable in terms of their distance to the Shapley value and

satisfaction of its properties.

Figure IV.7 shows the mean Dis2NE and the mean Dis2ED for the two mechanisms

in the four games computed based on the normalized payoffs using all the groups. The

22The mean Dis2φ (standard error) values based on the normalized payoff for the H–MC mechanism
are 3.73 (0.034) in game 1, 10.52 (0.056) in game 2, 7.78 (0.120) in game 3, and 7.58 (0.638) in game 4.
For the Winter mechanism, the corresponding values are 4.11 (0.048) in game 1, 0.96 (0.016) in game 2,
16.07 (0.077) in game 3, and 6.91 (0.091) in game 4.
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Table IV.5: Wald tests for the verification of the symmetry, additivity, homogeneity,
strong monotonicity, and fairness axioms for normalized payoffs

H–MC Winter

Axiom H0 χ2 p-value χ2 p-value

Symmetry a2 = a3 0.53 0.466 0.08 0.781
d2 = d3 0.03 0.869 0.14 0.712

Additivity c1 = a1 + b1 0.99 0.319 7.25 0.007
c2 = a2 + b2 0.07 0.790 0.65 0.422
c3 = a2 + b3 0.00 0.952 2.54 0.111
c4 = a4 + b4 0.92 0.336 0.35 0.555

Homogeneity d1 = 2a1 2.48 0.115 0.06 0.805
d2 = 2a2 0.01 0.926 0.37 0.542
d3 = 2a3 0.31 0.580 0.02 0.892
d4 = 2a4 0.00 0.963 0.35 0.552

Null player a2 = 0 49.51 0.000 . .
Strong monotonicity a1 = b1 46.26 0.000 62.74 0.000
(H0 should be rejected) c1 = d1 14.57 0.001 147.12 0.000
Fairness b3 − b2 = c3 − c2 0.58 0.447 7.53 0.006

Table IV.6: Tests of axioms for normalized payoffs

Axiom H–MC Winter

Symmetry + +
Additivity + +
Homogeneity + +
Null player property - +
Strong monotonicity + +
Fairness + -
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

normalized payoffs under the H–MC mechanism are significantly closer to the equal

division than those under the Winter mechanism in all four games. Furthermore, those

under H–MC are significantly closer to the equilibrium payoffs in games 1 and 4 than
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Figure IV.7: Mean of the distances of the normalized payoff vectors from the SPNE and
the equal division
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the distance of the normalized

payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H–MC and the

Winter mechanism at the 1%, 5%, and 10% significance levels, respectively (Wald test).

those under the Winter mechanism. However, in these games, for both the Winter and

H–MC mechanisms, normalized payoffs are significantly closer to the equal division

than to the equilibrium payoffs. For games 2 and 3, the normalized payoffs under the

Winter mechanism are significantly closer to the equilibrium than to the equal division.

Under H–MC, Dis2NE and Dis2ED are not significantly different in games 2 and 3.
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V Comparison of a classical H–MC sequential approval

mechanism vs. a pseudo-H–MC simultaneous approval

mechanism

The comparison between sequential mechanisms and simultaneous ones in favoring the

formation of efficient coalitions has been the object of recent experimental laboratory

studies (Abe et al., 2021). Experimental evidence shows that subjects may perform very

differently in these two proposed settings. Analogously, we propose a comparison be-

tween the performances of the H–MC mechanism and a pseudo-H–MC mechanism (in

the following, denoted as H–MCsim), whose structure is identical to that of the original

mechanism except that after an offer is proposed, players are asked to either accept or

refuse the proposal simultaneously. Theoretically, the H–MCsim mechanism allows for

many more Nash equilibria in which two or more players refuse the proposal. We show

that sometimes, as observed by Fréchette et al. (2005b), bargaining behavior is not as

sensitive to the different bargaining rules as the theory suggests.

The H–MCsim experiment was conducted in December 2019 at ISER at Osaka Uni-

versity. In total, 84 participants, who had never participated in similar experiments

before, were recruited. The experimental procedure was identical to the H–MC ex-

periment reported in the main text. On average, the experiment lasted for 1 hour 30

minutes, including the instructions (11 minutes), a comprehension quiz (5 minutes),

and payment. The average earnings were 2,780 JPY.
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V.1 Grand coalition formation and efficiency

Figures V.8 and V.9 report the results concerning the grand coalition formation and

efficiency. The only significant differences reported are for game 2.

Figure V.8: H–MC and H–MCsim mechanisms, proportion of times the grand coalition
is formed
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the proportion of times the grand

coalition was formed, which was significantly higher for the H–MC implementation compared with the H–MCsim implementation

at the 1%, 5%, and 10% significance levels (Wald test), respectively.
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Figure V.9: H–MC and H–MCsim mechanisms, efficiency
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the efficiency for the H–MC mechanism

is significantly higher than for the H–MCsim implementation at the 1%, 5%, and 10% significance levels (Wald test), respectively.
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V.2 Analyses based only on groups that formed the grand coalition

Table V.7 reports the results of running a set of OLS regressions as in Eq. 1 based on

groups that formed the grand coalition.

Table V.7: H–MCsim mechanism, results of the linear regression based only on the
groups that formed the grand coalition

H–MCsim

π1 π2 π3 π4
g1 23.88 25.63 24.56 25.93

(0.70) (0.43) (0.11) (0.42)
g2 11.07 26.07 27.73 35.13

(3.31) (1.45) (0.97) (1.95)
g3 45.88 51.32 49.72 53.08

(1.70) (1.19) (0.50) (1.84)
g4 47.83 48.67 50.5 53.00

(1.17) (0.89) (0.87) (1.10)
R2 0.96 0.99 0.99 0.97

Obs. 97 97 97 97

Note: The standard errors are corrected for within-group clustering effects.

Based on the estimated coefficients, Figure V.10 shows the average payoffs obtained

by each player in the four games, conditional on the grand coalition being formed.

The horizontal lines indicate the Shapley values for each game. We observe that the

two mechanisms perform similarly in that there are players whose average payoff is

significantly different from the Shapley value in all four games under both mechanisms.
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Figure V.10: H–MC and H–MCsim mechanisms, mean payoffs based only on the groups
that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **,

and * indicate the average normalized payoff, which is significantly different from the Shapley value at the 1%, 5%, and 10%

significance levels (Wald test), respectively.
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V.2.1 Distance between the ex ante payoffs and the Shapley value

We compute the distance of the average payoffs from the Shapley value, Dis2φ, using

the bootstrapping technique with 1,000 repetitions as we have done in the main text

comparing the H–MC and Winter mechanisms. The result is reported in Figure V.11. It

can be observed that the ex ante payoffs of H–MCsim are closer to the Shapley values

in games 2 and 4, whereas those of H–MC are closer to the Shapley values in games 1

and 3.23

Figure V.11: H–MC and H–MCsim mechanisms, distance from Shapley
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate significant differences between the

H–MC and the H–MCsim mechanisms at the 1%, 5%, and 10% significance levels (two-sample t-test), respectively.

23The meanDis2φ (standard error) values for the H–MC mechanism are 5.14 (0.035) in game 1, 15.70
(0.064) for game 2, 28.99 (0.074) for game 3, and 11.34 (0.047) in game 4. The corresponding values
for H–MCsim are 5.28 (0.018), in game 1, 13.09 (0.088) for game 2, 30.55 (0.091) for game 3, and 9.26
(0.057) in game 4.
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V.2.2 Realized allocations and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure V.12 that H–

MCsim results in outcomes significantly closer to equal division compared with H–MC

only in game 1, whereas in the other games there is no significant difference.

Figure V.12: H–MC and H–MCsim mechanisms, mean of the distances of the realized
payoff vectors from the SPNE and the equal division
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the distance of the normalized

payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H–MC and the

H–MCsim implementations at the 1%, 5%, and 10% significance levels, respectively (Wald test).
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V.2.3 Axioms

Finally, verification of the axioms (comparing Table V.8 and the left column of Ta-

bles III.2 and III.3) indicates that the differences in results between H–MC and H–

MCsim are observed for symmetry and fairness (satisfied in H–MC but not in H–MCsim).

Table V.8: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
the grand coalition)

Axiom H0 χ2 p-value Test

Symmetry a2 = a3 5.07 0.024 -
d2 = d3 1.11 0.293

Additivity c1 = a1 + b1 4.84 0.028 -
c2 = a2 + b2 0.03 0.861
c3 = a2 + b3 14.99 0.000
c4 = a4 + b4 11.10 0.001

Homogeneity d1 = 2a1 0.00 0.983 +
d2 = 2a2 13.12 0.000
d3 = 2a3 2.25 0.134
d4 = 2a4 0.43 0.513

Null player a2 = 0 9.90 0.002 -
Strong monotonicity a1 = b1 215.83 0.000 -

c1 = d1 0.67 0.411
Fairness b3 − b2 = c3 − c2 3.02 0.082 -
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

To summarize, there is no systematic difference between the H–MC and the H–

MCsim mechanisms except that the H–MC better satisfies the symmetry and fairness

axioms than does H–MCsim if we focus on the groups that formed grand coalitions.
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V.3 Analyses based on all the groups but only on normalized pay-

offs

Below, we compare H–MC and H–MCsim based on the normalized payoffs but using

the data for all groups. Table V.9 reports the results of running a set of OLS regressions

as in Eq. 1 using the normalized payoffs as dependent variables.

Table V.9: Results of linear regression for normalized payoffs
H–MCsim

π̃1 π̃2 π̃3 π̃4
g1 21.43 25.38 23.30 29.90

(1.88) (1.20) (1.53) (1.60)
g2 5.12 27.52 28.04 39.31

(1.63) (0.72) (0.83) (0.92)
g3 38.06 49.84 49.94 62.15

(1.75) (1.56) (0.70) (1.96)
g4 44.13 49.03 51.97 54.87

(0.56) (2.06) (2.33) (0.81)
R2 0.83 0.96 0.96 0.96

Obs. 168 168 168 168

Based on the estimated coefficients reported in the left panel of Table IV.4 and Ta-

ble V.9, Figure V.13 shows the average normalized payoffs obtained by each player in

the four games under H–MC and H–MCsim. The horizontal lines indicate the Shapley

values for each game. We observe that for game 1 under H–MCsim, the average normal-

ized payoffs of each of the four players are not significantly different from the Shapley

values.
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Figure V.13: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, **, and

* indicate the average normalized payoff being significantly different from the Shapley values at the 1%, 5%, and 10% significance

levels (Wald test), respectively.

V.3.1 Distance between the ex ante payoffs and the Shapley value

We compute the distance of the average normalized payoffs from the Shapley value,

Dis2φ, using the bootstrapping technique with 1,000 repetitions, as we have done above.

The result is reported in Figure V.14. It can be observed that the ex ante normalized

payoffs of H–MCsim are closer to the Shapley values in games 1 and 2, whereas those

25



Figure V.14: Distance of the normalized payoffs from Shapley

Game 1 Game 2

H–MC H–MCsim

0

20

40 ***

H–MC H–MCsim

0

20

40 ***

Game 3 Game 4

H–MC H–MCsim

0

20

40 ***

H–MC H–MCsim

0

20

40 ***

Note: The error bars show the one standard error range. The symbols ***, **, and * indicate the significant difference between the

H–MC and the H–MCsim mechanisms at the 1%, 5%, and 10% significance levels (two-sample t-test), respectively.

of H–MC are closer to Shapley values in games 3 and 4.24

V.3.2 Normalized payoffs and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure V.15 that

Dis2NE is significantly smaller under H–MC than under H–MCsim only in game 4.

For other games, the values are not significantly different between the two mechanisms.

In terms of Dis2ED, although it is significantly smaller under H–MC in game 2, the

opposite is the case for game 3. For games 1 and 4, there is no significant difference

between the two mechanisms. We observe that normalized payoffs are significantly

closer to the equal division than the SPNE for both mechanisms in games 1 and 4. For

24The mean Dis2φ (standard error) values based on the normalized payoff for H–MC are 3.73 (0.034)
in game 1, 10.52 (0.056) for game 2, 7.78 (0.120) for game 3, and 7.58 (0.638) in game 4. For H–MCsim,
the corresponding values are 2.89 (0.033) in game 1, 6.13 (0.042) for game 2, 19.24 (0.104) for game 3,
and 8.45 (0.058) in game 4.
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Figure V.15: Mean of the distances of the normalized payoff vectors from the SPNE
and the equal division
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Note: The error bars show the one standard error range. The symbols ***, **, and * indicate that the distance of the normalized

payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H–MC and the

H–MCsim implementations at the 1%, 5%, and 10% significance levels (Wald test), respectively.

H–MCsim, Dis2ED is significantly larger than Dis2NE in game 2, whereas the opposite

is the case for game 3. For H–MC, Dis2NE and Dis2ED are not significantly different

in games 2 and 3.

V.3.3 Axioms

Finally, verification of the axioms (comparing Table V.10 and the left column of Ta-

bles IV.5 and IV.6) indicates that the differences in results between H–MC and H–

MCsim are observed for additivity and homogeneity (satisfied in H–MC but not in H–

MCsim).

To summarize, even comparing the payoff shares using all the groups, there is no

systematic difference between the H–MC and the H–MCsim mechanisms, except that
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Table V.10: H–MCsim normalized payoffs, Wald tests for the verification of the sym-
metry, additivity, homogeneity, strong monotonicity and fairness axioms

Axiom H0 χ2 p-value Test

Symmetry a2 = a3 1.01 0.314 +
d2 = d3 0.47 0.492

Additivity c1 = a1 + b1 36.91 0.000 -
c2 = a2 + b2 1.11 0.292
c3 = a2 + b3 0.53 0.466
c4 = a4 + b4 4.78 0.0288

Homogeneity d1 = 2a1 0.16 0.689 -
d2 = 2a2 0.28 0.598
d3 = 2a3 5.90 0.015
d4 = 2a4 3.23 0.072

Null player a2 = 0 9.90 0.002 -
Strong monotonicity a1 = b1 23.87 0.000 +
(H0 should be rejected) c1 = d1 11.55 0.001
Fairness b3 − b2 = c3 − c2 0.15 0.694 +
+ indicates that the axiom is considered to be satisfied on average. − indicates the opposite.

H–MC better satisfies the additivity and homogeneity axioms than H–MCsim.
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VI Translated instruction materials and screenshots of

the comprehension quiz

• Winter mechanism: https://www.dropbox.com/s/galeo3todbah7iw/

Winter_1_loop_handout.pdf?dl=0

• H–MC mechanism: https://www.dropbox.com/s/ctlw85momf96vmx/

HMChandout_seq.pdf?dl=0

• Simultaneous voting version of the H–MC mechanism (H–MCsim): https://

www.dropbox.com/s/78lf5bn6qi3qfwp/HMChandout_sim.pdf?dl=

0
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