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Abstract

Consumers often exhibit behavioral cycles with alternating abstinence and
indulgence over time. In the framework of tempting good consumption under
limited willpower, we develop a simple model of the self-control cycles. To
do so, based on the empirically relevant property of self-control, we incorpo-
rate two countervailing effects that self-control behaviors have on willpower
with different delays. First, exercising self-control as of restraining tempt-
ing consumption depletes willpower in the next instant, and thereby reduces
mental capital available for self-control thereafter. Second, as the self-control
experience is accumulated, the consumer’s willpower is gradually enhanced.
The resulting predator-prey type dynamics in consumers’ cognitive mechan-
ics lead to cycles in tempting good consumption. The self-control cycles
occur when (i) the self-control cost reducing effect of willpower and (ii) the
willpower enhancing effect of self-control are both sufficiently strong.
Keywords: Self-control, cycle, temptation, willpower, malleability, con-
sumption.



1 Introduction

People often repeat cyclically self-regulatory and indulgent behaviors. For
example, they repeatedly alternate between dieting and binge eating; hard
working and excessive drinking; intensive studying and binge watching; and/or
rehabilitation and reoffending. Although the cyclical nature of self-control
behaviors is well-known, there has not been theoretical research on how it
takes place.

By incorporating dynamic interactions between self-control and the un-
derlying metal capital, willpower, this study aims at developing a model of
self-control cycles, defined as alternating abstinence-indulgence behavioral
phases in tempting good consumption, in which self-control of restraining
tempting goods cyclically fluctuates over time as willpower repeats depleting
and accumulating processes.

To do so, we develop a model of lifetime-utility maximizers who consume
tempting and non-tempting goods, e.g., sweet and vegetable, in which self-
control for restraining tempting good consumption depletes willpower, which
in turn raises self-control costs in the next instant. With the willpower
constraint, we describe consumption behavior in the context of intertemporal
self-control allocation.

Our basic idea in describing consumers’ dynamic self-regulatory behav-
ior is to incorporate two empirically-relevant properties of willpower as self-
control capacity. The first is depletability: as reported by, e.g., Kool et
al. (2013), Dang (2018), Boat et al. (2020), and Baumeister et al. (2024),
willpower is depletable owing to self-control execution. The second property
is malleability: willpower can also be enhanced or trained through repeated
self-control behaviors, as shown by Oaten and Cheng (2006a, b), Piquero et
al. (2010), Kaplan and Berman (2010), Sultan et al. (2012), and Fries et al.
(2017). By focusing on the two effects, we extend our previous model (Ikeda
and Ojima, 2021), such that self-control behavior depletes willpower in next
instant, as in the model of Ikeda and Ojma (2021), whereas the self-control
experience contributes to enhancing willpower in later periods. By taking
into account these countervailing effects that will occur with diffrent delays,
consumers are assumed to allocate self-control of controlling tempting good
consumption

In the resulting interactive dynamics of willpower and self-control experi-
ence capital, they have asymetric cross effects on each other: An increase in
willpower reduces self-control costs required when restraining tempting good
consumption, and hence reduces self-control experiences, on one hand. On
the other hand, an increase in self-control experiences contributes to enhanc-
ing willpower. The dynamics with such asymmetic cross effects are known



as the predator-prey type dynamics. Our idea is to describe self-control cy-
cles by introducing the predator-prey structure in terms of willpower and
self-control experience capital in consumers’ cognitive mechanics.

As a natural consequence, we show that the self-control cycle takes place
when the asymmetic cross effect is large enough, that is, when both of (i) the
self-control cost reducing effect of willpower and (ii) the willpower enhancing
effect of self-control are sufficiently strong.

2 Consumers with willpower

We start with modeling consumer behavior with depletable willpower. As
the key element, we specify critical roles that are played by the willpower
constraint both in the short run and in the long run. In the short run, a
self-control plan should be scheduled within the historically given willpower
capacity. In the long run, in which willpower varies owing to the depleting
and enhancing processes, the stream of the self-control flow is determined
jointly with the dynamics of the willpower capacity.

2.1 The model with tempting and non-tempting goods

Consider an infinitely-lived consumer. As in Ikeda and Ojima (2023), there
supposed to be two distinct consumption goods, tempting good z (say, a
sweet) and non-tempting good ¢ (say, a vegetable). The good x is tempting,
like a sweet, in the sense that there is a high temptation level 27 of quantity
consumed, where he has to self-control so as to restrain himself from con-
suming such a great quantity. In contrast, good c, like a vegetable, is not
tempting, in the sense that, how lower consumption level he may choose, he
can realize it without bearing any self-control costs.

To restrain the consumption level of tempting goods, the consumer has
to bear subjective self-control costs in the form of dis-utility. To describe
dynamically interactive properties of the self-control behavior, we introduce
willpower W, a mental resouce that eases self-control efforts. Formally, we
specify the self-control costs as a function of z, 27, and willpower stock W,
f (a:, W mT), which is assumed to be twice continuously differentiable and
satisfies

f > 07f:13<07fW<07fT>07
faw > 0, and f is convex in (z, W),

where f, = Of (z, W;2T) /0x, etc. and fr = Of (z,W;a™) /0zT. As 2T is
exogenous in the model, we will omit it from f to express f (x, W) insofar as
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there is no need to make it explicit. From the above, a larger consumption of
x and a stronger willpower imply smaller self-control costs, whereas a higher
temptation level 7 entails larger self-control costs. With a greater willpower
stock, the marginal cost of restraining x (—f;) is lower.

At each point in time ¢, the consumer’s willpower is re-charged at the
rate of 1, whereas self-control activities at that time deplete willpower and
thereby decrease the willpower stock available at the next instant. With the
initial willpower stock being exogenously given by Wy, willpower is generated
by the following equation:

W)=y —af{fo+ flzt),W ()}, a>0, (1)

where a dot represents the time derivative, i.e., W (t) = OW (t) /0t; para-
meter a(> 0) denotes the strength of the willpower-depleting effect of self-
control; and fy represents exogenous subsistence mental costs, required for
miminal self-control in daily life, such as keeping moral rules, surviving in a
social competition, putting up with discrimination, etc.

We also incorporate the willpower-enhancing effect of exercising self-
control. To do so, we introduce the discounted sum of the past self-control
costs M as

M(t):/ k{fo+ f(x(r),W(r))}exp(—o(r —1t))dr, k> 0,0 > 0.
(2)

It represents the cumulative experiences of self-control excution. We call it
the self-control experience capital, or simply the self-control experience. By
differentiating the above equation by ¢, the law of motion for the self-control
experience is given by

M (t) = k{fo+ f(x(t), W (£)} — oM (t), (3)

where M (0) = M,, a constant. The self-control experience, therefore, is
accumulated by the difference of the self-control cost flow & (fo + f) and the
depreciation o M.

We specify the willpower-enhancing effect of self-control excution by as-
suming that the willpower re-charge rate ¢ linearly and positively depends
on the self-control experience M: 1 (M) = vM + 1)y, where v > 0. Then,
the willpower dynamics in (1) are rewritten as

W (t) =yM + g —a{fo+ f(z(t),W(t)}. (4)

As described by (3) and (4), exercising self-control fy + f has two ef-
fects on willpower that differ both in timing and signs. To be intuitive,
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self-control behavior at time t (fy 4+ f(¢)), on the one hand, depletes next-
instant willpower (W (t)) by a (fo + f(t)). On the other hand, it enlarges
the next-instant self-control experience capital (M (t)) if it is large enough
to dominate the depreciation oM (t), which in turn contributes to enhancing
the next-next-instant willpower (W (t + dt)). Owing to these opposite effects
of self-control on willpower that occur with delay, our model has a potential
of generating cyclical self-control behavior through the predator-prey type
dynamic mechanism.

We specify the consumer’s utility as

Up = /Ooo {u@ () +v(c(t)) = fo— flz@), W(t)}exp(=rt)dt  (5)

where the instantaneous utility functions u (z) and v (¢) are assumed to be
twice continuously differentiable, strictly increasing, and strictly concave; r
represents the subjective discount rate, which is constant.

Taking non-tempting good ¢ as numeraire, let ¢ denote the price of the
tempting good. It is assumed to be constant. He is endowed with constant
income y at each point in time. There is no asset and the consumer’s flow
budget constraint is given by

y=qu(t)+c(t). (6)

2.2 Optimal willpower-self-control dynamics

The consumer maximizes lifetime utility (5) by choosing the time profile of
consumption {z (t),c(t), W (t)},-, under the willpower constraint (4), the
self-control experience dynamics (3), the flow budget constraint (6), and the
two initial conditions, W (0) = W, and M (0) = M,. Letting A\ and 7
denote the current-value shadow prices of willpower charging W and self-
control experience accumulation M, respectively, the optimality conditions
are given by

u(z) = (1 4+ o —km) fo (2, W) = qv' (y — qz), (7)
A= (r+afw (@, W) A= kfw (, W) 7+ fu (z, W), (8)
T=(r+o)m—"A\, 9)

together with the transversality conditions for W and M.

Equation (7) requires that the marginal utility of tempting good con-
sumption x (the L.H.S.) be equal to that of non-tempting good consump-
tion ¢ (the R.H.S.). The marginal utility of z is composed of direct mar-
ginal utility v’ (z) and the marginal benefits of economizing self-control costs

4



((1+ aX — kr) f. (x,W)), where the marginal benefits are in turn composed
of the direct benefit f, and the indirect benefit and cost of economizing the
present willpower, —a\f, and kr f,. Equation (8) represents the Euler con-
dition for the shadow price of willpower charging. The Euler condition (9)
generates the shadow price dynamics for the self-control experience.

2.3 Local dynamics

Supposing that there exists a steady-state solution (z*, ¢*, W*, M*), we con-
sider local dynamics around the steady state point. From (7), z can be
expressed as a function X (A, m, W) . By substituting it to (3), (4), (8), and
(9), and linearizing the result around the steady state, the optimal dynamics
can be reduced to the autonomous differential equation system:

(Wt Mt )‘\t 7:('t )T:J(Wt—W* Mt—M* )\t—)\* 7Tt—7T* )T,

—aY vy —a?fZ/A akfZ/A
kX —0 akfﬁ/A —szf/A
w0 T+ o —kX ’
0 0 —ry r+o

J = (10)

where

§ = 1+a)—km,A=u"+0" —Efpa,
Y = fw+ fofawl/AZw = fuw + favE/A,

and the coefficients are all evaluated at the steady state point.
Let K denote the sum of the second order principal minors of J:

K=-Y{a(r+aX) + 27k} + r £, 5w /A — o (r + o).

Then, by adopting Lemma 2 of Dockner and Feichtinger (1991), we obtain
the following stability condition.

Proposition 1: The optimal consumer dynamics under willpower are locally
saddle-point stable if and only if the steady state point satisfies:

1. det(J) >0
2. K < —r*+/r*+4det(J)



Insert Figure 1 around here.

Proposition 2: Suppose that the conditions in Proposition 1 are met, so
that the optimal consumer dynamics are locally saddle-point stable. Then,
the stable roots are imaginary if and only if the steady state point satisfies

K > —2y/det(J).

Propositions 1 and 2 provide the conditions for cyclical consumption be-
havior under costly self-control. However, it is impossibly hard to show
precise conditions for the existence of such an optimal solution. Thus, we
next focus on case of linear self-control costs and thereby derive cyclical self-
control as a optimal behavior.

3 The linear self-control cost case

To analyze the optimal dynamics more explicitly, consider the case in which
the self-control cost function f (x,W) is linear: f = —éx — eW;6,e > 0.
Then, the optimality conditions are rewritten as

u(x)+6(1+aX—kr)=qv (y — qu), (11)

A= (r—ae) A+ kem — ¢, 12

(12)
T=(r+o)m—7A (13)
W =~yM+ 1, —a(fy—ox—eW), (14)

M =Fk(fy—b6x—eW)— oM. (15)

where time denotation is omitted without the risk of confusion.
From (11), the optimal consumption of the tempting good x can be solved
as a function of the two shadow prices:

r=X\m);X\>0X,<0. (16)

That is, in response to an increase in the shadow price of willpower, A, the
consumer increases tempting-good consumption to save willpower: X, >
0. Upon an increase in the price of the self-control experience capital, =,
tempting-good consumption is reduced to accumulate the self-control expe-
rience: X, < 0.



3.1 The steady-state solution

By setting ( N7 W M ) = 0 in (12) through (15), the steady state
solution (A*, 7*, W* M*) is obtained as

. e(r+o) . e

A _(r—as)(r+a)+k75’ﬂ (r—oae)(r+o)+kye’ (17)
C fomSXONm)  aby ki

W= - My Ly v S

For these values to be positive, the following condition should be met:
Assumption 1:

1. (r—oae)(r+o)+kye >0,
2. fo—O6X (N, %) — Lo > 0,

aoc—ky

3. Yy (o — k) > 0.

3.2 Linearized system

In this linear self-control cost model, the coefficient matrix of the linearized
system with respect to ( W, —-W* M,—M* \—\" m —7* )T, ie., J
in (10), is reduced to:

ac v adXy adX,

. —ke —0o —]f(SX)\ —k’(SXﬂ o Jll Jlg
J = 0 0 7r—ae ke - < 0 Jo > ’ (19)
0 0 —y r+o

As the matrix is block-recursive, the intrinsic property of the (W, — W*,
M, —M*)T dynamics is determined by submatrix .J;;, which has the predetor-
prey type structure that antidiagonal elements have different signs: an in-
crease in willpower stock W; reduces self-control experience accumulation
M, by —ke , whereas an increase in M, in contrast enhances willpower ac-
cumulation W, by . These couterveiling interaction of the willpower stock,
playing a role as the number of predator, say wolves, and the self-control
experience capital, playing a role of the number of prey, say dears, yields
cyclical self-control behavior.



The characteristic roots are easily computed from second-order sub-matices
Ji1 and Jyy as

ae—a—i-\/(aa—a)g—éla(kry—aa)

X, = 5 , (20)
ac — o —/(ae —0)* — 4e (kv — ao
. Vi of ety o) o

which are roots for Ji;, and

2r+0—a5+\/(a5—0)2—45(lm—aa)
W, = 9 ) (22)

2r+o0 —ae — \/(a6—0)2—4€(k7—a0)
w, = 5 : (23)

which are roots for Jis.

As roots x; and w; have the same squared root parts, the four roots
are either all real or all imaginary. Equations (20) through (23) imply the
following;:

Lemma 1: Four roots y; and w; are all real or all imaginary. They are
imaginary if and only if

(e — 0)? < 4e (ky — ao) (24)

As seen from (24), for the roots to be imaginary, it is necessary that
ky > ao, i.e., the cross indirect effect (kv), measured by the product of
the antidiagonal elements of Ji;, is greater than the own direct effect (o),
defined as the product of its diagonal elements, meaning that the predator-
prey mechanism dominantly works. Note that the antidiagonal effect
k~ captures the willpower-enhancing effect of self-control exertion,
whereas the diagonal effect ao depends on the willpower-depeleting
effect a. Thus, the willpower-enhancing effect needs to be suffi-
ciently large, compared to the willpower-depleting effect, for the
cyclical behavior to occur.

3.3 Saddle-point stability

The fourth-order differential equation system with coefficient matrix (19)
describes interactive dynamics of two state variables W; and M;, which are
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historically determined, and two shadow prices \; and 7;, which are jumpable.
For the system to be saddle-point stable, two of the four roots should be
stable roots, and the other two be unstable roots. As shown by Lemma Al
in Appendix, we have sign(Re(w,)) = sign(Re(w,)) under the first condition
of Assumption 1, where Re denotes the real part of a complex number. Thus,
the system is saddle-point stable if and only if the following two conditions
are met:

1. sign(Re (x,)) = sign(Re (x3))
2. sign(Re (x;)) # sign(Re (w;))

From (20) and (21), the first condition is met if and only if kv > ao: the
antidiagonal effect is greater than the diagonal effect. When kv > ao, in
turn, the third condition of Assumption 1 is equivalent to that ¢, < 0. In
what follows, we assume that these inequalities hold valid:

Assumption 2: ky > ao and 9, < 0.

Then, a close look at roots x; and w; (i = 1, 2) yields the following result
on saddle-point stability (see Appendix A1.6 for the derivation).

Lemma 2: Under Assumptions 1 and 2, the following two properties hold
valid:

1. The steady-state point is locally saddle-point stable if and only if either
(i) ae < o or (ii) ae > 2r + o is satisfied.

2. In case (i), two stable roots are given by y; and x,, while in case (ii),
they are given by w; and ws.

3.4 Self-control cycles

From the recursive block structure of coefficient matrix .J, (19), the dynamics
of state variables (W, M) are generated by two stable roots (either (xy, x5) or
(w1,ws)), whereas the dynamic properties of (A, 7) and hence of z = X (A, 7)
are determined solely by the corresponding roots w;.

More specificly, in case (i) of Lemma 2, the (W, M) dynamics are driven
by stable roots x; and y,, while, with w; being unstable rootes, (Ao, 7o) and
hence o = X (Mg, 7o) jump to their steady-state values, i.e., the (A, 7, x)
dynamics are degenerate, so that their time prifles are perfectly smoothed.
In case (ii), after (Ao, 7o) is determined on the saddle hyperplane by the



initial condition, (Wy, My) =given, the dynamics of (W, M, A\, 7) and, hence,
of X (A, ) are generated with stable roots w; and ws.

In sum, consumption (x,c) exhibits non-degenerate dynamics only when
roots wy and wo work as stable roots, i.e., case (ii) in Lemma 2. In particular,
when roots w; and wy are imaginary, consumption (z,c) exhibits a stable
cyclical time-profile. We call it a self-control cycle.!

Defnition: Stable cyclical dynamics of consumption (z,c) are called self-
control cycles.

Note that even when roots w; and x; are imaginary, self-control cycles
do not take place if w; are unstable roots and Y, are stable ones. In that
case, cyclical dynamics occur only for mental variables (W, M), which are
usually unobservable, whereas the shadow prices and hence consumption
are perfectly smoothed and remain at the steady-state values. These be-
haviorally unobserveable mental cycles are out of interest for the present
economic analysis.

Insert Table 1.

Based on Lemmas 1 and 2, Table 1 taxonomizes possible saddle-point sta-
ble dynamics into four cases (1)-(4), according to which roots are stable roots
and which roots are real numbers, and characterizes behavioral dynamics in
each case. Self-control cycles take place in case (4):

Proposition 3: Under Assumptions 1 and 2, self-control cycles occur if and
only if case (4) holds valid: ae > 2r 4+ o and (as — 0)* < 4e (vk — ao).

As seen from Table 1, four cases (1) - (4) can be characterized by relative
magnitudes € and vk in the parameter space. Figure 2 illustrates the regions
of cases (1)-(4) in the parametric space of (¢,7vk). To incorporate the re-
striction by Assumptions 1 and 2, the figure illustrates the regions vk > ao
(Assumption 2) and (r — ae) (r + o) + kye > 0 (condition 1 of Assump-
tion 2). As the latter inequality can be rewritten as € (a (o +71) — kvy) <
r (r 4+ o), the restriction is depicted as the region {(g,vk) |ky > a (o + 1)} U

{(e,fyk) ky < a(o+r) and k’y—a(o+7‘)>—r(r6—+‘7) 2

Insert Figure 2.

!'Unstable consumption time-profiles cannot be a optimum solution, because they nec-
essarily violate the transversality condition and non-negativity.

2Condition 2 of Assumption 1 is satisfied if free parameter fj is large enough. Condition
3 of Assumption 1 is met if ¢, < 0.
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3.5 Self-control cycle solutions

We now focus on the self-control cycle case, i.e., case (4), where w; (i = 1,2)
are stable imaginary roots and y, are unstable imaginary roots. As asso-
ciated characteristic vectors can be complex, we decompose the character-
istic vector v associated with wsy into the real and imaginary parts as v =

(/‘LWv HEenrs Foxs ILL7T)T + (¢W7 ¢M7 ¢/\a ¢7r)T i. Then, eXPreSSing W2 as Wy =p — Siu
where

2r+o —ae \/45(7k—a0)—(a5—0)2
_= S =
2 ’ 2 ’

the self-control cycle solution to (19) is obtained as:

Wy —Ww= Hw
My = ]\/ﬁ = exp (pt) R (Cycos(st) — Cysin(st)) Far | 4
At —A Hox
M- Fir
bw
(Ch cos(st) + Cysin(st)) Q;M | (25)
A
P

with the z; dynamics being generated by (16), where C; and C, are con-
stants. Note that two similar terms associated with roots x; that should
have appeared on the right hand side are not there, because x; are unstable
roots, so that the associated constants are optimally set zero.

Set t = 0 in solution (25) and substitute the initial conditions for W
and M, into the result. For given steady-state values (W*, M* \* 1), the
resulting fourth-order simultaneous equation system determines constants C
and C, and the intial values of the shadow prices Ay and 7. Once those
values are given, (25) and (16) uniquely generates the cyclical time profile of
(Wi, My, Ny, 4, ) for ¢ > 0.

3.6 Alternating inhibition and relaxation phases: Nu-
merical examples

In the case of the self-control cycle, upon external shocks, consumer behavior
exhibits alterantingly an inhibition phase, in which tempting good consump-
tion x continues to decline, and a relaxation phase, in which x continues to go
up. To show numerical examples of self-control cycles, we specify parameter

3For derivation, see Appendix A3.1.
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values as in Table 2, where the values satisfy Assumptions 1 and 2 and the
conditions in Proposition 3. Initial values Wy and M, are set as equal to the
steady state values of W and M under the parameter values.

Insert Table 2. Parameter values.

3.6.1 An increase in self-control needs f

Figure 3 illustrates cyclical adjustments to an permenent increase in external
self-control needs fy from 50 to 55.

Upon the increased needs for self-control, W* needs to be increased (see
(18)), whereas M* and z* are unchanged. To attain the greater W*, the con-
sumer initially reduces z; discretely from the initial steady-state level and,
thereafter, further decreases it over time: an inhibition phase starts (I-1, in
Figure 3). The inhibition leads to accumulation of self-control experience
capital M; (I-2) Although W, initally gets depleted due to the enhanced
self-contol behavior, it thereafter reverses to an upward process due to the
accumulation of M; (I-3). When M, is accumulated enough that its scarcity
reached a critial low level, the consumer stops inhibiting tempting good con-
sumption and thereafter a relaxation phase starts, with z; reverting into an
increasing process (R-1). In this phase, M; is decumulated due to relaxation
with over-time increases in x; (R-2), whereas W; increases until M; becomes
low enough, and thereafter turns into a decreasing process (R-3). When M,
reaches a critial low level, the upward motion of z; levels off, and thereafter
the relaxtion phase reverts to the second inhibition phase (I-4).

In this way, through adjustment process with the two phases alternating
continuously, tempting good consumption converges to the same steady-state
level as the pre-shock level, where the greater post-shock self-control is at-
tained with a greater willpower stock that was accumulated under enhanced
self-control experiences in the interim run.

Figure 3. Cyclical adjustments to an increase in external self-control needs

Jo-
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3.6.2 An increase in income y

By considering a permenent increase in income y from 1,000 to 1,010, Figure
4 depicts another typical example of cyclical adjustments, in which the ad-
justment starts with the relaxation phase. Upon the positive income shock,
the consumer increases steady-state tempting good consumption z*. Owing
to the resulting decrease in the self-control needs, willpower W* is decumu-
lated, whereas M* is not affected (see (18)). To attain the new steady-state
consumption plan, the consumer initially enjoys binge consumption by in-
creasing z discretely and, thereafter continues to further increase it over
time ((R-1) in Figure 4) until self-control experience capital M; declines to a
critical level (R-2). At the outset of the relaxation phase, W; exhibits a short
period of accumulation. But, sooner or later, it turns into a decumulation
process owing to over-time decreases in M; (R-3). When M, reaches a critical
low level, x; reverts to a decreasing process, and the inhibition phase begins
(I-1). In this way, through the opposite cyclical process that occurs in Figure
3, x; converges to a higher steady-state level with a smaller willpower stock.

Figure 4. Cyclical adjustments to an increase in income y.

As a whole, as in the predetor-prey dynamics, in which the cycles of the
number of the prey (deer) precede those of the number of the predator (wolf),
and as shown in Figures 3 and 4, the cycles of self-control experience capital
M, (as prey) precede those of the willpower stock W; (as predator). Those
cycles are brought about by preceding, opposedly-directed cyclical behavior
of tempting good consumption x; that the consumer optimally chooses.

4 Conclusions

By incorporating dynamic interaction between depletable willpower and self-
control as of restraining tempting consumption, we have examined the possi-
bility of self-control cycles, or abstinence-indulgence cycles. The self-control
cycle takes place when (i) the self-control cost reducing effect of willpower
and (ii) the willpower enhancing effect of self-control are sufficiently strong.

13



Appendix
A1 Solutions in the linear self-control cost case

A1.1 Optimization
Consider the linear model with f (z, W) = fy — (éx + W) and

W =~M + g — afo+ a(bx +cW) (26)

M =Fk(fy— (b +eW))— oM (27)

Define the Hamiltonian function as

H = u(@)+v(y—qx)— fo+ 0z +eW) + X{yM + ¢y — afo + a(dx+cW)}
+7{k (fo — (bx +eW)) — oM}

where c¢ is eliminated by using the budget equation gx + ¢ = y. Then, the
first-order conditions are given by

H, = 0;u(z)—qv' (y—qz)+ 6+ Aad — wké =0
= U (2)+ 61+ a—7k)=qv' (y — qx)
A—rA = —Hpy:A—r)A=—(c+ae) — ker)

= A=(r—ae)\+ker—¢

T—rr = —Hy:7—rn=—(y\—om)
= T=—3A+(r+o)w

which correspond to (11) though (13), respectively. From the first equation
above, we have v’ (z) — qv’ (y — qz) = —6 (1 + Aa — 7k), which implies op-
timal x should depend positively on A and negatively on 7. We express this
relation by X (A, 7), where

0 ko
S X, = <0,
U +q2vu

X/\ = ul/ + q2,U/I

A1.2 Steady-state solutions and Assimption 1
Condition (/.\,7%, W, M > = 0 implies

(r—ag) X\ +ker* —e=0

14



YN+ (r+o)r" =0

YM* + 1y — afo+ a(éz" +cW*) = 0
= acW" +yM* = =g+ a(fo— 06X (N, 7"))

kE(fo— (6" +eW*)) —oM* = 0
= keW'+oM*=k(fo—6X (\*,7"))
The first two equations can be summarized as
r—ae ke A\ [«
—y r+o ™ ) \0
which can be solved as

(i) - (r—aa)(rl—}-d)—l—vks(r—;a r_—kcis)((g))
_ ! (5(”0)) (28)

(r—ae)(r+o)+ ke ey

This solution corresponds to (17).
The other two equations can be summed up to

ag 7y W\ [ =Y+ al(fo—6X (A7)
ke o M* ) k(fo—o0X (X, 7))
which can be solved as

(3) = s (% o) (Y s™)

_ ! ( o { =+ (fo— 6X (X', 7))} — 7k (fo — 6X (M, 7)) )
clao —ky) \ —ke {~t +a(fo— 6X (X, 7))} + ack (fo — 6X (X", 7))

o (a0 — k) (fo — 6X (X', 7)) — o

- g<aa_m>< ey ) (29)

corresponding to (18).

By considering the positivity conditions for (A", 7*, W* M*), the condi-
tions of Assumption 1 are derived. First, from (28), (A\*, 7*) is positive if and
only if

(r—ae)(r+o)+~vke >0,

15



which is equivalent to inequality 1 of Assumption 1. Second, from (29),
W* > 0 if and only if

* * wO
_ by __ 9%
fo 6X( 77r) 2 > 0,

and M* > 0 if and only if
o (o — k) > 0.

The last two inequalities are equivalent to inequalities 2 and 3 of Assumption
1.

A1.3 Linearized system with coefficient matrix (19)
The dynamic system is given by

W = M+ —afo+a(6X (A1) +eW)
~ ae(W—=W")+~v(M—M")+ adX\ (A= X) + ad X, (1 — %)

M = k(fo— (X M\ 7)) +eW))— oM
~ —ek(W—-W*")—0(M—M*)—Ek6X\ (A= \) — k6 X, (m —7")

AN = (r—ae)\+ker—¢
= (r—ae) A=X")+ke(mr—7")

T = YA+ (r+o)7
= A A=X)+(r+0) (=)

It follows that the coefficient matrix J of the linearized system with respect

to(W—W* M — M* X=X W—W*)isgivenby
ac v adX, adX;
J — —ke —0o —k’(SX)\ —]{J(SXW (: J11 J12 )
o 0 0 r—ae ke o 0 J22
0 0 —y r+o
as is shown by (19).

A1.4 Characteristic roots

16



Characteristic roots y, for J;; are obtained from

B _ | x—es —
(=l =¥ T,

& (x—ae)(x+to)teky=x*+(c—ag)x+e(ky—ao)=0

Thus, we have

046—0—1-\/(045—0)2—45%7—040).

X1 = 9 ) (30)
aE — 0 — ae —0)® —de (ky — ao
. Vi 2) (ky — ao) o

which are (20) and (21) in the text. Roots w; for Jog are from

w—(r—ae) —ke

v w—(rto)
& {w—(r—ae)}{w—(r+o)}+eky
= W —(2r—ac+o)w+(r—ag)(r+o)+ecky=0

<|LUI—J22’ = ) ‘ =0

which can be solved as

2r—oz€—|—a+\/(21“—@5—1-0)2—4{(r—oz€)(7‘+a)+€k’y}

wp =

2
2r—a5—|—0+\/(27‘—(15—}-0)2—47“(7‘—045—1—0)—45(1{;7—0402
- . (52)
2r—a5+0—\/(2r—a5+0)2—4r(r—as+0)—45(!{:7—040)
Wy =
2

As the first two terms in the root can be reduced to

(2r —ae+0)> —4r (r—ae+o)
= 49 + %% + 02 — draec + 4ro — 2ae0 — 4r? + drae — dro
= o?¢? — 200 + o2

= (ae— 0)2

17



Thus we have

2r —ae+o+ \/(a5—0)2—45(k:7—a0)
w1 = 9 (33)

as— o+l —0) ~dc(k7-a0) 2 —0c4o—acto

2 2
= xy t+r—ac+o (34)
27“—046—1—0—\/(a5—0)2—45(k7—a0)
Wy = 9 (35)
ac—0—\[lac—0)f —dc(ky—a0) 2 —acto—acto
— +
2 2
= Xot+tTr—ac+o (36)

(33) and (35) are (22) and (23) in the text, respectively.

A1.5 Imaginary roots or real roots

By comparing x; ((30) and (31)) and w; ((33) and (36)), we see that four
roots are all real or all imaginary. It is easy to see from the equations that
they are all imaginary if and only if (ae — 0)2 < 4e (ky — ao), as summarized
in Lemma 1 in the text.

A1.6 Saddle-point stability and Lemma 2
We begin with proving the following property:

Lemma A1: Under inequality 1 in Assumption 1 ((r — ag) (r + o) + kvye >
0), sign(Re (wq)) =sign(Re (w2)) .

Proof: When w; and ws are imaginary, it is trivially valid that sign(Re (w1))
= sign(Re (w2)). We thus focus on the case in which they are real. From
(32), the inside of the square root satisfies

or —ae +0)° —4r (r — ae + o) — 4e (ky — ao)
)2—4(7“2—1—(0—045)7“—1-5040) — dekry
)

)

2—4{(r+o—)(r—a€)+€k7}

<

(
(
(
(2r—ae+o

under condition 1 in Assumption 1. Therefore, when w; are real roots, if
2r—ac+o0>0,w >wy >0.1f2r —ac+0 <0, wy <w; <0.1

For the system to be saddle-point stable, two of the four roots should be
stable roots, and the other two be unstable roots. As pointed out in the first

18



paragraph of Section 3.3, From Lemma A1, the saddle point stability is the
case if and only if

L. sign(Re (x;)) = sign(Re (x2))
2. sign(Re (x,)) # sign(Re (w;))
As for condition 1, (30) and (31) imply the following lemma:

Lemma A2: sign(Re (x;)) = sign(Re(x,)) if and only if ky — ac > 0.
Proof: The inside of the square root in (30) and (31) is smaller than ae — o
if and only if ky — ac > 0.0

From condition 3 of Assumption 1 (¢, (ao — k7y) > 0), inequality kvy —
ao > 0 implies ¥, < 0. Assumption 2 in the text assumes that these two
inequalities hold valid.

Suppose that Assumptions 1 and 2 hold. Then, from (30) and (31),
sign(ae — o) = sign(Re (x;)) = sign(Re (x,)). Similarly, from (33) and (35),
sign(2r — ae + o) = sign(Re (w1)) = sign(Re (wq)). Thus, the saddle-point
stability condition sign(Re (x;)) # sign(Re (w;)) (i = 1,2) is satisfied if and
only if (ae — o) (2r — ac 4+ o) < 0. This is satisfied either when (i) ae < o
(hence ae < o + 2r) (i.e., case (i) in Lemma 2-1) or when (ii) ae > o + 2r
(hence ae > o) (case (ii) in Lemma 2-1). These conditions are summarized
in item 1 of Lemma 2. Item 2 of Lemma 2 is implied from the expressions of
x; and w; ((30), (31), (33), and (35)).

A2 Proposition 1 in the linear self-cotrol case

In this appendix, we show that, under Assumptions 1 and 2, the saddle-
point stability condition obtained in the linear self-control case in Section 3,
i.e., the item 1 of Lemma 2,

(e — o) (e — 0 — 2r) > 0, (37)

is equivalenet to the saddle-point stability condition in Proposition 1. In the
linear model, det (J) reduces to

det (J) =e(vk —ae){(r —ae) (r+ o) +evyk} >0,

where the last inequality comes from Assumptions 1 and 2. As item 1 of
Proposition 1 is thus satisfied in the linear case, what we should show here is
that condition (37) is satisified if and only if item 2 of Proposition 1 is met,
or equivalently, if and only if: either condition of the following two conditions
1 and 2 is satisified

19



1. K >0 and det (J) > (%)2—1-7“25
2. K <0

We shall prove that if either condition 1 or 2 is met, inequality (37) holds
valid.

Lemma A3: Condition 1 implies inequality (37).
Proof: We have

det (J) — (g) —r2§ (38)
= }l(as—a)(046—0—27“){}(—1—6(716—045)—i—(?“—oze)(r—i—a)—i—syk:}.

Under Assumptions 1 and 2, vk —ae > 0 and (r — ag) (r + o) +evk > 0.
Therefore, condition 1 implies (37). W

Lemma A4: Condition 2 implies inequality (37).
Proof: We prove this by seperating two cases (i) ac — o < r and (ii)
ag—o >T.
Consider case (i): ac—o < r. As K can be rewritten as (ae — o) {r — (ae — o) }+
2¢e (vk — ae), condition 2 (K < 0) implies
ag — o < —M < 0,
r— (e —0)
where the last inequality holds vaild in the present case (i) under Assumption
2. As2r+o0—ae >r+o0—ae>0in case (i), this implies (37).
Next, consider case (ii): ac — o > r. Item 1 of Assumption 1 can be
rewritten as
evk —eao > —r* + (ca — o) 1. (39)

We have

K = —a%* —or—o*+ aer + 2k
= (2evk — 2ca0) + 2ca0 — o’e? — or — 0* + aer
> 2(—r’+ (ca—o)r) —a’e® + (ca —0)r — 0° + 2ca0 (from (39))
= 224 3(ca—o0)r— (ca— o)
= 2r—ac+o)(ac—0—r).
Thus, condition 2 (K < 0) implies 2r — ae + 0 < 0,because ac —o —r > 0

in case (ii). As ae — o > r > 0 in this case, (37) holds valid under condition
2. n
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Lemmas A3 and A4 show that (37) holds valid if either condition 1 or 2
is met. In Lemma A5 below, we next show that the converse relationship is
also true.

Lemma A5: Inequality (37) implies that condition 1 or 2 hold valid.
Proof: Suppose that (37) holds valid. Then, K > 0 or K < 0. Consider the
case that K > 0. In this case, from equation (38), inequality (37) implies
condition 1 under Assumptions 1 and 2. When K < 0 is the case, condition
2 trivially holds valid. Il

A3 Explicit solutions in the linear case

We here derive explicit cyclical solutions for optimal consumer behavior
in the liear case by solving

(Wt Mt )‘\t Wt)T:J(Wt—W* Mt—M* )\t—)\* 7Tt—7T*)T,
(40)
under the initial conditions that (Wy, M) is given, where J is given (19).

A3.1 General solutions in the case of self-control cycles

Consider the case that self-control cycles take place under Assumptions 1
and 2. From Proposition 3, it is valid here that ae > 2r +0 and (ae — 0)* <
de (vk — ao), so that w; (i = 1,2) are stable imaginary roots (Re(w;) =
(2r + 0 —aeg) /2 < 0), whereas x; and x, (i = 1,2) are unstable imaginary
roots (Re(y;) = ae — o > 0). As associated characteristic vectors can be
complex, we denote the characteristic vector associated with ws, v, as v =
i+ @i, where v, i, ¢ € R*. More explicitly, we use the following notation:

(vw, Uar, Vx, Ur) "
A+ ot
(HWa,UM7M,\aM7r)T + (¢W7¢M>¢)\7¢7r)T . (41)

By definition, v satisfies (J — wol) (1 + ¢i) = 0, with J being given by (19).
Expressing w; and wsy as w; = p + st and wy = p — si, where

(Y

B 2r+ o0 — ae
p - 2 )

. \/45(fyk—aa)— (ae —0)?

2

21



then, general solutions to (19) are obtained in the following form:

W, — W= Hw
M~ ]\/{ = exp (pt) { (Cycos(st) — Cysin(st)) | FM | +
Ar— A Fex
T fr
bw
: Pur
(Cy cos(st) 4+ Cysin(st)) f (42)
A
P

where C] and (5 are constants. Note that two similar terms associated with
roots x; that should have appeared on the right hand side are not there,
because x; are unstable roots, so that the associated constants are optimally
set zero.

We show explicitly characteristic vector v = p + ¢i. By definition, v =
(Uw,UM,U)\,Uﬂ)T satisfies (J —wal)v = 0:

Qe — Wo v H)y H vw
—ke —0—wo 1, I v |
0 0 r— g — woy ke N =0 (43
0 0 —y r4+o—ws Uy

where (Hy, Hy, Iy, I;) denotes (ad Xy, ad X, —k6 Xy, —k6X,), the elements
of the 2 x 2 north-east submatrix .Ji in matrix J in (19). As wy is a charac-
teristic root for the 2 x 2 south-east submatrix Js9, the third and fourth equa-
tions in (43) are not independent of each other. We thus set vy = r+ 0 — ws
and v, = 7, so that the real and imaginary parts of the vector elements are

given as
() = () (%)
_ (”‘;_Z’)Jr(g)i (44)

Substitute (44) for v, and v, into (43). Then, the first and second equa-
tions in (43) can be solved for (v, var) to obtain

(o)

_ 1 (wot+0) (W —r—0) Hx—y(we +0) He +y(wo =7 — 0) L = *I,
D\ —ke(wy—r—o0)Hy+ keyH; + (wy — ag) (we — 1 —0) I, — 7y (w2 — ae) I,
1 ( Rw+Cwi

N 5 ( Ry + Cyi >7 (45)
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where D denotes the determinant of the 2 x 2 north-west submatrix Ji; :

D = (ws— ag)(ws+ o)+ ke
= A- Bi;

A = p*—s*+p(o—ae) — aso + ke,
B = 2p+o0—ae,

and where

Ry = (p2—32)H>\+p(fyI>\—7’H>\—’wa)—a(r+a)HA—a’wa—fy(r—i—a)[)\—’yQLT,
Cw = —s(2pH\+~I,—rH\,—~H,),
Ry = (p°—5°) I —p(keH\+ (r+ o0+ ae) I+ 1) + ke (r + o) Hy + keyH,
+ae (r+ o) I\ + aevyl,,
Cy = s2ply+keHy+ (r+o+ae)ly+7I,).

By multiplying the conjugate complex number of D to the denominator and
the numerator of (45), we finally obtain

(o)

1 RwA - CwB+ (CwA+ RwDB)i

which implies that the real part of (vy,v M)T is given by

()= (Ga—amiets). o

and the coefficients of the imaginary part are given by

(o) (Gashmyemyy

In sum, characteristic vector (41) is given by (45), (46) and (47). Given
the vector, general solution (42) generates self-constrol cycles once constants
(C1,C5) and the initial shadow prices (A\g,mg) are given, where they are de-
termined by the initial conditions, as we shall show next.

A3.2 Detemining constants (C;,C3) and the initial shadow prices
()\077T 0)
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Setting t = 0 in (42) yields

Wy — W+

Pw  Pw
My — M* Ly Pu ( Ch )
« , 48
Ao — A By O Cs “3)
To — T o ¢7r

where the elements of the coefficient matrix on the right hand side are given
by (45), (46) and (47).

From the first and second equations in (48), constants C; and Cy are
determined by the initial values Wy and M, as

o SuWo— W) — by (Mo = M)

1 — )
Hw P — M Pw

—Hpr (WO _ W*) + 1247% (MO _ M*> (49)
Pw Prr — K Pw '

Substituting these constants back to (48) yields the solution for the intial
values of th shadow prices as

Cs

Ao — A* (1xDas — s ®y) Wo = W) + (—pndw + pw @) (Mo — M™)
PwPrr — BarPw ’
To— T = (MW¢M - /’LMgbﬂ') (Wo - W*) + (—,uﬂng + ,quzSﬂ) (Mo _ M;*Q

Pw Pt — HarPw (€0)

After all, for a give steady-state point and the intial values W, and M,,
the values for constants C; and Cy are determined uniquely by (49), whereas
the initial values of the two shadow prices are decided uniquely by (50).
Given those values, the self-control cycle is generated uniquely by (42).
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Table 1. Taxonomy of consumer dynamics

(i) 0<ae<o
Saddle-point stable
X1, X2 Stable

w1, W, unstable

o<as<?2r+o

Unstable

(i) 2r+o<ae
Saddle-point stable
X1, X2 unstable

W, W, stable

(a) All roots real

4e(yk — ao) < (as — 0)?

Case (1)
(Ag, s, xp) perfectly smoothed

(W,,M,) non-cyclical

No solution

Case (3)

All non-cyclical

(b) All roots imaginary
(ae — 0)? < 4e(yk — ao)

Case (2): willpower cycle
(Ag, s, xp) perfectly smoothed

(W, M,) cyclical

No solution

Case (4): self-control cycle

All cyclical




Table 2. Parameter values

o Y ) € o ll)() 0
0.5 0.6 0.1 0.7 0.05 -5 2

k q r y fo Wo M,
0.75 1 0.05 1,000 50 3.80 8.82

Note: These parameter values satisfy all the conditions in Proposition 3 for the self-control cycle to
occur. The initial values W, and M, are set equal to the steady state values under the parameter

values.



K =—-r?+ /r* + 4det())

Saddle-point stability
(Proposition 1)

0 det(J)

Imaginary roots
(Proposition 2)

Real roots \.I\(;:j v det(‘,)

Figure 1. Saddle-point stability and roots. Note: The figure illustrates the region for the

saddle-point stability, summarized by Proposition 1, and the regions for real and imaginary

roots, summarized by Proposition 2.
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Figure 2. Dynamic properties of self-control behavior. Note: Case 1 through 4 are defined in Table 1.
Parameter values for (a,8,0,r) are setas (0.5,0.1,0.05,0.05) as in Table 2 in Section 3.6.
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Figure 3. Cyclical adjustments to an increase in external self-control needs f,. Note: The figure shows cyclical adjustments of tempting good consumption x,
willpower stock W, and self-control experience capital M in response to a once-and-for-all increase in external self-control needs f from 50 to 55, where the
parameter values are specified as in Table 2. The variables with an asterisk denote post-shock steady-state levels, and where the initial point is assumed to be
the steady-state point under the pre-shock environment. The arrow at the initial point in time indicates a discrete downward jump of xo to accumulate the self-
control experience capital. The steady state values of x and M are unaffected by the increase in fo, whereas the steady-state /¥ needs to be increased to finance

the increased external needs for self-control.
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Figure 4. Cyclical adjustments to an increase in income y. Note: The figure shows cyclical adjustments of tempting good consumption x, willpower stock W,
and self-control experience capital M in response to a once-and-for-all increase in income y from 1,000 to 1.010, where the parameter values are specified as
in Table 2. The variables with an asterisk denote post-shock steady-state levels, and where the initial point is assumed to be the steady-state point under the
pre-shock environment. The arrow at the initial point in time indicates a discrete upward jump of xo to decumulate the self-control experience capital. The
steady-state value of M is unaffected by the increase in y, whereas the steady-state I decreases along with increase in x* and hence the reduced demand for

steady-state self-control.
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