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1 Introduction

Whenever a facility is shared by different customers, departments, or other units of an
organization, the problem of how to allocate the costs or the payoffs among players
arises. Relevant examples of this situation include airports, transit systems, water dis-
tribution networks, inventory models, and scheduling. These contexts are well known
as cost or payoff allocation (or sharing) problems[] Similar sharing problems arise in
the context of “co-opetition” (Brandenburger and Nalebuft] |1996) where competitors
cooperate to achieve a common goal. Usually, in such contexts, two approaches based
on game theoretical concepts may be adopted.

One approach is for the players to bargain among themselves to determine how
costs or payoffs should be shared. However, this implies a strategic interaction, which
may result in unnecessary additional costs if it is conducted in an unrestricted fashion
(see, e.g., the arguments by [Roth and Verrecchia, 1979). Instead, many bargaining
procedures follow the tradition of setting up sequential, perfect information games based
on offers, that is, games in which, at each stage, one of the players becomes a proposer
of a cost (payoff) allocation, with a requirement for reaching unanimous agreement.
Such bargaining procedures implement negotiations in the style of the well-known two-
player bargaining over a pie in Rubinstein’s problem (Rubinstein, 1982), which is then
extended to the n-player case.

Alternatively, one can view the problem as a normative one, in which an external
player, a so-called regulator, designs a pricing (rewarding) scheme that maximizes some
measures of social welfare or that imposes axioms of equity or stability. [Shubik] (1962)

was among the original proponents of the Shapley value (Shapley, [1953) as a method

"Many specific concrete examples of analogous situations come from one of the most typical eco-
nomic phenomena: consumption and the contribution to public goods.



of joint-cost allocation. At present, this value continues to attract the greatest interest
among the allocation schemes predicated on notions of cooperative game theory (see,
e.g., Littlechild and Owen, |1973}; Schulz and Uhan, 2010; Timmer et al.,|[2013).

Bridging the gap between the strategic and cooperative approaches is recognized as
a fundamental issue of game theory. Attempted resolutions of this issue, well known
as the Nash program (Nash, [1953), have provided many different strategic bargaining
mechanisms that sustain the Shapley value at equilibrium (for example, among others,
Hart and Mas-Colell, [1996; |[Pérez-Castrillo and Wettstein, 2001). Such mechanisms fit
and unify the two approaches, allowing the players facing an allocation problem (in
our specific context) to bargain in a restricted way, and to converge to a stable solution
without the need for an intermediary.

Both the original normative implementation of the Shapley value by a regulator and
the implementation of classical bargaining mechanisms based on offers that lead to the
Shapley value require complete information, either on the part of the regulator, or the
players. In many contexts, complete, transparent, and accountable information is often
desirable and encouraged. However, in some specific domains, this may represent an
unrealistic assumption, for example, when players are customers of a facility and do
not necessarily know about other customers (Young, [1998)), or when computing such
allocations requires data from each player, some of which may be private (McSherry
and Talwar, 2007)). We argue that even when such information is publicly available, it is
difficult to guess prices (awards) to charge (give) that are likely to be accepted by every
single player in the bargaining because this requires managing a wide and complex
information set about the structure of the underlying cooperative game and the marginal
contributions of each player.

An alternative but less common approach is to describe a bargaining mechanism



based on demands rather than offers. A demand-based mechanism was the basis of the
implementation by Nash! (1953) of the cooperative bargaining solution by |[Nash| (1950).
Other examples of mechanisms based on demands, though not common, include Young
(1998), who, sharing our concern that complete information may be a difficult assump-
tion in practice, describes a demand revelation mechanism in which potential customers
of a public facility simply bid to be served. Bargaining mechanisms based on demands
resemble oral auctions, in which each player, standing alone, reveals the charges he or
she is ready to pay to be served, or the payoff he or she is ready to accept for offering
collaboration, and waits for such a request to be met. By allowing the players to bargain,
such mechanisms allow them to focus only on their specific role in the organization and
on their expectation of how much they should contribute to or obtain from the facil-
ity. This approach drastically reduces the information a player is required to possess or
process to make a proposal. Moreover, in a demand-based mechanism, acceptance of a
proposal by the organization typically depends on objective feasibility conditions rather
than on subjective approval by its members.

In this paper, we aim to contribute to this dispute concerning demand- vs. offer-
based bargaining mechanisms. We experimentally compare two well-known mecha-
nisms inducing the Shapley value as an ex anfe equilibrium outcome of a noncoopera-
tive bargaining procedure. We choose two mechanisms that are based on these opposing
approaches (demand vs. offer) but that remain, in our opinion, similar in terms of their
implementation and the ease with which they can be understood by the participants in a
laboratory experimentﬂ The first mechanism is Winter’s demand commitment bargain-

ing mechanism (Winter, [1994] referred to as the Winter mechanism below). The second

2A comparison between offer-based and demand-based mechanisms has been conducted experimen-
tally for voting games by [Fréchette et al.| (2005a)), as well as empirically by, for example, |Warwick and
Druckman| (2001) and|Ansolabehere et al.| (2005)), employing field data.



is the Hart and Mas-Colell procedure (Hart and Mas-Colell, 1996, referred to as the
H-MC mechanism below).

Both procedures are described as sequential, perfect information games, where, at
each stage, a player becomes a proposer. In accordance with the theoretical presentation
of the two mechanisms, we illustrate and implement the bargaining procedures to define
a sharing of payoffs rather than an allocation of costsﬂ In the first mechanism, which is
defined for cooperative games with increasing returns to scale for cooperation (strictly
convex games), the proposer makes a demand for him- or herself concerning the payoff
that he or she is willing to receive from a possible collaboration. In the second mecha-
nism, which is defined for monotonic games (a much weaker assumption), the proposer
makes a proposal to each of the other players concerning the payoft he or she is willing
to offer them.

Two main issues arise with most strategic bargaining models, as observed by Fréchette
et al. (2005a) in an experimental work implementing some well-known legislative bar-
gaining processes. First, the theoretical predictions that they propose are very sensitive
to variations in the rules of the game, for example, in our case, whether a demand-based
or an offer-based mechanism is considered. Even if experiments show that actual bar-
gaining behavior is not always as sensitive to the different bargaining rules as the theory
suggests, we expect our analysis to confirm such a statement and the two mechanisms to
perform very differently, despite the similar theoretical predictions. Second, the equilib-
rium solution may require an unrealistic degree of rationality on the part of the players,
such that the experimental evidence is very far from the theoretical prediction. We claim

that the degree of rationality required in a demand-based mechanism is much lower than

31t is straightforward to establish the theoretical implementation of a cost allocation bargaining pro-
cedure.



that for an offer-based mechanism. This is because, as argued above, compared with the
offer-based mechanism, the demand-based mechanism requires a player to know and
process a smaller amount of information to make a proposal, as he or she can focus only
on his or her own specific role in the organization and his or her marginal contributions,
ignoring the role of all other players. Then, we aim at investigating the consequences of
such an issue in the results of our experiment.

It has been argued that the difference between a demand-based vs. an offer-based
mechanism is less relevant when considering two-player games, such as in Rubinstein
(1982)’s bargaining-over-a-pie game (see, Fréchette et al., 2005a). However, it becomes
crucial when considering groups with at least three members. In particular, offer-based
mechanisms are comparable with a voting procedure in which all the other players either
accept or reject the proposed utility share put forward by the proposer. As such, they are
theoretically expected to show a high degree of asymmetry between the proposer and
all the other players. In our case, both mechanisms are expected to show some form of
proposer advantage. In fact, for both mechanisms the ex post predicted solution strongly
depends on the selected proposer. In the case of the Winter mechanism in particular, it
even depends on the complete ordering.

Our analysis mainly focuses on (i) analyzing whether these mechanisms lead to
formation of the grand coalition and (ii) testing the convergence in expected value and,
as predicted by the theory, to the Shapley value.

Our results show that the H-MC mechanism results in a higher frequency of grand
coalition formation and a higher efficiency than does the Winter mechanism. Con-
versely, the Winter mechanism better implements the Shapley value as the average pay-
off provided that the grand coalition is formed. Therefore, our results suggest that an

offer-based H-MC mechanism better induces players to cooperate and to agree on an



efficient outcome, whereas a demand-based Winter mechanism better implements allo-
cations that reflect players’ effective power.

The remainder of the paper is organized as follows. Section 2] reviews existing
studies that are most relevant to our work. Section [3| presents the general definition and
the properties of a cooperative transferable utility (TU) game, as well as the Shapley
value. Section [] presents the two mechanisms that we investigate, namely the Winter
and the H-MC mechanisms. Section [5] describes the setting of our experiment. The
results are presented in Section [0} and Section[7] concludes. Additional analyses aimed
at reinforcing our results and at providing new points for reflection are contained in the

Appendix Il to V.

2 Related work

Bridging the gap between the noncooperative models, in which the primitives are the
sets of possible actions of individual players, and the cooperative models, in which they
are the sets of possible joint actions of groups of players, has been recognized as a fun-
damental issue of game theory. The very first attempt at this so-called Nash program
dates back almost 70 years to Nash himself (Nash, 1953). His idea was to provide a non-
cooperative foundation for cooperative solution concepts, and he began implementing it
by designing a noncooperative game that sustained the Nash solution of his two-player
bargaining problem (Nash, 1950) as its equilibrium. Following this first attempt by
Nash, many alternative procedures for implementing solutions of two-player bargaining
problems or n-player pure bargaining problemﬂ have been implemented. Some mech-

anisms intended to obtain the Nash solution, exactly or approximately, at equilibrium

4A pure bargaining problem is a cooperative game in which only the grand coalition N creates a
positive surplus with respect to what each player can achieve if he or she does not cooperate with anyone.
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(see, among others, Binmore et al., 1986} Trockel, 2002). Others aimed instead to ob-
tain the Kalai-Smorodinsky solution (Kalai and Smorodinsky, [1975)), that is, the main
alternative solution to such problems (Moulin, |1984b; Trockel, 1999; Haake, 2000).

Many different theoretical mechanisms have been designed with the aim of imple-
menting other cooperative solution concepts via a strategic interaction of the players for
more generic cases, that is, when there are more than two players or when the bargain-
ing problem is not pure. This is the case, for example, in the seminal work of Harsanyi
(1974), who reinterpreted the von Neumann—Morgenstern solution as an equilibrium of
a noncooperative bargaining mechanism, and of the many works sustaining the most fa-
mous axiomatic solution concept by Shapley| (1953), the Shapley value. For a relevant
and extensive review of the theoretical literature on the Nash program, we refer readers
to the surveys by Serrano| (2005, 2008, 2014, 2021]).

In this section, we focus on the literature devoted to testing cooperative game theory
through experiments. To date, this literature has focused mainly on three different direc-
tions. The first direction provides a normative interpretation, as in|De Clippel and Rozen
(2021), in which subjects designated as decision-makers express their view on what is
fair for others by recommending a payoff allocation. De Clippel and Rozen| (2021}
show that the decision-maker’s choices can be described as a convex combination of the
Shapley value and the equal division solution.

The second direction investigates how an unstructured interaction affects the final
agreement. One example is the paper by Kalisch et al. (1954), in which groups of
players are asked to freely discuss the formation of coalitions and to reach an agree-
ment on how to split the related values. The authors identify many different factors
influencing the final outcome of such a procedure, including personality differences or

the geometrical arrangement of players around the table. Similarly, but with a greater



focus on voting games, [Montero et al.| (2008)) propose an unstructured bargaining pro-
tocol in which participants propose and vote on how to distribute a fixed budget among
themselves. The paper provides experimental evidence of the so-called paradox of new
members, according to which enlargement of a voting body (i.e., the addition of a new
voter) can increase the voting power of an existing member. |Guerci et al.[|(2014) study
the impact of variations in the experimental protocol of Montero et al.| (2008) on the
formation of the so-called minimal winning coalitions, that is, coalitions for which each
player is crucial.

Most experimental works in the literature follow a third direction, studying the out-
come when a more formal (or structured) bargaining protocol is imposed. Our paper
broadens this last direction of research.

Formal bargaining protocols have been implemented to tackle different aspects of
the cooperative inclination of the players under different settings. For example, Murnighan
and Roth|(1977) investigate the effect of various communication/information conditions
on the final outcome in a specific game played by a monopolist and two weaker play-
ers. They show how the results over the entire set of conditions closely approximate
the Shapley value, although they often report a clear tendency for an equal split of the
pie. Similarly, Murnighan and Roth| (1982) introduce bargaining models to investigate
the influence of information shared by subjects about the games (e.g., payoffs) on the
final outcome. They show that the quality of the information has an impact on the final
outcome and that the Nash bargaining solution has a good predictive performance in
many cases. Bolton et al. (2003) investigate how the communication configuration af-
fects coalition negotiation and show how players with weaker alternatives would benefit
from a more constrained structure, especially if they can be the conduit of communica-

tion, whereas those endowed with stronger alternatives benefit from working within a



more public communication structure that promotes competitive bidding. Other works
focus more specifically on the coalition formation process, including Nash et al.|(2012);
Shinoda and Funaki| (2019); |Abe et al. (2021). In the first paper, the authors implement
finitely repeated three-person coalition formation games, showing how efficiency re-
quires people’s willingness to accept the agency of others, such as political leaders. The
second paper is then presented as a follow-up, in which the authors maintain the same
value of the coalitions as inNash et al.|(2012)), but implement a different bargaining pro-
tocol. They report a rare formation of a grand coalition, which can be induced by some
external factors, such as the presence of a chat window. The third paper presents a com-
parison between two mechanisms that invite players to join a meeting simultaneously or
sequentially. The authors report that the sequential mechanism induces a higher social
surplus than the simultaneous mechanism. Moreover, players make choices consistent
with the subgame perfect Nash equilibrium (SPNE) in the sequential setting and choose
the dominant strategy in the simultaneous setting, when a dominant strategy exists.
Formal bargaining protocols are mostly based on the implementation of theoreti-
cal mechanisms, which are shown to converge to some specific well-known solutions.
This is the case, for example, in |Nash| (1953) and |Harsanyi (1974), which we have re-
ferred to above, or in the case of the bargaining mechanism proposed by [Raiffa (1953))
to implement the Raiffa solution (as opposed to the Nash solution) to the Nash cooper-
ative bargaining problem. Several experimental implementations have been proposed,
with the final goal of testing Nash axioms, or of comparing Nash and Raiffa solutions
(see, e.g., Nydegger and Owen, |1975; Rapoport et al., |1977). In addition, there is a
large literature devoted to studying the class of bidding mechanisms. Bidding mecha-
nisms are introduced by Demange| (1984) and Moulin/ (1984a)), and Moulin and Jackson

(1992) study them in economic environments. They are developed by |Pérez-Castrillo
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and Wettstein (2001) and Ju and Wettstein|(2009) to implement solution concepts in the
framework of cooperative TU games.

In particular, many different theoretical mechanisms have been designed specifically
with the aim of implementing the best-known cooperative solution, the Shapley value
(see Shapley, 1953). Because this solution is applied in many economic problems,
supporting it through strategic explanation is considered to be particularly important.
See among others, |[Harsanyi| (1981), Gul|(1989), Hart and Moore|(1990), Winter| (1994),
and [Hart and Mas-Colell (1996) |

Despite the large body of existing literature, the Nash program “is not ready for
retirement yet”, but is, on the contrary, “still full of energy” and “waiting for good pa-
pers to be written” (Serrano, 2021). In this paper, we aim to contribute to this research
agenda by providing new insights gained from a controlled laboratory experiment. In
particular, we propose an experimental comparison of two mechanisms. The first mech-
anism is the one-period version developed by [Winter| (1994) (this simplified version was
also previously used by Bennett and van Damme| (1991) to treat Apex games, a type of
weighted majority games). The second mechanism is by [Hart and Mas-Colell| (1996), in
the specific case in which a proposer whose proposal is rejected leaves the game with a
probability 1. Our work is similar to Fréchette et al. (2005a), who experimentally com-
pare an offer-based model of Baron and Ferejohn (1989) with a demand-based model
of Morellil (1999) in weighted majority voting games. Earlier experimental studies of
the Baron—Ferejohn model include Fréchette et al.| (2003} 2005b), and Fréchette et al.

(2005a) provide an experimental study of demand bargainingﬁ However, Fréchette

JKrishna and Serrano| (1995) deepen the study of the set of subgame perfect equilibria associated with
the bargaining mechanism proposed by [Hart and Mas-Colell| (1996).

SFiorina and Plott/(1978)) propose multiple experiments on committee decision-making under majority
rules to test a wide range of solution concepts of noncooperative games.
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et al.| (2005a) present the first work to directly compare the two within an experimental
framework. Their results show that proposers have some first-mover advantage in both
the demand and offer games, but their power does not differ nearly as much between the

two mechanisms as theory predicts.

3 Theoretical model

3.1 Cooperative TU games and solutions

Let N = {1,...,n} be a finite set of players. Each subset S C N is called a coalition,
and N is called the grand coalition. A cooperative TU game (from now on, cooperative
game) consists of a couple (N, v), where N is the set of players and v : 2 — R is the
characteristic function, which assigns to each coalition S C N the worth v(S), with
the normalization condition v(()) = 0. The worth of a coalition represents the value
that members of .S can achieve by agreeing to cooperate. To simplify the notation if no
ambiguity appears, we consider the set of players N as fixed and we write v instead of
(N, v). We use GV to denote the set of all games with player set V.

A game v € GV is said to be
* monotonic if v(S) < v(T) foreach S CT C N,
o superadditive if v(S) + v(T) < v(SUT) whenever S NT = (), with S, T C N,

» convex if v(S) +v(T) < v(SUT)+v(SNT), foreach S, T C N, and strictly

convex if the inequality holds strictly.

We observe that convexity = superadditivity = monotonicity. In (strictly) convex

games, cooperation becomes increasingly appealing, and a so-called “snowball effect”
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is expected, leading to the formation of the grand coalition. Another equivalent defini-
tion for convexity can be stated as v(S U {i}) — v(S) < v(T' U {i}) — v(T), for each
SCTCN\{i}.

Given a game v € G", an allocation is an n-dimensional vector (x1,...,2,) € RN,
assigning to player i the amount x; € R. For each S C N, we assume that z(S) =

> ics Ti- The imputation set is defined by:

I(v) ={z € R"|z(N) =v(N)and z; > v({i}) Vi € N},

that is, it contains all the allocations that are efficient (x(IN) = v(N)) and individually
rational (x; > v({i})Vi € N).

The core is the set of imputations that are also coalitionally rational, that is,

C(v) ={z € I(v)|z(S) > v(S) VS C N}.

An element of the core is stable in the sense that if such a vector is proposed as an
allocation for the grand coalition, no coalition will have an incentive to split off and
cooperate on its own. Intuitively, the idea behind the core is analogous to that behind
a (strong) Nash equilibrium of a noncooperative game, namely an outcome is stable if
no deviation is profitable. For the Nash equilibrium, the possible deviation concerns a
single player, whereas in the core, deviations of groups of players are relevant.

A solution is a function ¢ : GV — R¥ that assigns an allocation 1(v) to every game

v € GV. The Shapley value is the best-known solution concept, which is widely applied
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in economic models, and is defined as:

oty =y W= ) —uis\ e
SCN,ieS '
The Shapley value assigns to every player his or her expected marginal contribution to
the coalition of players that enter the game before this player, given that every order
of entrance has equal probability. This solution concept has been defined as respecting
some notion of fairness (see Appendix III for more discussion about its properties), but
it is not necessarily stable. However, if the game is superadditive, the Shapley value is
an imputation, and if the game is convex, it belongs to the core (in particular, it is its

barycenter).

4 Two mechanisms

In this section, we present the demand-based Winter mechanism (Section 4.1)) and the
offer-based H-MC mechanism (Section .2)) in more detail. Section {.3] compares the

equilibrium predictions of the two mechanisms with a simple example.

4.1 The Winter mechanism

Winter| (1994) presented a bargaining model based on sequential demands for strictly
convex cooperative games. As noted, in such games, cooperation becomes increasingly
appealing and a “snowball effect” is expected, leading to the formation of the grand
coalition. Moreover, in convex games, the Shapley value is a central point in the core,
which is always nonempty.

In this model, players announce their demands publicly in turns. That is, the players

14



effectively state “I am willing to join any coalition that yields me...” and wait for these
demands to be met by other players. The bargaining starts with a randomly chosen
player from N, say player ¢. This player publicly announces his or her demand d; and
then points to a second player, who has to state his or her demand. Then, the game
proceeds by having each player introduce a demand then point at a new player to take a
turn. If or when, at some point, a compatible demand is introduced, which means that
there exists a coalition S for which the total demand for players in S does not exceed
v(S), then the first player with such a demand selects a compatible coalition S. The
players in S receive their demands and leave the game, and the bargaining continues
with the rest of the players using the same rule on v restricted on N \ S.

Here, we present the one-period Winter mechanism more formally. This is a sim-
plified version of the more general mechanism in Winter| (1994), which allows for more
periods and includes a discount factor. A decision point position at time ¢ of the one-

period demand commitment game is given by the vector (S, Sk, d st J), where:

St C N is the set of players remaining in the game,
St c St is the set of players who have submitted demands that are not yet met,

dgt = (di)ies; is the vector of demands submitted by players in S5, (0 < d; <

maxgcn ’U(S)), and

J € Si\ S is the player taking the decision by introducing a demand d;. His
or her demand d; is said to be compatible if there exists some S C S with

v(SU{j}) = > ,cqdi > dj. Otherwise, d; is not compatible.

With j’s decision, the game proceeds in the following way:

15



1) If d; is compatible, then j specifies a compatible coalition .5, each player ¢ €
S'U{j} is paid d;, and a player k # j is randomly chosen from S? \ S%. The new
position is now given by (S7™, S5*, dgiii, k), with S = S{\ (S'U {;}) and

Syt =S5\ (SU{j}.
2) If d; is noncompatible, then two cases are distinguished:

2,) if S5 = St \ {j} (j is the last player to make a demand), then each player

i € St (j included) gets his or her individual payoff v({7}), and the game ends;

2;) if S5 € St \ {j}, then j specifies a new player k # j in St \ S and the new

position is (S7*', S5, dgeer, k), with ST = Sfand S5 = S5 U {j}.

The game starts with a randomly chosen player ;7 € /N. Then, the initial position is
set to be (N, ), dp, 7). It terminates either when there are no more players in the game
(see point 1 above), or when St U {j} = S% (see point 2, above).

As shown by Winter for the more generic case, this mechanism has a unique sub-
game perfect equilibrium, which assigns equal probabilities according to the principle
of indifference. At this equilibrium, the grand coalition forms and the a priori expected
equilibrium payoff coincides with the Shapley value. Moreover, given a specific or-
dering of the players, the a posteriori equilibrium payoff of each player depends on the
order of players only through the set of the player’s successors but it is not influenced by
the way that these players are ordered, as each player demands a marginal contribution

to the set of successors.

4.2 The Hart and Mas-Colell mechanism
Hart and Mas-Colell (1996) proposed a bargaining procedure for monotonic cooperative
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games. This is a much weaker assumption compared with the strict convexity required
by the Winter mechanism. Thus, the H-MC procedure is applicable for a larger set of
cooperative games.

In this mechanism, the bargaining starts with a randomly chosen proposer making
an offer to the other players, with the meaning “If you wish to form a coalition with
me, I will give you...”. Then the other players, who act sequentially, may either accept
or reject the proposal. The requirement for agreement is unanimity. The key modeling
issue is the specification of what happens if there is no agreement and, as a consequence,
the game moves to the next stage. In our implementation, if the proposal is rejected, the
proposer leaves the game with his or her individual value and the bargaining continues
among the rest of the players, with a new player randomly chosen as a new proposer.

We present a more formal description of the H-MC mechanism. A decision point

position at time ¢ is simply given by the vector (S, j), where:
St C N is the set of players remaining in the game,

j € S" is the player making an offer to the remaining players (¢;);cst\ (53 such

With j’s proposal, the game proceeds now in the following way:

1) Ifall i € S*\ {j}, who decide sequentially, accept the proposal one after
the other, then players in S* \ {j} are paid (t;);cst\ (5}, player j is paid v(S*) —

Y icst\(jy ti- and the game ends;

2) If at least one player i € S*\ {j} refuses the offer, then two cases are distin-

guished:

17



2a) if |S*| = 2 (only one more player is left, together with j), then they both

receive their individual value v({i}) for each i € S*, and the game ends;

2b) if |S*| > 2, then player i is removed from the game, he or she receives his or
her individual payoff v({i}), a new proposer k € S = S*\ {;} is randomly

selected, and the new position is (S**! k).

The game starts with a randomly chosen player ;7 € /N. Then, the initial position is
set to be (NN, j). It terminates either when there are no more players in the game (see
point 2a above), or when the proposal is unanimously accepted (see point 1 above).

Hart and Mas-Colell| (1996) show that this game has a unique subgame perfect equi-
librium. At this equilibrium, the grand coalition forms and the a priori expected equi-
librium payoff coincides with the Shapley value. In contrast to the Winter mechanism,
given a specific initial proposer j € N (in the previous mechanism, it was necessary to
specify the order of all the players, whereas in this case only one player, the proposer,
needs to be specified at equilibrium), the a posteriori equilibrium payoff assigns to each
other player his or her Shapley value in the cooperative game, reduced to the set of play-
ers N \ {j}, and the proposer is assigned his or her marginal contribution to the grand

coalition v(N) — v(N \ {j})-

4.3 A comparison between the Winter and the H-MC mechanisms

We illustrate the two mechanisms using the strictly convex three-player game shown
in Table [II Although our experiment is based on four-player games, a three-player
game example is of particular interest because it allows us to graphically represent the

imputation set, the core, and the different solutions, as illustrated in Figure m
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Table 1: A three-player game

S 1 2 3 12 13 23 N
v(S) 20 20 30 45 55 60 100

As we have already observed, the convexity assumption implies the monotonic-
ity. Thus, the game satisfies the assumptions of both the Winter and H-MC mecha-

nisms. The Shapley value of this game is given by the vector ¢(v) = (170 185 245) =

606 6
(28.33,30.83,40.83), which corresponds to the a priori equilibrium payoff for both the
Winter and H-MC mechanisms.

We suppose now that player 1 is chosen randomly as the first proposer in both mech-
anisms. Independently of the order of the following players in the Winter mechanism,
the proposer will receive an a posteriori equilibrium payoff equal to 40 in both mech-
anisms, which corresponds to his or her marginal contribution to the grand coalition
v(N) —v(N \ {1}). We can see that both mechanisms lead to a proposer advantage, as
40 > %, meaning that, as the first proposer, player 1 can obtain more than his or her
Shapley value.

Suppose now that the total ordering of the players in the Winter mechanism is given
by 1, 2, and 3. The a posteriori equilibrium payoff of the Winter mechanism is given by
the vector SO Ly (v) = (40, 30, 30), in which player 2 demands his or her marginal con-
tribution v({2,3}) — v({3}), and player 3 demands his or her individual value v({3}).

Conversely, in the case of the H-MC mechanism, the proposer offers the Shapley
value of the reduced game to players 2 and 3. Thus, the a posteriori equilibrium payoff
is given by the vector SOLypc(v) = (40,25,35). Even with the disadvantage of not

being the first mover, player 2, as the second mover, manages to obtain more under the
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Figure 1: The core of the three-player game

(100, 0,0)
—JInputation Set
20 — Core
T2 45 T
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o o' 40
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.{k T .f?z 20
b(v)
(0,100, 0) 30 55 (0,0,100)

Winter mechanism than under the H-MC mechanism even if, in both cases, he or she
obtains less than his or her Shapley value.

Figure 1] shows the imputation set I(v) = co ((20, 50, 30), (50, 20, 30), (20, 20, 60)),
the core C'(v) = co ((40, 30, 30), (40, 20, 40), (25, 20, 55), (20, 25, 55), (20, 45, 35), (25, 45, 30)),
the Shapley value ¢(v), and possible a posteriori solutions SO Ly, (v) (6 black dots)
and SOL gy (v) (3 white dots). A point in the simplex corresponds to an allocation
(1,9, 23). For example, the height of a point from the edge that is opposite to the
apex labeled (100, 0, 0) represents the payoff allocated to player 1. Thus, a point on the
bottom edge represents an observed allocation that gives a zero payoff to player 1. Sim-
ilarly, the height of a point from the edge that is opposite to the apex labeled (0, 0, 100)
represents the payoff allocated to player 3.

We make the following observation to conclude this example and the comparison

between the two mechanisms.
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Table 2: The games

S 1 2 3 4 12 13 14 23 24 34 123 124 134 234 N

v(S) 0 5 5 10 20 20 25 20 25 25 50 60 60 60 100
va(S) 0 20 20 30 20 20 30 45 55 60 45 55 60 100 100
v3(S) =v1(5) + v2(S)

’U4(S) = 2U1 (S)

Observation 1. The core is always a convex polyhedron. The a posteriori equilibrium
of the Winter mechanism always coincides with a vertex of this polyhedron. The a
posteriori equilibrium of the H-MC mechanism always provides a vector on a face of

this polyhedron.

5 The experimental setting

5.1 The games

For our analysis, we implement the four four-player games shown in Table [2] These
games are chosen to test the properties of the Shapley value that are presented in Ap-

pendix III. Note that:

* games 1, 3, and 4 are strictly convex, whereas game 2 is only convex. All four
games are, by consequence, monotonic. Therefore, all four games respect the
assumptions for the implementation of the H-MC mechanism, whereas all except
game 2 respect the assumption for the implementation of the Winter mechanism.
However, with game 2 being only convex, we consider that “strict convexity”

could be relaxed and the mechanism could still be implemented in such a case;

* in games 1 and 4, players 2 and 3 are symmetric;
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Table 3: The Shapley values of games 1, 2, 3, and 4

¢1(v)  B2(v)  @3(v)  Pa(v)

Game 1 22.08 23.75 23.75 30,42
Game 2 0 28.33 30.83 40.83
Game 3 22.08 52.08 54.58 71.25
Game 4 44.16 475 475 60.83

* in game 2, player 1 is a null player. This is the reason why the game is only
convex, but not strictly convex, as the presence of a null player does not allow, by
definition, the possibility of having a strictly increasing marginal contribution for

such a player;
* game 3 is defined as the sum of games 1 and 2;

* game 4 is defined as twice game 1 and it preserves the symmetry of players 2 and

3;

* the marginal contributions of player 1 are always higher in game 1 than in game

2, and higher in game 4 than in game 3.

The Shapley values of the four games are presented in Table The equal division
payoff vector is simply equal to ED(v;) = (25,25,25,25) when & = 1,2, and to
ED(v) = (50,50, 50,50) when k = 3, 4.

6 Results

The experiment was conducted at the Institute of Social and Economic Research (ISER),

Osaka University, in January and February 2019 (Winter mechanism) and January and
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February 2022 (H-MC mechanism)[] A total of 176 students, who had never partic-
ipated in similar experiments before, were recruited as subjects of the experiment, 96
playing the Winter mechanism and 80 playing the H-MC mechanismﬂ The experiment
was computerized with z-Tree (Fischbacher, [2007) and participants were recruited using
ORSEE (Greiner, 2015)).

To control for potential ordering effects, each participant played all four games twice
in one of the following four orderings: 1234, 2143, 3412, and 4321ﬂ Between each
play of a game (called a round), players were randomly rematched into groups of four
players, and participants were randomly assigned a new role within the newly created
groupm At the end of the experiment, two rounds (one from the first four rounds and
another from the last four rounds) were randomly selected for payments. Participants
received cash rewards based on the points that they earned in these two selected rounds,
with an exchange rate of 20 JPY = 1 point, as well as a 1,500 JPY participation fee.
On average, the experiments lasted for 1 hour 40 minutes for Winter and 1 hour 45
minutes for H-MC, including the instructions (15 minutes for Winter and 11 minutes

for H-MC), a comprehension quiz (5 minutes), and paymentE] The average earnings

"The experiments were conducted in 2019 and 2022 because the original H-MC experiment con-
ducted in December 2019 (which we refer to as the pseudo-H-MC or H-MCy;,,, in Appendix V) did not
reflect the H-MC model precisely, and we have redone the H-MC experiment to correct this. Appendix V
compares the outcomes of the pseudo-H-MC conducted in December 2019 and the (corrected) H-MC
conducted in January—February 2022.

8The difference in the number of participants between the two mechanisms is a result of variations in
the show-up rate among experimental sessions.

9We let participants play all four games, instead of just one, in each session. Although this design
choice may have meant participants were slower in learning how to play the game, we consider that
having within-session variations is desirable because the tests of the axioms involve comparing outcomes
across different games.

10We implemented random reassignment of the roles across rounds instead of fixing the role. Again,
this may make learning the game slower for players given that their roles change, as|Guerci et al.| (2014)
suggest. However, given the existence of the null player in one of the four games considered, we chose
reassignment of the role to avoid participants feeling the experiment was unfair.

Participants received a copy of instruction slides, and a prerecorded instruction video was played.
The quiz was given on the screen after the explanation of the game. The user interface was explained
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were 2,650 JPY for Winter and 2,850 JPY for H-MC.

We first compare the Winter and H-MC mechanisms in terms of the frequency of
grand coalition formation and efficiency. Then, we analyze whether the resulting alloca-
tions from the two mechanisms match the Shapley values. We contrast the experimental
results with the allocation predicted under the SPNE as well as under an equal division.

Additional analyses of our experimental results are presented in the Appendix II to I'V.

6.1 Grand coalition formation and efficiency

Figure [2] presents the results concerning the grand coalition formation under the H-MC
and Winter mechanisms for the four gamesE]

We observe that for game 2 and the Winter mechanism, the grand coalition never
forms (because player 1 is a null player and, consequently, the game is only convex and
not strictly convex™). Therefore, for game 2, we consider the partition {{1}, {2,3,4}}
as a realization of the grand coalition for both the H-MC and Winter mechanisms.

Considering the four games together, the grand coalition (in the case of game 2,
either the grand coalition or the {2, 3, 4} coalition) is formed in 61.9% of the cases under
the H-MC mechanism, but only in 40.1% of the cases under the Winter mechanism. In
particular, we observe that the grand coalition is formed more frequently under the H-

MC mechanism than under the Winter mechanism in games 3 and 4 at the 1% and 5%

during the practice rounds, referring to the handout about the computer screen. See Appendix VI for
English translations of the instruction materials and the comprehension quiz.

12The figure is created based on the estimated coefficients of the following linear regressions: gc; =
B1HMC; 4+ BoWinter; + p; where gc; is a dummy variable that takes a value of 1 if the grand coalition
is formed, and zero otherwise, in group ¢, H M C; (Winter;) is a dummy variable that takes a value of
1 if the H-MC (Winter) mechanism is used, and zero otherwise. The standard errors are corrected for
within-session clustering effects. The statistical tests are based on the Wald test for the equality of the
estimated coefficients of two treatment dummies.

3Recall that the Winter mechanism is theoretically defined for strictly convex games. In this game,
Player 1 always has a zero marginal contribution and, as such, can be left out of any coalition at no cost
for either him/her or the other players.
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Figure 2: Proportion of times the grand coalition is formed

(a) Game 1 (b) Game 2 (b’) Game 2, allow (2,3,4)
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Note: The error bars show the one standard error range. The symbols *** ** and * indicate the proportion of times that the
formation of the grand coalition is significantly higher for the H-MC mechanism compared with the Winter mechanism at the 1%,
5%, and 10% significance levels (Wald test), respectively.

significance levels, respectively.

As a direct consequence of the grand coalition being formed in less than 100% of
the cases, both mechanisms fail to achieve full efficiency. Efficiency is computed as the
sum of the payoffs obtained by the four players as a proportion of the value of the grand
coalition of the considered game (100 for games 1 and 2, and 200 for games 3 and 4).
As Figure [3] shows, efficiency is significantly higher under the H-MC mechanism than
under the Winter mechanism in games 1 and 4 (both at the 10% level)m

Therefore, we conclude as follows.

14The figure is created based on the estimated coefficients of the following linear regressions: Ef f; =

B1HMC; + BoWinter; + u;, where Eff; = %:(A?)‘ is the efficiency measure for group i, HMC;
(Winter;) is a dummy variable that takes a value of 1 if the H-MC (Winter) mechanism is used, and zero
otherwise. The standard errors are corrected for within-session clustering effects. The statistical tests are

based on the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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Figure 3: Efficiency
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate that the efficiency for the H-
MC mechanism is significantly higher than for the Winter mechanism, at the 1%, 5%, and 10% significance levels (Wald test),
respectively.

Result 1. Although the grand coalition is not always formed under the two mechanisms,
it is more frequently formed under the H-MC mechanism than under the Winter mech-
anism. Consequently, efficiency is higher under the H-MC mechanism than under the

Winter mechanism.

Note that under the H-MC mechanism, the proposer is forced to offer feasible de-
mands, that is, if S is the set of players remaining in the game, the proposer has to
propose a total distribution of payoffs no larger than v(.S). Conversely, under the Win-
ter mechanism, the players, speaking one after the other, may make unfeasible demands.
As a result, the formation of a coalition under the H-MC mechanism is simply deter-
mined by whether the players choose to accept the proposal or reject it, whereas under

the Winter mechanism, the formation of the coalition can be blocked by unfeasibility
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conditions. Such a difference between the two mechanisms can cause the significantly
higher frequency of the grand coalition formation under the H-MC mechanism com-

pared with the Winter mechanismE]

6.2 Allocations

HMC (1)) to denote a vector of payoffs obtained by the players in the H-MC

We use 7
mechanism in game k, with k& = 1,2, 3,4. Analogously, let 7'V (v;,) denote a vector of
payoffs obtained by the players under the Winter mechanism. The ex ante theoretical
prediction for both mechanisms states that the mean of such vectors (based on many re-
alizations with different orderings of the players) should converge to the Shapley value.

When players fail to form the grand coalition, the total payoff obtained by the players
is smaller than the value under the grand coalition. As a result, the average realized
payoft vectors are significantly different from the Shapley value, as shown in Figure [[.1]
of Appendix I. Therefore, we focus our analyses on those groups that formed the grand

coalitionf?

Our main analyses are based on a set of ordinary least squares (OLS) regressions

(using only the data from groups that formed the grand coalition) for the following

5Tn Appendix II, we report the frequency of the grand coalition formation and efficiency by separating
the data for the first half (rounds 1-4) and the second half (rounds 5-8) of the experiment. We observe
an increase in both the frequency of the grand coalition formation and efficiency, at least in some of the
games, for both mechanisms. A significantly higher frequency of grand coalition formation and efficiency
is observed under the H-MC mechanism than under the Winter mechanism even in the second half of the
experiment.

16In Appendix IV, we report the results based on all groups using payoff shares, instead of restricting
our attention to groups that formed the grand coalition.
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Table 4: Results of linear regression based only on the groups that formed the grand

coalition
H-MC Winter
st T2 T3 Ty et T2 T3 Ty
gl 2344 2548 25.00 26.08 gl 23.09 2457 2243 26.65
(1.23) (0.50) (0.59) (1.29) (2.28) (1.11) (1.01) (3.11)
g2 13.00 25.8 28.08 33.12 g2 0.0 29.15 31.56 38.81
(1.98) (0.63) (0.91) (0.80) - (1.03) (0.54) (0.73)
g3 | 4553 48.68 50.53 55.26 g3 | 21.00 52.67 57.33 68.00
(3.82) (0.65) (2.28) (3.19) (3.57) (5.42) 4.11) (5.19)
g4 | 47.10 51.53 50.03 51.33 g4 | 4424 48.14 4557 56.86
(2.46) (1.02) (1.15) (1.27) (3.22) (4.12) (8.58) (4.68)
R? 0.95 0.98 0.98 0.98 R? 0.90 0.93 0.91 0.95
Obs. 99 99 99 99 Obs. 77 77 77 77
Note: The standard errors are corrected for within-group clustering effects.
system of equations:
T = a1g1 + G292 + azgs + a4gs + Uy
Ty = b1g1 + baga + b3gs + bags + up 0

T3 = C1g1 + C292 + C393 + C494 + U3

Ty = d1g1 + dage + ds3gs + dags + ug

where 7; is the payoff of player 4, g; is a dummy variable that takes a value of 1 if the
game j € {1,2, 3,4} is played, and zero otherwise. Because participants play all four
games twice, we correct the standard errors for within-group clustering effects. Note
that the estimated coefficients a;, b;, c¢;, and d; are the average payoffs in game j for
players 1, 2, 3, and 4, respectively. Table [ reports the results of these regressions,
showing the H-MC (Winter) mechanism in the left (right) panel.

Figure 4| shows the average payoffs obtained by each player in the four games con-
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Figure 4: Mean payoffs based only on the groups that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, ** and

* indicate the frequency with which the average normalized payoff is significantly different from the Shapley values at the 1%, 5%,

and 10% significance levels (Wald test), respectively.
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ditional on the grand coalition being formed. The horizontal lines indicate the Shapley
values for each game. It can be observed that for the Winter mechanism, the average
payoffs are not significantly different from the Shapley values for all four players in
games 1, 3, and 4. Conversely, for the H-MC mechanism, they are significantly dif-
ferent from the Shapley values for almost all players in all four games. This indicates
that provided that the grand coalition is formed, the average payoffs under the Winter
mechanism are closer to the Shapley values than those under the H-MC mechanism.
To compare the two mechanisms in terms of how close their average payoffs are to

the Shapley values, we employ the following measure:

2)

where 7; and ¢; are the average payoff and Shapley value for player ¢, respectively, in
the given game.

To conduct a statistical test, we employ a bootstrapping technique. For each itera-
tion, we use a sub-sample (with replacement) of our data, and run the system of regres-
sions (Eq.[I). Based on the obtained estimated coefficients (i.e., the average payoffs for
the sub-sample), we compute Dis2y.

Figure [5| shows the result based on the outcomes of 1,000 repetitions. For all four
games, Dis2, is statistically significantly smaller under the Winter mechanism than

under the H-MC mechanism["]

Result 2. Provided the grand coalition is formed, the average payoffs follow the Shapley

"Based on two-sample t-test with unequal variance using the sample generated by the bootstrap. The
means Dis2y4 (standard errors) for the H-MC mechanism are 5.13 (0.035) in game 1, 15.70 (0.064)
in game 2, 28.99 (0.074) in game 3, and 11.34 (0.047) in game 4. For the Winter mechanism, the
corresponding values are 4.99 (0.047) for game 1, 2.61 (0.030) for game 2, 10.60 (0.178) for game 3, and
7.85 (0.094) for game 4.
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Figure 5: Distance from Shapley
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the significant difference between the

H-MC and the Winter mechanisms at the 1%, 5%, and 10% significance levels (two-sample t-test), respectively.

values more closely under the Winter mechanism than under the H-MC mechanism.

6.3 Realized allocations and a posteriori equilibria

Now, let us analyze the realized payoffs in the light of the a posteriori equilibrium
payoff vectors. We continue to focus only on the groups that formed the grand coali-
tion. We measure the distance between the realized payoff vectors and the allocation
under the SPNE for the four games by their Euclidean distance. Let eg; be the equilib-
rium payoff for player ¢ for the given game, the realized order of the players (making
a proposal or demand), and the mechanism. The distance of the realized payoff from

the equilibrium is computed as Dis2yg = /), (7 — eqi)2 We also consider the

distance between the realized payoff vectors and equal division payoffs, defined by

Dis2pp = \/y_;(m — ED;)? where ED; is the equal division payoff for player i for

18For the sake of simplicity, we omit the specifications about the considered mechanism and the game.
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Figure 6: Mean of the distances of the realized payoff vectors from the SPNE and the
equal division
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate that the distance of the normalized
payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H-MC and the
Winter implementation, at the 1%, 5%, and 10% significance levels (Wald test), respectively.

the given game.

Figure @ shows the mean Dis2yg and the mean Dis2gp for the two mechanisms
in the four gamesH We observe that the distance to the equal division is significantly
smaller (at the 1% level) for the H-MC mechanism than for the Winter mechanism in all
four games. This may not be surprising because, as Observation [I] states, the a posteri-
ori equilibrium payoff vectors tend to be less unequal under the H-MC mechanism than
under the Winter mechanism. In fact, as we can observe, the distance to the equilibrium

allocation is significantly smaller for the H-MC mechanism than for the Winter mecha-

9The figure is created based on the estimated coefficients of the following linear regressions: Dis; =
B1HMC;+ BoWinter; + u;, where Dis; is the relevant distance measure for group i, H M C; (Winter;)
is a dummy variable that takes a value of 1 if the H-MC (Winter) mechanism is used, and zero otherwise.
The standard errors are corrected for within-session clustering effects. The statistical tests are based on
the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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nism in games 1 and 4 (in which the equilibrium payoffs are less unequal than in games
2 and 3) at the 1% level. For games 2 and 3, however, the distance to the equilibrium
allocations is not significantly different between the two mechanisms.

Figure @ shows that, on the one hand, the payoff vectors realized under the H-MC
mechanism are significantly closer to the equal division than to the equilibrium ones in
all but game 2 (in which Dis2yp and Dis2gp are not significantly different). On the
other hand, under the Winter mechanism, the realized payoff vectors are significantly
closer to the equal division than to the equilibrium ones only in games 1 and 4, but the
opposite is the case for game 2. In game 3, Dis2yg and Dis2gp are not significantly

different under the Winter mechanism.

Result 3. The H-MC mechanism more often results in payoffs that are closer to the

equal division than to the equilibrium payoffs compared with the Winter mechanism.

This indicates that, albeit imperfectly, the Winter mechanism achieves the allocation

that better reflects the power of the players than does the H-MC mechanism.

7 Conclusions

We have experimentally compared two of the best-known bargaining procedures in the
Nash program, the H-MC and the Winter mechanisms. Our main rationale for this
choice is simplicity, which is a key desideratum when considering possible applicability
to the real world. These two mechanisms are simple and similar in their implementation,
making them suitable for a direct comparison. They differ mainly in the way that they
implement bargaining, as the H-MC mechanism is based on offers, and the Winter on

demands.
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Previous studies have found a certain closeness of the experimental results when
making a similar comparison (see Fréchette et al., 2005a)), despite the sharply different
theoretical predictions. Our findings partially contradict these results, showing how two
very similar mechanisms can behave differently, despite the close theoretical predic-
tions. In particular, the H-MC mechanism results in higher frequencies of the grand
coalition formation and, consequently, higher efficiency than the Winter mechanism.
We suggest that the H-MC mechanism is better suited to bargaining over cost or payoff
allocation problems when the main target is efficiency, or when full cooperation repre-
sents a crucial goal for society (e.g., full cooperation in the airport problem (Littlechild
and Owen, 1973) results in one single airport being built instead of many, and this
is certainly desirable for environmental reasons). Conversely, provided that the grand
coalition is formed, the Winter mechanism results in average payoffs that are closer to
the Shapley values and better satisfy various axioms. We suggest that the Winter mech-
anism is best suited to allocation problems in which it is important to value players’
effective power (e.g., production games (Owen, |1975)), or in which arguments such as
social welfare and symmetry are inescapable (e.g., allocation of resources in health or
social care (Kluge, 2007)).

Our findings suggest that when facing a cost or payoff allocation problem, the choice
of which bargaining procedure to implement, one based on offers or on demands, may
have some unexpected effects, regardless of the theoretical prediction. This should be
taken into account when making such a choice in various applications. In fact, different
bargaining mechanisms, even when equivalent from the theoretical point of view, favor
different properties that are reflected in the resulting allocations. An example of such
effects may be found in the verification of the null player property of the Shapley value

in Appendix III. Theoretically, a player who always has a zero marginal contribution
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should receive a zero payoff, according to Shapley. According to the theoretical pre-
diction, in a demand-based mechanism, nonnull players should systematically refuse a
strictly positive demand by a null player. However, we find that nonnull players seem to
be uncomfortable with making a zero offer to a null player in an offer-based mechanism,
and this contributes to a final payoff share that is closer to the equal division solution.
A deeper analysis of how different mechanisms can lead players toward respecting or
violating some properties would be a fruitful direction for future research.

Many potentially important complementary questions can be addressed in future
research. Among others, an analysis of the more complex versions of our proposed
mechanisms (e.g., the Winter mechanism with more periods and a discount factor, or
the H-MC mechanism where the proposer whose offer is refused then leaves the game
with a probability strictly smaller than one) can be compared with our actual results.
Comparing the outcomes of the experiments based on noncooperative mechanisms with
those of unstructured bargaining experiments would be an interesting topic for future

research.
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Appendix

I The average payoffs

Figure [[.T] shows the mean realized payoffs based on all groups in each of the four

games, and the horizontal lines indicate the Shapley values for each game@

Figure I.1: Mean payoffs, all groups
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the average payoff is significantly

different from the Shapley values at the 1%, 5%, and 10% significance levels, respectively (Wald test).

0 As in Figure the mean and the standard errors are obtained by running the system of linear regres-
sions that take each player’s payoff as the dependent variables and four game dummy variables without
the constant. The standard errors are corrected for session-level clustering effects. The statistical tests are
based on these regressions.



II Effect of learning and bargaining dynamics

II.1 Grand coalition formation and efficiency

We have already shown in Section [3] that both mechanisms fail to achive an efficient
outcome. However, H-MC mechanism performs significantly better in this matter. A
possible explanation is because, as we have already observed in Section [3] and with
Result 1, H-MC mechanism forces feasible offers, while Winter mechanism allows for
unfeasible demands which, as a result, lead to inefficiencies. This also naturally leads
to the fact that the grand coalition is formed more often under the H-MC mechanism,
than under the Winter mechanism.

One may hypothesize that this generalized failure (more for Winter, but partially also
for H-MC) in reaching an efficient outcome can explained by some limited rationality
arguments: even if we chose two mechansims that are in our opinion simple, the games’
optimal dynamics is hard to understand for participants to the experiment especially in
the beginning.

We check this hypothesis by investigating the presence of a learning effect by com-
paring the outcomes in the first half of four rounds (1-4) and the second half of four

rounds (5-8). Because the number of groups that formed a grand coalition becomes

Table II.1: Number of groups with Grand Coalition

game 1 game?2 game3 game4

Winter early 10 10 1 9

Winter late 13 17 5 12
H-MC early 10 12 11 17
H-MC late 15 13 8 13

Note: game 2 allows {2, 3,4} to be the grand coalition.



Figure I1.2: Proportion of times the grand coalition formed in early and late rounds

Game 1 {2, 3,4} allowed
_ n.s _ n.s.
1 - s 1 B " ns.
08  —> ns. 08 — DS ' ns.
06 — 0.6 —
0.4 — 04 —
0.2 — 0.2 —
0 I I I I 0 I I I I
Early Late Early Late Early Late Early Late
H-MC Winter H-MC Winter
Game 3 Game 4
F
r EX3 1
skoksk r n.s 1 n.s
I T 1 | I
s T skok -
08 — ——>— — 0.8 —
0.6 — 0.6 —
04 — 04 —
0.2 — |—:E’ 02 —
O I I '_:\E| I 0 I I I I
Early Late Early Late Early Late Early Late
H-MC Winter H-MC Winter

small if we separate the data into the first half and second half (see Table [[I.T), we
do not report the results of the analyses comparing the distance between the average
realized payoff vectors and the Shapley values, or whether realized payoff vectors sat-
isfy various axioms characterizing the Shapley value. Instead, we investigate only the
frequency of grand coalition formation and efficiency.

Figures [[1.2] and [[.3] show the frequency of the grand coalition formation and the
average efficiency (i.e., the average total payoff / value of the grand coalition) for the
first half and the second half (i.e., the first four rounds vs. the second four rounds) of

each game. For H-MC, the frequency of the grand coalition formation and the average



Figure I1.3: Efficiency in early and late rounds
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efficiency are significantly higher in the later rounds only in game 1; for the remaining
three games, there are no significant differences between the early and late rounds. For
the Winter mechanism, both the frequency of the grand coalition formation and the
average efficiency are significantly higher in the later rounds only in game 3, with no
significant differences in other games.

As conclusion, we report no statistically significant learning effect, when imple-
menting either the H-MC or the the Winter mechanism. This does not rule our the
possibility that by implementing a higher number of repetitions, a significant learning

effect could be observed.



II.2 Departure from the Shapley payoff share

Here, we investigate some possible dynamics that could lead the experimental results
of H-MC mechanism to be closer to the equal division solution (Result 3), when com-
pared to the experimental results of the Winter mechanism that are instead closer to the
Shapley value (Result 2).

In Section [6] we have already shown that accepted proposals in the H-MC mech-
anism go in the sense of equal division. This result is not surprising, as experimental
results of offer-based mechanisms (such as the well-known two-player bargaining over a
pie of Rubinstein| (1982))) often show that, contrary to the theoretical prediction, players
tend to go for an equal split of the pie. We show that, in our experiment, this behavior
becomes more evident after a first rejection of a proposal, as second proposals are closer
to the equal share than the first ones.

In Figure[[.2] we show the distance from equal division, devEQ = Y, lay;— ED|
where ay,; is the proposed allocation for player ¢ in Lth proposal (for a group) and ED
is the equal division payoff for the game, for the first (L = 1, horizontal axis) and the
second (vertical axis) proposals (top) and the second (L = 2, horizontal axis) and the
third (vertical axis) proposals (bottom) for each game. Each dot corresponds to a pair
of the proposals of a group.

We observe a clear tendency for either the second proposal to be more equal than the
first one (devE(Q); > devE()s) or the second proposal to be more equal than the third

one (devE(Qy > devE()3) depending on the game.



Figure I1.4: H-MC mechanism: Distance from equal division for the first and the second

proposals (top) and the second and the third proposals (bottom)

Game 1

devEQ,

20 40 60 80 100120 140

n=15
p=0.003
devEQ;3

20

%0740 60 80 10010 0. VEQ:
n=7
p=0.798

Game 2

20 40 60 80 100120140
n=32
p=0.511

devEQs3

20 4:) 60 80 100120 140
n=19
p=0.015

devEQ,

devEQ,

Game 3

devEQ,
20 40 60 80 100120140

n=17
p=0.246

devEQs3

20740 60 80 100120140 ©E@
n=6
p=0.036

Game 4

20740 60 80 100 120140 %EQ
n=12
p=0.045
devEQs3

140
120
100

80
60
40
20

5040 60 80 100120180 °E@
n=3
p=0.181

Note: In each panel, only those groups in which the first proposal (top) or the second proposal (bottom) is rejected are plotted.

p-values are based on the Signed-Rank test (two-tailed) with the null hypothesis dev EQr, = devEQ[ 1.



III Testing for the axioms of the Shapley value

We test the axioms that are historically the most relevant to characterizing the Shapley
value. In doing so, we aim to provide greater insight into whether a demand-based
bargaining mechanism is more appropriate than an offer-based bargaining mechanism
for cost or payoff allocation problems when the allocation scheme is constructed on the
main axiomatic solution notion of cooperative game theory, that is, the Shapley value.

First, we provide two definitions, which are used in the following.

Players i and j are symmetric in v € GV, if v(S U {i}) = v(S U {j}) for all
S C N\ {i,j}. Player i is a null player in v € GV if v(S) = v(S \ {i}) forall S C N.

In the literature, we find various axiomatic characterizations of cooperative solutions
and, in particular, of the Shapley value. Given a solution ¢/ : GY — R, we list some

of the most commonly used axioms to provide a characterization.
Axiom 1 (Efficiency): for every vin GV, >~ ¢;(v) = v(N).

Axiom 2 (Symmetry): if i and j are symmetric players in game v € G, then

$i(v) = ;(v).
Axiom 3 (Additivity): for all v,w € GV, (v + w) = ¥(v) + Y(w).
Axiom 4 (Homogeneity): forallv € GV and a € R, v(av) = ap(v).

Axiom 5 (Null player property): if i is a null player in game v € G¥, then

Axiom 6 (Strong monotonicity): if i € N is such that v(S U {i}) — v(S) <

w(SU{i}) —w(S) foreach S C N, then ¢;(v) < ;(w).



Axiom 7 (Fairness): if i, j are symmetric in w € GV, then 1;(v + w) — ¢;(v) =
Yi(v+w) —;(v) forallv € GV,

Fairness states that if we add a game w € G¥, in which players i and j are
symmetric, to a game v € GV, then the payoffs of players i and j change by the

same amount.

In particular, among many others, the axiomatization of Shapley|(1953)), which is the
most classical one, involves axioms 1, 2, 3, and 5. The axiomatization of |Young| (1985))
involves axioms 1, 2, and 6, whereas that of |[van den Brink! (2002)) involves axioms 1, 5,
and 7. Note that axiom 4, even if not directly involved in any of these axiomatizations,
is crucial because, together with axiom 3, it guarantees the linearity of the solutionE]

We noted in Section [6|that both mechanisms fail to satisfy efficiency (axiom 1) if we
examine overall data. Here, we examine the remaining six axioms. These axioms are
tested based on the estimated coefficients obtained from running the regression of Eq.[]]

as follows.

Symmetry (axiom 2) requires b; = c¢; and by = c;4.

Additivity (axiom 3) and homogeneity (axiom 4) require that x5 = 1 + x5 and

x4 = 2z for x € {a,b, ¢, d}, respectively.

Null player property (axiom S) requires that a; = 0.

* Strong monotonicity (axiom 6) requires that a; > ay and a4 > as.

2I'The equal division solution satisfies 1, 2, and 3, but does not satisfy the null player property in 5.
However, it satisfies a similar property when null players are replaced with nullifying players. Player 7
is a nullifying player if v(S) = 0 for each S C N such that i € S. Then, we can state the following
additional axiom that can be called the nullifying player property: if ¢ is a nullifying player in game
v € GV, then v;(v) = 0. Replacement of the null player property in the axiomatization of the Shapley
value in [Shapley| (1953) with the nullifying player property characterizes the equal division solution (see
van den Brinkl 2006).



Table I11.2: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
a grand coalition)

H-MC Winter
Axiom H, x?  p-value x?  p-value
Symmetry ag = as 0.35 0.552 1.85 0.174
dy = dj 1.60  0.206 0.06 0.811
Additivity cp=a+b 6.69  0.001 0.13 0.721
co = ag + by 323 0.072 0.02 0.878
c3 = as + b3 2.16  0.142 0.47 0.492
¢y =ay+ by .52 0.218 0.78 0.376
Homogeneity dy = 2a,4 0.00 0.946 0.10 0.749
dy = 2as 0.08 0.772 0.11 0.745
ds = 2a3 0.00 0.983 0.00 0.947
dy = 2ay 0.06 0.813 0.82 0.365
Null player as =0 4291 0.000 . .
Strong monotonicity a; = by 10.76 ~ 0.001 102.24  0.000
(Hp should be rejected) c1=d; 0.16  0.692 26,84  0.000
Fairness by —by=c3—co 0.62 0433 0.74 0.391

* Fairness (axiom 7) requires that b3 — by = c3 — ¢o.

In Table[[II.2] we present the results of the Wald tests for the verification of these axioms,
together with the null hypothesis (H).

Note that the symmetry (according to which H, should not be rejected) is confirmed
for the two cases under both the Winter and the H-MC mechanisms. The additivity
(according to which Hj should not be rejected) is always confirmed under the Winter
mechanism, but is confirmed in only two of four cases under the H-MC mechanism.
The homogeneity (according to which H should not be rejected) is always confirmed

for both mechanisms. The null player property (according to which H, should not be



Table I11.3: Tests of axioms (based only on the groups that formed a grand coalition)

Axiom H-MC Winter
Symmetry + +
Additivity - +
Homogeneity + +
Null player property - +
Strong monotonicity - +
Fairness + +

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

rejected) is not confirmed in the H-MC mechanism, but it is confirmed (respected 100%
of the time) for the Winter mechanism. The strong monotonicity (according to which

Hj should be rejected) is confirmed for the Winter mechanism but only for half of the

time for the H-MC mechanism. The fairness (according to which H, should not be
rejected) is confirmed for both mechanisms.

Let us consider that the axiom is satisfied on average if it is confirmed for strictly
more than half of the cases being tested. Table summarizes whether each axiom is

satisfied on average (+) or not (-) for two mechanisms. We can state the following.

Result 4. Provided the grand coalition is formed, the Winter mechanism better satisfies

axioms that characterize the Shapley value than the H-MC mechanism.

10



IV Additional results based on payoff shares

In this section, we report the results based on all the groups using the payoff share

instead of restricting our attention to those that formed the grand coalition. Payoff shares

mV (vg)
ZjeN 71—;'/V('Uk)

vg(N) foreachi = 1,2, 3, 4.

H——MC
X vp(N) and 71771 () = T —lH

~W .
are defined as 7; " (vg) = S yen (o)

As in the main text, our analyses are based on running a set of OLS regressions
shown by Eq. [I| but using payoff shares as dependent variables. Table shows the

results of the regression.

Table IV.4: Results of linear regression for normalized payoffs

H-MC Winter
T T T3 T4 T T T3 T4
gl | 2298 2429 25.01 27.72 gl | 2199 2191 2339 32.80
(0.96) (0.44) (0.67) (0.73) (2.78) (3.80) (2.12) (2.09)
g2 8.91 26.38 28.51 36.21 g2 0.0 2870 30.75 40.55
(1.27) (0.38) (0.82) (0.42) - (0.61) (0.44) (0.51)
g3 | 28.11 5092 5345 67.52 23 8.95 54.09 61.52 75.55
(4.25) (0.60) (1.42) (3.27) (2.16) (3.86) (2.84) (4.57)
g4 | 47.55 4839 4878 55.28 g4 | 42,18 48.13 4557 64.13
(1.48) (2.22) (0.92) (2.10) (3.15) (2.34) (5.14) @51
R? 0.81 0.95 095 095 R? 0.73 090 092 0093
Obs. | 160 160 160 160 Obs. | 192 192 192 192

Figure [[V.5|shows the mean of the normalized payoffs in the four games, where the
horizontal lines indicate the Shapley values for each game. It can be observed that for
the Winter mechanism, the average normalized payoffs are not significantly different
from the Shapley values for all four players in games 1, 2, and 4. However, for the
H-MC mechanism, the average normalized payoffs for all four players do not respect

the Shapley values in any of the games at the 10% significance level.
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Figure IV.5: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, ** and
* indicate the frequency with which the average normalized payoff is significantly different from the Shapley values at the 1%, 5%,
and 10% significance levels, respectively (Wald test).

Figure [V.6] shows the mean Dis2; (based on the normalized payoff). As in the
main text, we use a bootstrapping technique with 1,000 repetitions to create the figure
and conduct the statistical tests. In contrast to the analyses restricted to the groups that
formed a grand coalition, we now observe that Dis2, is significantly smaller for the
H-MC mechanism than for the Winter mechanism in games 1 and 3. For the other two

games, as before, Dis2, is significantly smaller for the Winter mechanism than for the
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Figure IV.6: Distance of the normalized payoffs from Shapley

Game 1 Game 2
40 — wok 40 — ok
20 — 20 —
0 - e 0 Q ‘
H-MC Winter H-MC Winter
Game 3 Game 4
40 — s 40 - ok
20 — 20 —
0 [ H 0 1 [
H-MC Winter H-MC Winter

Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the significant difference between the

H-MC and Winter mechanisms at the 1%, 5%, and 10% significance levels, respectively (two-sample t-test).

H-MC mechanism [

Tables and summarize the results of testing the six axioms. Based on
the normalized payoff, on average, the symmetry, strong monotonicity, and fairness
axioms are now satisfied under the H-MC mechanism. For the Winter mechanism, with
normalized payoffs, the fairness axiom is no longer satisfied.

Thus, if we consider all the groups and normalized payoffs, the Winter and H—
MC mechanisms are comparable in terms of their distance to the Shapley value and
satisfaction of its properties.

Figure[IV.7|shows the mean Dis2y g and the mean Dis2gp for the two mechanisms

in the four games computed based on the normalized payoffs using all the groups. The

22The mean Dis2 (standard error) values based on the normalized payoff for the H-MC mechanism
are 3.73 (0.034) in game 1, 10.52 (0.056) in game 2, 7.78 (0.120) in game 3, and 7.58 (0.638) in game 4.
For the Winter mechanism, the corresponding values are 4.11 (0.048) in game 1, 0.96 (0.016) in game 2,
16.07 (0.077) in game 3, and 6.91 (0.091) in game 4.
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Table IV.5: Wald tests for the verification of the symmetry, additivity, homogeneity,
strong monotonicity, and fairness axioms for normalized payoffs

H-MC Winter
Axiom H, x?  p-value x?  p-value
Symmetry as = ag 0.53  0.466 0.08 0.781
dy = dj 0.03  0.869 0.14 0.712
Additivity cp=a1+b 099 0319 7.25 0.007
co = ag + bo 0.07  0.790 0.65 0.422
c3 = ag + b3 0.00 0.952 2.54 0.111
cy = ay+ by 092 0.336 0.35 0.555
Homogeneity dy = 2ay 248 0.115 0.06 0.805
dy = 2as 0.01 0926 0.37 0.542
ds = 2as 0.31  0.580 0.02 0.892
dy = 2ay 0.00  0.963 0.35 0.552
Null player as =0 49.51  0.000 . .
Strong monotonicity ay = by 46.26  0.000 62.74  0.000
(Hp should be rejected) c1 = d 14.57 0.001 147.12  0.000
Fairness bs — by =c3—cy 0.58  0.447 7.53 0.006

Table IV.6: Tests of axioms for normalized payoffs

Axiom H-MC Winter
Symmetry + +
Additivity + +
Homogeneity + +
Null player property +
Strong monotonicity + +
Fairness + -

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

normalized payoffs under the H-MC mechanism are significantly closer to the equal
division than those under the Winter mechanism in all four games. Furthermore, those

under H-MC are significantly closer to the equilibrium payoffs in games 1 and 4 than

14



Figure IV.7: Mean of the distances of the normalized payoff vectors from the SPNE and

the equal division
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate that the distance of the normalized

payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H-MC and the

Winter mechanism at the 1%, 5%, and 10% significance levels, respectively (Wald test).

those under the Winter mechanism. However, in these games, for both the Winter and

H-MC mechanisms, normalized payoffs are significantly closer to the equal division

than to the equilibrium payoffs. For games 2 and 3, the normalized payoffs under the

Winter mechanism are significantly closer to the equilibrium than to the equal division.

Under H-MC, Dis2 g and Dis2gp are not significantly different in games 2 and 3.
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V  Comparison of a classical H-MC sequential approval
mechanism vs. a pseudo-H-MC simultaneous approval
mechanism

The comparison between sequential mechanisms and simultaneous ones in favoring the
formation of efficient coalitions has been the object of recent experimental laboratory
studies (Abe et al.,[2021). Experimental evidence shows that subjects may perform very
differently in these two proposed settings. Analogously, we propose a comparison be-
tween the performances of the H-MC mechanism and a pseudo-H-MC mechanism (in
the following, denoted as H-MCj;,,,), whose structure is identical to that of the original
mechanism except that after an offer is proposed, players are asked to either accept or
refuse the proposal simultaneously. Theoretically, the H-MCg;,, mechanism allows for
many more Nash equilibria in which two or more players refuse the proposal. We show
that sometimes, as observed by Fréchette et al. (2005b)), bargaining behavior is not as
sensitive to the different bargaining rules as the theory suggests.

The H-MC;,,, experiment was conducted in December 2019 at ISER at Osaka Uni-
versity. In total, 84 participants, who had never participated in similar experiments
before, were recruited. The experimental procedure was identical to the H-MC ex-
periment reported in the main text. On average, the experiment lasted for 1 hour 30
minutes, including the instructions (11 minutes), a comprehension quiz (5 minutes),

and payment. The average earnings were 2,780 JPY.
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V.1 Grand coalition formation and efficiency

Figures [V.§] and [V.9] report the results concerning the grand coalition formation and

efficiency. The only significant differences reported are for game 2.

Figure V.8: H-MC and H-MCg;,,, mechanisms, proportion of times the grand coalition
is formed

(a) Game 1 (b) Game 2 (b’) Game 2, allow (2,3,4)
n.s. * EEEY
1 - I - 1 -
08 — 08 — 0.8 —
06 = l—”l |—}| 06 — 0.6 —
04 — 04 — I—I-l 04 —
02 - 02 — 02 —
0 — T | 0 — | '—:F—' 0 - I I—I—l
H-MC H-MCyip, H-MC H-MCyipn H-MC H-MCyipm
(c) Game 3 (d) Game 4
1 - 1 -
0.8 — 0.8 —
0.6 — 0.6 —
04 — 0.4 —
02 - 02 -
0 ' I 0 I I

H-MC H-MCgim H-MC H-MCgim,
Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the proportion of times the grand

coalition was formed, which was significantly higher for the H-MC implementation compared with the H-MCj;,,, implementation

at the 1%, 5%, and 10% significance levels (Wald test), respectively.
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Figure V.9: H-MC and H-MC;,,, mechanisms, efficiency

(a) Game 1 (b) Game 2
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the efficiency for the H-MC mechanism

is significantly higher than for the H-MCg;,,, implementation at the 1%, 5%, and 10% significance levels (Wald test), respectively.
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V.2 Analyses based only on groups that formed the grand coalition

Table [V.7) reports the results of running a set of OLS regressions as in Eq. [T| based on

groups that formed the grand coalition.

Table V.7: H-MC,;,,, mechanism, results of the linear regression based only on the
groups that formed the grand coalition

H_Mcsim

T o 3 T4
gl | 23.88 25.63 2456 2593
(0.70) (0.43) (0.11) (0.42)
g2 | 11.07 26.07 27.73 35.13
(3.31) (1.45) (0.97) (1.95)
g3 | 4588 5132 4972 53.08
(1.70) (1.19) (0.50) (1.84)
g4 | 47.83 48.67 50.5 53.00
(1.17) (0.89) (0.87) (1.10)
R* | 096 099 099 097

Obs. | 97 97 97 97

Note: The standard errors are corrected for within-group clustering effects.

Based on the estimated coefficients, Figure [V.10|shows the average payoffs obtained
by each player in the four games, conditional on the grand coalition being formed.
The horizontal lines indicate the Shapley values for each game. We observe that the
two mechanisms perform similarly in that there are players whose average payoft is

significantly different from the Shapley value in all four games under both mechanisms.
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Figure V.10: H-MC and H-MC;,,, mechanisms, mean payoffs based only on the groups
that formed the grand coalition
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols *#%*, *%*

and * indicate the average normalized payoff, which is significantly different from the Shapley value at the 1%, 5%, and 10%

significance levels (Wald test), respectively.
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V.2.1 Distance between the ex ante payoffs and the Shapley value

We compute the distance of the average payoffs from the Shapley value, Dis2y4, using
the bootstrapping technique with 1,000 repetitions as we have done in the main text
comparing the H-MC and Winter mechanisms. The result is reported in Figure [V.11] It
can be observed that the ex ante payoffs of H-MC;,,, are closer to the Shapley values
in games 2 and 4, whereas those of H-MC are closer to the Shapley values in games 1

and 32

Figure V.11: H-MC and H-MC;,,, mechanisms, distance from Shapley

Game 1 Game 2
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— \ S— 0
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate significant differences between the

H-MC and the H-MCjg;,,, mechanisms at the 1%, 5%, and 10% significance levels (two-sample t-test), respectively.

23The mean Dis2 (standard error) values for the H-MC mechanism are 5.14 (0.035) in game 1, 15.70
(0.064) for game 2, 28.99 (0.074) for game 3, and 11.34 (0.047) in game 4. The corresponding values
for H-MCg;,, are 5.28 (0.018), in game 1, 13.09 (0.088) for game 2, 30.55 (0.091) for game 3, and 9.26
(0.057) in game 4.
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V.2.2 Realized allocations and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure [V.12|that H-

MC;,,, results in outcomes significantly closer to equal division compared with H-MC

only in game 1, whereas in the other games there is no significant difference.

Figure V.12: H-MC and H-MC;,, mechanisms, mean of the distances of the realized
payoff vectors from the SPNE and the equal division
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate that the distance of the normalized

payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H-MC and the

H-MCg;,, implementations at the 1%, 5%, and 10% significance levels, respectively (Wald test).
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V.2.3 Axioms

Finally, verification of the axioms (comparing Table [V.§| and the left column of Ta-
bles |[11.2] and [lII.3) indicates that the differences in results between H-MC and H-
MC;,,, are observed for symmetry and fairness (satisfied in H-MC but not in H-MCg;,,,).
Table V.8: Results of Wald tests for the verification of the symmetry, additivity, homo-

geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
the grand coalition)

Axiom Hy x?  p-value Test

Symmetry as = as 5.07 0.024 -
dy = dj .11 0.293

Additivity cp=a;+b 4.84 0.028 -

co = ag + bo 0.03 0.861
c3 = ag + b 14.99  0.000
cy =ay+ by 11.10  0.001

Homogeneity dy = 2a, 0.00 0.983 +
dy = 2ay 13.12  0.000
ds = 2as 2.25 0.134
dy = 2ay 0.43 0.513
Null player az =0 9.90 0.002 -
Strong monotonicity ap = by 215.83  0.000 -
C1 = dl 0.67 0.411
Fairness bs — by =c3—cy 3.02 0.082 -

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

To summarize, there is no systematic difference between the H-MC and the H—
MC,;,, mechanisms except that the H-MC better satisfies the symmetry and fairness

axioms than does H-MC;,,, if we focus on the groups that formed grand coalitions.
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V.3 Analyses based on all the groups but only on normalized pay-

offs

Below, we compare H-MC and H-MC,;,,, based on the normalized payoffs but using
the data for all groups. Table [V.9|reports the results of running a set of OLS regressions

as in Eq. [T]using the normalized payoffs as dependent variables.

Table V.9: Results of linear regression for normalized payoffs

H-MC;y,
T o T3 T4

gl | 2143 2538 2330 29.90
(1.88) (1.20) (1.53) (1.60)

g2 512 27.52 28.04 39.31
(1.63) (0.72) (0.83) (0.92)

g3 | 38.06 49.84 4994 62.15
(1.75) (1.56) (0.70) (1.96)

g4 | 44.13 49.03 51.97 54.87
(0.56) (2.06) (2.33) (0.81)

R* | 0.83 096 096 0.96

Obs. | 168 168 168 168

Based on the estimated coefficients reported in the left panel of Table [V.4] and Ta-
ble Figure [V.I3|shows the average normalized payoffs obtained by each player in
the four games under H-MC and H-MCy;,,,. The horizontal lines indicate the Shapley
values for each game. We observe that for game 1 under H-MCg;,,,, the average normal-
ized payoffs of each of the four players are not significantly different from the Shapley

values.
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Figure V.13: Mean of the normalized payoffs
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Note: The horizontal lines indicate the Shapley values. The error bars show the one standard error range. The symbols ***, ** and
* indicate the average normalized payoff being significantly different from the Shapley values at the 1%, 5%, and 10% significance

levels (Wald test), respectively.

V.3.1 Distance between the ex ante payoffs and the Shapley value

We compute the distance of the average normalized payoffs from the Shapley value,
Dis24, using the bootstrapping technique with 1,000 repetitions, as we have done above.
The result is reported in Figure It can be observed that the ex ante normalized

payoffs of H-MCg;,, are closer to the Shapley values in games 1 and 2, whereas those
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Figure V.14: Distance of the normalized payoffs from Shapley
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate the significant difference between the

H-MC and the H-MCg;,,, mechanisms at the 1%, 5%, and 10% significance levels (two-sample t-test), respectively.

of H-MC are closer to Shapley values in games 3 and 4@

V.3.2 Normalized payoffs and a posteriori equilibria

In terms of distance from SPNE or equal division, we observe from Figure [V.15] that
Dis2yp 1s significantly smaller under H-MC than under H-MCg;,,, only in game 4.
For other games, the values are not significantly different between the two mechanisms.
In terms of Dis2gp, although it is significantly smaller under H-MC in game 2, the
opposite is the case for game 3. For games 1 and 4, there is no significant difference
between the two mechanisms. We observe that normalized payoffs are significantly

closer to the equal division than the SPNE for both mechanisms in games 1 and 4. For

?4The mean Dis2 (standard error) values based on the normalized payoff for H-MC are 3.73 (0.034)
in game 1, 10.52 (0.056) for game 2, 7.78 (0.120) for game 3, and 7.58 (0.638) in game 4. For H-MCg;,,,
the corresponding values are 2.89 (0.033) in game 1, 6.13 (0.042) for game 2, 19.24 (0.104) for game 3,
and 8.45 (0.058) in game 4.
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Figure V.15: Mean of the distances of the normalized payoff vectors from the SPNE
and the equal division
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Note: The error bars show the one standard error range. The symbols ***, ** and * indicate that the distance of the normalized
payoff vectors from the equilibrium allocations or from the equal division was significantly different between the H-MC and the
H-MCg;,, implementations at the 1%, 5%, and 10% significance levels (Wald test), respectively.

H-MCq;,,,, Dis2gp is significantly larger than Dis2 g in game 2, whereas the opposite
is the case for game 3. For H-MC, Dis2xyg and Dis2gp are not significantly different

in games 2 and 3.

V.3.3 Axioms

Finally, verification of the axioms (comparing Table [V.I0| and the left column of Ta-
bles [TV.3] and [TV.6) indicates that the differences in results between H-MC and H-
MC;,,, are observed for additivity and homogeneity (satisfied in H-MC but not in H-
MCyirn).

To summarize, even comparing the payoft shares using all the groups, there is no

systematic difference between the H-MC and the H-MCg;,,, mechanisms, except that
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Table V.10: H-MCg;,,, normalized payoffs, Wald tests for the verification of the sym-
metry, additivity, homogeneity, strong monotonicity and fairness axioms

Axiom H, x?  p-value Test

Symmetry as = as 1.01  0.314 +
dy = d3 047 0492

Additivity c1=ay+ b 36.91 0.000 -

cy = as + bo .11 0.292
c3 = ag + b3 0.53  0.466
¢y =ay+ by 4.78 0.0288

Homogeneity dy = 2aq 0.16  0.689 -
dy = 2ay 0.28  0.598
ds = 2ag 590 0.015
d4 = 2&4 3.23 0.072
Null player as =0 9.90 0.002 -
Strong monotonicity a; = by 23.87  0.000 +
(Hp should be rejected) 1 = d; 11.55 0.001
Fairness bs —by =c3 —co 0.15 0.694 +

+ indicates that the axiom is considered to be satisfied on average. — indicates the opposite.

H-MC better satisfies the additivity and homogeneity axioms than H-MCy,,.
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VI Translated instruction materials and screenshots of
the comprehension quiz

¢ Winter mechanism: https://www.dropbox.com/s/galeo3todbah7iw/

Winter_1_loop_handout.pdf?dl=0

e H-MC mechanism: https://www.dropbox.com/s/ctlw85momfO6vmx/

HMChandout_seqg.pdf?d1=0

* Simultaneous voting version of the H-MC mechanism (H-MCj;,,,): https://
www .dropbox.com/s/781f5bnogi3gfwp/HMChandout_sim.pdf?dl=

0

29


https://www.dropbox.com/s/galeo3todbah7iw/Winter_1_loop_handout.pdf?dl=0
https://www.dropbox.com/s/galeo3todbah7iw/Winter_1_loop_handout.pdf?dl=0
https://www.dropbox.com/s/ctlw85momf96vmx/HMChandout_seq.pdf?dl=0
https://www.dropbox.com/s/ctlw85momf96vmx/HMChandout_seq.pdf?dl=0
https://www.dropbox.com/s/78lf5bn6qi3qfwp/HMChandout_sim.pdf?dl=0
https://www.dropbox.com/s/78lf5bn6qi3qfwp/HMChandout_sim.pdf?dl=0
https://www.dropbox.com/s/78lf5bn6qi3qfwp/HMChandout_sim.pdf?dl=0

	1175.pdf
	DP1175.pdf
	Introduction
	Related work
	Theoretical model
	Cooperative TU games and solutions

	Two mechanisms
	The Winter mechanism
	The Hart and Mas-Colell mechanism
	A comparison between the Winter and the H–MC mechanisms

	The experimental setting
	The games

	Results
	Grand coalition formation and efficiency
	Allocations
	Realized allocations and a posteriori equilibria

	Conclusions
	The average payoffs
	Effect of learning and bargaining dynamics
	Grand coalition formation and efficiency
	Departure from the Shapley payoff share

	Testing for the axioms of the Shapley value
	Additional results based on payoff shares
	Comparison of a classical H–MC sequential approval mechanism vs. a pseudo-H–MC simultaneous approval mechanism
	Grand coalition formation and efficiency
	Analyses based only on groups that formed the grand coalition
	Distance between the ex ante payoffs and the Shapley value
	Realized allocations and a posteriori equilibria
	Axioms

	Analyses based on all the groups but only on normalized payoffs
	Distance between the ex ante payoffs and the Shapley value
	Normalized payoffs and a posteriori equilibria
	Axioms


	Translated instruction materials and screenshots of the comprehension quiz


