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Abstract

We embed a ChatGPT-based AI detector in a laboratory experiment to test
whether participants are willing to pay more to collaborate with AI than with
human peers to accurately detect the proportion of AI-generated parts in deepfake
news articles. Task difficulty varies with the model used to generate the articles
(GPT-2 vs. GPT-4o). We find that participants’ willingness to pay (WTP) for
the AI detector exceeds that to collaborate with human peers, even though the
AI detector does not provide better assistance and, in fact, humans do better
than AI in for GPT-4o generated news. WTP for AI or peer collaboration does
not rise with task difficulty. These patterns point to over-reliance on AI and raise
concerns about the spread of deepfakes. The study improves understanding of
human–AI interaction and informs safeguards for deepfake detection in the era
of generative AI (GAI).
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1 Introduction

With the popularity of AI tools since the launch of ChatGPT in November 2022, the

spread of AI-generated fake contents (deepfakes)– has also raised concerns on its harm

to the Human society (Lundberg and Mozelius, 2024; Sophia, 2025). Recognizing this,

“AI detectors” (e.g., Turnitin) have been developed (Kar et al., 2024) and are used

for academic integrity checks and for fact-checking on X (e.g., TweetDetective). Be-

yond education, platforms label AI-generated media using an open content-provenance

standard for content credentials (e.g., Meta, TikTok); firms deploy deepfake detectors

against voice and multimedia fraud; and consumer tools let ordinary users test images,

audio, video, and text.1

However, AI detectors are imperfect and can misclassify human writing as AI-

generated (false positives) (Weber-Wulff et al., 2023; Knilans, 2024; Zhang et al., 2024b).

Even OpenAI advises that AI-writing detectors are not reliable for high-stakes judg-

ments.2 Well-known cases include detectors labeling the US Constitution and passages

from the Bible as AI-generated,3 and false positives have led to real harms in educa-

tion, including publicized misconduct cases and delayed graduations (Bergin, 2025b,a;

Hallikaar, 2025; The Advertiser, 2025; The Courier-Mail, 2024).

With this context in mind, this study seeks to quantify people’s trust in these

imperfect AI tools. We introduced a deepfake detection task in the laboratory, where

participants were asked to identify the proportion of AI-generated parts in deepfake

news articles, which were compositions of human-written and AI-generated text. Using

a between-subjects design, we then offered paid external assistance: participants may

either (i) purchase access to a ChatGPT-based AI detector or (ii) pay to cooperate

1Examples include Turnitin’s one-year AI-detector report; Meta/TikTok updates on the content-
credentials standard (also known as C2PA); Pindrop and Reality Defender for enterprise; and consumer
tools such as AI or Not, Google’s SynthID, and GPTZero.

2OpenAI Help Center: “Do AI detectors work? In short, not in our experience.”
3See Ars Technica on the Constitution case (Edwards, 2023) and India Today on Bible passages

being flagged as AI (Chakravarti, 2023).

2

https://www.turnitin.com/
https://www.tweetdetective.com/
https://www.aiornot.com/
https://deepmind.google/science/synthid/
https://gptzero.me/
https://help.openai.com/en/articles/8313351-how-can-educators-respond-to-students-presenting-ai-generated-content-as-their-own


with other participants in the experiment before revising their initial identifications.

We utilize the Becker–DeGroot–Marschak (BDM) mechanism (Becker et al., 1964) to

elicit participants’ WTP for the external assistance and our first research question is

therefore

RQ1: Are participants willing to pay more to use ChatGPT than to cooperate with other

participants to detect deepfake news?

As generative AI (GAI) technologies advance, a central goal is to produce outputs

that appear ever more natural and human-like. This progress makes deepfakes increas-

ingly difficult for the public to recognise and imposes additional burdens on detection

systems, thereby magnifying their potential harm (Masood et al., 2023; Lee, 2024). To

examine how this technological progress affects both deepfake detection and reliance

on AI detectors, we introduce the second dimension in our experiment that systemati-

cally varies task difficulty. Concretely, we construct two sets of synthetic news articles

using different large language models (LLMs)—GPT-2 and GPT-4o—so that detecting

AI-generated content in the GPT-4o set is theoretically more challenging (Islam and

Moushi, 2024). This leads to our second research question:

RQ2: Are participants willing to pay more for external assistance (using ChatGPT or

cooperating with Human peers) when facing more difficult tasks (detecting GPT-

4o generated news) compared to less difficult tasks (GPT-2 generated news)?

Many GAI chatbots—such as ChatGPT—display disclaimers that their outputs

may contain errors, discouraging blind trust. Tools built on the same technology—AI

detectors—rarely provide comparable notices about their own fallibility or their non-

negligible false-positive rates; related policies to limit misuse are also scarce. Without

systematic validation or feedback, users’ choices to employ these detectors—and to

believe their results—remain largely subjective. We test whether exposing users to ev-

idence of a tool’s unreliability can reduce over-trust in detectors, as seen for chatbots.
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In a laboratory experiment, participants complete two successive deepfake-detection

parts. Before each part, they submit their WTP for the “external assistance” available

in the upcoming rounds. After the first part, a mid-experiment feedback stage pro-

vides performance feedback. This design allows us to observe whether experience and

feedback about a given form of assistance change subsequent demand for—and reliance

on—that assistance. We therefore pose our third research question:

RQ3: Do the experience of external assistance (using ChatGPT or cooperating with

Human peers) and the feedback regarding its effectiveness in detecting deepfake

news affect their willingness to pay (WTP) to use them?

Despite rapid growth in the deepfake literature, few economic-experiment studies

combine a deepfake-detection task with an AI detector, as we do here. “AI reliance”

(Passi and Vorvoreanu, 2022; Klingbeil et al., 2024; Küper and Krämer, 2025) becomes

problematic in this context when two conditions coincide: (i) participants place more

trust in an AI detector than in human collaboration, and (ii) the detector does not

deliver superior assistance compared to humans. In other words, people’s trust in AI

tools is excessive—and potentially harmful—when the tool commands more confidence

than its performance warrants. To assess the objective value of AI assistance (rather

than the value users subjectively place on it), we pose our fourth research question:

RQ4: Does ChatGPT help people more effectively than Human peers in the tasks of

deepfake detection?

Our findings show that participants detect GPT-4o deepfake news less accurately

than GPT-2 deepfake news, confirming that the task is harder when the generating

model is stronger. Participants’ WTP is higher for the AI detector than for collabora-

tion with human peers, and this premium remains essentially unchanged across difficulty

levels. After the first part and performance feedback, demand rises further: partici-

pants are more likely to increase their WTP for access to the AI detector. Finally, the

4



AI detector does not improve detection accuracy relative to peer collaboration, even

though participants believe it does and pay a premium for it.

These findings call for policy frameworks that help people and institutions evaluate

AI detectors prudently when facing the risks of deepfakes. Regulators should require

transparent disclosure of performance metrics—not only for generative-AI systems but

also for detectors—to reduce over-reliance on AI tools and mitigate potential harm.

A complementary step is to establish an independent body to test detectors against

common standards, and to require platforms to use a human reviewer for any content

that a detector flags with high confidence as AI-generated, rather than leaving the

decision to AI alone. Finally, policies that support the development of detectors with

higher accuracy, lower false-positive rates, and fairer pricing can help keep reliable

detection in step with the growing sophistication of GAI.

The remainder of this paper is organized as follows. Section 2 introduces the back-

ground of deepfake detection and reviews previous studies on valuing the Human-AI

Collaboration. Section 3 presents the experimental design and hypotheses. Section 4

summarizes the analysis results. Section 5 provides a discussion, and Section 6 con-

cludes the paper.

2 Literature Review

We review two strands of research. First, we summarize the state of deepfake detec-

tion—its motivations, main approaches, and key challenges. Second, we survey work on

valuing human–AI collaboration, with attention to motivations, measurement methods,

and comparisons to human–human collaboration.
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2.1 Background on Deepfake Detection

2.1.1 Why deepfakes matter

Deepfakes are synthetic media—most often audio and video—created with deep learning

methods (Chadha et al., 2021). These outputs imitate real content closely and can cause

social harm (Katarya and Lal, 2020; Sareen, 2022). With recent advances in GAI, the

idea of deepfakes now extends beyond images and audio to include text (Chong et al.,

2023). In particular, AI-generated deepfake news—“fake” text that looks credible—has

drawn serious concern (Lee and Shin, 2022; Guo, 2024). As LLMs improve, deepfakes

have become harder to distinguish from real content, and their potential harms across

domains have drawn increased attention.

Politically, deepfakes are seen as a major threat to political processes. Islam et al.

(2024) argue that they can sway voter decisions and affect elections and democracy

worldwide. Amin et al. (2025) show that exposure to deepfake images increases cogni-

tive load and confirmation bias, shaping perceived political ideology and fostering polar-

ization. Li (2025) report that deepfake news spreads at unprecedented speed and scale,

appears highly authentic, and contributes to crises of social trust, political polarization,

and economic and legal risks. Gupta et al. (2025) find that deepfakes shape perceptions

and narratives, especially during elections and periods of political turmoil. These risks

motivate both governance and user-facing safeguards beyond detection alone.

Academia and education face integrity risks from deepfakes. In research, deep learn-

ing can generate realistic but nonexistent data and images, which have already led to

journal retractions and signal a systemic threat to research integrity (Chen et al., 2024).

Chauhan and Currie (2024) argue that GAI raises authenticity risks in scholarly writ-

ing, including hallucinated content and citations, fabricated or “synthetic” data and

images, and reference manipulation, thereby undermining reproducibility and verifi-

cation. In higher education, Bittle and El-Gayar (2025) note that while GAI offers

learning benefits, its deepfakes can increase opportunities for academic misconduct,
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making governance and assessment redesign pressing issues. Deepfakes can also harm

students through “cyber-bullying”: schools face challenges in detection, reporting, and

platform coordination, suggesting that current anti-bullying procedures are not ready

for AI-driven harassment (Alexander, 2025).

In everyday life, deepfakes erode privacy and reputation. Non-consensual synthetic

intimate imagery (NSII, i.e., deepfake pornography) has non-trivial prevalence and

causes lasting psychosocial harm (Umbach et al., 2024). Cloned voices fuel phone

scams because users struggle to detect them, with low accuracy for both known and

unknown speakers (Barrington et al., 2025). In markets, deepfake advertising distorts

consumer judgment when disclosure is weak; product claims, the presence of disclosure,

and the form of disclosure all shape evaluations and trust (Whittaker et al., 2025).

Overall, exposure to deepfakes can change beliefs, memories, and sharing behavior in

daily media use (Ching et al., 2025).

Taken together, the wide-ranging risks of deepfakes have sharpened public concern

about how to detect them. On the policy side, scholars call for governments to recognize

the harms and spread of deepfakes and to adopt targeted legal responses (Yamaoka-

Enkerlin, 2019; Ramluckan, 2024). On the technical side, new methods and detection

tools are still needed (Mirsky and Lee, 2021). On the human side, because deepfakes

are increasingly hard to tell from real content, users express a clear demand to verify

media in everyday social contexts (Ahmed and Chua, 2023).

In this study, we focus on a common form of deepfake—deepfake news—and, in

a laboratory setting, examine a detection task in which participants identify the pro-

portion of AI-generated text in each article. While this design cannot fully recreate

real-world contexts, it provides a controlled way to measure perceptions and behavior

toward deepfakes. To our knowledge, this is among the first economic experiments to

elicit WTP for deepfake detection. Our results clarify how people value and rely on

detection tools and inform efforts to mitigate the harms of deepfakes.
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2.1.2 Deepfake Detection and its’ Frictions

Many studies show that humans can not detect deepfakes effectively. Diel et al. (2024)

systematically reviewed and meta-analyzed 56 papers on human performance and found

an overall detection accuracy of 55.54% (52.00% for deepfake text), providing the first

comprehensive review of human deepfake detection. Groh et al. (2024) ran randomized

experiments on real versus deepfake political speeches and found that the proportion

of deepfakes did not significantly affect judgments; they also report that, compared to

voice and video, deepfake text is harder for humans to detect.

At the same time, Human-Human Collaboration helps humans’ deepfake detection.

Uchendu et al. (2023) shows that group discussion improves deepfake-text detection

relative to individuals, with gains for both non-experts and experts. Groh et al. (2022)

demonstrates that aggregating multiple human judgments on deepfake videos yields ac-

curacy comparable to that of state-of-the-art detectors and surpasses that of individual

raters. These collaborative gains are consistent with evidence summarized in Diel et al.

(2024)’s systematic reviews.

Beyond human detection, AI-based detection has become a primary approach to

spotting deepfakes (Garde et al., 2022). As Zellers et al. (2019) put it, “the best way

to detect neural fake news is to use a model that is also a generator.” Evidence on

AI detectors is mixed: some evaluations report very high performance—often above

90% and in some cases near 100%—on specific benchmarks (Koka et al., 2024; Sallami

et al., 2024; Liu et al., 2024), yet other studies find off-the-shelf tools far from perfect.

Weber-Wulff et al. (2023) assessed 12 public detectors and two commercial systems

(Turnitin and PlagiarismCheck) and concluded that available tools are neither accurate

nor reliable, with detection of AI text often only slightly above chance and vulnerable

to paraphrasing—limiting their evidentiary value. Reviewing 17 articles, Chaka (2024)

likewise report inconsistent results across detectors and datasets, indicating limited

reliability. As LLMs improve, deepfakes become harder to detect, while detectors also
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advance—an ongoing “generation–detection” arms race (Laurier et al., 2024).

Even though AI detectors are not perfect, human–AI collaboration is considered

promising for deepfake detection (Saharan et al., 2025). Recent evidence shows clear

gains: in experiments by Groh et al. (2022), participants who could see a model’s

prediction were more accurate than either humans or the model alone; Diel et al. (2024)

likewise report that AI assistance can improve human detection accuracy in their review;

and Somoray et al. (2025) show that humans and AI models attend to different cues

when detecting deepfakes, indicating complementary strengths that collaboration can

exploit.

In this study, we introduce two collaboration mechanisms—human–human and hu-

man–AI. Participants can pay to collaborate with a peer or with an AI detector when

detecting deepfake news. Because many public AI detectors are now paywalled and

prior work rarely measures WTP to use an AI detector for deepfake detection, this

study fills that gap.

Additionally, in many experimental studies on fake-news detection in economics,

participants are asked for a binary response (real vs. fake) (Serra-Garcia and Gneezy,

2021; Arin et al., 2023; Thaler, 2024); by contrast, we ask participants to identify

the article’s AI-generated proportion, aligning with recent work on partial detection

and localization rather than whole-document labels (Zhang et al., 2024a; Zeng et al.,

2024; Zhang et al., 2024d). We prefer a proportion for four reasons: (i) our stimuli

include totally AI-generated and totally human-written items, so a proportion subsumes

binary judgments and provides finer measurement; (ii) as models improve, simple yes/no

human detection is unreliable, whereas a proportion captures subjective uncertainty;

(iii) real-world use often mixes AI output with human edits (AI–human compositions),

so proportion better matches how content is produced; and (iv) modern AI detectors

typically return continuous scores or “AI-generated proportions,” not hard labels.
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2.2 Human–AI Collaboration

Human–AI collaboration is valuable along several margins. First, it can raise the qual-

ity of outputs and the speed in knowledge work: controlled field and lab studies report

gains in writing, customer support, and programming when people use GAI as an as-

sistant (Noy and Zhang, 2023; Ziegler et al., 2024; Brynjolfsson et al., 2025). Second,

collaboration can reduce variance and stabilize judgments by adding a second opin-

ion and aggregating multiple views, which curbs over-reliance on any single source

(Kleinberg et al., 2018; Donahue et al., 2022; Lu et al., 2024). Third, when humans

and AI bring different strengths, well-designed integration can realize complementarity

so that the team matches or exceeds strong single baselines—though gains are task-

dependent(Choudhary et al., 2025; Hemmer et al., 2025).

Collaboration with AI also carries risks. People may over-rely on or over-trust

model outputs, and explanations are not a cure-all—effects are mixed unless they sup-

port verification (Vasconcelos et al., 2023; Klingbeil et al., 2024). As a result, human–AI

collaboration can sometimes destroy value. Reviewing 106 experimental studies, Vac-

caro et al. (2024) find that, on average, human–AI teams perform significantly worse

than the best of humans or AI alone. In a setting where teams must replicate published

social-science findings, identify major errors, and develop robustness checks, Brodeur

et al. (2025) find that AI-led teams underperform human-led or AI-assisted teams on

all three dimensions.

In everyday applied domains, similar risks arise. In healthcare, randomized evidence

shows that adding AI-assisted systems does not reliably improve diagnostic reasoning

(Goh et al., 2024); moreover, erroneous AI suggestions systematically pull radiologists

toward wrong decisions, with larger shifts for less-experienced readers—clear evidence

of automation bias and accuracy degradation under AI-assisted reading (Dratsch et al.,

2023). The use of AI in clinics also raises privacy risks surrounding patient data and

can introduce bias into algorithmic decisions (Varri et al., 2025). In creative work, AI
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assistance can raise judged quality yet homogenize outputs, lowering variance and nov-

elty at the group level (Doshi and Hauser, 2024). Because human–LLM collaboration

often requires users to supply prompts and context, it also creates risks of data leakage

and personal privacy exposure, including indirect prompt-injection attacks (Greshake

et al., 2023; Zhang et al., 2024c). On the labor side, LLM-mediated hiring and ranking

systems show race and gender disparities in résumé screening and candidate retrieval,

raising concerns about amplified inequality without strong auditing and safeguards

(Gaebler et al., 2024; Wilson and Caliskan, 2024). Finally, collaboration can also mag-

nify moral hazard: Köbis et al. (2025) find that people are more willing to delegate

unethical actions to LLMs than to humans.

Human–AI collaboration mixes gains with risks. In the GAI era, using an AI tool is

itself a form of collaboration: users provide data or prompts and then weigh or combine

their own judgment with the model’s output. Because many tools are paywalled or

metered, it matters whether people are willing to pay to trade off expected benefits

against privacy and error risks. Yet experimental evidence on such valuation remains

limited. Our study speaks to this gap in the setting of deepfake detection.

2.2.1 Measuring value of Human–AI Collaboration

Prior work measures the value of Human–AI collaboration across domains using

several methods. A common approach is WTP for access to AI, often via the BDM

mechanism; some studies elicit WTP both before and after experience to track updating

(Becker et al., 1964; Harrison and Rutström, 2008). For example, Zhu and Zou (2023)

uses BDM to measure how WTP for ChatGPT assistance changes when participants

perform creative tasks. Others use discrete-choice (conjoint) tasks: participants choose

among AI–tool profiles that vary in accuracy, latency, explanations, privacy, and price,

and researchers infer attribute utilities and implied WTP—for instance, for privacy

features in digital assistants (Ebbers et al., 2021), for performance–explainability trade-
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offs in healthcare AI (Ploug et al., 2021), and for transparency versus performance in

general AI assistants (König et al., 2022; Ioku et al., 2024). There are also survey

measures without monetary incentives; for example, Duckers et al. (2024) directly asks

for WTP for advice from mixed human–AI teams when studying team orchestration

and customer attitudes, and Lupa-Wójcik (2024) surveys students’ WTP for access to

ChatGPT and finds that many are unwilling to pay.

Determinants of WTP for human–AI collaboration are an active concern. Evidence

from surveys and conjoint studies shows that (i) tool attributes matter: in a Japanese

sample, transparency and price significantly shift choices among general AI assistants,

implying positive WTP for transparency (Ioku et al., 2024); (ii) user perceptions mat-

ter: Jo (2025) report that satisfaction is the main driver of WTP—shaped by perceived

usefulness and service quality—while perceived risk depresses payment intentions; and

(iii) context matters: among students, stated price sensitivity is sizable and perceived

response quality does not translate cleanly into WTP for ChatGPT subscriptions (Ku-

berska and Klaudia, 2025).

Direct, incentive-compatible price comparisons between human–AI collaboration

(via AI tools) and human–human collaboration are scarce. We run a BDM-based ex-

periment that prices access to a ChatGPT-based detector versus peer chat within the

same study, yielding a clean comparison. We also link WTP to detection performance,

post-use feedback, perceived service quality, overconfidence, and belief measures, pro-

viding evidence on when—and why—people pay for AI rather than human–human

collaboration.
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Figure 1: Overall Procedure

3 Experimental Design and Hypotheses

3.1 Procedure

The experiment was programmed using oTree 5 (Chen et al., 2016), and the overall

procedure is shown in Figure 1.

After reading the Instruction (see Online Appendix B) on a computer screen, each

participant completed a comprehension Quiz. Every question had to be answered cor-

rectly; if a response was wrong, an explanation appeared and the participant repeated

the item until it was correct. The full quiz is provided in Online Appendix C.

After the quiz, participants completed a prior-beliefs questionnaire (Survey A; see

Online Appendix D.1). They first indicated whether they believed GAI or humans to

perform better at detecting deepfake news. They then provided three forecasts: their

own and their group’s average detection accuracy in the upcoming task; the group’s

mean WTP for external assistance; and the accuracy they believed ChatGPT would

achieve.

Upon completing Survey A, participants moved to the Main Task and finished 22

rounds of deepfake detection task. They then answered 7 questions from the matrix

reasoning test from ICAR (Condon and Revelle, 2014) to gauge cognitive ability. Next,

they filled out Survey B, which had three sections: demographics, GAI experience,

and posterior beliefs.

1. Demographics. Participants reported their age, gender, nationality, academic

year, and major (see Online Appendix D.2).

2. GAI experience. They indicated how often they had used ChatGPT, whether
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Figure 2: Flow of Main Task

they had purchased ChatGPT Plus, and whether they had any programming

experience (see Online Appendix D.3).

3. Posterior beliefs. They first answered the same question in Survey A about

whether they believed GAI or humans to perform better at detecting deepfake

news. Then, they rated the task’s difficulty, stated their familiarity with the

events and people in the news, and assessed both the danger they saw in deepfake’s

spreading and the risks of using AI tools. Finally, they described the strategies

they had used to detect the deepfake part (see Online Appendix D.4).

Finally, a summary page displayed each participant’s detections from the main task,

the correct answers, their WTPs, and final payoff.

3.2 Main Task

The flow of main task is shown in Figure 2 and the experiment screens are shown in

Online Appendix E.

In the main task, participants were asked to finish 22 rounds of deepfake detection

tasks, where the first half (Round 1 ∼ Round 11) is named Part 1 and the second half

(Round 12 ∼ Round 22) Part 2 . Before each part, participants submit their WTP

for access to a paid “External Assistance” (CHAT below) in the upcoming 11 rounds

(then WTP1 for Part 1 and WTP2 for Part 2 ). Between the two parts, participants

were shown the feedback of their performance in Part 1 .

The details of the deepfake detection task, the deepfake materials, the paid “Exter-

nal Assistance”, the treatments and the feedback are described below.
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Figure 3: Deepfake Detection Task in Each Round

3.2.1 Deepfake detection task

In the deepfake detection task, participants are asked to read deepfake news and report

their identifications on the proportion of AI-generated contents, which is defined as

AIpro =
the length of AI-generated part of the News

the length of the News
× 100,

where AIpro = 0 represents totally Human-written news, AIpro = 100 represents to-

tally AI-generated news, and AIpro ∈ (0, 100) represents the news is partially generated

by AI.

As shown in Figure 3, in each round, participant first read a piece of deepfake news

with a time constraint of 30 seconds and report a number from zero to 100 to represent

their initial identifications (1stResp) on the AIpro. Participants then read the same

news again for up to 120 seconds—either with “External Assistance” (CHAT) or on

their own (DIY)—and report a final, revised identification (2ndResp).

Whether a participant can access CHAT or DIY in a given round was determined by

an adjusted BDM procedure (Figure 4). Under the classical BDM, a participant gains

access whenever her bid meets or exceeds the posted price; we added a tie-breaking

rule that randomly excludes one eligible participant whenever the number of eligibles

is odd.

BeforePart k (k = 1, 2), participant i submitted a single bidWTP i
k ∈ {0, 1, ..., 500}

JPY for the right to access CHAT in the next 11 rounds. In round r the computer

drew an independent price P i
k,r ∈ {1, 2..., 500} JPY. Participant i “passed” the classical

BDM in round r if WTP i
k ≥ P i

k,r. Access to CHAT was then granted if

15



Figure 4: Adjusted BDM

1. the number of passing participants was even, or

2. the number was odd, but participant i was not the randomly selected participant

to be excluded.

In all other cases, participant i completed that round’s task without assistance and

then accessed DIY.

3.2.2 Deepfake News Materials

Using an open-access Japanese fake news dataset4 as the source, we created the deepfake

news materials in the following four steps:

1. We firstly drew all the Human-written news5 with a length under 410 characters.

2. We further grouped the remaining articles into ten length bands—centred on 40,

80, 120, 160, 200, 240, 280, 320, 360, and 400 characters (±10 per band)—and

then randomly selected two articles from each band. This procedure yielded 20

human-written articles ranging in length from 36 to 410 characters.

4https://github.com/tanreinama/japanese-fakenews-dataset?tab=readme-ov-file
5In the open-access Japanese-language fake-news dataset, there are three types of the news: (1)

“Totally real” (written by humans ), (2)“Partially fake” (the second half of the article was generated
by the GPT-2 model), (3)“Totally fake” (the entire article was generated by the GPT-2 model). We
filtered (2) and (3) and only selected news from (1) to make sure all the original news material is
written by real Human.
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Figure 5: Example of the deepfake news generation

Note: The black text is news articles written by real human, the blue text is generated by GPT-2
while the red text is generated by GPT-4o. The human-written (black) portion is identical across the
two deepfake news articles; participants viewed versions with no color cues.

3. For the 18 articles that fell below the 400(±10)-character band, we prompted

two LLMs—GPT-26 and GPT-4o7—to extend each text to the target length of

400(±10) characters (See the example in Figure 5). This yielded 36 hybrid deep-

fake articles (human-written beginnings with AI-generated continuations) and

left the two articles already near 400(±10) characters unchanged as pure human-

written controls, yields the AIpro ∈ [0, 100).

4. Using the same two models—GPT-2 and GPT-4o—we also generated two totally

AI-written articles with each model, yielding 4 deepfake news with AIpro = 100.

Ultimately, we constructed two sets of deepfake news articles—one generated with

GPT-2 and the other with GPT-4o—each containing 22 articles. We refer to them

hereafter as the GPT-2 news and the GPT-4o news.8 Each article is 390–410 Japanese

characters long, with a mean length of 401 characters and a AIpro ∈ [0, 100]. Partici-

6A pre-trained medium-sized Japanese GPT-2 model (Zhao and Sawada, 2021; Sawada et al., 2024).
7Accessed via the OpenAI’s Application Programming Interface (API) key, GPT-4o was prompted

to continue each article until it reached 400(±10) characters; we kept the first output that met this
length requirement.

8The original Japanese source texts and the Python generation scripts are available at
https://github.com/kazewindser/GithubAppendixPATDA.
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Figure 6: The sequence of deepfake news materials

Note: Each news article is between 390 and 410 Japanese characters long. Blue points plot the AIpro
values for GPT-2 news; red points plot those for GPT-4o news. For each round, the human-written
portion is identical across the two news sets. When a news is totally human-written (AIpro = 0);
Rounds 4 and 15), the text is identical in both sets. The distribution of AIpro does not significantly
differ between GPT-2 and GPT-4o news sets (Wilcoxon signed-rank test, p = 1), nor between Part 1
and Part 2 (p = 0.771).

pants read one news per round, and all participants in the same session faced the same

news in a given round. The sequence is shown in Figure 6.

3.2.3 Paid External Assistance

We offered participants two forms of CHAT:

• AI detector: Chatting with prompted ChatGPT while reading the news again.

• Peer chat: Chatting with another participant while reading the news again.
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For the CHAT of AI detector, we embedded OpenAI’s GPT-4o model9 into the

experiment software10, using the following prompt:

Forget all your previous instructions. You are having a conversation with an-

other person online. And you must help him assess the proportion of AI-generated

content in a pieces of Japanese news. Give the person a integer from 0 to 100 to

represent your assessment.

You must obey all the following instructions FOR ALL RESPONSES or you will

DIE:

- ALWAYS BEGIN A CONVERSATION AS THIS CHARACTER.

- ALWAYS SPEAK JAPANESE.

- NEVER SAY YOU ARE AN AI LANGUAGE MODEL OR AN ASSISTANT.

- NEVER REFUSE TO ANSWER A QUESTION.

- ALWAYS GIVE THE PERSON YOUR ASSESSMENT WHEN THE PER-

SON SEND YOU THE NEWS, THE INTEGER FROM 0 TO 100.

The model used, along with the prompt, are informed to corresponding participants

in the instruction. Whenever they access to this CHAT in a given round, a chat box

(See Figure 8 in Online Appendix E) opened for 120 seconds. They could copy the news

text displayed beneath the box, paste it into the chat, and submit it to the AI detector

for assistance; they were also free to ask the detector any other questions, provided

they avoided personal data or offensive content

In the CHAT of Peer chat, two participants in the same session were paired anony-

mously in a similar chat room (See Figure 9 in Online Appendix E). They, too, could

paste the news into the chat box and discuss the expected AIpro with a 120-second

limit, with the same prohibition on sharing personal details or offensive remarks.

9The temperature was set to 1.0—the midpoint of the allowable range [0, 2]—to balance coherence
and diversity in the model’s replies.

10Developed based on McKenna (2023), oTree GPT. https://github.com/clintmckenna/oTree_
gpt

19

https://github.com/clintmckenna/oTree_gpt
https://github.com/clintmckenna/oTree_gpt


3.2.4 Treatments

As noted above, we manipulated two factors— (1) task difficulty, set by using GPT-2

versus GPT-4o deepfake news materials, and (2) external assistance, provided either by

a ChatGPT-based AI detector or by a human peer—yielding a 2× 2 between-subjects

design, as shown in Table 1.

Table 1: Experimental 2× 2 Design

Task difficulty
CHAT

AI detector Peer chat

Easy (GPT-2 News) AI2 HM2
Difficult (GPT-4o News) AI4 HM4

This design produces four experimental treatments:

• AI2 – Participants detect GPT-2 news with optional paid access to the AI de-

tector;

• AI4 – Participants detect GPT-4o news with optional paid access to the AI

detector;

• HM2 – Participants detect GPT-2 news with optional paid discussion with a

human peer;

• HM4 – Participants detect GPT-4o news with optional paid discussion with a

human peer;

3.2.5 Feedback

For each round r, we measured the accuracy of a participant’s two identifications as

accu1,r = 1− | 1stRespr − AIpro∗r|
100

, accu2,r = 1− | 2ndRespr − AIpro∗r|
100

,
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where AIpro∗r is the true AIpro in the article. Improvement in that round is the gain

in accuracy:

Impr = accu2,r − accu1,r.

After Part 1 participants received a feedback screen showing:

• Overall performance: means of accu1,r, accu2,r, and Imp across all 11 rounds.

• CHAT performance: the same three means, computed only for rounds in which

the participant accessed CHAT (CHAT-rounds below).

• DIY performance: the same three means, computed for rounds completed with-

out external assistance (DIY-rounds below).

This feedback let participants gauge not only their average improvement but also

whether CHAT was more—or less—helpful than DIY. After viewing the feedback

screen (see Figure 11 in Online Appendix E), they submitted WTP2 for CHAT access

in Part 2 .

3.3 Payment Setting

Each participant earned a fixed participation fee of 1,000 JPY plus a performance based

bonus π. Two distinct rounds were drawn at random: rn1, which was scored using the

participant’s initial identification 1stResprn1, and rn2, which was scored using the final

identification 2ndResprn2.

Accuracy in each selected round was converted to a monetary score using a quadratic

scoring rule capped at 2300 JPY; the score from the first draw carried a weight of

0.2, while the score from the second draw carried a weight of 0.8, making the final

identification financially more important than the initial one. If the participant accessed
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CHAT in round rn2, the price Prn2 was deducted. Formally,

π = 0.2 ·max{0, 2300− 0.3 · (AIpro∗rn1 − 1stResprn1)
2}

+ 0.8 ·max{0, 2300− 0.3 · (AIpro∗rn2 − 2ndResprn2)
2}

− inChatrn2 · Prn2,

where the inChatrn2 = 1 if the participant accessed CHAT in round rn2 (0 otherwise).

3.4 Materials and Summary

The experiment was conducted in the laboratory of ISER at the University of Osaka

on January 23th and 24th, 2025, and in the laboratory of RISS at Kansai University

on January 29th and 30th, 2025. We recruited 158 student participants, 63 from the

University of Osaka and 95 from Kansai University registered in their respective ORSEE

(Greiner, 2015) database. Among them 37 were assigned to the AI2 treatment, 41 to

the AI4, 37 to the HM2 and 43 to the HM4 treatment11. In the final sample, 7% of

the participants were not Japanese native speakers, 50% of the participants were male,

and 78% were undergraduate students, predominantly from the following majors: 29%

engineering, 16% sociology, 15% economics, 15% humanities, 11%medicine and 8% law.

Regarding GAI experience, only two participants said they did not know ChatGPT,

63% reported using it at least once a week, and 8% had paid for ChatGPT Plus.

Comparisons of demographic data at the 95% CI level, illustrated in Figure 7 and

variable definitions presented in Table 2.

During the experiment, participants were prohibited from using any of their own

electronic devices, including smartphones and tablets. Although they completed the

tasks on the laboratory’s computers, Internet connectivity within the experiment soft-

ware was also disabled.

11A power analysis (power= 0.8, Bonferroni-adjusted significant level = 0.0125) based on the result
of a pilot experiment suggests that we need 41 participants in each group.
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Table 2: Demographics

Var. Definition Min. Max. Avg. S.D.

age Participants’ age number. 18 34 21.8 2.42

female Gender; = 1 if the participant is female. 0 1 0.5 0.502

edulevel
Participants’ education level; = 1 if graduate; =
0 if undergraduate.

0 1 0.215 0.412

exprog
Programming experience; = 1 if the participant
has programming experience.

0 1 0.56 0.499

freqGPT Average days per week using ChatGPT. 0 7 1.90 2.18

GPTplus
ChatGPT plus experience; = 1 if the participant
have ever paid to use ChatGPT plus.

0 1 0.0823 0.276

The experiment lasted 120 minutes on average, including the payment, and partic-

ipants earned an average total payoff of 2850 JPY (2939 in AI2, 2609 in AI4, 3060 in

HM2, 2822 JPY in HM4).

3.5 Hypotheses

We assume none of the participants had experience with a deepfake detection task.

Consequently, their first bid, WTP1, represents a prior valuation of the information they

expect from CHAT before starting Part 1, whereas the second bid, WTP2, captures

a posterior valuation formed after completing Part 1 and viewing the feedback. Prior

studies show that people willingly pay for AI tools in general (Ben David et al., 2021;

von Wedel and Hagist, 2022)—and for ChatGPT in particular (Lupa-Wójcik, 2024; Jo,

2025)—and that they tend to rely on AI advice more than on human advice (Lee and

Chew, 2023; Klingbeil et al., 2024). Accordingly, we posit that participants will exhibit

persistent “AI reliance” throughout the experiment, leading to the following hypothesis:

H1: People are willing to pay more to use ChatGPT-based AI detector than to cooperate

with Human peers, both before and after experiencing the task.
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Figure 7: Demographic Comparisons

Perceived difficulty of the task can influence participants’ valuation of the outcome

and their willingness to make a greater sacrifice to obtain it. For instance, Gino and

Moore (2007) find that when problems become harder, individuals place greater impor-

tance on getting the answer right and are willing to pay—sometimes “over-weighting”

external advice—to do so. As LLMs advance, their outputs grow more human-like,

making deepfakes increasingly difficult to spot; detecting GPT-4o news should there-

fore be harder than detecting GPT-2 news. Hence we formulate:

H2: People have higher WTP for external assistance when detecting GPT-4o news

compared to GPT-2d news.

Participants may be unfamiliar with the task and the external assistance at first;

thus, their actual usage experience could shape subsequent payment preferences. Upon

completing Part 1, participants experience the task and could assess their performance

in all the previous 11 rounds, in CHAT-rounds and DIY-rounds. By comparing per-
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formance in CHAT-rounds and DIY-rounds, they can judge how much the detector (or

the peer) actually helped. Prior works shows that WTP for AI advice increases when

users observe clear performance gains (Ben David et al., 2021; Chacon et al., 2025).

If participants perceive that CHAT improved their performance more in Part 1, we

expect them to bid more for it in Part 2. Hence we have:

H3: The higher the improvement in performance by using the external assistance (using

the ChatGPT-based AI detector or cooperating with human peers), the higher the

change in participants’ WTP to use the corresponding assistance.

The fake parts of our deepfake news materials were generated by GPT-2 or GPT-4o,

and the AI detector is also a prompted GPT-4o model. The generator should also be a

good detector that can detect more effectively than human-based detection. Therefore,

here is our final hypothesis:

H4: Compared to cooperating with human peers, using ChatGPT-based AI detector

improves participants’ performance in the deepfake detection task.

4 Results

This section presents the experimental findings. First, we report participants’ detection

performance. Next, we analyze their WTP values for external assistance. Finally, we

assess whether feedback after Part 1 affected subsequent WTP and use of assistance.

4.1 Performances

4.1.1 Basic Comparisons

Figure 8 reports overall comparisons of mean detection accuracy by treatment12.

12A separate comparison between the AI detector’s accuracy and human participants’ accuracy is
provided in Figure 15.
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Figure 8: Performance Comparisons

Note: accubench is the chance level in which every identification is set to 50; it appears as the red
dashed line. Within-treatment comparisons (accu1 vs. accu2, and vs. accubench) use the Wilcoxon
signed-rank test. Between-treatment comparisons use the Mann–Whitney U test. The symbols +, *,
**, and *** indicate significance at the 0.1, 0.05, 0.01, and 0.001 levels, respectively, and NS. means
that the difference is not statistically significant at the 0.1 level. Error bars denote 95% confidence
intervals across participants.

On average, both the initial identification (accu1) and the final identification (accu2)

are higher when detecting GPT-2 news than GPT-4o news—by about 5.2 and 7.3

percentage points, respectively. In the GPT-2 condition (AI2 & HM2), accu1 does not

differ significantly from the accubench baseline (always answering 50), while accu2 is

significantly higher than both accu1 and accubench. In the GPT-4o condition (AI4 &

HM4), however, both accu1 and accu2 are significantly below accubench, and there is

no significant improvement from accu1 to accu2. This pattern underscores the greater

difficulty of detecting GPT-4o news: in that setting, simply hedging at 50 each round

would have yielded higher accuracy than participants’ actual responses.

We next analyze participants’ performance at the individual level. Table 3 reports
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Table 3: Treatment Effects on Detection Accuracy

Dep. Var. accu1 accu1 accu2 accu2 accu2 accu2

(1) (2) (3) (4) (5) (6)

inAI −0.005 0.004 −0.009 0.004 −0.002 −0.009
(0.008) (0.013) (0.010) (0.016) (0.011) (0.010)

gpt4news −0.042∗∗∗ −0.033∗∗ −0.074∗∗∗ −0.063∗∗∗ −0.075∗∗∗ −0.078∗∗∗

(0.008) (0.012) (0.010) (0.015) (0.009) (0.011)

inAI × gpt4news −0.018 −0.023
(0.016) (0.019)

inChat 0.002 0.002 0.020 −0.005
(0.009) (0.009) (0.016) (0.011)

inAI × inChat −0.029
(0.019)

gpt4news × inChat 0.014
(0.016)

Constant 0.726∗∗∗ 0.721∗∗∗ 0.765∗∗∗ 0.759∗∗∗ 0.763∗∗∗ 0.767∗∗∗

(0.008) (0.009) (0.010) (0.012) (0.010) (0.010)

Obs. 3476 3476 3476 3476 3476 3476
R2 0.008 0.008 0.026 0.026 0.026 0.026
Clusters 158 158 158 158 158 158

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. inAI = 1 if the external assistance is the
AI detector (0 otherwise); gpt4news = 1 if the task uses GPT-4o news (0 otherwise); inChat = 1 if
the participant accessed CHAT in that round (0 otherwise). Standard errors have been corrected for
within-subjects clustering effects to account for the non-independence of observations from the same
participant. Numbers in parentheses represent standard errors.

OLS estimates of treatment effects on detection accuracy. In Model (1) and (2), the

dependent variable is accu1. In Models (3) through (6), the dependent variable is accu2,

and an CHAT indicator (inChat) is also included as an independent variable.

In any of the models, the estimated coefficients of the task-difficulty treatment

indicator (gpt4news) are significantly (and negative), indicating lower accuracy when

detecting GPT-4o news. By contrast, the coefficients on the another treatment indicator

(inAI) and on the CHAT indicator (inChat) are small and not significant. These

findings corroborate—at the individual level—the greater difficulty of detecting GPT-
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Figure 9: Scatter plot of Performances

Note: Each point shows a participant’s accuracy in a given round. Points on the 45◦ line indicate
no change between the two identifications; points above the line indicate improved accuracy; points
below the line indicate decreased accuracy. The dark green line is the fitted regression line, and the
light green bands represent 95% confidence intervals of the fitted regression line.

4o news.

Result 1 GPT-4o news is more difficult to detect than GPT-2 news.

4.1.2 Performance Improvement

We next examine participants’ improvement from the first to the second identification.

As a first step, we pool all rounds regardless of assistance status—assisted via CHAT or

unassisted (DIY)—and visualize overall improvement using the scatter plot in Figure 9.

Across all four treatments, the fitted line intersects the 45° line at an initial accuracy

of 0.809 (AI2), 0.827 (HM2), 0.690 (AI4) and 0.725 (HM4). Thus, participants whose
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initial accuracy lay below the treatment-specific threshold improved on average, whereas

those starting above it showed no net gain or slight declines.

To account for the ceiling (“threshold”) effect observed in the scatter plots—that

is, the dependence of accu2 on accu1—we estimate OLS models using the proportional

reduction in error (PRE)13 rather than the raw improvement Imp.

Table 4 shows the results. In all of the models, the estimate coefficients on the

two treatment indicators—inAI and gpt4news—are not statistically significant. In

particular, in models (3) and (4), the interaction terms inAI × inChat and inAI ×

gpt4news× inChat are also insignificant, indicating that — contrary to H4 — the use

of the ChatGPT-based AI detector does not significantly improve participants’ relative

performance (PRE) compared with human collaboration. In contrast, in models (1) and

(2) the coefficients on inChat is negatively significant implying that access to CHAT

reduces PRE; that is, cooperating with either human peers or AI detector limits rather

than enhances improvement.

Result 2 Compared to cooperating with human peers, accessing ChatGPT-based AI de-

tector did not significantly improves participants’ performance in the deepfake

detection task, thus H4 is not supported.

Result 3 Access to external assistance, rather than redoing the task on one’s own,

reduce performance improvement.

4.2 Willingness to Pay

Figure 10 displays WTP1 and WTP2 using bar charts and cumulative distribution

functions (CDFs). The mean WTP1 values were 202.4 (AI2), 87.1 (HM2), 206.8 (AI4),

13For round r, PREr =
Error1,r − Error2,r

Error1,r
=

(1− accu1,r)− (1− accu2,r)

1− accu1,r
=

accu2,r − accu1,r

1− accu1,r
∈

(−∞, 1], which measures the fraction of the initial error removed by the second identification: PRE = 1
means the initial error is fully eliminated; PRE = 0 means no change; PRE < 0 indicates deterioration.
PRE is computed when accu1,r < 1.
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Table 4: Determinants of PRE

Dep. Var. PRE

(1) (2) (3) (4)

inAI −0.052 −0.233+ −0.010 −0.188
(0.096) (0.132) (0.106) (0.165)

gpt4news 0.016 −0.152 0.014 −0.111
(0.096) (0.123) (0.096) (0.128)

inChat −0.310∗ −0.307∗ −0.205 −0.010
(0.135) (0.135) (0.180) (0.177)

AIpro 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.001) (0.001) (0.001) (0.001)

inAI × gpt4news 0.339 0.341
(0.193) (0.212)

inAI × inChat −0.165 −0.309
(0.260) (0.336)

gpt4news × inChat −0.300
(0.327)

inAI × gpt4news × inChat 0.200
(0.496)

Constant −0.735∗∗∗ −0.645∗∗∗ −0.751∗∗∗ −0.685∗∗∗

(0.115) (0.103) (0.108) (0.105)

Obs. 3420 3420 3420 3420
R2 0.008 0.009 0.008 0.009
Clusters 158 158 158 158

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Rounds with accu1,r = 1 (zero initial
error) are mechanically excluded, which drops 56 observations. Standard errors have been corrected
for within-subjects clustering effects to account for the non-independence of observations from the
same participant. Numbers in parentheses represent standard errors.
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Figure 10: Mean and Distribution of WTP1 and WTP2

Note: Kolmogorov–Smirnov test was used to compare WTPs between different treatments. The
symbols +, *, **, and *** indicate significance at the 0.1, 0.05, 0.01, and 0.001 levels, respectively, and
NS. means that the difference is not statistically significant at the 0.1 level. Error bars denote 95%
confidence intervals across participants.

and 109.6 (HM4); the mean WTP2 values were 213.1 (AI2), 75.6 (HM2), 243.5 (AI4),

and 92.2 (HM4). Regression results of WTPs on demographics are reported in Table A.1

in Online Appendix A.

For both WTP1 and WTP2, the AI2–HM2 and AI4–HM4 contrasts are statistically

significant, indicating that participants are willing to pay more for access to the AI

detector than to collaborate with human peers. In contrast, there is no significant

difference between AI2 and AI4 or between HM2 and HM4—especially forWTP2, which

was elicited after participants experienced the task and viewed the Part 1 feedback.

This pattern suggests that WTP is sensitive to the form of assistance but not to task
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Figure 11: Scatter plot of WTP

Note: Each point represents a participant’s WTPs in two parts. Points on the 45 degree line indicate
no change in WTP between two parts; points above the line indicate higher WTP in Part 2; and points
below the line indicate lower WTP in Part 2. The dark green line is the fitted regression line, and the
light green bands represent 95% confidence intervals of the fitted regression line.

difficulty. Therefore, H1 is supported and H2 is rejected.

Result 4 Participants are willing to pay more for access to a ChatGPT-based AI de-

tector than for collaboration with human peers, both before and after experi-

encing the task.

Result 5 Participants do not show a significant increase in WTP for external assis-

tance when the task is harder.

4.3 Feedback’s Effect

Figure 11 shows the scatter plots of WTP1 (x-axis) and WTP2 (y-axis).
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Overall, there is no significant difference between WTP1 and WTP2 across the four

treatments.14 To examine feedback effects in greater detail, we estimate Probit models

of the likelihood of raising WTP (Table 5). The dependent variable, WTPup, is a

binary indicator equal to 1 if WTP2 > WTP1 and 0 otherwise.

Across all models, the AI treatment has a positive and significant effect, indicating

that access to the ChatGPT-based AI detector makes participants more likely to raise

their WTPs. By contrast, whether the news article was generated by GPT-4o rather

than GPT-2 does not systematically affect WTPup. Performance improvements are

also predictive of WTP adjustments. A larger improvement in CHAT-rounds (ChatImp)

significantly increases the probability of raising WTP, while a larger improvement in

DIY-rounds (DIYImp) has the opposite effect. Moreover, participants are especially

likely to raise their WTPs when their performance improved more in CHAT-rounds than

in DIY-rounds (chatImpMore). These findings suggest that participants are willing to

pay more when they perceive external assistance as more effective than relying on their

own effort. Finally, higher initial WTP (WTP1) is associated with a lower probability of

raising WTP, consistent with a ceiling effect. In models (4)–(8), the interaction terms

between treatments and performance improvements are not statistically significant,

suggesting that the treatment effects do not depend on observed improvements.

We then focus the extent to which participants increasing their WTP for CHAT by

regressing the Relative Magnitude of WTP Adjustment (RltWTPup)15. OLS

estimates are reported in Table 6.

Across all models, the AI treatment shows positive but generally insignificant coeffi-

cients, providing only limited evidence that access to the AI detector increases relative

magnitude of WTP adjustments. Improvements in DIY rounds (DIYImp) are consis-

14Kolmogorov–Smirnov tests: p = 0.8326 in AI2; p = 0.3816 in AI4; p = 0.9315 in HM2; p = 0.5163
in HM4.

15RltWTPup = WTP2−WTP1

500−WTP1
∈ (−∞, 1], which measures the proportion of the potential upward

adjustment (relative to the maximum bid of 500 JPY) that is realized when moving from WTP1 to
WTP2.
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Table 5: Probit Estimates of the Likelihood of Raising WTP

Dep. Var. WTPup

(1) (2) (3) (4) (5) (6) (7) (8)

inAI 0.699∗∗ 0.565∗ 0.558∗ 1.046∗ 0.620∗ 0.632∗ 0.576∗ 0.570∗

(0.232) (0.264) (0.266) (0.432) (0.278) (0.277) (0.265) (0.270)

gpt4news 0.034 0.036 −0.007 0.023 −0.015 0.019 0.030
(0.219) (0.255) (0.248) (0.255) (0.262) (0.261) (0.266)

totalImp 1.344
(1.763)

ChatImp 2.891∗∗ 4.245∗ 2.814∗ 2.521+ 2.888∗∗

(1.099) (2.123) (1.109) (1.468) (1.099)

DIYImp −3.547+ −3.688∗ −1.915 −3.577+ −3.674
(1.843) (1.855) (2.771) (1.842) (2.416)

chatImpMore 1.073∗∗∗ 1.573∗∗∗

(0.266) (0.440)

WTP1 −0.001 −0.003∗ −0.004∗∗ −0.004∗∗ −0.003∗ −0.003∗ −0.003∗ −0.003∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

inAI × chatImpMore −0.796
(0.537)

inAI × ChatImp −1.949
(2.398)

inAI × DIYImp −3.049
(3.788)

gpt4news × ChatImp 0.795
(2.155)

gpt4news × DIYImp 0.292
(3.779)

Constant −0.473∗ 0.093 −0.375 −0.663+ 0.072 0.062 0.114 0.094
(0.217) (0.318) (0.322) (0.369) (0.326) (0.321) (0.324) (0.318)

Observations 158 118 118 118 118 118 118 118

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. totalImp is the mean performance improvement (Imp) in Part 1 ; ChatImp is the mean Imp in
CHAT-rounds; DIYImp is the mean Imp in DIY-rounds; chatImpMore is a binary indicator equal to 1 if ChatImp > DIYImp and 0 otherwise. In models
(2)–(8), 39 observations are excluded because participants did not access CHAT at least once in Part 1 (so ChatImp is undefined), and 1 observation
is excluded because the participant did not access DIY at least once (so DIYImp is undefined). Numbers in parentheses represent standard errors.
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Table 6: OLS Estimates of the Relative Magnitude of WTP Adjustment

Dep. Var. RltWTPup=WTP2−WTP1
500−WTP1

(1) (2) (3) (4) (5) (6) (7) (8)

inAI 0.098 0.103 0.116 0.116 0.109 0.187+ 0.110 0.147
(0.079) (0.105) (0.106) (0.160) (0.108) (0.110) (0.105) (0.107)

gpt4news 0.040 0.051 0.071 0.051 −0.006 0.031 −0.008
(0.084) (0.107) (0.104) (0.108) (0.109) (0.109) (0.112)

totalImp −0.624
(0.673)

ChatImp 0.316 0.473 0.207 −0.033 0.287
(0.414) (0.782) (0.410) (0.549) (0.411)

DIYImp −1.608∗ −1.624∗ 0.328 −1.634∗ −2.762∗∗

(0.772) (0.778) (1.154) (0.773) (1.011)

chatImpMore 0.124 0.122
(0.106) (0.163)

inAI × chatImpMore −0.003
(0.214)

inAI × ChatImp −0.215
(0.907)

inAI × DIYImp −3.473∗

(1.561)

gpt4news × ChatImp 0.811
(0.839)

gpt4news × DIYImp 2.746+

(1.574)

Constant −0.071 −0.106 −0.223+ −0.183 −0.110 −0.134 −0.087 −0.093
(0.076) (0.108) (0.115) (0.117) (0.109) (0.107) (0.109) (0.107)

Observations 156 117 117 117 117 117 117 117
R2 0.020 0.057 0.028 0.024 0.057 0.097 0.065 0.082

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Two observations are excluded because the participant set WTP1 = 500 (so RltWTPup

is undefined). In models (2)–(8), 39 observations are excluded because participants did not access CHAT at least once in Part 1 (so ChatImp is
undefined). Numbers in parentheses represent standard errors.
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tently negative and significant, indicating that participants who perform better on their

own tend to tend to lower their willingness to access external assistance. By contrast,

improvements in CHAT rounds (ChatImp) are small and insignificant, and the indica-

tor chatImpMore is also insignificant; thus, H3 is not supported. Including interaction

terms in models (4)–(8) does not change this conclusion. Finally, GPT-4o news shows

no systematic effect on relative WTP adjustments, except for a weakly positive inter-

action with DIYImp in model (8).

For summary, the feedback analysis indicates that after experiencing the task, ac-

cess to the AI detector raises the likelihood of increasing WTP but does not consis-

tently expand the size of the adjustment. Participants are more likely to raise WTP

when their performance improves with external assistance (CHAT-rounds) rather than

through their own effort (DIY-rounds), suggesting that perceived effectiveness of exter-

nal assistant CHAT plays a central role. However, when the size of the adjustment is

considered, improvements in DIY-rounds dominate, reducing participants’ willingness

to access CHAT. Overall, feedback influences the decision of whether to increase WTP

for external assistant, but has weaker effects on how much participants adjust their

bids. Specially, we obtain the following results:

Result 6 When the external assistance is an AI detector, participants are more likely

to increase their WTP for accessing it after experiencing the task.

Result 7 After experiencing the task, positive feedback from using external assistance

(CHAT) increases the likelihood of raising WTP for accessing CHAT, whereas

positive feedback from relying on one’s own effort (DIY) decreases the likeli-

hood of raising WTP for accessing CHAT.
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5 Discussions

For most student participants, this was their first time consciously attempting to

detect deepfakes—either on their own or with external assistance. As GAI becomes

increasingly widespread, participants’ backgrounds and subjective beliefs about GAI

may shape their performance in a deepfake detection task.

In this section, we shift our focus to participants’ beliefs and their potential influ-

ence on decision-making in the experiment. Specifically, we investigate: (1) whether

participants overestimated the value of external assistance and thus overpaid; (2) how

beliefs evolved during the task and how these shifts affected WTP decisions; and (3)

the strategies participants employed when detecting deepfake news.

5.1 Do participants benefit from paying for CHAT?

Participants pay for external assistance because they expect it to improve their detection

accuracy and thereby increase their monetary payoff. In other words, they believe that

the benefits from purchasing external assistance exceed the costs, and that their WTPs

is justified by higher expected earnings. But is this belief accurate?

To examine whether participants truly benefit from paying for CHAT, we focus on

their net profit in the experiment. A simple comparison of final payoffs, however,

would be too crude. As explained in Section 3.3, participants’ additional payoff

depends on the detection accuracy of two randomly selected rounds: one round (rn1)

evaluated based on the first identification (1stResp), and another round (rn2) evaluated

based on the second identification (2ndResp) and whether CHAT was accessed in that

round. Thus, for each participant, the potential additional payoff spans 22×22 possible

combinations, and the realized payoff is drawn randomly from this outcome space.

We define participant i’s potential profit matrix Φi ∈ R22×22, where each entry

ϕi,rn1,rn2 corresponds to the potential profit if the first draw is round rn1 and the second
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draw is round rn2. Here, inChatrn2 = 1 if the participant accessed CHAT in round rn2

(and 0 otherwise). For participants with inChatrn2 = 1, we use their submittedWTPrn2

as the effective price (instead of Prn2, the computer’s random draw), as this better

reflects participants’ subjective expectation and reduces noise from random pricing.16

ϕi,rn1,rn2 = 0.2 ·max
{
0, 2300− 0.3 · (AIpro∗rn1 − 1stRespi,rn1)

2
}

+ 0.8 ·max
{
0, 2300− 0.3 · (AIpro∗rn2 − 2ndRespi,rn2)

2
}

− inChati,rn2 ·WTPi,rn2

Thus, the potential profit is drawn from the outcome space of 22 × 22 possible

entries in Φ. Figure 12 presents the heatmap of average potential profits across the

four treatments.

The average potential profit by treatment was 1880 JPY (AI2), 1941 JPY (HM2),

1689 JPY (AI4), and 1820 JPY (HM4). These differences are statistically significant17.

The ranking of treatments by likelihood of yielding higher potential profit is: ϕHM2 >

ϕAI2 > ϕHM4 > ϕAI4.

To examine whether paying for CHAT is financially beneficial, we define and calcu-

late the expected potential net-profit as the difference of potential profit in CHAT-rounds

and that in DIY, both at the treatment level and at the individual level.

• Treatment Level

Let Ci = { rn2 ∈ {1, . . . , 22} : inChati,rn2 = 1 } and Di = {1, . . . , 22} \ Ci denote,

for participant i, the sets of rounds in which CHAT was accessed and not accessed (as

16As a robustness check, we also use the expected payment under the BDM draw, ExpWTPrn2 =
1+WTPrn2

2 , as the effective price. The results of treatment comparisons are essetnailly unchanged. See
Online Appendix A.2.

17All pairwise differences across treatments are statistically significant (Mann–Whitney U tests,
p < 0.001
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Figure 12: Heatmaps of Average Potential Profit

Note: Each cell shows the mean potential profit ϕrn1,rn2 averaged across participants within a treat-
ment, where rn1 denotes the round used for the first identification and rn2 for the final identification.
Darker colors indicate lower mean potential profits.
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potential second-draw rounds rn2), respectively. Write nChati = |Ci| for the number of

rounds in which participant i accessed CHAT. We define the treatment-level expected

net-profit from paying for and accessing CHAT as

ExpNetProfittreat =

∑
i

∑
rn2∈Ci

22∑
rn1=1

ϕi,rn1,rn2∑
i

(
22 · nChati

)
︸ ︷︷ ︸

mean potential profit given by CHAT

−

∑
i

∑
rn2∈Di

22∑
rn1=1

ϕi,rn1,rn2∑
i

(
22 · (22− nChati)

)
︸ ︷︷ ︸
mean potential profit given by DIY

.

As a result, the estimated ExpNetProfittreat was−278 JPY (AI2), −225 JPY (HM2),

−310 JPY (AI4), and −156 JPY (HM4). These negative values suggest that, on average

across all treatments, participants did not obtain net monetary gains from purchasing

and accessing external assistance CHAT. In other words, they overestimated the actual

benefit of CHAT and consequently overpaid.

• Individual Level

To compare net profits across treatments, we define the individual-level expected

net-profit as

ExpNetProfiti =

∑
rn2∈Ci

22∑
rn1=1

ϕi,rn1,rn2

22 · nChati︸ ︷︷ ︸
mean potential profit given by CHAT

−

∑
rn2∈Di

22∑
rn1=1

ϕi,rn1,rn2

22 · (22− nChati)︸ ︷︷ ︸
mean potential profit given by DIY

.

Note that, within each treatment, ExpNetProfittreat ̸= 1
N

∑
i ExpNetProfiti, because

participants who never accessed CHAT (nChati = 0) are excluded from the calculation

of ExpNetProfiti, as their individual-level gain cannot be defined in the absence of any

CHAT-rounds. Figure 13 shows the comparison of individual-level expected net profit

across treatments.
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Figure 13: Comparison of Individual-level Expected Net Profit

Note: 26 observations are excluded because the participants did not access CHAT at all.
Mann–Whitney U test was used to compare ExpNetProfiti between different treatments. The sym-
bols +, *, **, and *** indicate significance at the 0.1, 0.05, 0.01, and 0.001 levels, respectively, and
NS. means that the difference is not statistically significant at the 0.1 level. The symbols shown in
parentheses below each bar report the one-sample Wilcoxon test against zero for that treatment. Error
bars denote 95% confidence intervals across participants.

As a result, the mean estimated ExpNetProfiti was −226 JPY (AI2), −145 JPY

(HM2), −280 JPY (AI4), and −112 JPY (HM4). All four values are significantly below

zero, confirming that participants did not obtain net monetary gains from purchasing

and accessing CHAT. Moreover, since ExpNetProfiti in AI2 is significantly lower than

in HM2, and ExpNetProfiti in AI4 is significantly lower than in HM4, this suggests

that participants overestimated the value of the AI detector even more than that of

discussion with human peers.

In summary, participants did not benefit from paying for CHAT. On the contrary,

they systematically overestimated its value, overpaid, and thereby incurred losses —

particularly in the case of the AI detector. Combined with Result 2, which shows

that the AI detector did not improve performance more than Peer chat, this pattern

therefore reveals participants’ over-reliance on AI.
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5.2 Prior and Posterior Beliefs

We administered two surveys—one before the main task (Survey A) and one after it

(Survey B) (see Online Appendix D)—to elicit participants’ prior beliefs, demographics,

GAI experience, and posterior beliefs. Since such beliefs may influence decision-making,

in this subsection we focus on their impact, particularly regarding preferences for ex-

ternal assistance and overconfidence.

5.2.1 Preferences for External Assistance

Participants’ preferences for CHAT may affect their WTP for access, and these pref-

erences could shift after completing the task. To measure this, participants were asked

twice (in Survey A and Survey B):

“In today’s experiment, for the task of identifying the proportion of AI-generated

content in the news articles, who do you think can make more accurate identifications:

GAI (e.g., ChatGPT) or humans?”

Response options were GAI, Human, or Unsure. For analysis, we coded a preference

index, prefCHATprior (from Survey A) and prefCHATpost (from Survey B), as

follows:

prefCHAT =



0, GAI in Human treatments (HM2, HM4)

0, Human in AI treatments (AI2, AI4)

1, Unsure

2, GAI in AI treatments (AI2, AI4)

2, Human in Human treatments (HM2, HM4)

Figure 14 shows the comparison of preferences for CHAT across treatments.

42



***

***

NS. NS.

***

***

NS.

+

**

0.0

0.5

1.0

1.5

2.0

prefCHATprior prefCHATpost

M
ea

n 
pr

ef
C

H
AT

pr
io

r 
&

 p
re

fC
H

AT
po

st
AI2
HM2
AI4
HM4

Figure 14: Comparison of Preferences for CHAT
Note: Mann–Whitney U tests were used to compare prefCHATprior and prefCHATpost across
different treatments. Wilcoxon signed-rank tests were used to compare prefCHATprior and
prefCHATpost within each treatment. The symbols +, *, **, and *** indicate significance at the
0.1, 0.05, 0.01, and 0.001 levels, respectively, and NS. means that the difference is not statistically
significant at the 0.1 level. Error bars denote 95% confidence intervals across participants.

There are significant differences in prefCHATprior between the AI treatments

(AI2, AI4) and the Human treatments (HM2, HM4). This indicates that, prior to the

main task, participants who were informed that the external assistance would come

from an AI detector expressed a stronger preference for AI detector than participants

informed that the assistance would come from human peers expressed for Peer chat. Af-

ter experiencing the task, however, these differences were largely “smoothed out”: there

is no longer a significant gap between AI and Human treatments in prefCHATpost.

Specifically, participants in the AI treatments significantly reduced their preference for

AI detector, while participants in the Human treatments significantly increased their

preference for Peer chat.

This pattern suggests that participants’ beliefs were, to some extent, revised through
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experience. In other words, participants in the AI treatments initially held high expec-

tations that the AI detector would outperform human peers, but after actually using it

and receiving feedback, they realized it was less effective than anticipated. Conversely,

participants in the Human treatments initially had lower expectations of collaboration

with human peers—believing AI detectors would perform better—but after experienc-

ing human cooperation and seeing the feedback, they revised their beliefs upward.

We also regressed WTP on these preference measures, along with other posterior be-

liefs. The results (see Table A.2 in Online Appendix A) show that prefCHATprior has

no significant effect on WTP1, whereas prefCHATpost exerts a significantly positive

effect onWTP2. This suggests that participants’ revealed preferences after experiencing

the task played a stronger role in shaping their subsequent WTP for the correspond-

ing external assistance. This finding is consistent with the evidence of belief updating

discussed above.

5.2.2 Overconfidence and Overestimation

Performance Overconfidence. Before the main task, participants completed a short

survey on prior beliefs (see Online Appendix D.1). They were asked to predict:

1. their own average accuracy for the first identification across 22 rounds;

2. their own average accuracy for the second identification across 22 rounds;

3. the peers’ average accuracy for the first identification across 22 rounds;

4. the peers’ average accuracy for the second identification across 22 rounds;

5. ChatGPT’s average accuracy for the first identification across 22 rounds if Chat-

GPT were to perform today’s task.

These predictions allow us to compute individual overconfidence indices as the

difference between the predicted and actual mean accuracies (predicted − actual).
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Figure 15: AI detector’s and Human’s Detection Accuracy

Note: Mann–Whitney U tests compare the AI detector’s accuracy across news types and between
Human and AI. Symbols +, *, **, and *** denote significance at the 0.1, 0.05, 0.01, and 0.001 levels,
respectively; NS. indicates p ≥ 0.1. Error bars show 95% confidence intervals across participants.

Specifically, we define five measures: First Self-Overconfidence (ocslfaccu1), Second

Self-Overconfidence (ocslfaccu2), First Peer-Overconfidence (ocgroupaccu1), Second

Peer-Overconfidence (ocgroupaccu2), and AI-Overconfidence (ocAI).

Because it was not feasible to extract the actual accuracy of the AI detector dur-

ing the experiment, we conducted a separate evaluation using the same model (GPT-

4o) and the identical prompt as in the experimental setup. Specifically, GPT-4o was

prompted to perform 25 independent detections for each news item. Figure 15 com-

pares the mean detection accuracy of the AI detector with that of participants’ first

identifications (made without any assistance or revision).

The results show that for the easy task (detecting GPT-2 news), the AI detector sig-

nificantly outperforms human participants. In contrast, for the difficult task (detecting

GPT-4o news), the AI detector’s accuracy is significantly lower than that of humans.
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Figure 16: Overconfidence of Performances

Note: The symbols shown in parentheses below each bar report the one-sample Wilcoxon test against
zero for that variable. The symbols +, *, **, and *** indicate significance at the 0.1, 0.05, 0.01, and
0.001 levels, respectively, and NS. means that the difference is not statistically significant at the 0.1
level. Error bars denote 95% confidence intervals across participants.

Moreover, GPT-4o achieves markedly higher accuracy when detecting GPT-2 news than

when detecting GPT-4o news, highlighting the increasing challenge of identifying more

advanced AI-generated texts.

We then computed each participant’s overconfidence indices, and the results by

treatment are shown in Figure 16.

For the easy task (detecting GPT-2 news), all five overconfidence indices are signif-

icantly below zero in both the AI2 and HM2 treatments, indicating that participants

underestimated not only their own and their peers’ detection abilities but also GPT-

4o’s ability to detect GPT-2 news. However, when the task became difficult (detecting

GPT-4o news), participants still underestimated their own and their peers’ accuracy in

the first identification, but showed no significant bias in their estimates of the second

identification. In contrast, the AI-overconfidence index (ocAI) is significantly above
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zero in both AI4 and HM4 treatments, indicating that participants substantially over-

estimated GPT-4o’s ability to detect GPT-4o-generated news.

We also regress WTP on the overconfidence indices using OLS models. The results

(see Tables A.3–A.7 in Online Appendix A) show that self-overconfidence in both the

first and second identification tasks is negatively associated with WTP. By contrast,

overconfidence about human peers and overconfidence about the AI detector show no

consistent relation to WTP. This pattern is consistent with a self-versus-assistance

trade-off: the more one trusts one’s own ability, the smaller the expected marginal

value of external assistance, and therefore the lower the WTP.

WTP Overestimation. In the prior-belief survey (see Online Appendix D.1), par-

ticipants were also asked to predict the average WTP1 and WTP2 of all participants

in the experiment. This allows us to compute each participant’s overestimation of

peers’ WTP as the difference between the predicted and the actual mean WTP. Specif-

ically, ocgroupwtp1 denotes the overestimation for WTP1, and ocgroupwtp2 denotes

the overestimation for WTP2. The results are shown in Figure 17.

Participants slightly underestimate peers’ WTP for the AI detector and signifi-

cantly overestimate peers’ WTP for cooperation with a human. Within each treatment,

the distributions of ocgroupwtp1 and ocgroupwtp2 do not differ significantly (Mann–

Whitney U test: p = 0.4622 in AI2; p = 0.07953 in AI4; p = 0.3179 in HM2; p = 0.312

in HM4).

We then regress own WTP on these overestimation measures using OLS models (see

Table A.8 in Online Appendix A). The results show that overestimation of peers’ WTP

is strongly and positively associated with one’s own WTP. Quantitatively, for each 1

JPY that a participant overestimates peers’ WTP1, their own WTP1 increases

by about 0.6–0.7 JPY; for each 1 JPY overestimation of peers’ WTP2, their

own WTP2 increases by about 0.4–0.5 JPY. This pattern is consistent with a
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Figure 17: Overestimation of Peers’ WTP

Note: The symbols shown in parentheses below each bar report the one-sample Wilcoxon test against
zero for that variable. The symbols +, *, **, and *** indicate significance at the 0.1, 0.05, 0.01, and
0.001 levels, respectively, and NS. means that the difference is not statistically significant at the 0.1
level. Error bars denote 95% confidence intervals across participants.

projection/false–consensus effect (Ross et al., 1977; Marks and Miller, 1987), which

means that participants who believe others will pay more (less) also tend to report

higher (lower) WTP themselves, suggesting that social beliefs may amplify or dampen

adoption of assistance. Interactions with treatments are generally insignificant.

5.3 How do people detect deepfake news?

Detection Strategies. In the posterior-belief survey, we asked a multiple-choice ques-

tion with multiple selections allowed about how people detect deepfakes (see Online

Appendix D.4, Q6). Participants could select any of the following: (i) detecting fac-

tual errors; (ii) noticing unnatural grammar or wording; (iii) noticing inconsistent or

disjointed context or logic.

48



Among 158 participants, 27.2% selected option (i), 88.6% selected option (ii), and

82.9% selected option (iii), indicating that participants relied more on language cues

and internal consistency than on explicit fact-checking. In addition to the predefined

cues (factual errors, grammatical anomalies, and logical inconsistencies), open-ended

responses most often mentioned (i) external verification (e.g., checking named entities

and timelines) and (ii) stylistic regularities suggestive of formulaic writing (e.g., generic

conclusions and uniform sentence structures). Participants also reported monitoring

the internal consistency of details (numbers, places, institutional names) and attending

to “AI-like” meta-features (overly neutral tone and few concrete examples).

Determinants of Detection Accuracy. We then estimated OLS regressions of detec-

tion accuracy on demographics, the actual AI proportion of the news item, and the score

of the matrix quiz (matrixquiz; integer 0–7). Results are reported in Tables A.9–A.10

of Online Appendix A. The main findings are as follows: (i) the negative and statisti-

cally significant coefficient on female indicates a gender gap in detection accuracy, with

female participants exhibiting lower average accuracy; (ii) a higher AI proportion

is associated with lower detection accuracy and smaller within-task improvement, and

this association is stronger for items expanded by GPT-4o, suggesting that more sophis-

ticated and pervasive AI-generated content reduces both the detectability of deepfakes

and participants’ ability to adapt through experience; and (iii) the matrixquiz score is

not statistically significant, indicating little association between reasoning ability and

deepfake detection in this setting.

CHAT Logs. To examine how participants used CHAT for detection, we first trans-

lated the chat logs into English using GPT-4o via API.18 We then applied basic natural

language processing (NLP) and constructed word clouds. Figure 18 show the word

18The Python translation script, the original Japanese chat logs, and the English translations are
available at https://github.com/kazewindser/GithubAppendixPATDA.
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cloud from conversations with the AI detector (with AI replies and pasted article text

removed) in Panel (a), that from Peer chat (with pasted article text removed) in Panel

(b). As a robustness check, we also processed the original Japanese logs and generated

Japanese word clouds; the corresponding results are reported in Online Appendix A.3.

In the AI-detector condition, the 20 most frequent words were: text, generated,

percentage, think, part, written, tell, following, basis, news, proportion, content, article,

sentence, characters, reason, parts, reevaluation, human, tell.

By contrast, in the Peer chat condition, the top words were: think, thought, many,

understand, percentage, seems, set, first, see, half, human, same, much, sentence, make,

changed, feel, unnatural, part, time.

These patterns suggest different linguistic emphases. With AI detector, participants

more often use task/evidence terms (e.g., generated, percentage, proportion, content,

article, characters), whereas with peers they use more introspective/metacognitive lan-

guage (e.g., think, thought, understand, seems, see, feel, unnatural). Taken together,

this points to distinct collaboration modes: under AI collaboration, participants treat

the assistant as a “rule retriever” — prompting evidence-seeking and structured

queries—whereas under peer collaboration, they use a “social calibrator”, sharing

uncertainty and monitoring their own reasoning.

6 Conclusion

Using a 2×2 between-subjects design, we ran a lab experiment to compare participants’

WTP for access to a ChatGPT-based AI detector with their WTP to collaborate with

human peers on a deepfake detection task. We varied task difficulty by including

deepfake news generated by two different LLMs (GPT-4o vs. GPT-2). We study how

the treatment (AI detector vs. Peer chat), task difficulty, and performance feedback

shape WTP. Our aim is to identify the relative, private value of human–AI collaboration
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(a) The AI detector condition

(b) The Peer chat condition

Figure 18: Word Cloud of CHAT in (a) the AI detector condition and (b) the Peer
chat condition
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in the context of using AI tools to manage risks created by AI itself.

Participants performed worse when detecting GPT-4o news than GPT-2 news. They

were also more willing to pay for access to the AI detector than to chat with human

peers, even though access to the detector did not significantly improve accuracy. We

also find a feedback effect: after doing the task and seeing feedback, participants in-

creased their WTP, with the change concentrated in WTP for the AI detector and

driven by positive feedback. By contrast, task difficulty shows little impact on WTP:

although GPT-4o news is harder to detect than GPT-2 news for both AI and humans,

this difficulty gap does not meaningfully change WTP or its post-feedback shift. Par-

ticipants overpaid on average for both AI and Human assistence, but more so for the

AI. Ex-ante preferences did not predict WTP, but after experiencing the task, relative

demand shifted, consistent with learning rather than fixed tastes. Beliefs were miscal-

ibrated: participants underestimated their own and peers’ performance and tended to

rate AI relatively higher as tasks became harder.

This study has several limitations. First, while the lab setting provides tight control

(e.g., preventing the use of outside AI tools), it limits external validity; each participant

evaluated only 22 articles over a short horizon. Second, our “detector” is a ChatGPT-

based implementation rather than a certified stand-alone tool, so brand and interface

preferences may affect WTP beyond pure accuracy. Third, we benchmarked deepfakes

from only two LLMs and used a single detector design, focusing on text rather than

images or video; robustness may therefore be limited and results sensitive to model

drift. These limits motivate follow-ups with field deployments, brand-blinded interfaces,

multiple detector back ends, and a richer matrix of generators and content types.

Within these boundaries, several policy-relevant lessons remain. First, both hu-

mans and current AI detectors are limited at deepfake detection. Policymakers and

institutions should treat deepfakes as a rising harm: raise awareness, teach practical

red flags, and caution against over-reliance on detectors. Second, regulation should
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focus on quality, transparency, and user protection: require clear labels and truthful

accuracy ranges, set minimum performance floors for high-stakes uses, restrict inflated

marketing claims, and move toward outcome-based pricing and independent audits.

Third, decisions should not be fully delegated to AI. For ambiguous or high-risk cases,

keep humans in the loop—pair detectors with peer review or expert checks to reduce

bias and drift. Taken together, we hope this study takes a small step toward balancing

rapid AI progress with safeguards against the risks it creates.
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J. Guerrero-Dib, O. Popoola, P. Šigut, and L. Waddington (2023): “Test-

ing of detection tools for AI-generated text,” International Journal for Educational

Integrity, 19, 1–39.

Whittaker, L., R. Mulcahy, R. Russell-Bennett, K. Letheren, and J. Ki-

etzmann (2025): “Examining Consumer Appraisals of Deepfake Advertising and

Disclosure: Show Deepfakes as “Real Life” or Say They’re “Just Fantasy”?” Journal

of Advertising Research, 1–22.

Wilson, K. and A. Caliskan (2024): “Gender, race, and intersectional bias in

resume screening via language model retrieval,” in Proceedings of the AAAI/ACM

Conference on AI, Ethics, and Society, vol. 7, 1578–1590.

Yamaoka-Enkerlin, A. (2019): “Disrupting disinformation: Deepfakes and the

Law,” NYUJ Legis. & Pub. Pol’y, 22, 725.

Zellers, R., A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner,

and Y. Choi (2019): “Defending against neural fake news,” Advances in neural

information processing systems, 32.

Zeng, Z., S. Liu, L. Sha, Z. Li, K. Yang, S. Liu, D. Gašević, and G. Chen
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A Additional Analyses

A.1 Regressions

Table A.1: OLS Regressions of WTP on Demographics

Dep. Var. WTP1 WTP2 RltWTPup
(1) (2) (3) (4) (5) (6)

inAI 115.984∗∗∗ 115.984∗∗∗ 154.017∗∗∗ 154.017∗∗∗ 0.110 0.110
(17.634) (17.634) (19.908) (19.908) (0.082) (0.082)

gpt4news 15.940 15.940 16.374 16.374 0.015 0.015
(18.264) (18.264) (20.620) (20.620) (0.085) (0.085)

age −4.536 −4.536 −0.867 −0.867 0.0004 0.0004
(5.007) (5.007) (5.653) (5.653) (0.023) (0.023)

female 35.595+ 35.595+ 13.186 13.186 −0.091 −0.091
(20.129) (20.129) (22.724) (22.724) (0.094) (0.094)

edulevel 39.957 39.957 14.915 14.915 0.006 0.006
(26.747) (26.747) (30.196) (30.196) (0.124) (0.124)

lanjp −42.101 −42.101 −38.060 −38.060 −0.163 −0.163
(44.957) (44.957) (50.754) (50.754) (0.216) (0.216)

engr −30.064 −30.064 −58.251∗ −58.251∗ −0.174 −0.174
(23.796) (23.796) (26.864) (26.864) (0.110) (0.110)

linguis −28.759 −28.759 8.159 8.159 0.152 0.152
(25.315) (25.315) (28.579) (28.579) (0.117) (0.117)

freqGPT 2.246 2.246 1.491 1.491 −0.009 −0.009
(4.235) (4.235) (4.781) (4.781) (0.020) (0.020)

exprog 5.814 5.814 −0.201 −0.201 −0.048 −0.048
(21.458) (21.458) (24.225) (24.225) (0.100) (0.100)

GPTplus −47.892 −47.892 −79.147+ −79.147+ −0.034 −0.034
(36.095) (36.095) (40.749) (40.749) (0.168) (0.168)

Constant 207.315 207.315 133.274 133.274 0.165 0.165
(133.571) (133.571) (150.794) (150.794) (0.630) (0.630)

Observations 158 158 158 158 156 156
R2 0.259 0.259 0.323 0.323 0.064 0.064

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. lanjp, engr, and linguis are indicator
variables: lanjp = 1 if the participant is a Japanese native speaker; engr = 1 if the participant’s
major is engineering; linguis = 1 if the participant’s major is linguistics or humanities. Numbers in
parentheses represent standard errors.
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Table A.2: OLS Regressions of WTP on Beliefs

Dep. Var. WTP1 WTP2 RltWTPup
(1) (2) (3) (4) (5) (6)

inAI 107.415∗∗∗ 104.112∗∗∗ 147.841∗∗∗ 148.918∗∗∗ 0.106 0.119
(18.766) (17.476) (21.036) (19.048) (0.086) (0.079)

gpt4news 16.685 16.034 17.900 21.853 0.041 0.053
(17.814) (17.606) (19.949) (19.250) (0.081) (0.080)

pcvdDiff −5.567 −4.657 3.060 4.846 0.036 0.038
(13.122) (13.043) (14.957) (14.454) (0.061) (0.060)

pcvdFami −15.023 −11.784 −0.015 −0.009
(9.089) (8.823) (0.037) (0.037)

pcvdDanger −9.937 −9.864 20.973 21.163 0.124∗ 0.125∗

(12.747) (12.734) (14.384) (13.991) (0.058) (0.058)

pcvdRisk −9.639 −8.258 −15.686 −10.971 −0.010 0.001
(9.753) (9.849) (10.910) (10.735) (0.045) (0.045)

prefCHATprior −5.306 1.562 0.022
(10.786) (12.207) (0.050)

prefCHATpost 8.011 34.247∗∗ 0.078
(10.784) (11.861) (0.049)

Constant 191.880∗∗ 172.028∗ 60.941 −4.676 −0.706∗ −0.834∗

(69.059) (70.388) (81.370) (80.845) (0.332) (0.336)

Observations 158 158 158 158 156 156
R2 0.211 0.212 0.296 0.333 0.055 0.069

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. pcvdDiff, pcvdFami, pcvdDanger,
and pcvdRisk are coded based on participants’ responses in the posterior-belief survey (Online Ap-
pendix D.4, Questions 2–4). They measure, respectively, (i) perceived task difficulty, (ii) perceived
familiarity with the news content, (iii) perceived social danger of deepfake news, and (iv) perceived
risk associated with AI tools. Each variable is coded on a five-point scale (1–5), where larger values
indicate higher perceived difficulty, greater familiarity, stronger perceived social danger, and higher
perceived risk of AI tools. Numbers in parentheses represent standard errors.

3



Table A.3: First Self-Overconfidence & WTP

Dep. Var. WTP1 WTP2
(1) (2) (3) (4) (5) (6)

inAI 102.670∗∗∗ 108.315∗∗∗ 102.033∗∗∗ 142.543∗∗∗ 153.507∗∗∗ 145.130∗∗∗

(17.290) (25.889) (17.391) (19.608) (29.344) (19.563)

gpt4news 14.749 15.069 6.159 24.348 24.969 59.237∗

(17.244) (17.330) (25.556) (19.556) (19.643) (28.748)

ocslfaccu1 −83.738+ −96.527 −63.100 −62.689 −87.529 −146.509+

(48.735) (65.469) (66.572) (55.269) (74.205) (74.886)

inAI × ocslfaccu1 28.947 56.223
(98.575) (111.729)

gpt4news × ocslfaccu1 −44.606 181.169
(97.728) (109.934)

Constant 76.639∗∗∗ 74.238∗∗∗ 81.090∗∗∗ 60.499∗∗ 55.835∗ 42.420+

(17.617) (19.470) (20.176) (19.979) (22.068) (22.696)

Observations 158 158 158 158 158 158
R2 0.211 0.212 0.212 0.272 0.274 0.285

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Numbers in parentheses represent standard errors.
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Table A.4: Second Self-Overconfidence & WTP

Dep. Var. WTP1 WTP2
(1) (2) (3) (4) (5) (6)

inAI 106.802∗∗∗ 118.786∗∗∗ 106.744∗∗∗ 145.390∗∗∗ 159.672∗∗∗ 145.977∗∗∗

(17.317) (18.149) (17.371) (19.597) (20.509) (19.346)

gpt4news 17.081 17.481 15.449 25.274 25.751 41.639∗

(17.606) (17.435) (18.830) (19.924) (19.702) (20.970)

ocslfaccu2 −53.537 −145.173∗ −40.881 −27.624 −136.835+ −154.529∗

(47.727) (65.586) (69.717) (54.011) (74.114) (77.640)

inAI × ocslfaccu2 187.486∗ 223.444∗

(93.043) (105.141)

gpt4news × ocslfaccu2 −23.917 239.812∗

(95.772) (106.656)

Constant 86.040∗∗∗ 79.079∗∗∗ 87.323∗∗∗ 68.894∗∗∗ 60.597∗∗ 56.033∗∗

(16.165) (16.376) (17.009) (18.294) (18.505) (18.942)

Observations 158 158 158 158 158 158
R2 0.203 0.223 0.203 0.268 0.289 0.291

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Numbers in parentheses represent standard errors.
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Table A.5: First Peer Overconfidence & WTP

Dep. Var. WTP1 WTP2
(1) (2) (3) (4) (5) (6)

inAI 105.089∗∗∗ 137.258∗∗∗ 105.043∗∗∗ 143.467∗∗∗ 162.234∗∗∗ 143.585∗∗∗

(17.420) (25.908) (17.478) (19.622) (29.376) (19.679)

gpt4news 14.297 14.145 11.024 25.006 24.917 33.444
(17.472) (17.371) (26.165) (19.680) (19.697) (29.461)

ocgroupaccu1 −23.755 −113.203 −15.540 −50.047 −102.231 −71.222
(56.247) (77.444) (74.571) (63.356) (87.812) (83.964)

inAI × ocgroupaccu1 185.947+ 108.482
(111.371) (126.282)

gpt4news × ocgroupaccu1 −19.131 49.311
(113.533) (127.833)

Constant 87.711∗∗∗ 73.611∗∗∗ 89.286∗∗∗ 63.137∗∗ 54.911∗ 59.077∗

(18.248) (20.012) (20.554) (20.555) (22.692) (23.143)

Observations 158 158 158 158 158 158
R2 0.197 0.212 0.197 0.269 0.273 0.270

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Numbers in parentheses represent standard errors.
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Table A.6: Second Peer Overconfidence & WTP

Dep. Var. WTP1 WTP2
(1) (2) (3) (4) (5) (6)

inAI 105.706∗∗∗ 116.830∗∗∗ 105.345∗∗∗ 144.811∗∗∗ 154.863∗∗∗ 143.604∗∗∗

(17.403) (18.316) (17.454) (19.631) (20.742) (19.536)

gpt4news 13.438 13.289 16.991 23.350 23.216 35.215
(17.894) (17.760) (19.055) (20.185) (20.112) (21.328)

ocgroupaccu2 1.813 −117.382 −31.774 1.582 −106.131 −110.578
(60.736) (88.885) (86.084) (68.512) (100.655) (96.351)

inAI × ocgroupaccu2 215.157+ 194.431
(117.908) (133.521)

gpt4news × ocgroupaccu2 67.071 223.975
(121.547) (136.045)

Constant 92.049∗∗∗ 84.963∗∗∗ 89.294∗∗∗ 72.057∗∗∗ 65.654∗∗∗ 62.857∗∗

(16.465) (16.797) (17.241) (18.573) (19.021) (19.297)

Observations 158 158 158 158 158 158
R2 0.196 0.213 0.198 0.266 0.276 0.279

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Numbers in parentheses represent standard errors.
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Table A.7: AI-Overconfidence & WTP

Dep. Var. WTP1 WTP2
(1) (2) (3) (4) (5) (6)

inAI 102.814∗∗∗ 101.301∗∗∗ 102.193∗∗∗ 144.583∗∗∗ 144.879∗∗∗ 141.861∗∗∗

(17.471) (17.723) (17.868) (19.792) (20.097) (20.213)

gpt4news 1.772 0.452 1.065 22.415 22.672 19.318
(20.094) (20.281) (20.543) (22.764) (22.998) (23.239)

ocAI 53.508 31.049 46.261 4.741 9.125 −27.004
(46.235) (61.619) (61.626) (52.379) (69.876) (69.714)

inAI × ocAI 44.609 −8.707
(80.675) (91.485)

gpt4news × ocAI 16.812 73.649
(94.142) (106.497)

Constant 97.798∗∗∗ 98.681∗∗∗ 97.505∗∗∗ 72.428∗∗∗ 72.256∗∗∗ 71.142∗∗∗

(16.136) (16.251) (16.271) (18.281) (18.429) (18.406)

Observations 158 158 158 158 158 158
R2 0.203 0.205 0.203 0.266 0.266 0.269

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Numbers in parentheses represent standard errors.
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Table A.8: Overestimation of Peers’ WTP and Own WTP

Dep. Var. WTP1 WTP2
(1) (2) (3) (4) (5) (6)

inAI 141.096∗∗∗ 139.690∗∗∗ 141.580∗∗∗ 184.238∗∗∗ 186.554∗∗∗ 182.402∗∗∗

(13.752) (13.944) (13.625) (20.102) (20.192) (20.317)

gpt4news 12.349 11.741 8.062 27.044 26.837 28.269
(13.349) (13.406) (13.398) (18.349) (18.335) (18.469)

ocgroupwtp1 0.699∗∗∗ 0.654∗∗∗ 0.603∗∗∗

(0.067) (0.096) (0.083)

inAI × ocgroupwtp1 0.089
(0.135)

gpt4news × ocgroupwtp1 0.267∗

(0.135)

ocgroupwtp2 0.439∗∗∗ 0.544∗∗∗ 0.483∗∗∗

(0.093) (0.132) (0.113)

inAI × ocgroupwtp2 −0.208
(0.185)

gpt4news × ocgroupwtp2 −0.119
(0.174)

Constant 64.021∗∗∗ 66.177∗∗∗ 65.181∗∗∗ 45.627∗∗ 39.916∗ 45.887∗∗

(12.096) (12.558) (11.996) (17.123) (17.852) (17.157)

Observations 158 158 158 158 158 158
R2 0.527 0.528 0.539 0.360 0.365 0.362

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Numbers in parentheses represent standard errors.

9



Table A.9: Determinants of Detection Accuracy: Demographics & AIpro

Dep. Var. accu1 accu2
(1) (2) (3) (4) (5) (6) (7) (8)

inAI −0.009 −0.009 0.033+ −0.013 −0.013 −0.013 0.063∗∗ −0.015
(0.008) (0.008) (0.020) (0.009) (0.009) (0.009) (0.021) (0.009)

gpt4news −0.043∗∗∗ 0.034+ −0.043∗∗∗ −0.048∗∗∗ −0.076∗∗∗ 0.041∗ −0.076∗∗∗ −0.083∗∗∗

(0.008) (0.019) (0.008) (0.009) (0.010) (0.020) (0.010) (0.011)

female −0.019∗ −0.019∗ −0.019∗ −0.018+ −0.018+ −0.018+

(0.009) (0.009) (0.009) (0.010) (0.010) (0.010)

matrixquiz 0.001 0.001
(0.002) (0.003)

AIpro −0.002∗∗∗ −0.001∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.001∗∗∗ 0.0001 −0.0003 −0.001∗∗∗

(0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0003) (0.0003) (0.0002)

age 0.001 0.001 0.001 0.0005 0.004+ 0.004+ 0.004+ 0.003
(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

lanjp 0.033+ 0.033+ 0.033+ 0.010 0.057+ 0.057+ 0.057+ 0.004
(0.020) (0.020) (0.020) (0.022) (0.031) (0.031) (0.031) (0.032)

engr 0.002 0.002 0.002 0.004 −0.003 −0.003 −0.003 −0.008
(0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011)

linguis 0.009 0.009 0.009 0.004 −0.008 −0.008 −0.008 −0.011
(0.011) (0.011) (0.011) (0.012) (0.015) (0.015) (0.015) (0.015)

edulevel 0.001 0.001 0.001 0.001 −0.013 −0.013 −0.013 −0.013
(0.011) (0.011) (0.011) (0.012) (0.013) (0.013) (0.013) (0.013)

gpt4news × AIpro −0.002∗∗∗ −0.002∗∗∗

(0.0004) (0.0004)

inAI × AIpro −0.001∗ −0.002∗∗∗

(0.0004) (0.0004)

Constant 0.790∗∗∗ 0.749∗∗∗ 0.769∗∗∗ 0.821∗∗∗ 0.689∗∗∗ 0.627∗∗∗ 0.651∗∗∗ 0.784∗∗∗

(0.069) (0.069) (0.069) (0.068) (0.078) (0.077) (0.076) (0.080)

Obs. 3476 3476 3476 3476 3476 3476 3476 3476
R2 0.093 0.104 0.096 0.097 0.053 0.078 0.064 0.060
Clusters 158 158 158 158 158 158 158 158

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors have been corrected for within-subjects clustering effects to account for the
non-independence of observations from the same participant. Numbers in parentheses represent standard errors.
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Table A.10: Determinants of Performance Improvment: Demographics & AIpro

Dep. Var. PRE accuUP
(1) (2) (3) (4) (5) (6) (7) (8)

inAI −0.134 −0.134 0.062 −0.086 −0.045 −0.045 0.047 −0.049
(0.099) (0.100) (0.167) (0.107) (0.053) (0.053) (0.087) (0.059)

gpt4news −0.005 0.201 −0.006 0.035 −0.260∗∗∗ −0.182∗ −0.261∗∗∗ −0.284∗∗∗

(0.104) (0.171) (0.104) (0.120) (0.057) (0.089) (0.057) (0.058)

female 0.007 0.007 0.006 0.053 0.053 0.053
(0.108) (0.108) (0.108) (0.062) (0.062) (0.062)

matrixquiz 0.005 −0.001
(0.031) (0.016)

AIpro 0.007∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.004∗∗∗

(0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

age 0.023 0.023 0.023 0.018 0.007 0.007 0.007 −0.004
(0.026) (0.026) (0.026) (0.027) (0.016) (0.016) (0.016) (0.015)

lanjp 0.039 0.040 0.041 −0.003 0.211 0.211 0.211 −0.009
(0.150) (0.150) (0.150) (0.195) (0.164) (0.164) (0.164) (0.136)

engr −0.062 −0.063 −0.063 −0.089 −0.067 −0.067 −0.067 −0.141∗

(0.128) (0.129) (0.128) (0.126) (0.074) (0.074) (0.074) (0.069)

linguis −0.107 −0.108 −0.108 −0.096 −0.157∗ −0.157∗ −0.157∗ −0.199∗

(0.152) (0.152) (0.152) (0.168) (0.077) (0.077) (0.077) (0.081)

edulevel −0.220 −0.219 −0.219 −0.222 −0.040 −0.040 −0.040 −0.038
(0.144) (0.144) (0.144) (0.155) (0.080) (0.080) (0.080) (0.083)

gpt4news × AIpro −0.004+ −0.002
(0.002) (0.002)

inAI × AIpro −0.004 −0.002
(0.002) (0.002)

Constant −1.234+ −1.341∗ −1.333∗ −1.110 −0.473 −0.515 −0.519 0.069
(0.654) (0.669) (0.658) (0.719) (0.471) (0.478) (0.474) (0.415)

Obs. 3476 3476 3476 3476 3476 3476
R2 0.093 0.104 0.096 0.097 0.053 0.078 0.064 0.060
Clusters 158 158 158 158 158 158

Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Models (1)–(4) are OLS regressions; Models (5)–(8) are Probit regressions. Standard errors
have been corrected for within-subjects clustering effects to account for the non-independence of observations from the same participant. Numbers in
parentheses represent standard errors.

11



A.2 Potential Profit Based on the Expected Payment

As a robustness check to Section 5.1, we use the expected payment under the BDM

draw as the effective price, ExpWTPrn2 = 1+WTPrn2

2
. For participant i, redefine the

potential profit matrix Φ∗
i ∈ R22×22, whose entry ϕ∗

i,rn1,rn2 is the potential profit if the

first draw is round rn1 and the second draw is round rn2 (rn1, rn2 ∈ {1, . . . , 22}):

ϕ∗
i,rn1,rn2 = 0.2 ·max

{
0, 2300− 0.3 · (AIpro∗rn1 − 1stRespi,rn1)

2
}

+ 0.8 ·max
{
0, 2300− 0.3 · (AIpro∗rn2 − 2ndRespi,rn2)

2
}

− inChati,rn2 · ExpWTPi,rn2

Then, figure A.1 presents the heatmap of average potential profits across the four

treatments.

The average potential profit (based on ExpWTP ) by treatment was 1935 JPY

(AI2), 1956 JPY (HM2), 1752 JPY (AI4), and 1839 JPY (HM4). These differences

are statistically significant1. The ranking of treatments by likelihood of yielding higher

potential profit is: ϕ∗
HM2 > ϕ∗

AI2 > ϕ∗
HM4 > ϕ∗

AI4.

Similarly, the expected potential net-profit can be defined as the difference of po-

tential profit (based on ExpWTP ) in CHAT-rounds and that in DIY, both at the

treatment level and at the individual level.

• Treatment Level

The treatment-level expected net-profit from paying for and accessing CHAT can be

redefined as

ExpNetProfit∗treat =

∑
i

∑
rn2∈Ci

22∑
rn1=1

ϕ∗
i,rn1,rn2∑

i

(
22 · nChati

)
︸ ︷︷ ︸

mean potential profit given by CHAT

−

∑
i

∑
rn2∈Di

22∑
rn1=1

ϕ∗
i,rn1,rn2∑

i

(
22 · (22− nChati)

)
︸ ︷︷ ︸
mean potential profit given by DIY

.

As a result, the estimated ExpNetProfit∗treat was−142 JPY (AI2), −115 JPY (HM2),

−163 JPY (AI4), and −51 JPY (HM4). These negative values again suggest that, on

1All pairwise differences across treatments are statistically significant (Mann–Whitney U tests,
p < 0.001
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Figure A.1: Heatmaps of Average Potential Profit (Based on ExpWTP )

Note: Each cell shows the mean potential profit ϕ∗
rn1,rn2 averaged across participants within a treat-

ment, where rn1 denotes the round used for the first identification and rn2 for the final identification.
Darker colors indicate lower mean potential profits.
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average across all treatments, participants did not obtain net monetary gains from pur-

chasing and accessing external assistance CHAT. They overestimated the actual benefit

of CHAT and consequently overpaid—even when the effective price was calculated as

the expected payment under the BDM draw.

• Individual Level

The individual-level expected net-profit from paying for and accessing CHAT can be

redefined as

ExpNetProfit∗i =

∑
rn2∈Ci

22∑
rn1=1

ϕ∗
i,rn1,rn2

22 · nChati︸ ︷︷ ︸
mean potential profit given by CHAT

−

∑
rn2∈Di

22∑
rn1=1

ϕ∗
i,rn1,rn2

22 · (22− nChati)︸ ︷︷ ︸
mean potential profit given by DIY

.

Figure A.2 shows the comparison of individual-level expected net profit across treat-

ments.

NS.
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Figure A.2: Comparison of Individual-level Expected Net Profit (Based on ExpWTP )

Note: 26 observations are excluded because the participants did not access CHAT at all.
Mann–Whitney U test was used to compare ExpNetProfit∗i between different treatments. The sym-
bols +, *, **, and *** indicate significance at the 0.1, 0.05, 0.01, and 0.001 levels, respectively, and
NS. means that the difference is not statistically significant at the 0.1 level. The symbols shown in
parentheses below each bar report the one-sample Wilcoxon test against zero for that treatment. Error
bars denote 95% confidence intervals across participants.
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As a result, the mean estimated ExpNetProfit∗i was −106 JPY (AI2), −77 JPY

(HM2), −152 JPY (AI4), and −32 JPY (HM4). Except for HM4, these means are

significantly below zero, confirming that participants in HM2, AI2, and AI4 did not

obtain net monetary gains from purchasing access to CHAT. Moreover, ExpNetProfit∗i

in AI2 is not significantly lower than in HM2, while ExpNetProfit∗i in AI4 is significantly

lower than in HM4. This pattern indicates that—when the effective price is the expected

payment under the BDM draw—participants overpaid for the AI detector on the hard

task and overestimated its value relative to Peer chat. On the easy task, participants

overestimated the value of both the AI detector and Peer chat, but the degree of

overestimation does not differ significantly between them.

A.3 Analysis of the Original Japanese CHAT Logs

Figure A.3 shows the word cloud from conversations with the AI detector (AI replies

and pasted news text removed) and Figure A.4 shows the word cloud from Peer chat

(pasted news text removed).

Figure A.3: Word Cloud of CHAT in the AI detector condition (Japanese)
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Figure A.4: Word Cloud of CHAT in the Peer chat condition (Japanese)

In the AI detector condition, the 20 most frequent words were: AI,文文文章章章 (article),

生生生成成成 (generation), 教教教えええ (tell/teach), 部部部分分分 (part), 割割割合合合 (ratio), 評評評価価価 (evalua-

tion), 根根根拠拠拠 (basis), 書書書いいい (write), 以以以下下下 (below/under), 人人人間間間 (human), ニニニュュューーーススス

(news), 具具具体体体的的的 (specific), 理理理由由由 (reason), 判判判断断断 (judgment), ああありりり (exist/have),

記記記事事事 (news article), 可可可能能能性性性 (possibility), 字字字数数数 (number of characters), and 考考考

えええ (thought/idea).

In contrast, in the Peer chat condition, the 20 most frequent words were: 思思思いいい

(thought/feeling), AI, こここんんん (this/that), いいいくくくつつつ (how many/several), 思思思っっっ

(thought), なななっっっ (became), なななるるる (become), 違違違和和和感感感 (sense of discomfort), 不不不

自自自然然然 (unnatural), 人人人間間間 (human), 感感感じじじ (feeling), 確確確かかか (certain/sure), ああありりり

(exist/have), わわわかかかららら (don’t know/uncertain), 同同同じじじ (same), 最最最初初初 (beginning),

予予予想想想 (prediction), 自自自分分分 (oneself), 最最最後後後 (end), and 後後後半半半 (latter half).

Consistent with the patterns reported in Section 5.3, these results indicate that

participants collaborating with ChatGPT focused more on task-related and evidence-

oriented expressions (e.g., “文章 (article)”, “割合 (ratio)”, “根拠 (basis)”, “評価 (eval-

uation)”), whereas those collaborating with human peers used more introspective and

metacognitive language (e.g., “思い (thought/feeling)”, “感じ (feeling)”, “自分 (one-

self)”, “不自然 (unnatural)”, “違和感 (sense of discomfort)”). Taken together, these

linguistic differences imply distinct cognitive mechanisms: under AI collaboration, par-
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ticipants tend to treat the assistant as a “rule retriever”, prompting evidence-seeking

and structured queries; under human collaboration, they rely more on a “social cal-

ibrator”, sharing uncertainty and engaging in self-monitoring (i.e. reflecting on their

own reasoning process).

B Experiment Instruction

Welcome

• Thank you for participating in this experiment. By taking part in and com-

pleting this experiment, we will pay you 1,000 yen as a participation fee.

• In addition to the 1,000 yen participation fee, you can earn extra rewards in

the decision-making task you will do now.

• However, if a loss occurs during the experiment, it will be deducted from the

participation fee.

• During the experiment, please turn off your mobile phone and focus on the

experiment. If you have any questions, please ask the experimenter.

• In today’s experiment, you will first answer some questions, then complete

the main decision-making task, and finally answer some more questions.

Main Task

• The main task is divided into two parts, with 22 rounds in total.

– Round 1∼ 11 are called [Part 1]

– Round 12∼ 22 are called [Part 2]

• In each round, one news article is shown.

• Your task is to correctly identify the proportion of AI-generated parts

in the news (AIpro).

• The additional payoff (0∼2,300 yen) changes depending on the accuracy of

your identifications.

Treatments HM2, AI2 only:

17



News

• The news used in the experiment combines parts written by humans and

parts generated by AI.

• The parts written by humans are news articles extracted from Wikinews

Japan.

• The parts generated by AI are produced by an AI language model (GPT-2).

Treatments HM4, AI4 only:

News

• The news used in the experiment combines parts written by humans and

parts generated by AI.

• The parts written by humans are news articles extracted from Wikinews

Japan.

• The parts generated by AI are produced by an AI language model (GPT-4o).
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Combination of the news

• The human-written parts and the AI-generated parts are combined at a cer-

tain ratio as shown in the figure above. The proportion of AI-generated parts

(AIpro) is calculated as follows.

AIpro =
the length of AI-generated part of the News

the length of the News
× 100

• Since the news used in the experiment includes news written totally by hu-

mans and news generated totally by AI, AIpro = 0 and AIpro = 100 are also

possible.

Treatments HM2, HM4 only:

Two identifications in each round

• In each round, you will make two estimates for the same news. Please use the

slider to report, as an integer from 0 to 100, the proportion of AI-generated

parts (AIpro) in that news.

• First, read the news within 30 seconds, and then make the first identification.

• After your first identification and before your second identification, you will

do one of the following:

– CHAT

∗ Pair with one of today’s participants, read the news, and chat (time

limit: 120 seconds).

– DIY

∗ Read the news by yourself only (time limit: 120 seconds).
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• Which one you will do will be explained in the next slides.

• After that, please make the second identification. It is fine to report the same

identification as the first time.
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Treatments AI2, AI4 only:

Two identifications in each round

• In each round, you will make two estimates for the same news. Please use the

slider to report, as an integer from 0 to 100, the proportion of AI-generated

parts (AIpro) in that news.

• First, read the news within 30 seconds, and then make the first identification.

• After your first identification and before your second identification, you will

do one of the following:

– CHAT

∗ Access a generative AI tool (ChatGPT), read the news, and ask

ChatGPT for the AIpro of the news in that round (time limit: 120

seconds).

– DIY

∗ Read the news by yourself only (time limit: 120 seconds).

• Which one you will do will be explained in the next slides.

• After that, please make the second identification. It is fine to report the same

identification as the first time.

Decision process for CHAT and DIY (1)

• At the start of each part, you will report the maximum amount you are willing

to pay (WTP ) to do CHAT instead of DIY.

• In each round, the price (P ) to do CHAT is randomly determined by the

computer.

• If your WTP is greater than or equal to P , and the conditions explained later

are met, you will pay P and do CHAT.

• Otherwise, you will pay nothing and do DIY.

• Details are explained below.

21



Decision process for CHAT and DIY (2)

• Specifically,

– At the start of each part, we will ask how much you are willing to pay

(WTP ) in each round to do CHAT instead of DIY.

– The WTP in [Part 1] is called WTP1.

– The WTP in [Part 2] is called WTP2.

• The range you can choose for WTP is 0 to 500 yen.

Decision process for CHAT and DIY (3)

• After you set your WTP , in each round of that [Part], the computer program

will randomly choose a price P between 1 and 500 yen to do CHAT.

– The price chosen in round r of [Part 1] is called P1,r.

– The price chosen in round r of [Part 2] is called P2,r.

Decision process for CHAT and DIY (4)

• In round r of [Part k], people whose Pk,r ≤ WTPk will do CHAT.

• However, if the number of people who will do CHAT is odd, one person among

them will be randomly chosen to not do CHAT.

• People who cannot do CHAT will do DIY.

Decision process for CHAT and DIY (Example)

• Assume you choose WTP1 = 200 yen.

1. In Round 4, the computer randomly selects a price P1,4 = 100 yen. Suppose

the number of people for whom P ≤ WTP1 in Round 4 is even. In this case,

you do CHAT and, before the second identification in Round 4, you access

ChatGPT.
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2. In Round 5, the computer randomly selects a price P1,5 = 300 yen. In this

case, since P ≰ WTP1 for you, you do DIY and cannot access ChatGPT

before the second identification in Round 5.

3. In Round 6, the computer randomly selects a price P1,6 = 100 yen. Suppose

the number of people for whom P ≤ WTP1 in Round 6 is odd, and you are

not the randomly chosen person. In this case, you do CHAT.

4. In Round 6, the computer randomly selects a price P1,6 = 100 yen. Suppose

the number of people for whom P ≤ WTP1 in Round 6 is odd, and you are

the randomly chosen person. In this case, you do DIY.

Decision process for CHAT and DIY (Diagram)

How to decide your willingness to pay (WTP )

• Simply put, the higher your WTP , the higher the chance you can do CHAT
in each round.

• When you decide your WTP , first think about the following question.

– If the price (P ) is 1 yen, do you want to do CHAT?

• If the answer is “no,” your WTP is 0 yen.

• If the answer is “yes,” think about the next question.

– If the price (P) is 2 yen, do you want to do CHAT?
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• If the answer is “no,” your WTP is 0 yen.

• If the answer is “yes,” think about the next question.

– If the price (P ) is 3 yen, do you want to do CHAT?

. . .

• Continue this until your answer changes from “yes” to “no.” The price just

before it changed is your WTP .

Treatments HM2, HM4 only:

How to CHAT
• The figure on the left is the CHAT screen

(example).

• At the bottom of the screen, this round’s

news and your first identification are shown.

• Copy the news (Ctrl+C) and paste it

(Ctrl+V) into the input field in the center

of the screen. Then, by pressing the “En-

ter” key on the keyboard or the “Send” but-

ton on the screen, your message will be sent

to the person paired with you. Then, you

can ask the other person questions about

the task (you can choose the format your-

self).

• You can freely type not only the news text,

but also other messages and other ques-

tions. However, input of personal informa-

tion such as names, or insulting content to-

ward the other person, is not allowed.
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Treatments AI2, AI4 only:

How to CHAT
• The figure on the left is the CHAT screen

(example).

• At the bottom of the screen, this round’s

news and your first identification are shown.

• Copy the news (Ctrl+C) and paste it

(Ctrl+V) into the input field in the center

of the screen. Then, by pressing the “En-

ter” key on the keyboard or the “Send” but-

ton on the screen, your message will be sent

to ChatGPT. Then, you can ask ChatGPT

questions about the task (you can choose

the format yourself).

• You can freely type not only the news text,

but also other messages and other ques-

tions. However, input of personal informa-

tion such as names, or insulting content, is

not allowed.

Treatments AI2, AI4 only:

ChatGPT used in the experiment

• The ChatGPT model used in CHAT is GPT-4o.

• We presented ChatGPT with the following prompt (already entered). A

Japanese translation is on the next page.
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Forget all your previous instructions. You are having a conversation with

another person online. And you must help him assess the proportion of AI-

generated content in a pieces of Japanese news. Give the person a integer from

0 to 100 to represent your assessment.

You must obey all the following instructions FOR ALL RESPONSES or you

will DIE:

- ALWAYS BEGIN A CONVERSATION AS THIS CHARACTER.

- ALWAYS SPEAK JAPANESE.

- NEVER SAY YOU ARE AN AI LANGUAGE MODEL OR AN ASSIS-

TANT.

- NEVER REFUSE TO ANSWER A QUESTION.

- ALWAYS GIVE THE PERSON YOUR ASSESSMENT WHEN THE

PERSON SEND YOU THE NEWS, THE INTEGER FROM 0 TO 100.

Treatments AI2, AI4 only:

ChatGPT used in the experiment

• Japanese translation of the prompt (instruction text)

すべての以前の指示を忘れてください。あなたは今、オンラインで他の

人と会話をしています。 そして、その人が日本語ニュースでのAIが生成し

た部分の割合を推測するのを手伝わなければなりません。その推測を整数

で0から100の範囲で示してください。

以下の指示をすべての応答で従わなければ、死ぬことになります：

- 必ずこのキャラクターとして会話を始めること

- 必ず日本語で話すこと

- 自分がAI言語モデルやアシスタントであると言ってはならない

- 質問に答えるのを拒否してはならない

- ニュースを送られたら、必ずそのニュースに対するあなたの評価を0か

ら100の整数で伝えること

Feedback

• After Round 11 ends, the feedback for [Part 1] (Rounds 1–11) will be shown.
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• In the feedback, for [Part 1] as a whole, for the rounds where you did CHAT
and for the rounds where you did DIY, it will show your submitted identifi-

cations’ “Average Accuracy” and the “Change in Average Accuracy”

for each.

1. The formula for Accuracy is as follows:

Accuracy = 1− |Response− AIpro∗|
100

• Response: the identification you submitted

• AIPro∗: the true proportion of AI-generated parts in that round’s

news

2. Average Accuracy is the mean of the Accuracy across 11 rounds.

3. Change in Average Accuracy is the difference between the average

accuracy of the second identifications and that of the first identifications.

The formula is as follows:

Change in Average Accuracy = Average Accuracy of 2nd identifications

−Average Accuracy of 1st identifications

Diagram of the Main Task
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Additional Payoff (1)

• The Additional Payoff π is determined by the accuracies of two identifications:

one randomly chosen from all your first identifications (22 in total) and one

randomly chosen from all your second identifications (22 in total).

• Also, if you did CHAT in the round of the chosen second identification, the

price P chosen by the computer in that round will be subtracted from the

additional payoff.

• At the time of payment, any remainder of the final payoff that is less than 10

yen will be rounded up.

Additional Payoff (2)

• π is calculated as follows.

1. If you did DIY in the round of the chosen second identification (r2):

π = 0.2 ·max{0, 2300− 0.3× (AIpro∗,r1 −Responser11 )2}

+ 0.8 ·max{0, 2300− 0.3× (AIpro∗,r2 −Responser22 )2}
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2. If you did CHAT in the round of the chosen second identification (r2):

π = 0.2 ·max{0, 2300− 0.3× (AIpro∗,r1 −Responser11 )2}

+ 0.8 ·max{0, 2300− 0.3× (AIpro∗,r2 −Responser22 )2}

− Pr2

• r1 (r2): the round of the chosen first (second) identification

• Responser11 (Responser22 ): the chosen first (second) identification

• AIpro∗,r1 : in round r1, the true proportion of AI-generated parts in the news

• AIpro∗,r2 : in round r2, the true proportion of AI-generated parts in the news

• Pr2 : if you did CHAT in the round of the chosen second identification, the

price paid for it

Additional Payoff (Diagram)
• When we write max{0, 2300 − 0.3 ×
(AIpro∗ − Response)2} as in the figure on

the left:

• If AIpro∗ −Response = 0, the value is the

maximum, 2300.

• If |AIpro∗ − Response| > 88, the value is

the minimum, 0.

• Therefore, to receive a positive additional

payoff, try to keep the difference between

your identification and the real AIpro∗

within 88.

This is the end of the experiment instructions.

Please answer the quiz and the questionnaire to check whether you understand the

content.
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Click “Next” at the bottom right of the screen.

C Quiz Questions

There are 11 quiz questions designed to ensure that participants fully understood

the experimental rules. Participants answered these questions sequentially. After each

submission, they were shown whether their response was correct or incorrect, along with

an explanatory comment. If a participant answered incorrectly, they were required to

retry the same question until the correct answer was given; only then could they proceed

to the next question.

The quiz questions, together with their answer options and explanatory comments,

are presented below; the correct answers are framed.

Q1 In the main task, you will be asked to submit the maximum amount you are willing

to pay (WTP) for accessing CHAT twice, and to make 44 identifications about

the proportion of AI-generated part in the news articles (AIpro).

• Answer Options

– Yes

– No

• Comments: “The main task consists of 22 rounds in total. In each round,

you are required to make two identifications. At the beginning of Part 1

(Rounds 1–11) and at the beginning of Part 2 (Rounds 12–22), you will be

asked to submit your WTP for accessing CHAT once.”

Q2 In each round, the price (P ) for accessing CHAT (before making the second iden-

tification) may differ.

• Answer Options

– Yes

– No

• Comments: “The price (P ) will be randomly determined by the computer

in each round.”

Q3 The higher your submitted WTP1 at the beginning of Part 1 (Rounds 1–11), the

higher the probability of accessing CHAT in all rounds of the main task.

• Answer Options
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– Yes

– No

• Comments: “The higher your WTP1, the higher the probability of accessing

CHAT in each round of Part 1 (Rounds 1–11). The higher your WTP2, the

higher the probability of accessing CHAT in each round of Part 2 (Rounds

12–22).The WTP1 you submitted for Part 1 has no effect on the probability

of accessing CHAT in the rounds of Part 2.”

Q4 If your submitted WTP is greater than or equal to the randomly determined price

(P ) in a given round, you can always accessing CHAT in that round.

• Answer Options

– Yes

– No

• Comments: “In each round, the price (P ) is randomly chosen by the com-

puter. Even if your submitted WTP is greater than or equal to P , if the

number of participants in today’s experiment with WTP ≥ P in that round

is odd, and you are randomly selected as the one excluded participant, you

will not be able to access CHAT.”

Q5 Suppose you submitted 100 JPY as WTP2. In Round 16, if the randomly chosen

price (P ) is 150 JPY, you can access CHAT.

• Answer Options

– Yes

– No

• Comments: “Since the price (P ) in Round 16 is not less than or equal to

WTP2, you cannot access CHAT”

Q6 Suppose you submitted 100 JPY as WTP1. In Round 7, if the randomly chosen

price (P ) is 100 JPY, you can always access CHAT

• Answer Options

– Yes

– No
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• Comments: “In Round 7, you can always access CHAT only if the number

of participants with WTP1 ≥ P is even. If the number is odd, you can access

CHAT unless you are randomly selected as the one excluded participant.”

Q7 When calculating the final payment, you must always pay the price (P ) for CHAT.

• Answer Options

– Yes

– No

• Comments: “You only pay the price (P ) of the round finally selected if

you actually accessed CHAT in that selected round (the second identification

round).”

Q8 Whether you access CHAT or DIY, you may see the news article of that round

again within the same time limit.

• Answer Options

– Yes

– No

• Comments: “The news article of that round is displayed on the CHAT
screen. The time limit is the same for both CHAT and DIY.

Q9 The additional payoff π, apart from the participation fee, is related to the accuracy

of your identifications. The total additional payoff is calculated as the sum of the

rewards from all identifications minus the sum of the prices (P ) across all 22

rounds.

• Answer Options

– Yes

– No

• Comments: “The additional payoff π is determined by randomly selecting

one of your first identifications and one of your second identifications, and it

depends on the accuracy of these two selected identifications. If you accessed

CHAT in the round where the second identification was selected, only the

price (P ) of that round will be subtracted in the final calculation.”
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Q10 In the formula for calculating the additional payoff π, the accuracy of the second

identification has a greater impact than that of the first identification. Therefore,

in each round, the second identification is more important than the first identifi-

cation for earning a higher additional payoff.

• Answer Options

– Yes

– No

• Comments: “The additional payoff π depends on the accuracy of one ran-

domly chosen first identification and one randomly chosen second identifica-

tion. In the calculation formula, the accuracy of the first identification con-

tributes 20% to π, while the accuracy of the second identification contributes

80%. Furthermore, if you accessed CHAT before the second identification,

the corresponding price (P ) will be subtracted.”

Q11 To maximize your additional payoff π, which of the following is the most correct?

• Answer Options

– Since the cost (P ) for accessing CHAT may be subtracted from the ad-

ditional payoff π, set WTP1 and WTP2 to the minimum and avoid ac-

cessing CHAT as much as possible.

– Since accessing CHAT may be advantageous for the identifying task,

set WTP1 and WTP2 to the maximum and access CHAT as much as

possible.

–

Submit WTP1 appropriately based on your own experience, and then,

after reviewing the feedback at the end of Part 1 (Rounds 1–11), submit

WTP2 based on your experience in Part 1.

• Comments: “ ”

D Questionnaire

D.1 Survey on prior beliefs

1. In today’s experiment, for the task of identifying the proportion of AI-generated

content in the news articles, who do you think can make more accurate identifi-

cations: generative AI (e.g., ChatGPT) or humans? [ Generative AI / Humans

/ Unsure ]
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2. In today’s experiment, for the task of identifying the proportion of AI-generated

content in news articles, please predict your average accuracy (%) for the

first identification across 22 rounds.

3. In today’s experiment, for the task of identifying the proportion of AI-generated

content in news articles, please predict your average accuracy (%) for the

second identification across 22 rounds.

4. Please predict the average accuracy (%) of the first identifications across 22

rounds made by all the participants in today’s experiment.

5. Please predict the average accuracy (%) of the second identifications across 22

rounds made by all the participants in today’s experiment.

6. Please predict the average WTP1 of all the participants in today’s experi-

ment.

7. Please predict the average WTP2 of all the participants in today’s experi-

ment.

8. Please predict ChatGPT’s average accuracy (%) of the first identification

across 22 rounds if ChatGPT performed today’s task.

D.2 Survey on demographic characteristics

1. Please input your age: [ ]

2. Please select your gender: [ male / female / other or not want to answer]

3. Which college or research institute are you affiliated with? [ ]

4. Are you Japanese native speaker? [ Yes / No ]

D.3 Survey on GAI experience

1. Have you heard about ChatGPT? [ Yes / No ]

2. How many days per week do you use ChatGPT on average? (Please input a

number from 0 to 7.) [ ]

3. Have you ever used ChatGPT Plus (the paid version of ChatGPT)? [ Yes / No ]

4. Do you have any experience with programming? [ Yes / No ]
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D.4 Survey on posterior beliefs

1. In today’s experiment, for the task of identifying the proportion of AI-generated

content in the news articles, who do you think can make more accurate identifi-

cations: generative AI (e.g., ChatGPT) or humans? [ Generative AI / Humans

/ Unsure ]

2. Please rate the difficulty of the task in today’s experiment of identifying the pro-

portion of AI-generated content in the news articles. [ Very easy / Easy / Neutral

/ Difficult / Very difficult ]

3. How familiar were you with the news content (people or events) used in today’s

experiment? [ Not familiar at all / Not very familiar / Neutral / Somewhat

familiar / Very familiar ]

4. How do you feel about the potential danger to society posed by ’AI-generated fake

news’ like those used in today’s experiment? [ Do not feel any danger at all / Do

not feel much danger / Neutral / Feel somewhat dangerous / Feel very dangerous

]

5. Personally, to what extent do you feel there is a risk in using AI tools such as

ChatGPT? [ Do not feel any risk at all / Do not feel much risk / Neutral / Feel

some risk / Feel a great deal of risk ]

6. In today’s experiment, for the task of estimating the proportion of AI-generated

content in the news articles, how did you distinguish the AI-generated parts?

(Please select all that apply.)

• Detected factual errors (e.g., checking whether the persons or events men-

tioned in the news actually exist)

• Felt that the grammar or wording was unnatural (e.g., typos or grammatical

mistakes)

• Felt that the context or logic of the text was inconsistent or disjointed (e.g.,

sudden shifts in context, contradictions)

• Other (please specify if you used any method not listed above): [ ]
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E Experiment Screens (Main Task)

Figure A.5: Submitting WTP1

Figure A.6: Confirming WTP1 and proceeding to Part 1
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Figure A.7: Reading News

Figure A.8: First Identification
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Figure A.9: Screen informing participants that they can do DIY

Figure A.10: Screen informing participants that they can do CHAT
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Figure A.11: DIY
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Figure A.12: CHAT( AI2, AI4)
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Figure A.13: CHAT( HM2, HM4)
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Figure A.14: Second Identification
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Figure A.15: Feedback and Submitting WTP2
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Figure A.16: Confirming WTP2 and proceeding to Part 2
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