
ISSN (Print) 0473-453X 
Discussion Paper No. 1271                             ISSN (Online) 2435-0982 

The Institute of Social and Economic Research 
Osaka University 

6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 
 

 
 
 
 
 

 

 
 
 
 
 
 

December 2024

 
 

SELLING ORDER  
IN A SEQUENTIAL AUCTION 

 
 

Hikmet Gunay 
Xin Meng 

Victor Perez 



Selling order in a sequential auction

Hikmet Gunay*

Department of Economics, University of Manitoba, Winnipeg, MB, R3T 5V5, Canada

Xin Meng
CIBO, Dongbei University of Finance and Economics, Dalian, 116025, China

Victor Perez
Instituto de Matematica Pura e Aplicada, IMPA, Rio de Janeiro, Brazil

December 27, 2024

Abstract

In a second-price sequential auction with both global and local bidders, we explore
the optimal order for selling heterogeneous goods to maximize efficiency or revenue.
Our findings indicate that selling the good with very small variance (almost-zero vari-
ance) first yields higher revenue, while selling it second results in an efficient outcome
with probability almost 1. We link the optimal selling order to the likelihood of various
inefficient outcomes. Specifically, selling the good with small variance first increases
the probability of ex-post loss for the global bidder, boosting the seller’s revenue at the
expense of overall social welfare.
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1 Introduction

There are some auctions such as highway procurement auctions in which heterogenous syner-

gistic goods are sold to global and local bidders via sequential auctions (e.g., De Silva 2005).

In such sequential auctions, the aim of the auction can be to generate higher revenues or

obtain efficient outcomes depending on whether governments, non-profit organizations, or

firms are conducting the auction. Therefore, it should be better understood how to reach

these different goals in an auction by studying its different aspects. One such aspect is

the selling order of goods, which the auction literature neglected due to the assumption of

identical goods. If goods are ex-ante identical and bidder numbers are equal, selling order

does not matter. However, if the goods are heterogenous, the selling order should matter.

In this paper, we analyze selling which of the heterogenous goods first (rather than second)

generates higher revenue or social welfare in a second-price sequential auction to fill the gap

in the literature.

We show that the selling order for higher revenue or efficiency is determined by the

variance of the (valuation of) goods.1 Specifically, if all bidders are more likely to have very

close valuations, that is, one good has a variance approaching to zero, then selling that good

first results in higher revenue, but selling it second results in a more efficient outcome. Why

do we get this result? As it is well-known in the sequential auction literature (e.g., Gunay

and Meng 2022), the global bidder bids over its stand alone valuation in the first auction

hoping to win the second good and enjoy the synergy regardless of the variance of the good.

When the low variance good is sold first, the global bidder wins it with almost probability

1 as they bid over the stand alone valuation. Moreover, they win it over their stand-alone

valuation with some positive probability as his and the local bidders’ valuations are close.

While this creates a high enough probability of an ex-post loss for the global bidder, it also

1In the highway-construction procurement auctions, some projects have high variance according to civil
engineers. A private conversation with a civil engineer, Mr. Mert Gulcat, revealed that BidBid-Sur Highway
project in Oman had a high variance due to the difficulty in assessing the cost of the project. However, some
other highway projects have low variance especially when the terrain that the highway will be constructed
is flat and hence, the cost of the project can be calculated easily.
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increases the auction revenue at the expense of both the global bidder’s profits and the social

welfare.

We show that if the small variance good is sold second, then the global bidder bids

(almost) truthfully and hence the outcome is (almost) efficient as all bidders bid (almost)

truthfully. We note that, in the limit when the variance is zero, selling order would not matter

in the sense that any kind of selling ordering will result in an efficient outcome. However,

the probability of inefficient outcomes do not approach to zero as the variance approaches

to zero, when the small variance good is sold first 2 but it does if it is sold second.

While using ex-ante expected revenue and welfare is calculated in part of the auction

literature when bidders are (ex-ante) identical, it is not possible in our model as the bidders

are heterogenous and the bid of the global bidder is complicated. Moreover, the sequential

auction literature does not calculate the probability of ex-post loss for the global bidder

as it is either impossible or extremely complicated. To overcome this problem, we do some

simulations to quantify the probability of ex-post loss for the global bidder in different selling

order of goods by using ex-post valuations (papers using such simulation methods include

Krishna and Rosenthal, 1996; Meng and Gunay, 2017; Gunay and Meng, 2022). If the low

variance good is sold second, the ex-post loss probability approaches to zero as the variance

of the good decreases to zero. However, if it is sold first, the ex-post loss probability stays

high. While the theoretical results for the revenue and efficiency in different selling orders

are valid when one good has an almost zero variance, the simulations show that the variance

need not be too small to get those results.

This result has a policy implication. To make the bidders’ valuations closer on one good,

the seller might reveal the information on that good or allow the bidders inspect it (but

not the other good). Then set the order of selling as discussed in our paper depending on

whether their aim is an efficient outcome or a higher revenue.3

Elmaghraby (2003) studies the implications of selling order on efficiency with capacity

2While the probability of inefficiency is positive, the amount of inefficiency is very small; hence the amount
of inefficiency approaches to 0.

3Though we note that this is not a mechanism design paper and it compares two selling order.
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constrained bidders on procurement auctions as this is relevant to businesses. Meng and

Gunay (2022) also study how the selling order of ex-ante identical goods affect the efficiency

when the number of local bidders bidding for each good is different. Most other papers

in the literature have not studied the selling order as they have assumed (ex-ante) identical

goods, hence, the ordering would not matter (Jeitschko and Wolfstetter, 2002; De Silva, 2005;

Leufkens et. al., 2010; Ghosh and Liu, 2019; Ghosh and Liu, 2021); or the goods are sold

via simultaneous ascending auction (Meng and Gunay, 2017), and thus, the order of selling

goods has no impact on revenue and welfare. One exception is Benoit and Krishna (2001).

They find that selling the more valuable good first generates more revenue in a common

value model with budget constrained (global) bidders in a complete information game.

Our model is a private value model without “budget constrained bidders” assumptions.

A novel feature of our paper is linking the inefficiency outcomes to the revenue of the

sequential auctions by using the probability theory. Namely, when global bidder wins an

auction by making a loss, which is an inefficient outcome, this has a revenue increasing ef-

fect. However, there are two other inefficient outcomes where the global bidder wins one

good with profit or when the local bidders won both goods when the global bidder is sup-

posed to win them for efficiency. These inefficient outcomes have generally revenue-lowering

effects. Therefore, when we have more of the first type of inefficiency, we get a revenue

increasing and efficiency decreasing outcomes. The order of selling goods determine which

of these inefficiencies disappear (with almost probability one) when the variance of one good

is approaching to zero. We show this in our proofs to get our results.

Next, we set up our model and show our theoretical results. Then, we present our

simulation results which shows that our results are valid even when the variance of a good

is not too small. We conclude the paper with conclusion and discussion section.

2 The Model

Two goods, A and B, are sold in a second-price sequential auction. The goods have zero

value to the seller. There is one risk-neutral global bidder, G, who bids for both goods,
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and enjoy a synergy of θ > 0 if wins both goods.4 There are also N > 0 risk neutral local

bidders bidding for good i = A,B. There are N+1 independent draws from the distribution

function Fi determines the private valuation, vGi, for the global bidder, and vki, for each local

bidder, k = 1, 2.., N , and i = A,B. The distribution function Fi, has a twice differentiable

density function fi > 0 on the interval (0, 1] with fi(0) ≥ 0.5 We will sometimes denote

by F̂ : R+ → R the extension of the distribution function F given by F̂ (t) = F (t) for all

t ∈ [0, 1] and F̂ (t) = 1 for t > 1.

We use symmetric subgame perfect Bayesian equilibrium. The equilibrium strategy for

local bidders is bidding their valuations truthfully in both auctions (in weakly undominated

strategies). The global bidder’s equilibrium strategy in the second auction is bidding her

marginal valuation truthfully; hence, she bids vGj + θ if won good i in the first auction, and

bid vGj otherwise, where i, j = A,B and i ̸= j.

To derive the global bidder’s equilibrium strategy in the first auction for good i, we have to

write the expected payoff given the sequential rationality and then maximize it. To calculate

the expected payoff, we need to know the (expected) price the global bidder will pay, if wins

the goods. Becuase this is a second-price auction, the global bidder pays the maximum of

the local bidders’ valuations (as they bid truthfully). Let bi = max{vki}, k = 1, 2.., N denote

the maximum valuation of local bidders for good i = A,B. Since each local bidders’ valution

is a private information, we need the distribution function for bi, which is Gi(.) = [Fi(.)]
N

for i = A,B. Now, we can write the expected payoff for the global bidder when she bids b.

Maxb

∫ b

0

(vGi − bi)dGi(bi) + Pr(b > bi)

∫ min{vGj+θ,1}

0

(vGj + θ − bj)dGj(bj)

+Pr(b < bi)

∫ vGj

0

(vGj − bj)dGj(bj) (1)

4Assuming one global bidder when a bidder has multi-dimensional valuations is not uncommon in the
literature (see Meng and Gunay(2017), Goeree and Lien (2014), Albano et al. (2006), Kagel and Levin
(2005)) since the equilibrium strategy for multiple global bidders have not been calculated unless they have
single types.

5The model is similar to the corresponding model of Gunay and Meng (2022) as both papers deal with
selling order. However, the current model will let one of the goods variance approach to zero later in the
model.
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The first integral is the expected profit from winning i in the first auction. If the global

bidder wins the first auction, she will get her stand-alone valuation vGi and pay the price of

bi. Since we do not know the price bi, we have to use its density function dGi. However, since

calculations are done conditional on the global bidder is winning, we are only interested in

how bi is distributed in [0, b]. Hence, the lower limit and the upper limit of the integral are 0

and b, respectively. If, bi > b, then the global bidder loses the first auction and gets 0 payoff.

Therefore we do not write this part of the integral in the equation.

The second integral is the expected profit from winning j after winning i. This case

can happen with probability Pr(b > bi), which means that the global bidder’s bid were

the highest bid in the first auction. Then, by sequential rationality, the global bidder bids

vGj + θ. If she wins the auction, she pays bj for the good j. We should calculate how bj

is distributed between [0,min{vGj + θ, 1}] by using the density function dGj.
6 Hence, the

lower and upper limit of the integrals are 0 and min{vGj + θ, 1}], respectively. If the global

bidder loses the auction, she gets 0 payoff so we do not write this case.

The third integral is the expected profit from winning j only in the second leg of the

auction. This case happens only if the global bidder’s bid in the first auction was lower

than the local bidders’ valuations/bids. This happens with probability Pr(b < bi). Then,

by sequential rationality, the global bidder bids vGj. If she wins, she pays bj. We should

calculate how bj is distributed on [0, vGj] by using its density function dGj. Hence, the lower

and upper limit of the integrals are 0 and, vGj, respectively. If bj is between [vGj, 1], then

the global bidder loses the second leg of the auction and gets 0. Hence, we do not need to

write this case in the equation.

Equation 2 is the first order condition that calculates the optimal bid bij in the ij auction

where good i is sold first and good j is sold second. The payoff from winning the first auction

for the global bidder is the left hand side when he pays (the optimal bid) bij. The payoff

from losing the first auction is the right hand side. Hence, the optimal bid bij is the (highest)

price that the global bidder is willing to pay to win the first auction, or equivalently, he is

6bj cannot be greater than 1 as its distributed up to 1. We could write this equation by using Ĝ (rather
than G), then we would not have to use a min function.
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indifferent between losing and winning the first auction at the price bij in the ij auction.

(vGi − bij) +

∫ min{vj+θ,1}

0

(vGj + θ − bj)dGj(bj)︸ ︷︷ ︸
Expected profit from winning the first auction when price is bij

=

∫ vj

0

(vGj − bj)dGj(bj)︸ ︷︷ ︸
and losing the first auction

(2)

By using integration by parts and equation 2, we derive the global bidder’s equilibrium

bid.7

Proposition 1 The global bidder’s equilibrium bid, bij in the first auction for good i is

bij(vGi, vGj, N) = vGi +

∫ vGj+θ

vGj

Ĝj(b,N)db

A few observations based on proposition 1. First, the global bidder bids over her stand-

alone valuation which exposes her to the ex-post loss as well known in the literature (e.g.

Krishna and Rosenthal, 1996). Second, when vGA + vGB + θ ≥ 2, the global bidder bids

above 1 in both auctions, and wins both goods.8 Third, the global bidder bids such that

vGi ≤ bij ≤ vGi+θ since the integral in proposition 1 is between 0 and θ given 0 ≤ Ĝj(.) ≤ 1.

Let us summarize some of the results in a corollary below.

Corollary 2

vGi ≤ bij(vGi, vGj, N) ≤ vGi + θ

Now, we can present the optimal bid as the variance of one good, good j, is approaching

to 0. Let P denote the probability.

Proposition 3 a) Let Fj be a probability distribution with mean µj and variance σ2
j . When

σ2
j → 0 and µj → µ, then the optimal bid bij converges to

b̂ij =


vGi + θ : µ ≤ vGj

vGi + vGj + θ − µ : vGj < µ < vGj + θ
vGi : vGj + θ ≤ µ

7See the discussion paper of Gunay and Meng (2017) for the proof.
8Since vGi + vGj + θ ≥ 2 implies vGj + θ ≥ 2 − vGi ≥ 1. But then since Ĝj(t) = 1 for 1 ≤ t ≤ vGj + θ

then we have bij ≥ vGi + (vGj + θ − 1) ≥ 1, which guarantees that global bidder wins the first and then the
second auction.
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Moreover, when µj → µ and σ2
j → 0 we have that P (b̂ij = vGi + θ) → 1

b) As µj → µ and V ar(Fj) → 0, Prob(bji > max1≤k≤N{vjk}) → 1.

Proposition 3a says that as the variance of good j approaches to 0, then the global

bidder’s bid in the i leg of the ij auction approaches (from the left) to vGi + θ. Becasue the

global bidder knows that if she wins good i in the first auction, then the probability that she

will win good j approaches to 1. As she will bid vGj + θ when the local bidders’ valuations

are very close to vGj, she will win the j auction and pay only vGj with almost probability

1. But then the value of good i becomes (almost) vGi + θ for the global bidder in the first

leg of the auction. The global bidder is actually bidding (almost) truthfully in both leg of

the auction in this case! Proposition 3b says that the global bidder wins the good j in the

ji auction as V ar(Fj) → 0. The reason is that the global and local bidders have very close

valuations (around µ) for good j but the global bidder bids over its stand alone valuation

by Proposition 1; hence, the global bidder wins the good with almost probability 1.

Now we can prove our main result. Let Rij and SWij denote the (ex-post) revenue and

social welfare, respectively, in the ij auction with i, j = A,B and i ̸= j.

Proposition 4 Assume that NA = NB ≥ 1. If V ar(FB) approaches to zero, then we

have that the probability that RAB ≤ RBA and SWBA ≤ SWAB converges to 1. That is,

P (RAB ≤ RBA) → 1 and P (SWBA ≤ SWAB) → 1.

Proposition 4 states that, selling the good B first - which its variance is approaching to

zero- gives a higher revenue than selling good A first. However, the social welfare will be less.

On the other hand, selling good B second gives a higher social welfare than selling good A

second. We have already explained the latter part above as the global bidder bids truthfully

in this case. The first part mainly occurs from inefficient cases in which the global bidder

makes an ex-post loss. And this inefficiency survives even when the variance of B goes to

zero in a BA auction but disappears in an AB auction.

Corollary 5 In an AB auction, local bidders win both auctions when it is efficent for them

to win and vLA ≥ vGA + θ. However, for the same valuations, in the BA auction, as the
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variance of good B goes to zero, the global bidder wins good B but loses good A to the local

bidders. This increases the revenue compared to the AB auction, but results in an inefficient

outcome.

The proof of proposition 4, under Case III.a proves the corollary. Let us give an example.

In a BA auction, when the global bidder wins B in a case vGB < pB < bBA, it will make a

potential loss. When the global bidder bids for good A and loses, it will be an ex-post loss

and this can happen if vGA + θ < vLA.
9 For such cases, the revenue in the BA auction is

RBA = pB + vGA + θ.

Now, imagine selling good A first and good B second for the ex-post valuations in the

example above. The local bidder wins good A since global bidder bids bAB < vGA+ θ < vLA.

Then global bidder bids also loses good B since vGB < pB. In this case, revenue RAB =

bAB + vGB. If we compare the revenues RAB = bAB + vGB < RBA = pB + vGA + θ. The

inequality holds since bAB < vGA + θ and vGB < pB.

One might think that this is just an example but as the variance of good B approaches

to 0, this case still survives. The reason is that even if vGB and pb gets closer to each other,

it is still a positive probability to get vGB < pB. Since the variance of good A is not small,

it is also a positive probability to have bAB < vGA + θ < vLA (assuming θ is not too big) and

we note that bAB → vGA + θ from the left.

While there are cases in which RAB > RBA, we show that these cases disappear as

variance of good B approaches to 0 in our proofs.

3 Simulations

Given the complexities of multi-unit valuations, calculating ex-ante revenue, social welfare,

and the probability of inefficient allocations proves to be quite challenging. To address this,

we employ simulations based on ex-post valuations to compare AB and BA auction formats

in terms of revenue, social welfare, and the likelihood of loss for the global bidder. Previous

9It canalso happen even if this inequality is reversed but both terms are close to each other
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studies, such as those by Krishna and Rosenthal (1996) and Meng and Gunay (2017), have

also utilized simulations in this context.10

To conduct the simulation in MATLAB, we draw valuations for each bidder from specified

distributions for goods A and B. Using Proposition 1, we calculate the equilibrium bidding

prices, bAB and bBA, for the AB and BA auctions, respectively. With complete knowledge of

all valuations and equilibrium bids, we can determine the winners of the auctions, the prices

paid for each set of valuations, and assess whether the outcomes are efficient or inefficient in

both auction formats. This process is repeated 50,000 times to compute average revenue and

efficiency.11 To calculate the probability of inefficiency, we divide the number of inefficient

outcomes by 50,000. Table 1 presents all possible outcomes along with the corresponding

revenue and welfare for both AB and BA auctions, aiding in our ex-post calculations. The

table identifies four types of inefficiencies involving a single local bidder: two cases where the

global bidder wins one or both goods at an ex-post loss (rows 2 and 4), one case where the

global bidder wins one good inefficiently but with a profit (row 6), and another case where

the local bidders win both goods inefficiently (row 8).

License i won by License j won by Global bidder makes Allocation is Revenue is Welfare is

1. Global Bidder Global Bidder Profit Efficient bi + bj vGi + vGj + θ
2. Global Bidder Global Bidder Loss Inefficient bi + bj vGi + vGj + θ
3. Global Bidder Local Bidder j Profit Efficient bi + vGj + θ vGi + bj
4. Global Bidder Local Bidder j Loss Inefficient bi + vGj + θ vGi + bj
5. Local Bidder i Global Bidder Profit Efficient bij + bj bi + vGj

6. Local Bidder i Global Bidder Profit Inefficient bij + bj bi + vGj

7. Local Bidder i Local Bidder j Zero Profit Efficient bij + vj bi + bj
8. Local Bidder i Local Bidder j Zero Profit Inefficient bij + vj bi + bj

Table 1: All possible outcomes in an ij auction when Ni = Nj = 1

In the simulations, we examined three different synergy levels: 0.2, 0.5, and 0.8. For

Good A’s valuations, we employed a uniform distribution, while for Good B’s valuations,

we utilized various beta distributions, with parameters (α, β) set to (3, 3), (10, 10), (50, 50),

(100, 100), and (500, 500). All of these distributions share the same mean of 0.5. As shown

10Krishna and Rosenthal (1996) employ simulations except for uniform distributions, focusing on a single
type for the global bidder.

11We run it for 20,000 times only for the beta distribution (α = β = 500) as the code was running very
slow for this distribution.
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Table 2: The Variance of Beta Distributions Used in Simulations

alpha beta V ar(B) V ar(A)
1 1 0.08333 0.08333
3 3 0.03571 0.08333
10 10 0.01191 0.08333
50 50 0.00248 0.08333
100 100 0.00124 0.08333
500 500 0.00025 0.08333
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Figure 1: Revenue Comparison for N = 2, for θ = 0.5

in Table 2, the variance of each beta distribution decreases as α and β increase.12

Simulation results are presented in Table 3 for NA = NB = 1 and in Table 5 for NA =

NB = 2, which can be found in the Appendix. In what follows, we will mainly discuss the

results for NA = NB = 2 and θ = 0.5 with the help of the figures.

Figure 1 compares revenue as the variance of good B decreases. As the variance of good

B decreases, the revenue from the BA auction ultimately surpasses that of the AB auction.

This finding is crucial as it illustrates that the conclusions drawn in Proposition 4 do not

necessitate the variance to be very close to zero.

Now, we will explain why we get this result by focusing on Figure 2. The primary obser-

vation in Figure 2 is that as the variance of good B decreases, the probability of ex-post loss

12Additionally, we explored the beta distribution with α = 1 and β values of 3, 4, 5, 8, 20, 50, 100, and 1000,
which yielded qualitatively similar results. For these distributions, both the mean and variance approached
zero.
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in the BA auction does not approach zero, whereas in the AB auction, it does. Additionally,

while other types of inefficiencies vanish (as Table 3 and Table 5 in the Appendix show), the

inefficiency associated with the global bidder winning at a loss persists in the BA auction.

Consequently, the BA auction is more inefficient overall and generates higher revenue, but

this comes at the expense of the global bidder.

In Figure 3 , we compare social welfare across various auction formats. Our findings

indicate that the social welfare associated with the BA auction is lower, even when the

variance of good B is not close to zero. We note that in the figure Social Welfare of BA

auction is lower for all distribtuions we have used. This is not contradicting our theoretical

result which is only valid when the variance is close to zero.

4 Conclusion

In this paper, we demonstrate that the order in which goods are sold in a second-price sequen-

tial auction significantly affects revenue, welfare, and the likelihood of inefficient allocations.

Our findings reveal that selling a good with nearly zero variance first yields higher revenue

with a probability approaching 1, while selling it second results in an efficient outcome with

a similar likelihood. We establish a connection between the auction’s inefficient outcomes
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and its revenue—a novel contribution to the literature on sequential auctions, to the best of

our knowledge. When the global bidder bids beyond their standalone valuation, they face a

substantial risk of incurring a loss if the nearly zero variance good is sold first.

Additionally, we believe that the code developed for this study can be a valuable resource

for policymakers and firms conducting auctions. Our simulation results indicate that the

variance of goods does not need to be excessively small to achieve these outcomes.

We hope this paper encourages further research into the optimal selling order of goods,

particularly in scenarios where heterogeneity manifests in various forms beyond just variance.

5 Appendix-Proofs

Proof of proposition 1

We take the derivative of equation 1 by using the fact that Pr(b > bi) = Gi(b). After

equating the derivative to zero, and cancelling g(b) from the equation, we get equation 2

b ≡ bij = vGi +

∫ min{vGj+θ,1}

0

(vGj + θ − bj)dGj(bj)−
∫ vGj

0

(vGj − bj)dGj(bj)

We can re-write this by using integration by parts by setting dv = dGj(bj) in both

integrals. For instance, the first integral becomes

[(vGj + θ − bj)Gj(bj)]|
bj=min{vGj+θ,1}
bj=0 +

∫ min{vGj+θ,1}

0

Gj(bj)dbj =

∫ vGj+θ

0

Ĝj(bj)dbj

Where the equality holds since when min{vGj + θ, 1} = vGj + θ the first term vanishes and

when min{vGj+θ, 1} = 1, Gj(1) = 1 and vGj+θ−1 =
∫ vGj+θ

1
Ĝj(b)db. Similarly, the second

integral becomes
∫ vGj

0
Ĝj(bj)dbj and substituting into the first order condition we get the

result:

b ≡ bij = vGi +

∫ vGj+θ

0

Ĝj(bj)dbj −
∫ vGj

0

Ĝj(bj)dbj = vGi +

∫ vGj+θ

vGj

Ĝj(bj)dbj

Finally, we show that the SOC is satisfied.

FOC = [vGi − b+
∫ min{vGj+θ,1}
0

(vGj + θ − bj)dGj(bj)−
∫ vGj

0
(vGj − bj)dGj(bj)]gi(b)

= [vGi − b+
∫ vGj+θ

vGj
Ĝj(bj)d(bj)]gi(b)
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SOC = [vGi− b+
∫ vGj+θ

vGj
Ĝj(bj)d(bj)]g

′
i(b)−gi(b) < 0, since [vGi− b+

∫ vGj+θ

vGj
Gjd(bj)] = 0.

Since there is a unique equilibrium bij, and SOC is negative at bij, SOC is satisfied.

Proof of corollary 2: Since 0 ≤ Ĝj(t) ≤ 1, then 0 ≤
∫ vGj+θ

vGj
Ĝjd(bj) ≤ θ and inmedi-

ately from proposition 1 we get

vGi ≤ bij = vGi +

∫ vGj+θ

vGj

Ĝjd(bj) ≤ vGi + θ

Proof of Proposition 3: Let Xn be a sequence of random variables distributed

according to the cdf Fn with mean µn and variance σ2
n and let Yn = µn and Y = µ be

constant random variables. Then,

∥Xn − Yn∥L2 = (
∫
| Xn − Yn |2 dP )1/2 = (

∫
| Xn − µn |2 dP )1/2 = V ar(Xn)

1/2 = σn

∥Yn − Y ∥L2 = (
∫
| Yn − Y |2 dP )1/2 = (

∫
| µn − µ |2 dP )1/2 =| µn − µ |

⇒ ∥Xn − Y ∥L2 ≤ ∥Xn − Yn∥L2 + ∥Yn − Y ∥L2 = σn+ | µn − µ |

Hence, if as n → +∞ we have σn → 0 and µn → µ, then Xn converge to Y in the L2

norm and therefore it also converges in distribution, i.e., for all t ∈ [0, 1], t ̸= µ:

Fn(t) → FY (t) = 1[µ,1](t) =

{
0 : 0 ≤ t < µ
1 : µ ≤ t ≤ 1

Since we have µj → µ and V ar(Fj) → 0 then Fj → 1[µ,1] and then Gj(t) = (Fj)
N →

1N[µ,1](t) = 1[µ,1](t) for all t ̸= µ, t ∈ [0, 1]. Moreover, since by convention for any distribution

F its extension has F̂ (t) = 1 for t > 1 we have Ĝj(t) → 1{[µ,+∞)}(t) for all t ≥ 0, t ̸= µ.

Now, using the dominated convergence theorem we have:

bij = vGi +

∫ vGj+θ

vGj

Ĝj(t)dt → b̂ij ≡ vGi +

∫ vGj+θ

vGj

1[µ,+∞)(t)dt

and evaluating the last integral we have that the optimal bid converges in the limit to:

b̂ij =


vGi + θ : µ ≤ vGj

vGi + vGj + θ − µ : vGj < µ < vGj + θ
vGi : vGj + θ ≤ µ
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Now let us show that the last two cases tend to disappear in the limit. That is P (b̂ij =

vGi + θ) → 1. Observe that P (b̂ij = vGi + θ) = P (vGj ≥ µ) = 1−P (vGj < µ). We will prove

that this last probability converges to zero in the limit.13

Since vGj is distributed according to Fj we showed that it is converging in L2 to the

constant random variable Y = µ and hence it also converges in probability, i.e., for every

k ∈ N we have P (| µ − vGj |> 1
k
) → 0. Moreover, {vGj < µ − 1

k
} ↑ {vGj < µ} implies that

for any ϵ > 0 there is a k0 ∈ N s.t.

P (vGj < µ) ≤ P (vGj < µ− 1

k0
) + ϵ ≤ P (| µ− vGj |>

1

k0
) + ϵ

Then, taking limsup as µj → µ and σj → 0 and using the convergence in probability, we

have that for every ϵ > 0:

0 ≤ limsup
µj→µ,σj→0

P (vGj < µ) ≤ ϵ

which guarantees that the limsup is indeed a limit and equals zero.

b) By proposition 1 we have bji = vGj+
∫ vGi+θ

vGi
Ĝi(bi)dbi. We know that vGj is distributed

according to Fj and max1≤k≤N{vkj} is distributed according to Gj = FN
j . Moreover, as µj →

µ and σj → 0 we have seen that vGj converges in probability to Y = µ and max1≤k≤N{vkj}

converges in distribution to Y . Since Y is a constant random variable then max1≤k≤N{vkj}

also converges in probability to Y . 14 Hence, since α =
∫ vGi+θ

vGi
Ĝi(bi)dbi > 0 we have:

P (bji ≤ max1≤k≤N{vkj}) = P (α ≤ max1≤k≤N{vkj} − vGj) ≤ P (α ≤| max1≤k≤N{vkj} − vGj |)

≤ P (α
2
≤| max1≤k≤N{vkj} − Y |) + P (α

2
≤| Y − vGj |)

and as µj → µ and σj → 0 the last bound goes to zero by convergence in probability. Hence,

P (bji > max1≤k≤N{vkj}) → 1

Proof of Proposition 4:

13When computing its optimal bid, the global bidder knows its own valuation vGj which is deterministic.
From an outside perspective, such as the perspective of the auctioneer, however, vGj is a random variable
with distribution Fj and it makes sense to examine its behaviour in the limit as µj → µ and σj → 0

14This would not be true in general if the limit Y were not a constant random variable. See Cinlar (2011,
chapter III: section 5) and in particular remarks b) and c) on page 110.
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For j = A,B, let’s define vLj = max{vij : 1 ≤ i ≤ Nj} the maximum valuation for good

j among the local bidders and vL2j = max[{vij : 1 ≤ i ≤ Nj} − {vLj}] the second maximum

valuation for good j among local bidders. By definition, vLj ≥ vL2j always. Given any

realization of the bidders valuations, MSW = max{vLA + vGB, vGA + vLB, vLA + vLB, vGA +

vGB + θ} gives the maximum social welfare that can be achieved. Hence, according to where

this maximum is achieved it will be efficient that: I) A local bidder wins the A auction and

the global wins the B auction or II) The global bidder wins the A auction and a local the

B auction or, III) the Local bidders wins both auctions or, IV) the global bidder wins both

auctions.

We will use this classification of the possible realizations of the bidders valuation to show

that only the cases where RAB ≤ RBA and SWBA ≤ SWAB do not disappear as the variance

goes to zero.

Case I: MSW = vLA + vGB which implies:

vLA + vGB ≥ vGA + vGB + θ ⇒ vLA ≥ vGA + θ (3)

vLA + vGB ≥ vLA + vLB ⇒ vGB ≥ vLB (4)

In the AB auction, by corollary 2, bAB ≤ vGA + θ. Hence, a local bidder wins the A

auction by (3) and the global bidder wins B by (4). Thus, the AB auction produces an

efficient result. In the AB auction, the revenue is RAB = max{bAB, vL2A} + vLB and the

social welfare is SWAB = vLA + vGB.

In the BA auction, by corollary 2, bBA ≥ vGB. Hence, the global bidder wins the B

auction by (4). In the A leg of the BA auction, the global bidder will bid vGA + θ and a

local bidder will win by (3). Therefore, the BA auction still produces the efficient outcome

SWBA = vLA + vGB but now the revenue is RBA = max{vGA + θ, vL2A}+ vLB.

In summary, in this case both auctions are equally efficient SWAB = vLA+vGB = SWBA.

On the other hand, RAB = max{bAB, vL2A}+ vLB ≤ max{vGA + θ, vL2A}+ vLB = RBA since

bAB < vGA + θ by Corollary 2. So the BA auction produces an ex-post greater revenue.
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Case II: MSW = vGA + vLB which implies:

vGA + vLB ≥ vGA + vGB + θ ⇒ vLB ≥ vGB + θ (5)

vGA + vLB ≥ vLA + vLB ⇒ vGA ≥ vLA (6)

This case tends to disappear as V ar(FB) → 0. Indeed, the probability that (5) happens

goes to zero: P (vLB ≥ vGB + θ) ≤ P (| vLB − vGB |≥ θ) → 0. The convergence to zero

follows from θ > 0 and the fact that as V ar(FB) → 0 and µFB
→ µ, vLB and vGB are both

converging in probability to µ according to the proof of proposition 3b.

Case III: MSW = vLA + vLB which implies:

vLA + vLB ≥ vGA + vLB ⇒ vLA ≥ vGA (7)

vLA + vLB ≥ vLA + vGB ⇒ vLB ≥ vGB (8)

Unlike the previous cases, we can’t determine the outcomes of the AB and BA auctions

from (7) and (8). There are two main subcases.

III.a) Assume vLA ≥ vGA + θ. This implies that, in the AB auction, a local bidder wins

A since by corollary 2, bAB ≤ vGA + θ. A local bidder also wins B by (8). Hence, the AB

auction is efficient SWAB = vLA + vLB and generates a revenue of RAB = max{bAB, vL2A}+

max{vGB, vL2B}.

The result of the BA auction has two subcases. When bBA < vLB, a local bidder wins

B. However, by proposition 3b, this subcase tends to disappear in the limit15. Hence, we

can assume that bBA ≥ vLB. Then the global bidder wins B and bids vGA + θ in the A

auction. Thus, the local bidder wins auction A by assumption. In this case, the BA auction

is inefficient with SWBA = vGB+vLA and generates revenue RBA = vLB+max{vGA+θ, vL2A}.

Thus, the revenue comparison between the two auctions is RAB = max{bAB, vL2A} +

max{vGB, vL2B} < vLB+max{vGA+θ, vL2A} = RBA, by (8) and corollary 2 (bAB < vGA+θ).

The social welfare comparison between the two auctions is SWAB = vLA + vLB ≥ SWBA =

vLA + vGB by (8).

15That is, as V ar(FB) → 0 and µB → µ, P (bBA < vLB) → 0
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III.b). Assume, vLA < vGA + θ. Since, bAB → vGA + θ by proposition 3a16, then,

vLA < bAB when V ar(FB) is sufficiently small.17 Then, in the AB auction the global bidder

wins A and bids vGB + θ in the second leg of the auction. From here, there are two subcases.

If vLB ≥ vGB + θ the local bidder wins B. However, as above P (vLB − vGB ≥ θ) → 0 and

this subcase disappears as V ar(FB) → 0. The other subcase vLB < vGB + θ implies that the

global bidder also wins the B leg of the AB auction. In summary, in the AB auction the

revenue is RAB = vLA + vLB and the social welfare is SWAB = vGA + vGB + θ.

In the BA auction, the case where the global bidder loses the B leg of the auction tends

to disappear in the limit according to proposition 3b. Hence, we may assume bBA > vLB.

The global bidder wins B and bids vGA + θ in the A auction. Since vLA < vGA + θ by

assumption, then the global bidder wins both goods inefficiently in the BA auction. The

revenue and social welfare are equal to the ones in the AB auction: RBA = vLA+vLB = RBA

and SWBA = vGA + vGB + θ = SWAB.

Case IV: MSW = vGA + vGB + θ. Since this is the last case we can assume that the

maximum is unique. If the maximum is not unique we are within one of the previous 3 cases.

Hence, this case implies:

vGA + vGB + θ > vGA + vLB ⇒ vGB + θ > vLB (9)

vGA + vGB + θ > vLA + vGB ⇒ vGA + θ > vLA (10)

Since, according to proposition 3a, bAB → vGA + θ then, by (10), bAB > vLA when

V ar(FB) is sufficiently small. In the AB auction, this means that the global bidder wins A

and bids vGB + θ for B. By (9), the global bidder also wins B. Hence, the revenue in the AB

auction is RAB = vLA + vLB and the result is efficient SWAB = vGA + vGB + θ.

In the BA auction, the case where the global bidder loses the B leg of the auction tends

to disappear in the limit according to proposition 3b. Hence, we may assume bBA > vLB.

The global bidder wins B and bids vGA + θ in the A auction. Then by (10), the global

16Strictly speaking, bAB may be converging to others values but those cases tend to disappear in the limit
according to proposition 3a.

17Technically we require both V ar(FB) and | µB − µ | to be sufficiently small.
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bidder also wins A. Therefore, we have the same revenue and welfare as in the AB auction:

RBA = RAB and SWBA = SWAB.

We now summarize all the analysis up to this point. We proved that if V ar(FB) is

sufficiently small, RAB ≤ RBA and SWAB ≥ SWBA for all cases except those that tend to

disappear when V ar(FB) → 0. Then P (RAB ≤ RBA, SWAB ≥ SWBA) → 1 as V ar(FB) → 0.
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6 APPENDIX TABLES

Synergy Synergy Synergy
with with with
θ = 0.2 θ = 0.5 θ = 0.8

NA = NB = 1 NA = NB = 1 NA = NB = 1

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 3;

pExp.Loss
AB % 2.5840 3.2460 1.9320

pIneff.AB % 2.3120 2.3280 1.3060

pExp.Loss
BA % 4.0340 6.2420 3.7800

pIneff.BA % 3.5840 3.4660 0.8020
△R% 0.0016 -0.3976 -0.5563
△SW% 0.1016 0.3753 0.1864

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 10;

pExp.Loss
AB % 1.1000 1.5220 0.7920

pIneff.AB % 1.8600 1.2640 0.5880

pExp.Loss
BA % 6.8420 7.7320 2.8040

pIneff.BA % 4.7540 1.3680 0.0440
△R% -0.0696 -0.8363 -0.5024
△SW% 0.3049 0.4748 0.1222

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 50;

pExp.Loss
AB % 1.0320 0.6100 0.3160

pIneff.AB % 1.0020 0.6040 0.2300

pExp.Loss
BA % 11.6180 7.5620 1.7400

pIneff.BA % 2.7780 0.0740 0.000
△R% -0.2826 -0.7601 -0.1656
△SW% 0.4477 0.2502 0.0405

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 100;

pExp.Loss
AB % 0.6960 0.4600 0.1540

pIneff.AB % 0.6620 0.4020 0.1640

pExp.Loss
BA % 13.4760 7.4100 1.4620

pIneff.BA % 1.5640 0.0000 0.0000
△R% -0.3796 -0.5691 -0.1033
△SW% 0.4057 0.1757 0.0262

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 500;

pExp.Loss
AB % 0.2880 0.1740 0.0760

pIneff.AB % 0.2700 0.1460 0.0740

pExp.Loss
BA % 15.7300 6.5440 1.1300

pIneff.BA % 0.2600 0.0000 0.0000
△R% -0.4231 -0.2349 -0.0383
△SW% 0.2181 0.0743 0.0100

pExp.Loss
ij =100*(Sum of outcomes in row 2 and 4 in Table 1)/50000. Probability of the global bidder having ex-post loss.

pIneff.ij =100*(Sum of outcomes in row 6 and 8 in Table 1)/50000. Probability of all inefficient allocations.

△R% =100 ∗ (RAB −RBA)/RBA. Percentage change in revenue between AB and BA auctions.
△SW% =100 ∗ (SWAB − SWBA)/SWBA. Percentage change in social welfare (SW) between AB and BA auctions.

Table 3: Simulation Results for FA Uniform Distribution when Ni = Nj = 1
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Synergy Synergy Synergy
with with with
θ = 0.2 θ = 0.5 θ = 0.8

NA = NB = 2 NA = NB = 2 NA = NB = 2

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 3;

pExp.Loss
AB % 2.3540 3.8420 3.2740

pIneff.AB % 2.3700 3.7520 2.4860

pExp.Loss
BA % 3.6720 7.0860 6.0160

pIneff.BA % 3.7720 5.3060 2.5860
△R% 0.1514 0.5619 0.1496
△SW% 0.0882 0.3519 0.3134

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 10;

pExp.Loss
AB % 1.9880 2.3240 1.5540

pIneff.AB % 2.0660 2.0980 1.2520

pExp.Loss
BA % 6.4000 9.6540 5.7600

pIneff.BA % 5.7540 3.7520 0.7980
△R% 0.3432 0.4550 -0.3464
△SW% 0.2913 0.6302 0.2954

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 50;

pExp.Loss
AB % 1.1840 1.0140 0.5860

pIneff.AB % 1.1820 0.9060 0.4200

pExp.Loss
BA % 12.1660 13.0600 4.3080

pIneff.BA % 4.5100 1.2660 0.0240
△R% 0.4125 -0.1183 -0.3000
△SW% 0.5073 0.4925 0.1223

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 100;

pExp.Loss
AB % 0.8640 0.6860 0.3640

pIneff.AB % 0.7740 0.6340 0.3020

pExp.Loss
BA % 14.9260 13.8660 3.8000

pIneff.BA % 3.2220 0.6420 0.0000
△R% 0.3591 -0.3047 -0.2091
△SW% 0.4938 0.3832 0.0816

FA =Uniform Distr.with α = β = 1; FB = Beta Distr. with α = β = 500;

pExp.Loss
AB % 0.3700 0.3140 0.1520

pIneff.AB % 0.3280 0.2840 0.1540

pExp.Loss
BA % 21.0640 14.8560 2.9500

pIneff.BA % 1.2420 0.0520 0.0000
△R% 0.1402 -0.3555 -0.0794
△SW% 0.3347 0.1909 0.0319

pExp.Loss
ij =100*(Sum of outcomes in row 2 and 4 in Table 1)/50000. Probability of the global bidder having ex-post loss.

pIneff.ij =100*(Sum of outcomes in row 6 and 8 in Table 1)/50000. Probability of all inefficient allocations.

△R% =100 ∗ (RAB −RBA)/RBA. Percentage change in revenue between AB and BA auctions.
△SW% =100 ∗ (SWAB − SWBA)/SWBA. Percentage change in social welfare (SW) between AB and BA auctions.

Table 4: Simulation Results for FA Uniform Distribution when Ni = Nj = 2. Here, we assume
v1i > v2i > ...
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License i won by License j won by Global bidder makes Allocation is Revenue is Welfare is

1. Global Bidder Global Bidder Profit Efficient v1i + v1j vGi + vGj + θ
2. Global Bidder Global Bidder Loss Inefficient v1i + v1j vGi + vGj + θ
3. Global Bidder Local Bidder j Profit Efficient v1i + vGj + θ vGi + v1j
4. Global Bidder Local Bidder j Loss Inefficient v1i + vGj + θ vGi + v1j
5. Global Bidder Local Bidder j Profit Efficient v1i + v2j vGi + v1j
6. Global Bidder Local Bidder j Loss Inefficient v1i + v2j vGi + v1j
7. Local Bidder i Global Bidder Profit Efficient bij + v1j v1i + vGj

8. Local Bidder i Global Bidder Profit Inefficient bij + v1j v1i + vGj

9. Local Bidder i Global Bidder Profit Efficient v2i + v1j v1i + vGj

10. Local Bidder i Global Bidder Profit Inefficient v2i + v1j v1i + vGj

11. Local Bidder i Local Bidder j Zero Profit Efficient bij + vGj v1i + v1j
12. Local Bidder i Local Bidder j Zero Profit Inefficient bij + vGj v1i + v1j
13. Local Bidder i Local Bidder j Zero Profit Efficient bij + v2j v1i + v1j
14. Local Bidder i Local Bidder j Zero Profit Inefficient bij + v2j v1i + v1j
15. Local Bidder i Local Bidder j Zero Profit Efficient v2i + vGj v1i + v1j
16. Local Bidder i Local Bidder j Zero Profit Inefficient v2i + vGj v1i + v1j
17. Local Bidder i Local Bidder j Zero Profit Efficient v2i + v2j v1i + v1j
18. Local Bidder i Local Bidder j Zero Profit Inefficient v2i + v2j v1i + v1j

Table 5: All possible outcomes in an ij auction when Ni = Nj = 2
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