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Abstract

In a second-price sequential auction with both global and local bidders, we explore
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ance) first yields higher revenue, while selling it second results in an efficient outcome
with probability almost 1. We link the optimal selling order to the likelihood of various
inefficient outcomes. Specifically, selling the good with small variance first increases
the probability of ex-post loss for the global bidder, boosting the seller’s revenue at the
expense of overall social welfare.
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1 Introduction

There are some auctions such as highway procurement auctions in which heterogenous syner-
gistic goods are sold to global and local bidders via sequential auctions (e.g., De Silva 2005).
In such sequential auctions, the aim of the auction can be to generate higher revenues or
obtain efficient outcomes depending on whether governments, non-profit organizations, or
firms are conducting the auction. Therefore, it should be better understood how to reach
these different goals in an auction by studying its different aspects. Omne such aspect is
the selling order of goods, which the auction literature neglected due to the assumption of
identical goods. If goods are ex-ante identical and bidder numbers are equal, selling order
does not matter. However, if the goods are heterogenous, the selling order should matter.
In this paper, we analyze selling which of the heterogenous goods first (rather than second)
generates higher revenue or social welfare in a second-price sequential auction to fill the gap
in the literature.

We show that the selling order for higher revenue or efficiency is determined by the
variance of the (valuation of) goods.! Specifically, if all bidders are more likely to have very
close valuations, that is, one good has a variance approaching to zero, then selling that good
first results in higher revenue, but selling it second results in a more efficient outcome. Why
do we get this result? As it is well-known in the sequential auction literature (e.g., Gunay
and Meng 2022), the global bidder bids over its stand alone valuation in the first auction
hoping to win the second good and enjoy the synergy regardless of the variance of the good.
When the low variance good is sold first, the global bidder wins it with almost probability
1 as they bid over the stand alone valuation. Moreover, they win it over their stand-alone
valuation with some positive probability as his and the local bidders’ valuations are close.

While this creates a high enough probability of an ex-post loss for the global bidder, it also

'In the highway-construction procurement auctions, some projects have high variance according to civil
engineers. A private conversation with a civil engineer, Mr. Mert Gulcat, revealed that BidBid-Sur Highway
project in Oman had a high variance due to the difficulty in assessing the cost of the project. However, some
other highway projects have low variance especially when the terrain that the highway will be constructed
is flat and hence, the cost of the project can be calculated easily.



increases the auction revenue at the expense of both the global bidder’s profits and the social
welfare.

We show that if the small variance good is sold second, then the global bidder bids
(almost) truthfully and hence the outcome is (almost) efficient as all bidders bid (almost)
truthfully. We note that, in the limit when the variance is zero, selling order would not matter
in the sense that any kind of selling ordering will result in an efficient outcome. However,
the probability of inefficient outcomes do not approach to zero as the variance approaches
to zero, when the small variance good is sold first 2 but it does if it is sold second.

While using ex-ante expected revenue and welfare is calculated in part of the auction
literature when bidders are (ex-ante) identical, it is not possible in our model as the bidders
are heterogenous and the bid of the global bidder is complicated. Moreover, the sequential
auction literature does not calculate the probability of ex-post loss for the global bidder
as it is either impossible or extremely complicated. To overcome this problem, we do some
simulations to quantify the probability of ex-post loss for the global bidder in different selling
order of goods by using ex-post valuations (papers using such simulation methods include
Krishna and Rosenthal, 1996; Meng and Gunay, 2017; Gunay and Meng, 2022). If the low
variance good is sold second, the ex-post loss probability approaches to zero as the variance
of the good decreases to zero. However, if it is sold first, the ex-post loss probability stays
high. While the theoretical results for the revenue and efficiency in different selling orders
are valid when one good has an almost zero variance, the simulations show that the variance
need not be too small to get those results.

This result has a policy implication. To make the bidders’ valuations closer on one good,
the seller might reveal the information on that good or allow the bidders inspect it (but
not the other good). Then set the order of selling as discussed in our paper depending on
whether their aim is an efficient outcome or a higher revenue.?

Elmaghraby (2003) studies the implications of selling order on efficiency with capacity

2While the probability of inefficiency is positive, the amount of inefficiency is very small; hence the amount
of inefficiency approaches to 0.
3Though we note that this is not a mechanism design paper and it compares two selling order.



constrained bidders on procurement auctions as this is relevant to businesses. Meng and
Gunay (2022) also study how the selling order of ex-ante identical goods affect the efficiency
when the number of local bidders bidding for each good is different. Most other papers
in the literature have not studied the selling order as they have assumed (ex-ante) identical
goods, hence, the ordering would not matter (Jeitschko and Wolfstetter, 2002; De Silva, 2005;
Leufkens et. al., 2010; Ghosh and Liu, 2019; Ghosh and Liu, 2021); or the goods are sold
via simultaneous ascending auction (Meng and Gunay, 2017), and thus, the order of selling
goods has no impact on revenue and welfare. One exception is Benoit and Krishna (2001).
They find that selling the more valuable good first generates more revenue in a common
value model with budget constrained (global) bidders in a complete information game.
Our model is a private value model without “budget constrained bidders” assumptions.

A novel feature of our paper is linking the inefficiency outcomes to the revenue of the
sequential auctions by using the probability theory. Namely, when global bidder wins an
auction by making a loss, which is an inefficient outcome, this has a revenue increasing ef-
fect. However, there are two other inefficient outcomes where the global bidder wins one
good with profit or when the local bidders won both goods when the global bidder is sup-
posed to win them for efficiency. These inefficient outcomes have generally revenue-lowering
effects. Therefore, when we have more of the first type of inefficiency, we get a revenue
increasing and efficiency decreasing outcomes. The order of selling goods determine which
of these inefficiencies disappear (with almost probability one) when the variance of one good
is approaching to zero. We show this in our proofs to get our results.

Next, we set up our model and show our theoretical results. Then, we present our
simulation results which shows that our results are valid even when the variance of a good

is not too small. We conclude the paper with conclusion and discussion section.

2 The Model

Two goods, A and B, are sold in a second-price sequential auction. The goods have zero

value to the seller. There is one risk-neutral global bidder, G, who bids for both goods,



and enjoy a synergy of § > 0 if wins both goods.* There are also N > 0 risk neutral local
bidders bidding for good i = A, B. There are N + 1 independent draws from the distribution
function F; determines the private valuation, vg;, for the global bidder, and vy;, for each local
bidder, k = 1,2..., N, and i = A, B. The distribution function Fj, has a twice differentiable
density function f; > 0 on the interval (0,1] with f;(0) > 0.° We will sometimes denote
by F : R, — R the extension of the distribution function F' given by EF(t) = F(t) for all
te0,1] and F(t) =1 for t > 1.

We use symmetric subgame perfect Bayesian equilibrium. The equilibrium strategy for
local bidders is bidding their valuations truthfully in both auctions (in weakly undominated
strategies). The global bidder’s equilibrium strategy in the second auction is bidding her
marginal valuation truthfully; hence, she bids vg; + 0 if won good i in the first auction, and
bid vg; otherwise, where ¢, 7 = A, B and i # j.

To derive the global bidder’s equilibrium strategy in the first auction for good i, we have to
write the expected payoff given the sequential rationality and then maximize it. To calculate
the expected payoff, we need to know the (expected) price the global bidder will pay, if wins
the goods. Becuase this is a second-price auction, the global bidder pays the maximum of
the local bidders’ valuations (as they bid truthfully). Let b; = max{vy;},k = 1,2.., N denote
the maximum valuation of local bidders for good i = A, B. Since each local bidders’ valution
is a private information, we need the distribution function for b;, which is G;(.) = [F;(\)]™

for i = A, B. Now, we can write the expected payoff for the global bidder when she bids b.

b min{vg;+60,1}
Maxb/ (UGZ' - bz)dGz<bz) + PT(b > bz) / (UG]‘ + 0 — b])de(bj)
0 0

+Pr(b < b;) /Oij (va; = b;)dG(b;) (1)

4 Assuming one global bidder when a bidder has multi-dimensional valuations is not uncommon in the
literature (see Meng and Gunay(2017), Goeree and Lien (2014), Albano et al. (2006), Kagel and Levin
(2005)) since the equilibrium strategy for multiple global bidders have not been calculated unless they have
single types.

®The model is similar to the corresponding model of Gunay and Meng (2022) as both papers deal with
selling order. However, the current model will let one of the goods variance approach to zero later in the
model.



The first integral is the expected profit from winning ¢ in the first auction. If the global
bidder wins the first auction, she will get her stand-alone valuation vg; and pay the price of
b;. Since we do not know the price b;, we have to use its density function dG;. However, since
calculations are done conditional on the global bidder is winning, we are only interested in
how b; is distributed in [0, b]. Hence, the lower limit and the upper limit of the integral are 0
and b, respectively. If, b; > b, then the global bidder loses the first auction and gets 0 payoff.
Therefore we do not write this part of the integral in the equation.

The second integral is the expected profit from winning j after winning ¢. This case
can happen with probability Pr(b > b;), which means that the global bidder’s bid were
the highest bid in the first auction. Then, by sequential rationality, the global bidder bids
vgj + 0. If she wins the auction, she pays b; for the good j. We should calculate how b;
is distributed between [0, min{vg; + 0,1}] by using the density function dG;.° Hence, the
lower and upper limit of the integrals are 0 and min{vg; + 6, 1}], respectively. If the global
bidder loses the auction, she gets 0 payoff so we do not write this case.

The third integral is the expected profit from winning ;7 only in the second leg of the
auction. This case happens only if the global bidder’s bid in the first auction was lower
than the local bidders’ valuations/bids. This happens with probability Pr(b < b;). Then,
by sequential rationality, the global bidder bids vg;. If she wins, she pays b;. We should
calculate how b; is distributed on [0, vg;| by using its density function dG;. Hence, the lower
and upper limit of the integrals are 0 and, vg;, respectively. If b; is between [vg;, 1], then
the global bidder loses the second leg of the auction and gets 0. Hence, we do not need to
write this case in the equation.

Equation 2 is the first order condition that calculates the optimal bid b;; in the 75 auction
where good i is sold first and good j is sold second. The payoff from winning the first auction
for the global bidder is the left hand side when he pays (the optimal bid) b;;. The payoff
from losing the first auction is the right hand side. Hence, the optimal bid b;; is the (highest)
price that the global bidder is willing to pay to win the first auction, or equivalently, he is

6p; cannot be greater than 1 as its distributed up to 1. We could write this equation by using G (rather
than G), then we would not have to use a min function.



indifferent between losing and winning the first auction at the price b;; in the ij auction.

min{v;+0,1} v
(vai — bg) + / (vaj + 0 — b;)dG;(b;) = / (vaj — b;)dG; (b)) (2)
0 0
Expected profit from winning the first auction when price is b;; and losing the first auction

By using integration by parts and equation 2, we derive the global bidder’s equilibrium

bid.”

Proposition 1 The global bidder’s equilibrium bid, b;; in the first auction for good i is

vg;+0 N
bij(vai, vaj, N) = UGi+/ G;(b, N)db

va;

A few observations based on proposition 1. First, the global bidder bids over her stand-
alone valuation which exposes her to the ex-post loss as well known in the literature (e.g.
Krishna and Rosenthal, 1996). Second, when vga + vgp + 6 > 2, the global bidder bids
above 1 in both auctions, and wins both goods.® Third, the global bidder bids such that
vai < bij < vg; 40 since the integral in proposition 1 is between 0 and 6 given 0 < éj() < 1.

Let us summarize some of the results in a corollary below.

Corollary 2

v < bij(vai vgj, N) < v + 6

Now, we can present the optimal bid as the variance of one good, good j, is approaching

to 0. Let P denote the probability.

Proposition 3 a) Let F; be a probability distribution with mean p1; and variance UJZ. When

a?- — 0 and p; — p, then the optimal bid b;; converges to

) vgi + 0 LS Vg
bij = { Vei + v +0 — i vey < p < veg + 0
Vi UG]‘{'QSM

"See the discussion paper of Gunay and Meng (2017) for the proof.

8Since vg; + vej + 0 > 2 implies vg; + 60 > 2 — vg; > 1. But then since Gj(t) =1forl1<t<wvg +0
then we have b;; > vg; + (vg; +6 — 1) > 1, which guarantees that global bidder wins the first and then the
second auction.



~

Moreover, when p; — pv and 0']2» — 0 we have that P(b;; = vgi +60) — 1

b) As p; — pand Var(F;) — 0, Prob(bj; > maxj<g<n{vjn}) — 1.

Proposition 3a says that as the variance of good j approaches to 0, then the global
bidder’s bid in the i leg of the ij auction approaches (from the left) to vg; + 6. Becasue the
global bidder knows that if she wins good 7 in the first auction, then the probability that she
will win good j approaches to 1. As she will bid vg; + 6 when the local bidders’ valuations
are very close to vg;, she will win the j auction and pay only vg; with almost probability
1. But then the value of good i becomes (almost) vg; + 0 for the global bidder in the first
leg of the auction. The global bidder is actually bidding (almost) truthfully in both leg of
the auction in this case! Proposition 3b says that the global bidder wins the good j in the
jt auction as Var(F;) — 0. The reason is that the global and local bidders have very close
valuations (around ) for good j but the global bidder bids over its stand alone valuation
by Proposition 1; hence, the global bidder wins the good with almost probability 1.

Now we can prove our main result. Let R;; and SW;; denote the (ex-post) revenue and

social welfare, respectively, in the ij auction with 7,7 = A, B and i # j.

Proposition 4 Assume that Ny = Ng > 1. If Var(Fg) approaches to zero, then we
have that the probability that Ryp < Rpa and SWga < SWyp converges to 1. That is,

P(RAB < RBA) — 1 and P(SWBA < SWAB) — 1.

Proposition 4 states that, selling the good B first - which its variance is approaching to
zero- gives a higher revenue than selling good A first. However, the social welfare will be less.
On the other hand, selling good B second gives a higher social welfare than selling good A
second. We have already explained the latter part above as the global bidder bids truthfully
in this case. The first part mainly occurs from inefficient cases in which the global bidder
makes an ex-post loss. And this inefficiency survives even when the variance of B goes to

zero in a BA auction but disappears in an AB auction.

Corollary 5 In an AB auction, local bidders win both auctions when it is efficent for them

to win and vpa > vga + 0. However, for the same valuations, in the BA auction, as the

8



variance of good B goes to zero, the global bidder wins good B but loses good A to the local
bidders. This increases the revenue compared to the AB auction, but results in an inefficient

outcome.

The proof of proposition 4, under Case IIl.a proves the corollary. Let us give an example.
In a BA auction, when the global bidder wins B in a case vgp < pg < bga, it will make a
potential loss. When the global bidder bids for good A and loses, it will be an ex-post loss
and this can happen if vga + 0 < vp4.? For such cases, the revenue in the BA auction is
Rpa =pp+vga+0.

Now, imagine selling good A first and good B second for the ex-post valuations in the
example above. The local bidder wins good A since global bidder bids bap < vga+6 < vpa.
Then global bidder bids also loses good B since vgp < pgp. In this case, revenue R p =
bag + vgp. If we compare the revenues Ry = bap + vgp < Rpa = pp + vga + 6. The
inequality holds since byp < vga + 0 and vgp < pp.

One might think that this is just an example but as the variance of good B approaches
to 0, this case still survives. The reason is that even if vgp and p, gets closer to each other,
it is still a positive probability to get vgr < pp. Since the variance of good A is not small,
it is also a positive probability to have bap < vga + 60 < vpa (assuming @ is not too big) and
we note that byp — vga + 0 from the left.

While there are cases in which Rap > Rpga, we show that these cases disappear as

variance of good B approaches to 0 in our proofs.

3 Simulations

Given the complexities of multi-unit valuations, calculating ex-ante revenue, social welfare,
and the probability of inefficient allocations proves to be quite challenging. To address this,
we employ simulations based on ex-post valuations to compare AB and BA auction formats

in terms of revenue, social welfare, and the likelihood of loss for the global bidder. Previous

9Tt canalso happen even if this inequality is reversed but both terms are close to each other



studies, such as those by Krishna and Rosenthal (1996) and Meng and Gunay (2017), have
also utilized simulations in this context.®

To conduct the simulation in MATLAB, we draw valuations for each bidder from specified
distributions for goods A and B. Using Proposition 1, we calculate the equilibrium bidding
prices, bap and bga, for the AB and BA auctions, respectively. With complete knowledge of
all valuations and equilibrium bids, we can determine the winners of the auctions, the prices
paid for each set of valuations, and assess whether the outcomes are efficient or inefficient in
both auction formats. This process is repeated 50,000 times to compute average revenue and
efficiency.!! To calculate the probability of inefficiency, we divide the number of inefficient
outcomes by 50,000. Table 1 presents all possible outcomes along with the corresponding
revenue and welfare for both AB and BA auctions, aiding in our ex-post calculations. The
table identifies four types of inefficiencies involving a single local bidder: two cases where the
global bidder wins one or both goods at an ex-post loss (rows 2 and 4), one case where the
global bidder wins one good inefficiently but with a profit (row 6), and another case where

the local bidders win both goods inefficiently (row 8).

License ¢ won by License j won by Global bidder makes Allocation is Revenue is Welfare is
1. Global Bidder Global Bidder Profit Efficient b; + b; vgi +vg; + 0
2. Global Bidder Global Bidder Loss Inefficient b; + b; vgi +vg; + 0
3. Global Bidder Local Bidder j Profit Efficient b; +vgj + 0 vg; + bj
4. Global Bidder Local Bidder j Loss Inefficient b; +vgj + 0 vg; + bj
5. Local Bidder ¢ Global Bidder Profit Efficient bij +b; b; + vgj
6. Local Bidder ¢ Global Bidder Profit Inefficient bij +b; b; + vgj
7. Local Bidder ¢ Local Bidder j Zero Profit Efficient bij + v; b; +b;
8. Local Bidder ¢ Local Bidder j Zero Profit Inefficient bij + vj b; + b;

Table 1: All possible outcomes in an ij auction when N; = N; =1

In the simulations, we examined three different synergy levels: 0.2, 0.5, and 0.8. For
Good A’s valuations, we employed a uniform distribution, while for Good B’s valuations,
we utilized various beta distributions, with parameters (o, 8) set to (3,3), (10, 10), (50, 50),
(100, 100), and (500, 500). All of these distributions share the same mean of 0.5. As shown

10Krishna and Rosenthal (1996) employ simulations except for uniform distributions, focusing on a single
type for the global bidder.

1We run it for 20,000 times only for the beta distribution (o = 8 = 500) as the code was running very
slow for this distribution.

10



Table 2: The Variance of Beta Distributions Used in Simulations

alpha | beta | Var(B) | Var(A)
1 1 0.08333 | 0.08333
3 3 0.03571 | 0.08333
10 10 0.01191 | 0.08333
50 50 | 0.00248 | 0.08333
100 100 | 0.00124 | 0.08333
500 500 | 0.00025 | 0.08333
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Figure 1: Revenue Comparison for N = 2, for § = 0.5

in Table 2, the variance of each beta distribution decreases as « and 3 increase.!?

Simulation results are presented in Table 3 for Ny = Ny = 1 and in Table 5 for N4 =
Np = 2, which can be found in the Appendix. In what follows, we will mainly discuss the
results for Ny = Ng = 2 and 6 = 0.5 with the help of the figures.

Figure 1 compares revenue as the variance of good B decreases. As the variance of good
B decreases, the revenue from the BA auction ultimately surpasses that of the AB auction.
This finding is crucial as it illustrates that the conclusions drawn in Proposition 4 do not
necessitate the variance to be very close to zero.

Now, we will explain why we get this result by focusing on Figure 2. The primary obser-

vation in Figure 2 is that as the variance of good B decreases, the probability of ex-post loss

12 Additionally, we explored the beta distribution with o = 1 and /3 values of 3,4, 5, 8, 20, 50, 100, and 1000,
which yielded qualitatively similar results. For these distributions, both the mean and variance approached
Zero.

11
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Figure 2: Probability for expost lost for § = 0.5 for N = 2.

in the BA auction does not approach zero, whereas in the AB auction, it does. Additionally,
while other types of inefficiencies vanish (as Table 3 and Table 5 in the Appendix show), the
inefficiency associated with the global bidder winning at a loss persists in the BA auction.
Consequently, the BA auction is more inefficient overall and generates higher revenue, but
this comes at the expense of the global bidder.

In Figure 3 , we compare social welfare across various auction formats. Our findings
indicate that the social welfare associated with the BA auction is lower, even when the
variance of good B is not close to zero. We note that in the figure Social Welfare of BA
auction is lower for all distribtuions we have used. This is not contradicting our theoretical

result which is only valid when the variance is close to zero.

4 Conclusion

In this paper, we demonstrate that the order in which goods are sold in a second-price sequen-
tial auction significantly affects revenue, welfare, and the likelihood of inefficient allocations.
Our findings reveal that selling a good with nearly zero variance first yields higher revenue
with a probability approaching 1, while selling it second results in an efficient outcome with

a similar likelihood. We establish a connection between the auction’s inefficient outcomes

12
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and its revenue—a novel contribution to the literature on sequential auctions, to the best of
our knowledge. When the global bidder bids beyond their standalone valuation, they face a
substantial risk of incurring a loss if the nearly zero variance good is sold first.
Additionally, we believe that the code developed for this study can be a valuable resource
for policymakers and firms conducting auctions. Our simulation results indicate that the
variance of goods does not need to be excessively small to achieve these outcomes.
We hope this paper encourages further research into the optimal selling order of goods,

particularly in scenarios where heterogeneity manifests in various forms beyond just variance.

5 Appendix-Proofs

Proof of proposition 1
We take the derivative of equation 1 by using the fact that Pr(b > b;) = G;(b). After

equating the derivative to zero, and cancelling ¢g(b) from the equation, we get equation 2

min{vg;+6,1} VG
b= bij = vg; +/ (vaj + 0 — b;)dG(b;) — / (vaj — bj)dG;(by)
0 0

We can re-write this by using integration by parts by setting dv = dG;(b;) in both

integrals. For instance, the first integral becomes
by —min{ve; 40,1} min{vg;+6,1} vg;+0
[(va; +0 = b;)G(bj)]ly =g 77+ /O G (bj)db; = /0 G(b;)db;

Where the equality holds since when min{vg; + 6,1} = vg; + 0 the first term vanishes and
when min{vg;+60,1} =1, G;(1) = land vg;+0—1 = 1ij+0 G;(b)db. Similarly, the second
integral becomes fovcj Gj(bj)dbj and substituting into the first order condition we get the
result:

ch+9 R vGay o ’UGjJ’_G A~
b= bij = Vqi +/ G](b])dbj — / Gj(bj)dbj = Vg T / G](bj)db]
0 0

”L}Gj
Finally, we show that the SOC is satisfied.
FOC = [vgi = b+ [ M (va; + 0 = ,)dC (by) = 3 (v — b;)dG(b,))gi(0)

= [vi = b+ [y G (b)d(b;)]g:(b)

14



SOC = [ = b+ [, G;(b;)d(b;)]g;(b) — :(b) < 0, since [vgs —b+ [ G;d(b;)] =

Since there is a unique equilibrium b;;, and SOC is negative at b;;, SOC is satisfied.

ijs
]
Proof of corollary 2: Since 0 < G;(t) < 1, then 0 < fUGJwG d(b;) < 6 and inmedi-
ately from proposition 1 we get

UGJ+‘9 .
VGi S bij = Vg + / do(b]) S Vgi + 0

’UGj

]
Proof of Proposition 3: Let X, be a sequence of random variables distributed
according to the cdf F,, with mean p, and variance o2 and let Y,, = p, and Y = p be

constant random variables. Then,

1 X0 = Yallzz= ([ | X0 = Yo |2dP)Y2 = ([ | X, — pin | dP)Y? = Var(X,)V? = o,
Ya=Yllez = (f | Yo=Y PdP)2 = ([ | ptn — o 2 dP)* =| . — 1 |

= [ X0 = Y[z < || X = Yallze + Ve = Y22 = ont | pin — 11|

Hence, if as n — 400 we have o, — 0 and j,, — u, then X,, converge to Y in the L?

norm and therefore it also converges in distribution, i.e., for all ¢ € [0,1], ¢ # u:

- _J0:0<t<p
Fult) > el = 1) = {1 5, 2
Since we have p; — p and Var(F;) — 0 then F; — 1,5 and then G;(t) = (F;)Y —

N
L

F its extension has F(t) = 1 for t > 1 we have G;(t) — Lijutoo)y(t) for all t > 0, ¢ # p.

(t) = 1y,1(t) for all t # p, t € [0,1]. Moreover, since by convention for any distribution

Now, using the dominated convergence theorem we have:

UGJ+9 R R UG.7+9
bij = Vg; + / Gj (t)dt — bij = Vg + / 1[%_;_00) (t)dt

Je?] VG

and evaluating the last integral we have that the optimal bid converges in the limit to:

A Ve + 0 D < UGy
bij = § vai +vg + 0 — pivg < p<vg +0
Vi ngj‘f‘eé:u
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Now let us show that the last two cases tend to disappear in the limit. That is P(b;; =

~

vgi +6) — 1. Observe that P(b;; = vg; +0) = P(vg; > p) =1 — P(vg; < p). We will prove
that this last probability converges to zero in the limit.!3

Since vg; is distributed according to Fj we showed that it is converging in L? to the
constant random variable Y = p and hence it also converges in probability, i.e., for every

k € N we have P(| p— vg; |> £) — 0. Moreover, {vg; < p— £} 1 {vg; < p} implies that

for any € > 0 there is a kg € N s.t.
1 1
Plogy < 1) < Plugy < p— ) +e < P(Lp =g [> ) e
0 0

Then, taking limsup as pu; — p and o; — 0 and using the convergence in probability, we
have that for every e > 0:

0 < limsup Pvg; < p) <e

= pt,05—0

which guarantees that the limsup is indeed a limit and equals zero.

b) By proposition 1 we have b;; = vg; + f:;"w Gi(bi)dbi. We know that vg; is distributed
according to F; and maxy<p<n{vk;} is distributed according to G; = F¥. Moreover, as ji; —
p and o; — 0 we have seen that vg; converges in probability to Y = p and max;<x<n{vk;}
converges in distribution to Y. Since Y is a constant random variable then max;<j<n{vg;}

also converges in probability to Y. * Hence, since o = f:ﬁﬁe G;(b;)db; > 0 we have:

P(bji < maxicpen{vni}) = Pla < maxicpan{vw;} — vg;) < Plo <[ maxiceen{on} — vey

< P(§ <| maxicpen{vri} — Y [) + P(5 <| Y — gy |)

and as p; — p and o; — 0 the last bound goes to zero by convergence in probability. Hence,
P(bjz > maxlSkSN{vkj}) —1
[ ]

Proof of Proposition 4:

13When computing its optimal bid, the global bidder knows its own valuation vg; which is deterministic.
From an outside perspective, such as the perspective of the auctioneer, however, vg; is a random variable
with distribution F; and it makes sense to examine its behaviour in the limit as p; — p and o; — 0

4 This would not be true in general if the limit Y were not a constant random variable. See Cinlar (2011,
chapter III: section 5) and in particular remarks b) and c) on page 110.
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For j = A, B, let’s define vy; = max{v;; : 1 <14 < N,} the maximum valuation for good
j among the local bidders and vy,; = max[{v;; : 1 <i < N;} — {vg;}] the second maximum
valuation for good j among local bidders. By definition, vy; > vg,; always. Given any
realization of the bidders valuations, MSW = max{vp + vgp, Vga + VLB, VLA + VB, VGA +
vgp + 0} gives the maximum social welfare that can be achieved. Hence, according to where
this maximum is achieved it will be efficient that: I) A local bidder wins the A auction and
the global wins the B auction or II) The global bidder wins the A auction and a local the
B auction or, IIT) the Local bidders wins both auctions or, IV) the global bidder wins both
auctions.

We will use this classification of the possible realizations of the bidders valuation to show
that only the cases where Ry < Rpa and SWga < SWap do not disappear as the variance
goes to zero.

Case I: MSW = vp4 + vgp which implies:

VLA + Vg = Vga +vap + 0 = vpa > vga + 0 (3)

VrA + UGB 2 VA + VLB = VUGB = VLB (4)

In the AB auction, by corollary 2, by < vga + 0. Hence, a local bidder wins the A
auction by (3) and the global bidder wins B by (4). Thus, the AB auction produces an
efficient result. In the AB auction, the revenue is Rqp = max{bap,vr,a} + vrp and the
social welfare is SWyp = vra + vaoB.

In the BA auction, by corollary 2, bg4a > vgp. Hence, the global bidder wins the B
auction by (4). In the A leg of the BA auction, the global bidder will bid vg4 + 6 and a
local bidder will win by (3). Therefore, the BA auction still produces the efficient outcome
SWpa = vpa + vgp but now the revenue is Rpq = max{vga + 0, 0,4} + vrB.

In summary, in this case both auctions are equally efficient SWxp = vpa+vap = SWha.
On the other hand, Rap = max{bap,vr,a} + v < max{vga + 6,vr,4} + v = Rpa since

bag < vga + 0 by Corollary 2. So the BA auction produces an ex-post greater revenue.
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Case II: MSW = vga + vpp which implies:

VA +vLp > vga +vae +0 = vpp > vap +0 (5)

VgA + VLB 2 Vpa + VLB = UgA = VLA (6)

This case tends to disappear as Var(Fg) — 0. Indeed, the probability that (5) happens
goes to zero: P(vrpp > vgp +0) < P(| v —vgp |> 0) — 0. The convergence to zero
follows from 6 > 0 and the fact that as Var(Fp) — 0 and pup, — p, vpp and vgp are both
converging in probability to p according to the proof of proposition 3b.

Case III: MSW = vy + vrp which implies:

VA + VLB 2> Vga + VLB = Vpa > Vga (7)

VrA + VLB 2 VA +VgB = VLB = UGB (8)

Unlike the previous cases, we can’t determine the outcomes of the AB and BA auctions
from (7) and (8). There are two main subcases.

II1.a) Assume vpa > vga + 6. This implies that, in the AB auction, a local bidder wins
A since by corollary 2, byp < vga + 0. A local bidder also wins B by (8). Hence, the AB
auction is efficient SWsp = vp4 + vrp and generates a revenue of Rap = max{bap,vr,a} +
max{vgp, Vr,B}-

The result of the BA auction has two subcases. When bps < vrp, a local bidder wins
B. However, by proposition 3b, this subcase tends to disappear in the limit'®. Hence, we
can assume that bgq > vpg. Then the global bidder wins B and bids vgs + 0 in the A
auction. Thus, the local bidder wins auction A by assumption. In this case, the BA auction
is inefficient with SWg4 = vgp+vpa and generates revenue Ry = vpg+max{vga+6,vp,4}.

Thus, the revenue comparison between the two auctions is Rap = max{bag,vr,a} +
max{vgp, Vr,p} < vrp+max{vga+0,vr,4} = Rpa, by (8) and corollary 2 (bap < vga+06).
The social welfare comparison between the two auctions is SWup = vpa + vpg > SWga =

vra + vee by (8).

15That is, as Var(Fg) — 0 and up — u, P(bpa <wvrp) — 0
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I1I.b). Assume, vpa < vga + 0. Since, bap — vga + 0 by proposition 3al® then,
vpa < bap when Var(Fp) is sufficiently small.!” Then, in the AB auction the global bidder
wins A and bids vgp + 6 in the second leg of the auction. From here, there are two subcases.
If vpp > vgp + 0 the local bidder wins B. However, as above P(v,p — vgp > 6) — 0 and
this subcase disappears as Var(Fg) — 0. The other subcase v;p < vgp + 6 implies that the
global bidder also wins the B leg of the AB auction. In summary, in the AB auction the
revenue is Rap = vra + vrp and the social welfare is SWap = vga + vap + 6.

In the BA auction, the case where the global bidder loses the B leg of the auction tends
to disappear in the limit according to proposition 3b. Hence, we may assume bgs > vrp.
The global bidder wins B and bids vga + 6 in the A auction. Since vps < vga + 6 by
assumption, then the global bidder wins both goods inefficiently in the BA auction. The
revenue and social welfare are equal to the ones in the AB auction: R4 = vpa+vrs = Rpa
and SWga = vga +vgp + 0 = SWap.

Case IV: MSW = vga + vgp + 0. Since this is the last case we can assume that the
maximum is unique. If the maximum is not unique we are within one of the previous 3 cases.

Hence, this case implies:

vga +vg + 0 > vga +vg = vgp +0 > vp (9)

VoA +vae +0 > vpa+ve = vga + 0 > vpa (10)

Since, according to proposition 3a, bap — vga + 6 then, by (10), bap > vpa when
Var(Fpg) is sufficiently small. In the AB auction, this means that the global bidder wins A
and bids vgp + 0 for B. By (9), the global bidder also wins B. Hence, the revenue in the AB
auction is Rap = vra + vrp and the result is efficient SWup = vga + vap + 6.

In the BA auction, the case where the global bidder loses the B leg of the auction tends
to disappear in the limit according to proposition 3b. Hence, we may assume bgs > vipg.

The global bidder wins B and bids vga + 6 in the A auction. Then by (10), the global

16Gtrictly speaking, bap may be converging to others values but those cases tend to disappear in the limit
according to proposition 3a.
1" Technically we require both Var(Fg) and | ug — p1 | to be sufficiently small.
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bidder also wins A. Therefore, we have the same revenue and welfare as in the AB auction:

RBA = RAB and SWBA = SWAB.

We now summarize all the analysis up to this point. We proved that if Var(Fp) is
sufficiently small, Ryp < Rpa and SWag > SWpg, for all cases except those that tend to
disappear when Var(Fg) — 0. Then P(Rap < Rpa, SWyp > SWga) — 1as Var(Fg) — 0.
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APPENDIX TABLES

Synergy Synergy Synergy
with with with
§=102 §=05 9=08
NAZNB:1 NAZNB=1 NA:NB:l
F4 =Uniform Distr.with a =3 =1; Fp = Beta Distr. with a = = 3;
o Lossg, 2.5840 3.2460 1.9320
) 2.3120 2.3280 1.3060
phipLossy, 4.0340 6.2420 3.7800
P! % 3.5840 3.4660 0.8020
AR% 0.0016 -0.3976 -0.5563
DSW% 0.1016 0.3753 0.1864
F4 =Uniform Distr.with a =3 =1; Fp = Beta Distr. with a = 3 = 10;
pig}.L(}ss% 1.1000 1.5220 0.7920
P9 1.8600 1.2640 0.5880
L% 6.8420 7.7320 2.8040
s % 4.7540 1.3680 0.0440
AR% -0.0696 -0.8363 -0.5024
DSW% 0.3049 0.4748 0.1222
F4 =Uniform Distr.with a =3=1; Fp = Beta Distr. with a = 3 = 50;
P % 1.0320 0.6100 0.3160
P % 1.0020 0.6040 0.2300
pETLos g, 11.6180 7.5620 1.7400
s % 2.7780 0.0740 0.000
AR% -0.2826 -0.7601 -0.1656
ASWY% 0.4477 0.2502 0.0405
F4 =Uniform Distr.with a=3=1; Fp = Beta Distr. with a = 8 = 100;
P % 0.6960 0.4600 0.1540
pas % 0.6620 0.4020 0.1640
PR % 13.4760 7.4100 1.4620
st % 1.5640 0.0000 0.0000
AR% -0.3796 -0.5691 -0.1033
DSW% 0.4057 0.1757 0.0262
F4 =Uniform Distr.with a =3 =1; Fp = Beta Distr. with a = 8 = 500;
P % 0.2880 0.1740 0.0760
P % 0.2700 0.1460 0.0740
PR % 15.7300 6.5440 1.1300
P % 0.2600 0.0000 0.0000
AR% -0.4231 -0.2349 -0.0383
ASW% 0.2181 0.0743 0.0100

pE‘Tp'LOSS:H)O*(Sum of outcomes in row 2 and 4 in Table 1)/50000. Probability of the global bidder having ex-post loss.

2
pf](wff- 100

(Sum of outcomes in row 6 and 8 in Table 1)/50000. Probability of all inefficient allocations.

AR% =100 * (Rap — Rpa)/Rpa. Percentage change in revenue between AB and BA auctions.

ASW% =100 * (SWap — SWga)/SWga. Percentage change in social welfare (SW) between AB and BA auctions.

Table 3: Simulation Results for F4 Uniform Distribution when N; = N; =1
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Synergy Synergy Synergy
with with with
=02 =05 =038
Ny=Np=2 Ny=Np=2 Ny=Np=2
F4 =Uniform Distr.with a =8 =1; Fp = Beta Distr. with a == 3;
PR 2.3540 3.8420 3.2740
paet I % 2.3700 3.7520 2.4860
PR % 3.6720 7.0860 6.0160
% 3.7720 5.3060 2.5860
AR% 0.1514 0.5619 0.1496
ASW% 0.0882 0.3519 0.3134
F4 =Uniform Distr.with a=8=1; Fp = Beta Distr. with a = 8 = 10;
o Lossg 1.9880 2.3240 1.5540
oI % 2.0660 2.0980 1.2520
Lo boss g, 6.4000 9.6540 5.7600
% 5.7540 3.7520 0.7980
AR% 0.3432 0.4550 -0.3464
ASW% 0.2913 0.6302 0.2954
F4 =Uniform Distr.with a =8=1; Fp = Beta Distr. with a = § = 50;
frop-Loss g 1.1840 1.0140 0.5860
pas! I % 1.1820 0.9060 0.4200
prp-Lossg, 12.1660 13.0600 4.3080
% 4.5100 1.2660 0.0240
AR% 0.4125 -0.1183 -0.3000
ASW% 0.5073 0.4925 0.1223
Fj =Uniform Distr.with a = =1; Fp = Beta Distr. with a = 5 = 100;
P % 0.8640 0.6860 0.3640
Pl % 0.7740 0.6340 0.3020
P % 14.9260 13.8660 3.8000
"% 3.2220 0.6420 0.0000
AR% 0.3591 -0.3047 -0.2091
ASW% 0.4938 0.3832 0.0816
Fj =Uniform Distr.with a = =1; Fp = Beta Distr. with a = 8 = 500;
PR %% 0.3700 0.3140 0.1520
Pl % 0.3280 0.2840 0.1540
P % 21.0640 14.8560 2.9500
et % 1.2420 0.0520 0.0000
AR% 0.1402 -0.3555 -0.0794
NSW % 0.3347 0.1909 0.0319

plEa‘ansszloo*(

Sum of outcomes in row 2 and 4 in Table 1)/50000. Probability of the global bidder having ex-post loss.

pi;wff':IOO*(Sum of outcomes in row 6 and 8 in Table 1)/50000. Probability of all inefficient allocations.
AR% =100« (Rap — Rpa)/Rpa. Percentage change in revenue between AB and BA auctions.

ASW% =100 * (SWap — SWga)/SWpa. Percentage change in social welfare (SW) between AB and BA auctions.

Table 4: Simulation Results for F4 Uniform Distribution when N; = N; = 2. Here, we assume
V1s > Vo3 > ...
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License i won by License j won by

Global bidder makes

Allocation is

Revenue is

Welfare is

= e e e e
XN oo W

D500 NS U W

Global Bidder
Global Bidder
Global Bidder
Global Bidder
Global Bidder
Global Bidder
Local Bidder ¢
Local Bidder ¢
Local Bidder ¢
Local Bidder i
Local Bidder
Local Bidder
Local Bidder ¢
Local Bidder ¢
Local Bidder ¢
Local Bidder i
Local Bidder 4
Local Bidder ¢

Table 5:

Global Bidder
Global Bidder
Local Bidder j
Local Bidder j
Local Bidder j
Local Bidder j
Global Bidder
Global Bidder
Global Bidder
Global Bidder
Local Bidder j
Local Bidder j
Local Bidder j
Local Bidder j
Local Bidder j
Local Bidder j
Local Bidder j
Local Bidder j

All possible outcomes in an ij auction when N; = N; = 2

Profit
Loss
Profit
Loss
Profit
Loss
Profit
Profit
Profit
Profit
Zero Profit
Zero Profit
Zero Profit
Zero Profit
Zero Profit
Zero Profit
Zero Profit
Zero Profit
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Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient
Efficient
Inefficient

v1; + V15
v1; + V15
v1i +vgj + 0
v1 +vgj + 0
v1; + V25
v1i 1+ V25
bij + v1;
bi]’ + v15
v2; + V15
V2 + V14
bij +vg;
bij +vaj
bij + v2;
bi]’ + v2;
v2i + VG
v2i + VG
v2; + V2
V2; + V24

vgi +va; + 0
va; +va; + 0
vGi + V1
VGi + V15
VG + V1
vGi + V1
V1; T UGy
V15 + UGy
v1; + UGy
V1 + UGy
V1 + V15
v1; + V15
v1; + V15
v1; + V15
v1; + V15
V14 + V15
V1 + V15
v1; + V15



