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Abstract

This paper considers Bayesian learning when players are biased about the data-generating

process, and are biased about the opponent’s bias about the data-generating process. Specifi-

cally, we assume that each player’s bias about others takes the form of interpersonal projection,

which is a tendency to overestimate the extent to which others share the player’s own view. We

show that even an arbitrarily small amount of bias can destroy correct learning of an unknown

state, i.e., there is zero probability of the posterior belief staying in a neighborhood of the true

state.
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1 Introduction

Economic agents often have a misspecified view of the world: workers may be overconfident about

their own capability, political actors may believe that their opinion is more common than in reality,

players may erroneously think that they are unfairly treated in competition, and so on.1 Recent

literature on misspecified learning studies how such misspecifications influence the agents’ behav-

ior and payoffs, assuming either a single-agent setup or a multi-agent setup in which the agents’

misspecifications are common knowledge (e.g., Esponda and Pouzo, 2016; Heidhues, Kőszegi,

and Strack, 2018; Ba and Gindin, 2023). However, this common knowledge assumption leaves out

many potential applications, as it does not allow players to have a bias about the opponent’s bias.

For example, a worker may not be aware of her colleague’s overconfidence, in which case she has

a misspecification about the colleague’s view of the world.2 We study how such misperception

about others influences learning. Our main finding is that even a vanishingly small amount of bias

can have a substantial impact on the learning outcome.

Section 2 introduces our model. We consider the case in which players’ bias on others takes

the form of interpersonal projection bias, which has been studied in economics as well as other

fields such as psychology, marketing, and political science. Interpersonal projection (also known as

false-consensus effect) is a tendency for individuals to believe that others’ views are more similar

to their own views than in the reality. For example, a person who prefers a particular political

candidate tends to think that other voters also prefer the same candidate. Past work provides

empirical evidence of this bias in various economic situations; we will review this literature in

Section 2.2.

Section 3.1 illustrates our idea via a team-production example. Suppose that two myopic play-

ers work on a joint project. There are infinitely many periods. The project output each period

depends on the total effort in that period, as well as players’ capability a and an unknown state

θ (which can be interpreted as the profitability of their business). Efforts are private information.

Players are Bayesian, and update their beliefs about the state θ every period.

1 See Daniel and Hirshleifer (2015), Malmendier and Tate (2015), and Grubb (2015) for reviews of the literature
on overconfidence.

2 See Bursztyn and Yang (2022) for a review of the literate on misspecifications about others.
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Suppose that one of the players (say, player 2) is misspecified and has overconfidence about

the capability. Formally, let Ai denote player i’s perception of the total capability of the team,

and assume that A2 > A1 = a. On top of that, suppose that these perceptions are not common

knowledge, and each player projects her perception on the opponent. That is, player i thinks that the

opponent j thinks that the capability is Â j = γAi+(1− γ)A j, where γ ∈ [0,1] is a parameter which

measures the degree of interpersonal projection. This framework (of interpersonal projection) is

borrowed from Gagnon-Bartsch, Pagnozzi, and Rosato (2021), who consider an auction model in

which bidders project their tastes on others. They characterize how this projection influences the

equilibrium in the one-shot game. In contrast, we consider the infinite-horizon model to study how

misperception about others influences learning.

For the special case in which A2 = a, there is no bias at all. (Indeed, Âi = Ai = a regardless

of the parameter γ .) Hence the standard argument shows that correct learning occurs. That is, the

degenerate belief on the true state θ ∗ is a steady-state belief of the learning process, and players’

posterior beliefs almost surely converge to this steady state, regardless of the initial common prior.

Suppose now that player 2 has small overconfidence, so that A2 is slightly higher than a. Not

surprisingly, the steady state in this model is continuous in A2. In particular, when A2 is close to

a, there is a steady state in which “almost correct learning” occurs, i.e., each player’s belief puts

a probability mass on a state close to the true state θ ∗. However, it turns out that this steady state

is not the long-run outcome of the learning. Indeed, we find that in the presence of interpersonal

projection (i.e., γ > 0), players’ beliefs converge to this steady state with zero probability. Note

that this result holds for any A2 > a, so even a vanishingly small amount of overconfidence destroys

correct learning. Similarly, this result holds for any γ > 0, which means that an arbitrarily small

amount of interpersonal projection is enough to destroy correct learning.

Why is correct learning vulnerable to such a small bias? A key is that projecting players

have inferential naivety and make incorrect prediction about the opponent’s play. Initially, this

inferential naivety is small. Indeed, because players have only a small amount of misspecification,

they make “almost correct” predictions about the opponent’s action in earlier periods. However,

there is a snowball effect on the inferential naivety, and players may make larger prediction errors

3



in later periods. To see this, suppose that players (slightly) mispredict the opponent’s action today.

As we will explain in Section 3.1, this misprediction influences players’ belief updating and causes

divergence of the posterior beliefs. That is, a player who has a relatively optimistic belief (about the

unknown state) tends to be more optimistic tomorrow, and a player who has a relatively pessimistic

belief tends to be more pessimistic tomorrow. Then due to this expanding difference between

the posteriors, players make more serious misprediction of the opponent’s action tomorrow; for

example, the optimistic player expects that the opponent is similarly optimistic and maximizes

payoffs, while in reality the opponent is pessimistic. Such misprediction leads to further belief

divergence, which in turn causes more serious prediction errors in later periods, and so on. Due

to this process, players eventually have a huge amount of misspecification about the opponent’s

action, which destroys correct learning. In short, misspecification about the opponent’s action —

which endogenously grows in our model — is the main source of learning failure.

In Section 3.3, we extend the analysis to a general Bayesian learning model, and provide a

sufficient condition under which small misspecification leads to a failure of learning just as in the

team-production example. This result applies to a wide range of economic applications, such as

air pollution, lobbying, games with conflicting interests, and Cournot duopoly.

We also study what happens when players’ bias on others take different forms. Section 4

considers team production where different players have different initial priors about the unknown

state, and are unaware of the opponent having a different prior. We assume that players correctly

understand their capability, so they are misspecified only about the opponent’s initial belief (and

the opponent’s belief about her own initial belief, and so on). In Section 5, we consider the case

of one-sided misspecification where only player 2 has international projection bias. In both cases,

we find that our discontinuity result still holds, i.e., a small amount of misspecification can still

destroy correct learning. Again, the main source of learning failure is misspecification about the

opponent’s action, which endogenously grows through learning.

As we will discuss in Section 6, the literature on misspecified learning is rapidly growing,

and among these papers, our work is most closely related to Frick, Iijima, and Ishii (2020). They

look at a social learning problem where agents observe the opponents’ actions every period and
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learn a payoff-relevant unknown state from them. The agents are misspecified in that they have

incorrect views about how the opponents interpret information (and hence they have incorrect

views about the opponents’ behavior). They show that a steady state is discontinuous in the amount

of misspecification, and in particular, even with a vanishingly small amount of misspecification, in

the unique steady state, the agents have a point-mass belief on a state which is far away from the

true state. So a small misspecification leads to a compete breakdown of correct learning.

Frick, Iijima, and Ishii (2020) also argue that their discontinuity result relies on the assumption

that the agents have only a limited amount of information about the state; in their model, the agents

observe a noisy signal about the state only once, so the agents learn mostly from the opponents’

actions.3 Indeed, they show that if the agents observe feedback (signals) every period, then the

result is overturned and steady states are continuous in the amount of misspecification.

We complement their work by showing that even in the case of repeated feedback, correct

learning can be vulnerable to small misspecification.4 In our model, small misspecification has

only a small impact on the steady state. However, it also influences the learning dynamics, and

the probability of the belief converging to the steady state is pushed down to zero. One of the

contributions of this paper is to identify this new mechanism which causes learning failure. We also

believe that the analysis of the case of repeated feedback is important, because repeated feedback

is common in many economic applications. For example, if agents observe their own payoffs every

period, then it should be regarded as a case of repeated feedback, as payoffs are informative about

the state in general.5

As a technical contribution, we extend Pemantle (1990) and provide a condition under which

there is zero probability of a stochastic process converging to a steady state which satisfies a prop-

erty called linear instability. A notable difference from Pemantle (1990) is that our result applies to

3 Gagnon-Bartsch and Rosato (2024) study finite-period dynamic pricing when consumers have an interpersonal
projection bias. They assume that each consumer observes a noisy signal about the state only once, as in Frick, Iijima,
and Ishii (2020).

4 Recent work by Frick, Iijima, and Ishii (2023) also show that small misspecification can lead to learning failure
in the case of repeated feedback, but they assume slow learning, in that signals can be arbitrarily uninformative
depending on the agent’s action. Our model does not have such a feature, and learning fails even when players observe
informative signals every period.

5 Frick, Iijima, and Ishii (2020) assume that the agents do not observe payoffs.
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the case of a Gaussian noise.6 We believe that this extension is useful for future research, as many

applied papers consider a Gaussian noise.

2 Model

2.1 Setup

There are two players i = 1,2 and infinitely many periods t = 1,2, · · · . At the beginning of the

game, an unobservable economic state θ ∗ is drawn from a closed interval Θ = [θ ,θ ], according

to a common prior distribution µ ∈ △Θ. We assume that µ has a continuous density µ ′ with full

support. In each period t, each player i has a belief µ t
i ∈ △Θ about the state θ , and chooses an

action xi from a closed interval Xi = [0,xi]. Player i’s action xi is not observable by the opponent

j , i. Given an action profile x = (x1,x2), players observe a noisy public signal

y = Q(x1,x2,a,θ ∗)+ ε,

where a ∈ R is a fixed parameter and ε is a random noise which follows the standard normal

distribution N(0,1). Player i’s stage-game payoff is ui(xi,y). We assume that both Q and ui are

twice continuously differentiable.

We consider a situation in which players have incorrect views about the data-generating process

above. Formally, we assume that each player i believes that the true parameter is Ai, rather than

a. One of the examples we have in mind is that the parameter a denotes the capability of players

and they are overconfident about the capability, in which case we have Ai > a (Heidhues, Kőszegi,

and Strack, 2018). We allow A1 , A2, so different players may have different biases about the

parameter a.

We assume that players’ biases, (A1,A2), need not be common knowledge, and they may have a

biased view about their opponent’s bias. Specifically, we assume that each player has interpersonal

6 Benaı̈m (1999) also extends Pemantle (1990), but he does not allow a Gaussian noise. Benaı̈m and Faure (2012)
allow a Gaussian noise, but they focus on the case in which the process is cooperative. Also, they make various
technical assumptions on the noise term, which are not satisfied in our model (e.g., i.i.d. noise, positive-definite
assumption which rules out perfect correlation of a noise).
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projection bias, in that she overestimates the extent to which others share her opinion. Following

Gagnon-Bartsch, Pagnozzi, and Rosato (2021) and Gagnon-Bartsch and Rosato (2024), we model

this bias by assuming that each player i thinks that

(a) The true parameter is Ai.

(b) The opponent −i thinks that the true parameter is Â−i = γAi +(1− γ)A−i.

(c) The information above is common knowledge.

Part (a) states that player i may have a biased view about the data-generating process. Part (b)

describes player i’s interpersonal projection bias, and the parameter γ ∈ [0,1] measures the de-

gree of this bias. When γ = 0, each player i correctly understands the opponent’s view about the

data-generating process. When γ = 1, each player i is completely unaware of the opponent’s view

being different from her own view, and naively thinks that the opponent −i also thinks that the

true parameter is Ai (in reality, the opponent thinks that the true parameter is A−i). When γ takes

intermediate values, each player i recognizes that the opponent has a different opinion, but under-

estimates this difference; she incorrectly thinks that the opponent’s opinion is closer to her own

opinion than in the reality. To make our exposition as simple as possible, we follow earlier work

(Gagnon-Bartsch, Pagnozzi, and Rosato, 2021; Gagnon-Bartsch and Rosato, 2024) and assume

that this parameter γ is common for all players. However, this assumption is not essential; indeed,

it is not difficult to show that all our results hold even when different players have different γ .7

Part (c) asserts that player i has naive higher-order beliefs, in that she neglects the possibility

that the opponent misunderstands player i’s view about the world. Note that Gagnon-Bartsch,

Pagnozzi, and Rosato (2021) and Gagnon-Bartsch and Rosato (2024) impose the same assumption.

As they argue, this assumption is motivated by the idea that people who are unaware of their own

interpersonal projection bias are likely not attentive to others’ interpersonal projection bias.

The following examples highlight that our model is flexible and covers a number of economic

examples.8

7 Similarly, the linearity of Â−i is not essential for our analysis. Our Proposition 3 holds even when Â−i =

f−i(Ai,A−i,γ), as long as f−i is continuous and f (a,a,γ) = a for all γ .
8 Here the interpersonal projection bias is modeled as a cognitive bias which underestimates the difference between
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Example 1. Underestimating Heterogeneity of Confidence. Suppose that two players work on a

joint project. Let ai denote player i’s capability, and let a= a1+a2 denote the total capability. Each

period, each player i chooses an effort level xi. The output of the joint project is y = Q(x1,x2,θ)+

a+ ε , and each player i’s payoff is y− c(xi), where c(xi) is the effort cost and θ is an unknown

project quality. Suppose that player 1 correctly understands each player’s capability (so A1 = a),

while player 2 incorrectly believes that the total capability is A2 , a. Intuitively, when A2 > a,

player 2 has overconfidence about their capabilities. When A2 < a, player 2 has underconfidence

about her own capability or prejudice about the opponent’s capability. These perceptions (A1,A2)

are common knowledge when we set γ = 0. On the other hand, when γ > 0, it describes the

situation in which (A1,A2) are not common knowledge, and player 1 underestimates the opponent’s

misperception (and similarly, player 2 underestimates how much player 1’s view differs from her

own view).

Example 2. Underestimating Heterogeneity of Capabilities. Still consider the joint work problem,

but suppose now that a1 = a−∆ and a2 = a+∆. That is, we consider the case in which player 2 is

more capable than player 1. Suppose that each player underestimates the difference in capabilities;

each player i thinks that the opponent’s capability is â−i = βiai +(1−βi)a−i for some parameter

βi ∈ (0,1]. Suppose that her higher-order belief is naive in that she thinks that it is common

knowledge that players’ capabilities are (ai, â−i). This situation is a special case of our framework

where a = 2a, Ai = ai + â−i, and γ = 1.

Example 3. Underestimating Impacts of Actions by Others. Consider a two-player game in which

the output is y = Q(ax1,x2,θ)+ ε , where a represents the degree of (marginal) influence of player

1’s action. Suppose that player 1 correctly understands his own influence (so A1 = a), while player

an agent’s own perception and the opponent’s perception. Some papers in the literature consider a slightly different
model of the bias; they look at a model with infinitely many agents, where each agent is endowed with a type and
overestimates the share of her own type (e.g., Gagnon-Bartsch and Rosato (2024)). The tools developed in this paper
are also useful to study such a model. Specifically, in Appendix D, we consider a continuous-agent model where a half
of the population is type 1 who thinks that the true parameter is A1 (just as player 1 does in the model above), while
the other half of the population is type 2 who thinks that the true parameter is A2. Each type i overestimates the share
of her own type. It turns out that the analysis of this model is analogous to that of our main model. Indeed, our result
(Proposition 3) remains true as is even in this continuous-agent model.
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2 incorrectly believes that it is A2 < a. Intuitively, player 2 is inattentive to the effect of player 1’s

action on the output.

An important feature of our setup above is that if players’ misperception is small in the sense

that both A1 and A2 are ε-close to the parameter a, then it is common knowledge that the true

parameter is in the ε-neighborhood of a, regardless of the parameter γ . In this sense, small misper-

ception has a small impact on the whole information structure; it induces an information structure

close to that for the case in which the parameter a is common knowledge.9 We will show that

such a small change in the information structure can cause a huge difference in the equilibrium

outcome.

When players project their own view about the world to the opponent’s view, they have infer-

ential naivety and make incorrect predictions about the opponent’s play (Eyster, 2019). Indeed,

while player i believes that the opponent −i maximizes the payoff and updates the belief condi-

tional on the parameter Â−i = γAi +(1− γ)A−i, in reality the opponent does so conditional on the

parameter A−i. To analyze players’ behavior in the presence of such inferential naivety, it is useful

to consider two hypothetical players −i = 1,2. Hypothetical player −i is player −i who thinks

that (a) the true parameter is Â−i = γAi +(1− γ)A−i, (b) the opponent (i.e., player i) thinks that

the true parameter is Ai, and (c) the information above is common knowledge. Intuitively, player

i thinks that her opponent is hypothetical player −i, and hence each period, she best-responds to

this hypothetical player’s action. We assume that players are myopic, so that each player i chooses

a static Nash equilibrium action against hypothetical player −i every period.10,11 This assumption

shuts down the repeated-game effect, so that a result similar to the folk theorem (which is not of

9 Indeed, it is not difficult to show that player i’s belief hierarchy is continuous with respect to the parameter Ai in
the uniform weak topology of Chen, Di Tillio, Faingold, and Xiong (2017). So small misperception has a negligible
impact on the whole information structure in the uniform weak topology.

10 In the literature on Bayesian games, rationalizability is often used as a solution concept when players do not
have a common prior. It turns out that in all the example studied in this paper, the game is dominance solvable, which
means that the set of Nash equilibrium coincides with the set of rationalizable actions. Hence all our results still apply
to these examples, even if we use rationalizability as a solution concept.

11 Here we consider players who recognize that the opponent also learns the state and changes the action as time
goes. This setup is different from the one in the literature on learning in games (e.g., Fudenberg and Kreps, 1993;
Esponda and Pouzo, 2016), which asks when players play equilibria and how they learn the opponent’s strategy from
signals.

9



our interest) does not arise.12

Formally, players’ behavior each period is described as follows. Let x̂i and µ̂i denote hypothet-

ical player i’s action and belief, and let x = (x1, x̂2,x2, x̂1) denote an action profile. (Here we have

(x1, x̂2) in the first two components, in order to emphasize that they best-respond to each other.)

Player i’s expected stage-game payoff is defined as

Ui(x,Ai,θ) = E[ui(xi,Q(xi, x̂−i,Ai,θ)+ ε)],

because she thinks that the parameter is Ai and the opponent is a hypothetical player. Similarly,

hypothetical player i’s expected stage-game payoff given θ is

Ûi(x, Âi,θ) = E[ui(x̂i,Q(x̂i,x−i, Âi,θ)+ ε)].

In period one, all players have the same belief µ1
i = µ̂1

i = µ . So they play a Nash equilibrium

(x1
1, x̂

1
2,x

1
2, x̂

1
1), which (assuming interior solutions) satisfies the first-order condition ∂E[Ui(x,Ai,θ)|µ]

∂xi
=

∂E[Ûi(x,Âi,θ)|µ]
∂ x̂i

= 0. At the end of period one, players observe a public signal y1 = Q(x1
1,x

1
2,a,θ

∗)+

ε , and update the posterior beliefs using Bayes’ rule. Their beliefs in period two are given by

µ
2
i (θ) =

µ1
i (θ) f (y−Q(x1

i , x̂
1
−i,Ai,θ))∫

Θ
µ1

i (θ̃) f (y−Q(x1
i , x̂

1
−i,Ai, θ̃))dθ̃

,

µ̂
2
i (θ) =

µ̂1
i (θ) f (y−Q(x̂1

i ,x
1
−i, Âi,θ))∫

Θ
µ̂1

i (θ̃) f (y−Q(x̂1
i ,x

1
−i, Âi, θ̃))dθ̃

.

As is clear from this formula, player i’s posterior belief is biased in two ways: She updates the

belief conditional on the incorrect parameter Ai, and on the incorrect prediction x̂1
−i about the

opponent’s play. Then in period two, players play a Nash equilibrium given this belief profile

µ2 = (µ2
1 , µ̂

2
2 ,µ

2
2 , µ̂

2
1 ).

13 Likewise, in any subsequent period t, players play a Nash equilibrium

given the posterior beliefs computed by Bayes’ rule.

12 Another way to avoid the repeated-game effect is to use a Markov-perfect equilibrium (where the state is players’
beliefs about θ ) as a solution concept. If players play a Markovian equilibrium, (with additional technical assumptions)
we can show that their long-run behavior is asymptotically the same as that of myopic players studied in this section.
In this sense, our result remains true even for forward-looking players.

13 Because y is public, player 1 correctly predicts hypothetical player 2’s posterior belief µ̂2
2 , and similarly, hypo-

thetical player 2 correctly predicts player 1’s posterior belief µ2
1 . So they will indeed play a Nash equilibrium given

these beliefs.
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It is well-known in the literature on misspecified learning that if players’ actions and beliefs

converge, the limit must be a steady state (which is also known as Berk-Nash equilibrium, see

Esponda and Pouzo (2016), Esponda, Pouzo, and Yamamoto (2021), Murooka and Yamamoto

(2023)). In our setup, a steady state is defined as (x∗1, x̂
∗
2,x

∗
2, x̂

∗
1,µ

∗
1 , µ̂

∗
2 ,µ

∗
2 , µ̂

∗
1 ) which satisfies

x∗i ∈ argmax
xi

E[Ui(xi, x̂∗−i,Ai,θ)|µ∗
i ] ∀i, (1)

x̂∗i ∈ argmax
x̂i

E[Ûi(x̂i,x∗−i, Âi,θ)|µ̂∗
i ] ∀i, (2)

µ
∗
i = 1θi where θi ∈ arg min

θ ′∈Θ

|Q(x∗i , x̂
∗
−i,Ai,θ

′)−Q(x∗1,x
∗
2,a,θ

∗)| ∀i, (3)

µ̂
∗
i = 1

θ̂i
where θ̂i ∈ arg min

θ ′∈Θ

|Q(x̂∗i ,x
∗
−i, Âi,θ

′)−Q(x∗1,x
∗
2,a,θ

∗)| ∀i. (4)

The first two conditions are the incentive-compatibility conditions, which require that each player

maximize her own payoff given some beliefs. The next two conditions require that these beliefs

satisfy consistency, in that each (actual and hypothetical) player’s belief is concentrated on a state

θ which best explains the data given the equilibrium action x∗. For example, |Q(x∗i , x̂
∗
−i,Ai,θ

′)−

Q(x∗1,x
∗
2,a,θ

∗)| measures the gap between player i’s expectation and the actual observation, and

(3) asserts that her belief must be concentrated on the state which minimize this gap. For sim-

plicity, in what follows, we assume that for each x and Ai, the minimizer of |Q(xi, x̂−i,Ai,θ
′)−

Q(x1,x2,a,θ ∗)| is unique.

2.2 Evidence on Interpersonal Projection

The empirical and experimental literatures report that people often have systematic biases when

predicting others’ view. Bursztyn and Yang (2022) conduct a meta-analysis and review how mis-

perceptions about others are widespread. The interpersonal projection studied in this paper is

one of such biases, also known as “social/taste projection” or “false-consensus effect/bias” in the

literature.14 Seminal papers of the interpersonal projection bias are Van Boven, Dunning, and

Loewenstein (2000) and Van Boven and Loewenstein (2003), who show in their experiments that

people overestimate the similarity between their own preferences/actions and other subjects’ ones.
14 False-consensus effect is originated in social psychology (e.g., Ross, Greene, and House, 1977; Krueger and

Clement, 1994).
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Subsequent studies find further evidence of interpersonal projection in various situations, such as

election outcomes (Delavande and Manski, 2012), evaluation of political candidates and consumer

products (Orhun and Urminsky, 2013), and public opinions (Furnas and LaPira, 2024) in political

science; lottery choices (Engelmann and Strobel, 2012), investment decisions (Egan, Merkle, and

Weber, 2014), and worker effort (Bushong and Gagnon-Bartsch, 2023) in economics.15

Recently, Gagnon-Bartsch and Bushong (2024) conduct belief-updating experiments on con-

sumer choice for others. They find that subjects project their own tastes to others when evaluating

products, and this inferential bias remains even after observing an informative signal about other

subjects’ preferences. This result suggests that interpersonal projection persists even after learning,

as we assume in this paper.

3 Discontinuity of the Limiting Beliefs

3.1 Example of Non-Convergence: Team Production

To illustrate our idea, we will consider a simple model of team production. Suppose that two

players work on a joint project. Each period, each player i = 1,2 chooses how much she shirks in

that period. Let xi ∈ [0,1] denote player i’s action. Player i’s payoff is y+ xi − 1
2x2

i , where xi − 1
2x2

i

is her private benefit from shirking. Note that this benefit is increasing in xi, while the marginal

benefit is decreasing in xi. The output of the joint project each period is

y = Q(x,a,θ)+ ε = a−θ(x1 + x2)+ ε. (5)

Here, a ∈ R is the capability of the team, θ ∈ Θ = [0.7,0.9] is an unknown state, and ε is a noise

term which follows the standard normal distribution N(0,1).

Because we assume θ ∈ [0.7,0.9], regardless of players’ beliefs, the Nash equilibrium action

in the one-shot game is unique and given by xi = 1−E[θ |µ t
i ]. We assume that the initial prior is

uniform on Θ = [0.7,0.9] and that the true state is θ ∗ = 0.8.16

15 Gagnon-Bartsch, Pagnozzi, and Rosato (2021) and Gagnon-Bartsch and Rosato (2024) theoretically analyze the
implications of interpersonal projection in auction and pricing, respectively.

16 Our result does not rely on this specification of the state space Θ = [0.7,0.9]. Indeed, for any state space Θ
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Suppose that each player i has a bias on their capability a so that player i thinks that the

true capability is Ai. Also, there is interpersonal projection, so that each player i thinks that the

opponent’s perception is Â−i = γAi +(1− γ)A−i.17

Remark 1. As discussed in Chapter 24 of Varian (1992), the model above can be interpreted as

a model of negative externalities in general. One of the examples which fit such an interpreta-

tion is an environmental problem, where y is the quality of the environment (e.g., air pollution,

deforestation, and fishery), xi is player i’s production level which has a negative impact on the

environmental quality, and Ai > a is player i’s optimism about the environmental quality. Such

optimism is observed in various environmental problems; see Dechezleprêtre et al. (forthcoming)

and references therein. Another example is political lobbying, where y is the quality of the public

service, xi is the expenditure on lobbying activity, and a is the public opinion (on the quality of the

public service). Indeed, a recent paper by Furnas and LaPira (2024) reports interpersonal projec-

tion in such a context that many unelected political actors, including lobbyists, civil servants, and

journalists, tend to believe that others’ views about public opinions systematically and erroneously

correspond to their own one.

For ease of exposition, throughout this example, we will focus on the full-projection case (i.e.,

γ = 1). Intuitively, this is the situation in which each player is completely unaware of the opponent

having a different view about the capability. Under this assumption, player i’s posterior µ t
i is the

same as hypothetical player −i’s posterior µ̂ t
−i after every history. Hence we only need to check

how two beliefs (µ1,µ2) evolve over time (rather than the evolution of four beliefs (µ1, µ̂2,µ2, µ̂1)),

which greatly simplifies our analysis. In Section 3.3, we will show that this assumption is not

essential, in that a similar result still holds even in the case of partial projection (i.e., γ < 1).

The steady state in this setup is characterized by the conditions (1) through (4). As we assume

which contains the true state θ ∗ = 0.8 in its interior, we can show that when players’ biases are small, there is zero
probability of the beliefs converging to the interior steady state. This result directly follows from Proposition 3.

17 As discussed in Examples 1 and 2 in the previous section, such interpersonal projection can arise when players
underestimate heterogeneity of perceptions or heterogeneity of capability itself. For example, when A1 = a and A2 > a,
player 1 correctly understands the capability but player 2 has overconfidence, and each player underestimates how
different the opponent’s perception is. Such underestimation about the opponent’s overconfidence seems relevant
in practice. Indeed, Ludwig and Nafziger (2011) report that most subjects in their experiments are not aware of or
underestimate overconfidence of other subjects.
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γ = 1, we have θi = θ̂−i in the steady state, so the steady state belief is described by two parameters,

(θ1,θ2).

Consider the case with A1 = A2 = a; this is the case in which players have no bias on the

parameter a, but are unaware of the difference of the posterior beliefs (if any) due to interpersonal

projection. In this special case, there are three steady states: One of the steady states is an interior

point, in which both players learn the true state (θ1 = θ2 = θ ∗), and choose the Nash equilibrium

for this state θ ∗. There are also two boundary steady states: In these steady states, players’ beliefs

are (θ1,θ2) = (θ ,θ) or (θ1,θ2) = (θ ,θ), and they choose a Nash equilibrium given these beliefs.18

These boundary steady states do not arise as a long-run outcome, however. Indeed, because there

is no misspecification about the parameter a, starting from a common prior µ , players learn the

true state with probability one, i.e., the beliefs converge to the interior steady state almost surely

when A1 = A2 = a.

Now, consider the case in which players are slightly biased (i.e., (A1,A2) is perturbed from

(a,a) a small amount). By continuity, there is an interior steady state in which players’ beliefs are

close to (θ ∗,θ ∗). Let m∗(A1,A2) = (m∗
1(A1,A2),m∗

2(A1,A2)) denote this steady-state belief. Also,

the boundary points (θ1,θ2) = (θ ,θ) and (θ1,θ2) = (θ ,θ) are still steady states in this case.

One may expect that the boundary states are still immaterial, and that the the beliefs converge

to the interior steady state m∗(A1,A2), just as in the case of A1 = A2 = a. Proposition 1 shows that

such a conjecture is incorrect, and the beliefs converge to the boundary points when (A1,A2) is

perturbed.

Proposition 1. Suppose that γ = 1. Then there are A < a and A > a such that the following results

hold.

(i) For any (A1,A2) ∈ (A,A)2 with A1 = A2, players’ posterior beliefs µ t = (µ t
1,µ

t
2) converge to

18 To see that (θ1,θ2) = (θ ,θ) is a steady-state belief, note that ∂ 2Q
∂xi∂θ

< 0, so we have x1 > x̂1 in this steady state.
This means that player 2 underestimates how much the opponent shirks, and thus finds that the output is worse than
the anticipation. This makes player 2 more pessimistic, but her current belief θ already hits the upper bound of the
set Θ, so her belief stays there. Similarly, player 1’s belief stays at θ , which imply that (θ1,θ2) = (θ ,θ) is indeed a
steady-state belief. For the same reason, (θ1,θ2) = (θ ,θ) is a steady-state belief.
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the interior steady state almost surely, i.e.,

Pr
(

lim
t→∞

µ
t = (1m∗

1(A1,A2),1m∗
2(A1,A2))

)
= 1.

In particular, when A1 = A2 = a, correct learning occurs in that limt→∞(µ
t
1,µ

t
2) = (1θ∗,1θ∗)

almost surely.

(ii) For any (A1,A2) ∈ (A,A)2 with A1 , A2, players’ posterior beliefs converge to the interior

steady state (1m∗
1
,1m∗

2
) with zero probability. The beliefs converge to the boundary points

almost surely, i.e.,

Pr
(

lim
t→∞

µ
t ∈ {(1θ ,1θ

),(1
θ
,1θ )}

)
= 1.

This proposition shows that the learning outcome is discontinuous in players’ perceptions

(A1,A2), and in particular correct learning is vulnerable to a small amount of misspecification.

For example, assuming that player 1 has a correct perception A1 = a, an arbitrarily small amount

of player 2’s overconfidence A2 > a leads to zero probability of the beliefs converging to the inte-

rior steady state.

In the literature of incomplete-information games, it is well-known that an equilibrium in

a normal-form game is continuous with respect to the information structure; Chen, Di Tillio,

Faingold, and Xiong (2017) show that a small perturbation of one’s belief hierarchy (a belief

about an economic state, a belief about the opponent’s belief about the state, and so on) has only a

marginal impact on the equilibrium. The proposition above does not contradict this result. Indeed,

in our model, the equilibrium strategy in the infinite-horizon game, which maps one’s belief µi to

an action, is continuous in the parameter (A1,A2), so a small perturbation of one’s belief hierarchy

has a negligible impact on the equilibrium strategy.19 In this sense, the main result of Chen, Di

Tillio, Faingold, and Xiong (2017) still holds in our model. However, this need not imply that the

resulting beliefs are continuous in the parameter (A1,A2), and Proposition 1 shows that our model

is one of the cases in which such discontinuity arises.

Our result also shows that misperception about the opponent’s bias can have a huge impact

on the equilibrium outcome. Consider a model in which each player correctly understands the
19 In our model, the belief hierarchies induced by (A1,A2) and (A′

1,A
′
2) , (A1,A2) are close in the uniform-weak

topology of Chen, Di Tillio, Faingold, and Xiong (2017) if (A1,A2) and (A′
1,A

′
2) are close.
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opponent’s perception, i.e., suppose that the perceptions (A1,A2) are common knowledge. In such

a model, if players’ biases are small (i.e., (A1,A2) is close to (a,a)), then players’ beliefs almost

surely converge to the unique interior steady state — see our companion paper (Murooka and

Yamamoto, 2023) for a proof. This steady state is continuous in (A1,A2), so approximately correct

learning occurs even if there is small misperception. In contrast, our proposition above shows that

once we introduce unawareness about the opponent’s bias, even vanishingly small misperception

(e.g., overconfidence) completely destroys correct learning.

A rough intuition behind this proposition is as follows. In our model, when each player’s

misperception is small (i.e., Ai is close to a), the evolution of players’ beliefs is governed by the

following two forces:

• Regular learning effect. If the inferential naivety does not exist and each player correctly

predicts the opponent’s action every period, their beliefs move toward a neighborhood of the

true state θ ∗ = 0.8.

• Polarization effect. When µ t
1 , µ t

2 so that players have different beliefs about the state, they

have inferential naivety. That is, each player i believes that the opponent’s belief is also µ t
i ,

but in reality the opponent’s belief is µ t
j. It turns out that this inferential naivety is amplified

through learning, in that on average, the gap between players’ beliefs µ t
1 and µ t

2 increases

over time, and the beliefs eventually move toward the boundary steady states.20 To see this,

suppose that player 1’s belief µ t
1 is more optimistic than player 2’s belief µ t

2. In this case,

player 1 overestimates the opponent’s optimism about the state θ , and hence underestimates

the opponent’s effort. Accordingly, the realized outcome y is on average better than player

1’s expectation, which makes her even more optimistic about the state. A similar argument

shows that pessimistic player 2 becomes even more pessimistic, so the beliefs are indeed

polarized and move toward the boundary steady state (1
θ
,1θ ).

When A1 = A2, players are symmetric, and hence we have µ t
1 = µ t

2 every period. This means

20 The argument here is informal in that we have not defined how to measure the difference of the two beliefs. Using
the notation introduced in the proof sketch in Section 3.3, it can be measured by the difference of the mean beliefs,
i.e., |mt

1 −mt
2|.
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that the inferential naivety is never in effect (in other words, players do not misspecify the oppo-

nent’s action), and the evolution of the posterior belief is solely governed by the regular learning

effect. This leads to appropximate correct learning, as stated in part (i) of the proposition.

On the other hand, when A1 , A2, players are not symmetric, and hence even if they start with

a common prior about the state, they have different posteriors in later periods. Then the inferential

naivety starts to influence the belief evolution, and in particular, the polarization effect described

above forces the mean belief to move toward the boundary steady states. This leads to part (ii) of

the proposition.

Remark 2. In our view, the main point of Proposition 1 is to show vulnerability of correct learning

to a small amount of misspecification, rather than convergence to boundary steady states. Indeed,

these boundary steady states are not self-confirming, in that in these steady states, players keep

being surprised by an actual output being different from their expectations on average. Hence,

if players’ beliefs stay at these steady states for a while, they might realize that their models are

incorrect and revise the models. So when there is small misspecification, we may expect that the

beliefs cannot stay in a neighborhood of the interior steady state, but it is less clear if the beliefs

indeed stay at the boundary points forever.

3.2 Proof Idea of Proposition 1

We will describe a more detailed proof sketch. To simplify the discussion, for now we assume that

the state space is Θ = R, rather than the closed interval [0.7,0.9]. This assumption, together with

the normality of the distribution of the noise term ε , implies that each player’s posterior belief µ t
i in

period t is normal. Hence the posterior can be written as µ t
i = N(mt

i,(σ
t
i )

2), where mt
i is the mean

and (σ t
i )

2 is the variance of the normal distribution. It is not difficult to show that the variance

(σ t
i )

2 converges to zero as time goes, so the posterior µ t
i in a later period t is approximately a

degenerate belief 1mt
i

on the mean mt
i. In what follows, we will describe how this mean mt

i changes

over time, and explain that it cannot converge to the interior steady state when A1 , A2.
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Step 1: Linear Instability of the Interior Steady State In our model, the information yt each

period is influenced by the stochastic noise ε , and hence the mean belief mt
i evolves stochastically.

However, using the theory of stochastic approximation (see, for example, Kushner and Yin (2003)),

we can show that after a long time, the motion of the mean belief mt
i can be approximated by ordinal

differential equations (ODEs) which do not involve a stochastic noise. That is, the motion of mt
i is

almost deterministic after a long time.

(a) A1 = A2 = a (b) A2 > A1 = a

Figure 1: Motion of the mean belief mt . The black dot is the interior steady state. The dashed orange line

is the basin of attraction of the interior steady state.

Figure 1(a) is the phase portrait which describes the solution to the ODE for the case of A1 =

A2 = a (i.e., players have no misspecification about a, but are unaware of the difference of the

posterior beliefs). In the figure, the horizontal axis is player 1’s mean belief mt
1, and the vertical

axis is player 2’s belief mt
2. The black dot in the middle is the interior steady state m∗ where

m∗
1 = m∗

2 = 0.8. As can be seen, there are only two paths converging to this steady state; one from

the top-right corner and the one from the bottom-left corner. So the basin of attraction of this

steady state is simply the 45-degree line (described by the dashed orange line in the figure), which

has measure zero. In particular, if the initial value is perturbed and leaves this basin, then the mean

belief mt eventually moves toward the boundary points, the top-left corner or the bottom-right

corner. In this sense, the interior steady state is linearly unstable.
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This phase portrait can be seen as a consequence of the regular learning effect and the polar-

ization effect discussed in the previous subsection. For example, suppose that the current belief is

on the 45-degree line, i.e., mt
1 = mt

2 today. In this case, each player has a correct belief about the

opponent’s belief, so that inferential naivety does not exist. Accordingly, only the regular learning

effect matters, and hence the mean belief moves toward the interior steady state. This means that

the 45-degree line is indeed the basin of the interior steady state.

Suppose now that the current mean belief mt is slightly perturbed and is not on the 45-degree

line; for concreteness, suppose that the current belief is mt = (0.9−ε,0.9). Initially, the gap |mt
1−

mt
2| of the beliefs is small, and hence players make almost correct prediction of the opponent’s

action. Hence the impact of the polarization effect is almost negligible, and learning is mostly

governed by the regular learning effect. Accordingly, the belief mt moves toward the interior

steady state. However, as the belief mt approaches the interior steady state, the regular learning

effect slows down, and eventually it becomes smaller than the polarization effect. Then the belief

mt starts to move toward the top-left corner, as described in the phase portrait.

So far we have focused on the case with A1 = A2 = a, but even if players have small misper-

ception, the phase portrait does not change qualitatively. Figure 1(b) is the phase portrait which

approximates the belief dynamic when A1 = a and A2 = a+0.03. Due to the misperception, now

the steady state m∗ moves toward the top-right corner. Other than that, the belief dynamic is very

similar to that for the case with A1 = A2 = a. In particular, the steady state m∗ is still unstable, in

that its basin of attraction (the dashed orange line) has measure zero.

Step 2: Non-Convergence to Unstable Steady State Because the public information y is influ-

enced by the noise term ε every period, the evolution of the mean belief mt is stochastic, and its

actual path can occasionally deviate from the one described in the phase portrait. (Recall that the

phase portrait is just an approximation of the actual path. For the precise meaning of “approxima-

tion” here, see Lemma 1 in the appendix.) It turns out that this stochastic deviation from the phase

portrait is critical for our discontinuity result.

The blue thick lines in Figure 2 describe how the mean belief mt is perturbed due to the noise.

More precisely, it is the set of all possible mean beliefs mt+1 in the next period, when the current
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(a) A1 = A2 = a (b) A2 > A1 = a

Figure 2: The mean belief mt is perturbed along with the blue thick line, due to the noise ε .

mean belief mt is exactly at the interior steady state. The exact value of mt+1 depends on the

realization of the noise term ε today. For example, if ε = 0 today, then the mean belief mt+1 is

unchanged and stays at the steady state.

Figure 2(a) considers the case of A1 = A2 = a. Here, the blue thick line coincides with the basin

of the interior steady state (the dashed orange line in Figure 1(a)). This implies that even if the

mean belief leaves the steady state due to the noise, it remains on the basin, and hence it eventually

returns to the steady state. This is why the belief converges to the interior steady state as stated in

part (i) of Proposition 1.

In contrast, when A1 , A2 so that players have different perceptions, the posteriors of the two

players react to the noise ε differently. In particular, as described in Figure 2(b), the blue thick line

does not coincide with the basin of the interior steady state; this means that the mean belief mt is

going to be “kicked out” from the basin, unless we have ε = 0 in all periods. Using this property,

we show in the proof that the mean belief leaves a neighborhood of the basin infinitely often, after

which the belief tends to move toward one of the boundary steady states as described in the phase

portrait. This leads to the non-convergence result stated in part (ii) of Proposition 1.
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3.3 Discontinuity in a General Setup

We have seen that in the above team-production example, players’ beliefs do not converge to the

interior steady state. Now we will consider a general model and provide a condition under which

a similar non-convergence result holds.

Consider a general model introduced in Section 2.1. To simplify our exposition, here we as-

sume that the initial prior µ is uniform; but all our results extend to any initial prior µ with a

continuous density.21

Assume that the output function Q is linear in θ :

Q(x1,x2,a,θ) = R(x1,x2,a)θ +S(x1,x2,a).

We assume that R(x1,x2,a) is uniformly bounded away from zero for all on-path action profiles.

This ensures that each player’s state learning never stops. Let R > 0 denote the minimum of

|R(x1,x2,a)|.

Given an action profile x = (x1, x̂2,x2, x̂1), let θi(x) denote a solution to

Q(xi, x̂−i,Ai,θ) = Q(x1,x2,a,θ ∗),

and let

Ii(xi, x̂−i) = (R(xi, x̂−i,Ai))
2.

Intuitively, θi(x) is player i’s average estimate of the state θ ; if the current action profile is x and

the realized noise ε is zero today, then (ignoring the impact of the prior) player i’s posterior mean

is θi(x). Ii(x) measures the informativeness of the signal for player i, when she thinks that the

current action is (xi, x̂−i).

The linearlity assumption above implies that player i’s posterior belief at the beginning of

period t +1 is the truncated normal distribution induced by the normal distribution N(mt+1
i , 1

tξ t+1
i

),

21 When the initial prior is not uniform, one’s posterior belief need not be a truncated normal distribution. However,
for large t, the posterior belief is still approximated by a truncated normal distribution, which is enough for our result.

21



where

mt+1
i =

∑
t
τ=1 Ii(xτ

i , x̂
τ
−i)

(
θi(xτ)− ετ√

Ii(xτ
i ,x̂

τ
−i)

)
∑

t
τ=1 Ii(xτ

i , x̂
τ
−i)

, (6)

ξ
t+1
i =

1
t

t

∑
τ=1

Ii(xτ
i , x̂

τ
−i). (7)

In words, the posterior mean mt+1
i is the weighted average of player i’s estimate θi(xτ)− ετ√

Ii(xτ
i ,x̂

τ
−i)

in the past periods, where the weight is the informativeness Ii. Note that the estimate here involves

the term ετ√
Ii(xτ

i ,x̂
τ
−i)

, which measures how the noise ετ on the signal yτ influences the estimate. The

parameter ξ
t+1
i is the average of the informativeness Ii of the past signals. By the assumption that

R(x1,x2,a) is bounded away from zero, 1
tξ t+1

i
must goes to zero as t → ∞. This means that after a

long time, each player i’s belief µ t
i is approximately a degenerate belief on mt

i.

Similarly, hypothetical player −i’s posterior belief at the beginning of period t +1 is the trun-

cated normal distribution induced by the normal distribution N(m̂t+1
−i ,

1
tξ̂ t+1

−i
) where

m̂t+1
−i =

∑
t
τ=1 Î−i(xτ

i , x̂
τ
−i)

(
θ̂−i(xτ)− ετ√

Î−i(xτ
i ,x̂

τ
−i)

)
∑

t
τ=1 Î−i(xτ

i , x̂
τ
−i)

, (8)

ξ
t+1
i =

1
t

t

∑
τ=1

Î−i(xτ
i , x̂

τ
−i). (9)

Here θ̂−i(x) is defined as a solution to

Q(xi, x̂−i, Â−i,θ) = Q(x1,x2,a,θ ∗),

and Î−i(xi, x̂−i) = Ii(xi, x̂−i). In what follows, we assume that θi(x) and θ̂i(x) are Lipschitz-

continuous in x, and that Ii(xi, x̂−i) = Î−i(xi, x̂−i) is Lipschitz-continuous in (xi, x̂−i).

In each period t+1, player i computes a one-shot Nash equilibrium (xi, x̂−i) given the posterior

belief profile (µ t+1
i , µ̂ t+1

−i ) in her mind, and chooses the equilibrium action xi. In what follows, we

will assume that this Nash equilibrium is unique for each belief, and denote it by(
xi(mt+1

i , 1
tξ t+1

i
, m̂t+1

−i ,
1

tξ̂ t+1
−i

), x̂−i(mt+1
i , 1

tξ t+1
i

, m̂t+1
−i ,

1
tξ̂ t+1

−i
)

)
, in order to emphasize the dependence

on the posterior belief.
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Now, recall that when t is large, each player i’s posterior belief µ t
i is approximately a degenerate

belief on mt
i. In other words, the parameter ξ t

i has almost no impact on the posterior belief. Then

it is natural to expect that the same is true for the equilibrium action, and the parameter ξ t
i has

almost no impact on it. The following assumption captures this idea. For each i, mi, m̂−i, let

(xi(mi, m̂−i), x̂−i(mi, m̂−i)) denote a Nash equilibrium when player i’s posterior belief is degenerate

in that (µi, µ̂−i) = (1θi,1θ̂−i
), where θi ∈ argmin

θ̃∈Θ
|mi − θ̃ | and θ̂−i ∈ argmin

θ̃∈Θ
|m̂−i − θ̃ |.

Assumption 1. There are A < a and A > a such that for any (A1,A2) ∈ (A,A)2, the following

properties hold.

(i) There are K > 0 and α > 0 such that

– For all i, mi, m̂−i, ξi ≥ R2, ξ̂−i ≥ R2, and for sufficiently large t,∣∣∣∣∣xi

(
mi,

1
tξi

, m̂−i,
1

tξ̂−i

)
− xi(mi, m̂−i)

∣∣∣∣∣< K
tα

,∣∣∣∣∣x̂−i

(
mi,

1
tξi

, m̂−i,
1

tξ̂−i

)
− x̂−i(mi, m̂−i)

∣∣∣∣∣< K
tα

.

– When mi ∈ intΘ, the inequalities above hold for α = 1.

(ii) The limit equilibrium actions (xi(mi, m̂−i), x̂−i(mi, m̂−i)) are Lipschitz-continuous in (mi, m̂−i).

The above assumption asserts that when t is large so that the posterior belief is approximately

degenerate, the Nash equilibrium action is approximated by the equilibrium (xi(mi, m̂−i), x̂−i(mi, m̂−i))

for the corresponding degenerate belief. It also requires that the approximation error is at most of

order O(1
t ) if mi is in the interior of Θ, and at most of order O( 1

tα ) otherwise.

In the team-production example, small misspecification has a small impact on the steady state,

that is, when players’ misperceptions about the capability is small, there is an interior steady state

in which players learn the state almost correctly. The following proposition shows that the same

result holds for generic games.

Proposition 2. Suppose that when A1 = A2 = a, we have

∂Q
∂θ

+
∂Q
∂x1

∂x1

∂m1
+

∂Q
∂x1

∂x1

∂ m̂2
+

∂Q
∂x2

∂ x̂2

∂m1
+

∂Q
∂x2

∂ x̂2

∂ m̂2
, 0 (10)

23



at the steady state belief (i.e., θ = mi = m̂i = θ ∗ and xi = x̂i = xi(θ
∗,θ ∗) for each i). Then there is

an open neighborhood U ⊂ R4 of (m1, m̂2,m2, m̂1) = (θ ∗,θ ∗,θ ∗,θ ∗) such that

(i) When A1 = A2 = a, the steady state belief in the neighborhood U is unique and it is m1 =

m2 = m̂1 = m̂2 = θ ∗.

(ii) There are A < a and A > a such that for any γ ∈ [0,1], there is a unique continuous function

m∗ : [A,A]2 → U such that m∗(a,a) = (θ ∗,θ ∗,θ ∗,θ ∗) and such that for each (A1,A2) ∈

(A,A)2, m∗(A1,A2) is a steady state belief given (A1,A2).

To interpret assumption (10), suppose that player 1’s belief m1 and her belief m̂2 about the oppo-

nent’s belief increase a bit, by the same amount. Then her subjective expectation Q(x1, x̂2,A1,m1)

changes by ∂Q
∂θ

+ ∂Q
∂x1

∂x1
∂m1

+ ∂Q
∂x1

∂x1
∂m2

+ ∂Q
∂x2

∂x2
∂m1

+ ∂Q
∂x2

∂x2
∂m2

, and our assumption (10) asserts that this

impact is non-zero. This assumption is satisfied for generic games, and the proposition above

shows that in such games, the interior steady state is continuous in (A1,A2). In other words, when

players’ misspecification is small, there is an interior steady state m∗ in which they approximately

learn the true state.

Now, we will show that for a class of games, there is zero probability of the beliefs converging

to this steady state m∗. To state the result, the following terminology is useful. Given a mean belief

profile m = (m1, m̂2,m2, m̂1), let x(m) = (x1(m1, m̂2), x̂2(m1, m̂2),x2(m2, m̂1), x̂1(m2, m̂1)) denote

the equilibrium action for the corresponding degenerate beliefs. Given perceptions (A1,A2) ∈

(A,A)2, let

b′ =−
(

1
R(x1, x̂2,A1)

,
1

R(x1, x̂2, Â2)
,

1
R(x2, x̂1,A2)

,
1

R(x2, x̂1, Â1)

)
where the actions are the steady state actions, i.e., (x1, x̂2,x2, x̂1) = x(m∗(A1,A2)). Intuitively, this

vector b′ is the direction toward which the mean belief m= (m1, m̂2,m2, m̂1) moves due to the noise

ε . In the team-production example, it corresponds to the blue thick line in Figure 2.

Also, given perceptions (A1,A2) ∈ (A,A)2, let H ′ ⊆ R4 denote the affine space spanned by the
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generalized eigenvectors associated with negative eigenvalues of the matrix

J′ =



∂θ1(x(m))
∂m1

−1 ∂θ1(x(m))
∂ m̂2

∂θ1(x(m))
∂m2

∂θ1(x(m))
∂ m̂1

∂ θ̂2(x(m))
∂m1

∂ θ̂2(x(m))
∂ m̂2

−1 ∂ θ̂2(x(m))
∂m2

∂ θ̂2(x(m))
∂ m̂1

∂θ2(x(m))
∂m1

∂θ2(x(m))
∂ m̂2

∂θ2(x(m))
∂m2

−1 ∂θ2(x(m))
∂ m̂1

∂ θ̂1(x(m))
∂m1

∂ θ̂1(x(m))
∂ m̂2

∂ θ̂1(x(m))
∂m2

∂ θ̂1(x(m))
∂ m̂1

−1


where the derivatives are evaluated at the steady state belief m = m∗(A1,A2). Intuitively, this set H ′

is (local approximation of) the basin of the interior steady state m∗(A1,A2). In the team-production

example, it is represented by the dashed orange line in Figure 1.

We say that perceptions (A1,A2) are regular if b′ < H ′. Under this regularity condition, the

mean belief is kicked out from the basin, due to the noise ε . This is similar to the team-production

example with A1 , A2. In contrast, when this regularity condition does not hold, the mean belief

mt stays on the basin of the interior steady state even when it is perturbed by the noise ε . This is

similar to the team-production example with A1 = A2.

Proposition 3. Suppose that Assumption 1 holds. Suppose also that the assumption stated in

Proposition 2 holds, so that there is a function m∗. Suppose that when A1 = A2 = a, we have

∂θ1(x(m))

∂m1
+

∂θ1(x(m))

∂ m̂2
− ∂ θ̂1(x(m))

∂m1
− ∂ θ̂1(x(m))

∂ m̂2
> 1 (11)

at the steady state with correct learning (i.e., m1 = m2 = m̂1 = m̂2 = θ ∗). Then there are A < a

and A > a such that the following results hold:

(i) For any γ ∈ (0,1] and for any regular (A1,A2) ∈ (A,A), we have

Pr
(

lim
t→∞

(µ t
1,µ

t
2) = (1m∗

1(A1,A2),1m∗
2(A1,A2))

)
= 0.

(ii) For any γ ∈ (0,1] and for any (A1,A2) ∈ (A,A), the matrix J′ has three negative eigenvalues

and one positive eigenvalue; hence dimH ′ = 3 (and hence the regularity condition b′ < H ′

holds for almost all cases).

(iii) For the special case of γ = 1, (A1,A2) satisfies the regularity condition b′ < H ′ if

g1(A1,A2) , g2(A1,A2) (12)
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where

gi(A1,A2) =
∂θi(x(m))

∂mi
+

∂θi(x(m))

∂ m̂−i
+

R(xi(m), x̂−i(m),Ai)

R(x−i(m), x̂i(m),A−i)

(
∂θi(x(m))

∂m−i
+

∂θi(x(m))

∂ m̂i

)
for m = m∗(A1,A2).

Part (i) of the proposition shows that if there is interpersonal projection (i.e., γ > 0) and the pay-

off function satisfies (11),22 then the long-run outcome is discontinuous in the parameter (A1,A2):

It shows that the probability of the beliefs converging to the steady state m∗(A1,A2) suddenly drops

to zero, once players have a small amount of misperception which satisfies the regularity condition.

Parts (ii) and (iii) of the proposition show that this regularity condition is satisfied for almost all

parameters (A1,A2). Indeed, in the team-production example, any (A1,A2) with A1 , A2 satisfies

(12), and hence is regular. (See the proof of Proposition 1 for details.)

The proposition also shows that an arbitrarily small γ > 0 is enough to destroy correct learning.

Note that when γ = 0 (i.e., if there is no inferential naivety), the beliefs converge almost surely to

the steady state, even for perturbed (A1,A2). (See our companion paper Murooka and Yamamoto

(2023) for the proof.) This means that for a fixed (A1,A2), the long-run belief is discontinuous in

γ as well; even a negligible amount of interpersonal projection bias can have a significant impact

on the limit outcome.

A key assumption in Proposition 3 is (11), which ensures that the polarization effect is strong

enough. Under (11), once the belief is perturbed from the steady state for some direction, the belief

leaves a neighborhood of the steady state, just as in the team-production example. To see this,

suppose that A1 = A2 = a and that the players’ current beliefs are at the steady state m1 = m2 =

m̂1 = m̂2 = θ ∗. Suppose now that the beliefs are slightly perturbed so that m1 = m̂2 = θ ∗+∆,

while m2 and m̂1 are unchanged. That is, we perturb the belief in such a way that the inferential

naivety about each player i’s belief is |mi − m̂i| = ∆. Our assumption (11) implies that we have

θ1(x(m))− θ̂1(x(m)) > ∆ with this new belief profile m, which means that the inferential naivety

m1 − m̂1 regarding player 1’s belief is amplified through learning over time. Similarly, because we

22 Note that this assumption (11) does not depend on the parameter γ , as it considers the case with A1 = A2 = a,
where the parameter γ has no impact on θi or θ̂i.
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assume A1 = A2 = a, we have θ1(x) = θ̂2(x) and θ2(x) = θ̂1(x) for all x, and hence (11) implies

∂ θ̂2(x(m))

∂m1
+

∂ θ̂2(x(m))

∂ m̂2
− ∂θ2(x(m))

∂m1
− ∂θ2(x(m))

∂ m̂2
> 1.

Accordingly we have θ̂2(x(m))−θ2(x(m))> ∆ with the new belief profile m, which means that the

inferential naivety m̂2 −m2 regarding player 2’s belief is also amplified over time. In sum, if the

belief is perturbed in the above fashion, then each player’s inferential naivety is amplified through

learning, and the belief does not return to the steady state m1 = m2 = m̂1 = m̂2 = θ ∗.

Simple algebra shows that23 our key assumption (11) can be rewritten as

−
∂Q
∂x2

∂ x̂2(m1,m̂2)
∂m1

+ ∂Q
∂x2

∂ x̂2(m1,m̂2)
∂ m̂2

+ ∂Q
∂x1

∂x1(m1,m̂2)
∂m1

+ ∂Q
∂x1

∂x1(m1,m̂2)
∂ m̂2

∂Q
∂θ

> 1. (13)

Note that the denominator of the left-hand side of (13) measures how one’s belief directly influ-

ences the expected output Q, while the numerator measures the indirect impact on the output Q

through the equilibrium action. Condition (13) requires that these two effects have opposite signs,

and that the magnitude of the former effect is smaller than that of the latter effect.

It turns out that Condition (13) is satisfied in many economic applications:

Example 4. Team production when efforts are substitutes. In Section 3.1, we have considered a

model of team production where each player’s optimal action is independent of the opponent’s

action. This independence assumption is not critical for our result, as illustrated by the following

example. Suppose that each period, each player i chooses an effort level xi ∈ [0,1] (instead of the

amount of shirking). The output is given by

y = a−θ

(
1

x1 + x2
− 1

2

)
+ ε, (14)

where a is the total capability of the team, θ is an unknown state, and ε is a noise term which

follows the standard normal distribution. The difference from the model presented in Section 3.1 is

that efforts are substitutes and hence one’s optimal effort depends on the opponent’s effort. Player

i’s payoff is y− c(xi), where c(xi) =
1
8x2 is i’s effort cost. Assume that the true state is θ ∗ = 0.5.

When A1 = A2 = a, simple algebra shows that the left-hand side of (13) is approximately 1.62 at

23 This follows from (46) in the appendix with Xi = x̂i at A1 = A2 = a.
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the interior steady state θi = θ̂i = 0.5. So Proposition 3 implies that for any γ > 0 and for any

regular (A1,A2) close to (a,a), there is zero probability of the beliefs converge to the steady state

m∗(A1,A2), i.e., correct learning is destroyed if players (slightly) underestimate the heterogeneity

of their perceptions.

Example 5. Games with conflicting interests. Consider a situation in which two players compete

with each other. Specifically, in each period, each player i chooses effort xi ≥ 0 and observes a

public outcome

y = Q(x1,x2,a,θ)+ ε = θ (x2 − x1 +a)+ ε,

where θ > 0 is the state, and a ∈ R is player 2’s relative capability compared to player 1 (or any

feature which creates asymmetry in the competition). Intuitively, y represents player 2’s relative

performance in the competition, and indeed, y is increasing in x2 while it is decreasing in x1. Player

2’ payoff is y− 1
2x2

2, while player 1’s payoff is −y− 1
8x2

1, where the second term in each player’s

payoff is the effort cost. This framework can be used to analyze various tournament-like situations

such as advertisement (where xi is the amount of advertisement and y is a variable which influences

the market share). Suppose that the true state is θ ∗ = 0.5. When A1 = A2 = a = 2, simple algebra

shows that the left-hand side of (13) equals 3 at the interior steady state θi = θ̂i = 0.5. Hence

by Proposition 3, correct learning is destroyed for any γ > 0 and for any regular (A1,A2) close to

(a,a).

Example 6. Cournot duopoly. Suppose that each period, each firm i = 1,2 chooses its quantity

xi ∈ [0,x], and a publicly observable market price is given by

y = a−θ (x1 + x2)+ ε,

where θ is an unknown state and ε is a noise term which follows the standard normal distribution.

Firm i’s payoff is yxi − c(xi), where yxi is firm i’s revenue and c(xi) is firm i’s production cost.

Suppose that the true state is θ ∗ > 0. When A1 = A2 = a, the Nash equilibrium actions at the

steady state belief θi = θ̂i = θ ∗ are xi = x̂i for i = 1,2. Simple algebra shows that the left-hand side

of (13) is larger than 1 if and only if the cost function is concave at this equilibrium production
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level, i.e., c′′(xi) < 0. Hence, Proposition 3 applies to this example in such a case, and for any

γ > 0 and for any regular (A1,A2) close to (a,a), there is zero probability of the beliefs converging

to the steady state m∗(A1,A2).

4 Different Initial Priors

As shown in Proposition 1, in the team-production example with correct perception (i.e., A1 =

A2 = a), correct learning occurs almost surely. A key is that the initial belief is on the basin of

attraction of the interior steady state (the dashed orange line in Figure 1(a)), and it never leaves the

basin. Hence it eventually converges to the interior steady state.

This section studies what happens when players have different initial priors. In this case, the

initial belief is not on the basin of the interior steady state, and Figure 1(a) suggests that the beliefs

move toward the boundary points, rather than the interior steady state. We will show that this is

indeed the case, and the belief converges to the boundary points with positive probability (but not

with probability one, we will discuss this later).

Formally, consider the team-production problem with A1 = A2 = a. For simplicity, we assume

that each player i’s initial prior is the truncated normal distribution induced by N(m1
i ,

1
ξ 1

i
), where

(m1
1,ξ

1
1 ) , (m

1
2,ξ

1
2 ). Assume also that each player i is unaware of the opponent having a different

belief; she incorrectly believes that the opponent’s initial prior is induced by N(m1
i ,

1
ξ 1

i
); in reality,

the opponent’s belief is induced by N(m1
−i,

1
ξ 1
−i
). Then we have the following result:

Proposition 4. For any initial beliefs with (m1
1,ξ

1
1 ) , (m

1
2,ξ

1
2 ),

Pr
(

lim
t→∞

µ
t ∈ {(1

θ
,1θ ),(1θ ,1θ

)}
)
> 0.

This result is weaker than Proposition 1(ii), in that it does not rule out the possibility that

correct learning occurs with positive probability. Intuitively, even though the initial belief is not

on the basin of the interior steady state, depending on the realization of the noise ε , the posterior

may move to (a neighborhood of) the basin. And once it happens, the belief may stay at the basin

forever; this is so because we assume A1 = A2 = a, in which case the noise does not kick out
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the mean belief from the basin, as described by Figure 2(a). Accordingly, we cannot rule out the

possibility of the beliefs converging to the interior steady state.

In contrast, Proposition 1(ii) assumes A1 , A2, in which case the blue line in Figure 2 does not

coincide with the basin of the interior steady state. This means that even if the posterior belief

returns to the basin in some period t, it cannot stay there and will be kicked out again due to the

noise. This property leads to the zero-probability convergence.

5 One-Sided Misspecification

We have focused on the situation in which both players are misspecified and have inferential

naivety about the opponent’s action and belief. This section studies how our result is affected

when the misspecification is only on one side. We consider the model in which only one of the

players is misspecified and has inferential naivety; the other player is perfectly rational, and in

particular knows that the opponent is misspecified. It turns out that a result similar to Proposition 3

still holds. That is, when one of the players is slightly misspecified, the beliefs converge to the in-

terior steady state with zero probability. So correct learning is vulnerable to small misspecification

even in this one-sided misspecification case.

As in Section 3.3, suppose that players observe a public signal

y = Q(x1,x2,a,θ)+ ε

= R(x1,x2,a)θ +S(x1,x2,a)+ ε

every period. We assume that player 2’s information structure is the same as before. That is, she

thinks that the true parameter is A2 , a, and projects her view on the opponent. To simplify our

exposition, we will focus on the full-projection case (i.e., γ = 1), so player 2 thinks that player 1

also thinks that the true parameter is Â1 = A2.24 On the other hand, player 1 is correctly specified,

so she knows the true parameter a (so A1 = a) and knows player 2’s information structure above.

Let x = (x1,x2, x̂1) denote the action profile in this setup; here x̂2 is dropped, as player 1 cor-

rectly predicts the opponent’s action every period. Define θ2(x) and I2(x2, x̂1) as in Section 3.3.

24This assumption is not essential, and the result does not change much even in the case of partial projection (γ < 1).
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Then player 2’s posterior is the truncated normal distribution induced by the normal distribution

N(mt
2,

1
(t−1)ξ t

2
), where the parameters (mt

2,ξ
t
2) are given by (6) and (7). Each period, she computes

a Nash equilibrium (x̂1,x2) given her perception A2 and this posterior, and chooses this equilibrium

action x2. As in section 3.3, we denote this equilibrium action by
(

x2

(
mt

2,
1

(t−1)ξ t
2

)
, x̂1

(
mt

2,
1

(t−1)ξ t
2

))
.

Player 1 correctly predicts this action x2 and best-responds to it every period. Specifically, let

θ1(x) = θ ∗ and let I1(x1,x2) = (R(x1,x2,a))2. Then player 1’s posterior in period t is the truncated

normal distribution induced by N(mt
1,

1
(t−1)ξ t

1
) where the parameters (mt

1,ξ
t
1) are given by (6) and

(7) with I1(x1, x̂2) being replaced by I1(x1,x2). In each period t, player 1 best-responds to xt
2 given

this posterior belief. In what follows, let x1

(
mt

1,
1

(t−1)ξ t
1
,mt

2,
1

(t−1)ξ t
2

)
denote this action. Note that

this action depends on mt
2 and ξ t

2, as they influence xt
2.

As in Section 3.3, we assume that these equilibrium actions satisfy a certain continuity property.

Let (x2(m2), x̂1(m2)) denote a Nash equilibrium when everyone thinks that the true parameter is A2

and the true state is θ ∈ argminθ ′∈Θ |m2−θ ′|. Also, let x1(m1,m2) denote player 1’s best response

to x2(m2) when she thinks that the true state is θ ∈ argminθ ′∈Θ |m1 −θ ′|.

Assumption 2. There are A < a and A > a such that for any A2 ∈ (A,A), the following properties

hold.

(i) There are K > 0 and α > 0 such that

– For any (m1,m2), for any sufficiently large t, for any ξ1 ∈
(

0, 1
tR2

)
, and for any ξ2 ∈(

0, 1
tR2

)
, we have |x1(m1,

1
ξ1
,m2,

1
ξ2
)− x1(m1,m2)| < K

tα , |x2(m2,
1
ξ2
)− x2(m2)| < K

tα ,

and |x̂1(m2,
1
ξ2
)− x̂1(m2)|< K

tα , and

– For any (m1,m2) ∈ (intΘ)2, for any sufficiently large t, for any ξ1 ∈ (0, 1
tR2 ), and for

any ξ2 ∈
(

0, 1
tR2

)
, the above inequalities hold for α = 1.

(ii) The limit equilibrium actions (x1(m1,m2),x2(m2), x̂1(m2)) are Lipschitz-continuous in (m1,m2).

As we assume that player 1 is perfectly rational, she “appropriately” updates her posterior

belief each period, in that she uses Bayes’ rule with the correct parameter a and the correct pre-

diction about the opponent’s action. Accordingly, the standard argument shows that she eventually
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learns the true state θ ∗ almost surely. Hence the steady state in this environment is defined as

(x∗1,x
∗
2, x̂

∗
1,µ

∗
1 ,µ

∗
2 , µ̂

∗
1 ) which solves

x∗1 ∈ argmax
x1

U1(x1,x∗2,a,θ
∗)

x∗2 ∈ argmax
x2

U2(x̂∗1,x2,A2,θ2)

x̂∗1 ∈ argmax
x̂1

U2(x̂1,x∗2,A2,θ2)

µ
∗
1 = 1θ∗

µ
∗
2 = µ̂

∗
1 = 1θ where θ ∈ arg min

θ ′∈Θ

|Q(x̂1,x2,A2,θ
′)−Q(x1,x2,a,θ ∗)|.

Intuitively, the last constraint implies that player 2’s belief is concentrated on the state which best

explains the data.

The following proposition is a counterpart to Proposition 2, and shows that under the assump-

tion (15), the steady state defined above is continuous with respect to player 2’s perception A2.

Note that the assumption (15) is satisfied for generic games, so this proposition implies that small

misspecification has a small impact on steady states for “almost all” games. The proof of the

proposition is very similar to that of Proposition 2, and hence omitted.

Proposition 5. Suppose that when A1 = A2 = a, we have

∂Q
∂x1

∂x1(θ1,θ2)

∂θ1
+

∂Q
∂θ
, 0 (15)

at the steady state with correct learning (i.e., θi = θ ∗ and xi = xi(θ
∗) for each i). Then there is an

open neighborhood U ⊂ R of θ2 = θ ∗ such that

(i) When A1 = A2 = a, the steady state belief in the neighborhood U is unique and it is θ2 = θ ∗.

(ii) There are A < a, A > a, and a unique continuous function m∗
2 : [A,A]→U such that m∗

2(a) =

θ ∗ and such that for each A2 ∈ [A,A], m∗
2(A2) is a steady state belief given A2.

The next proposition is the main result of this section, which shows that the limit outcome is

discontinuous in A2 even in this one-sided misspecification case. Let m = (m1,m2), and let x(m)

denote the action profile (x1(m),x2(m2), x̂1(m2)).
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Proposition 6. Suppose that Assumption 2 holds. Suppose that the assumption stated in Proposi-

tion 5 holds, so that there is a function m∗
2. Suppose also that when A1 = A2 = a, we have

∂θ2(x(m))

∂m2
> 1 (16)

at the steady state with correct learning (i.e., m1 = m2 = θ ∗). Then, there are A < a and A > a

such that for any A2 ∈ (A,A) such that

∂θ2(x(m))

∂m2
+

R(x2(m2), x̂1(m2),A2)

R(x1(m1), x̂2(m1),a)
∂θ2(x(m))

∂m1
, 0, (17)

we have

Pr
(

lim
t→∞

(µ t
1,µ

t
2) = (1θ∗,1m∗

2(A2))
)
= 0.

Note that (17) is similar to the regularity condition imposed in Proposition 3, and is satisfied in

generic games. So the critical assumption in the proposition above is (16). Simple algebra shows

that the team-production example discussed in Section 3.1 satisfies this condition (16). Hence

small misspecification destroys correct learning even in the case of one-sided misspecification.

Similarly, the above proposition applies to the games with conflicting interests (Example 5) when

θ ∗ = 0.8 and a = 2.

6 Related Literature and Concluding Remarks

There is a rapidly growing literature on Bayesian learning with model misspecification. Nyarko

(1991) presents a model in which the agent’s action does not converge. Fudenberg, Romanyuk, and

Strack (2017) consider a general two-state model and characterize the agent’s asymptotic actions

and behavior. Ba and Gindin (2023), He (2022), and Heidhues, Kőszegi, and Strack (2018, 2021)

study a continuous-state setup, and they show that the agent’s action and belief converge to a

Berk-Nash equilibrium of Esponda and Pouzo (2016), under some assumptions on payoffs and

information structure. Esponda, Pouzo, and Yamamoto (2021) characterize the agent’s asymptotic

behavior in a general single-agent model. Fudenberg, Lanzani, and Strack (2021) and Frick, Iijima,

and Ishii (2023) discuss stability of steady states. All these papers look at a single-agent problem

or a multi-agent setup in which each player’s bias is common knowledge.
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Misspecification of others has been studied in the literature on social learning (e.g., DeMarzo,

Vayanos, and Zwiebel, 2003; Eyster and Rabin, 2010; Gagnon-Bartsch, 2016; Gagnon-Bartsch

and Rabin, 2016; Bohren and Hauser, 2021). Most of these papers do not discuss discontinuity of

the equilibrium outcome, and indeed, one of the main result of Bohren and Hauser (2021) is that

the long-run outcome is robust to a small perturbation of the information structure. An exception

is Frick, Iijima, and Ishii (2020), who show that the equilibrium outcome is discontinuous in the

information structure in a model of information aggregation. As explained in Introduction, a key

assumption is that the agents observe a noise signal about the state only once, which is critical

for the discontinuity of the steady state. In contrast, in our model, the agents have repeated feed-

back about the state, and accordingly the steady states are continuous in the information structure.

Nonetheless the equilibrium outcome is discontinuous, because small misspecification influences

the entire learning dynamics and the convergence probability suddenly drops to zero.

In this paper, we have assumed that players’ bias about the opponent’s bias takes a form of

interpersonal projection. We conjecture that the main finding of this paper goes through even if

we consider other forms of misspecification: Roughly, whenever each player has a bias about the

opponent’s bias, they misspecify the opponent’s action. So for games in which there is a snowball

effect discussed in this paper, we may expect that small misperception leads to learning failure.
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Online Appendix
A Non-Convergence Theorem for a General Stochastic Process

In this appendix, we will extend the non-convergence theorem of Pemantle (1990) and show that

the same non-convergence result holds in a more general environment which includes our model

as a special case. This result is used in the proofs of the various non-convergence results in the

main text.

Consider a stochastic difference equation

v(t +1)− v(t) =
1

t +1
(F(v(t))+b(t,v(t))ε) (18)

where v(t) ∈ Rn, F : Rn → Rn, b(t,v(t)) ∈ Rn, and ε ∼ N(0,1). We assume that F is Lipschitz-

continuous, and that there is b such that |bi(t,v)|< b for all i, t, and v ∈ Rn, where bi(t,v) is the ith

component of the vector b(t,v). This second assumption essentially means that the variance of the

noise is bounded.

A stochastic process {v(t)}∞
t=1 is a perturbed solution to (18) if it solves

v(t +1)− v(t) =
1

t +1
(
F̃(t,v(t))+b(t,v(t))ε

)
for some F̃ such that there is K > 0 and α > 0 such that for all t and v,

|F(v)− F̃(t,v)|< K
tα

.

The following is a famous result in the theory of stochastic approximation (e.g, Theorem 2.1 of

Kushner and Yin (2003)), which shows that if a stochastic process {v(t)}∞
t=1 is a perturbed solution

to (18), and if this process {v(t)}∞
t=1 is bounded with probability one, then the asymptotic motion

{v(t)} is approximated by the associated ODE

dw(t)
dt

= F(w(t)). (19)

To state the result formally, we use the following terminologies. Given a realized infinite-horizon

outcome {v(t)}∞
t=1, define the continuous-time interpolation as a mapping w : [0,∞) → Rn such

that

w[τt + s] = v(t)+
τ

τt+1 − τt
(v(t)− v(t))

1



for all t = 0,1, · · · and τ ∈ [0, 1
t+1). This w is an asymptotic pseudotrajectory of the ODE (19) if

for any T > 0,

lim
t→∞

sup
τ∈[0,T ]

|w(t + τ)− s(w(t))[τ]|= 0 (20)

where s(v(0)) : R+ → Rn is a solution to the ODE (19) given the initial value v(0).

Lemma 1. Suppose that a stochastic process {v(t)}∞
t=1 is a perturbed solution to (18), and this

process {v(t)}∞
t=1 is bounded almost surely. Then with probability one, w is an asymptotic pseudo-

trajectory of the ODE (19).

A point p ∈ Rn is a steady state of the ODE if F(p) = 0. A steady state p is linearly unstable if

the Jacobian of F at p has at least one eigenvalue with a positive real part. Pemantle (1990) shows

that there is zero probability of the stochastic process {v(t)} converging to linearly unstable steady

states, assuming that (i) {v(t)} is an exact solution to (18), and (ii) the noise term ε has a bounded

support. An important consequence of (ii) is that the step size v(t + 1)− v(t) is bounded by c̃
t+1 ,

which is frequently used in Pemantle’s proof.

The following proposition shows that the same result holds even if {v(t)} is an perturbed solu-

tion (rather than an exact solution) to (18) and the noise term ε is normally distributed (and hence

has an unbounded support). This extension is critical in order to obtain our discontinuity result

(Proposition 3).

Proposition 7. Let p be a linearly unstable steady state of the ODE (19). Let H be the affine

space spanned by the generalized eigenvectors associated with the eigenvalues with negative real

parts, and let H∗ be the set of all unit vectors orthogonal to H. Assume that there is κ > 0,

t∗ > 0, and a neighborhood U of p such that |b(t,v) · h| ≥ κ for all h ∈ H∗, t ≥ t∗, and v ∈ U. If

there is K and a neighborhood U ′ of p such that |F(v)− F̃(t,v)| < K
t for all v ∈ U ′ and t, then

Pr(limt→∞ v(t) = p) = 0.

2



B Proofs

B.1 Proof of Proposition 1(i)

We will first show that Assumption 1 in the main text is satisfied in this team-production exam-

ple. Recall that each player’s postrior belief µ
t+1
i = µ̂

t+1
−i is the truncated normal induced by

N(mt+1
i , 1

tξ t+1
i

). Thus the Nash equilibrium action today is xi(mt+1
i , 1

tξ t+1
i

) = x̂−i(mt+1
i , 1

tξ t+1
i

) =

1− m̃(mt+1
i , tξ t+1

i ), where m̃(mt+1
i , tξ t+1

i ) denote the mean of the truncated normal distribution

µ
t+1
i . Let xi(mi) = x̂−i(mi) = 1−θ denote the Nash equilibrium action when player i has a degen-

erate belief µi = 1θ where θ solves min
θ̃∈Θ

|mi − θ̃ |. Part (iv) of the following lemma implies that

these equilibrium actions satisfy Assumption 1. (Parts (i)-(iii) of this lemma are not used here, but

we will use them in the proof of Proposition 1(ii).)

Lemma 2. There is k > 0 and t > 0 such that for all t > t and ξ ≥ R2,

(i) |m̃(m, tξ )−m|< k√
t for all m ∈ Θ,

(ii) |m̃(m, tξ )−θ |< k√
t for all m < θ ,

(iii) |m̃(m, tξ )−θ |< k√
t for all m > θ .

Also, for any interior point θ ∗ ∈ Θ, there is a neighborhood U of θ ∗, k > 0, and t ′ > 0 such that

for all t > t ′ and m ∈U,

(iv) |m̃(m, tξ )−m|< k
t .

Proof. Let ξ = R2. We will show that (i)-(iv) hold for this particular ξ . Then it is straightforward

to see that (i)-(iv) holds for all other ξ > R2.

Let φ denote the pdf of the standard normal N(0,1), and let Φ denote its cdf. Pick a truncated

normal distribution induced by some normal distribution N(m, 1
tξ ). It is well-known that that the

mean of this truncated normal distribution is

m̃(m, tξ ) = m+
1√
tξ

· φ(
√

tξ (θ −m))−φ(
√

tξ (θ −m))

Φ(
√

tξ (θ −m))−Φ(
√

tξ (θ −m))
(21)

3



Since φ(x) = 1√
2π

exp(−0.5x2)≤ 1√
2π

,

|φ(
√

tξ (θ −m))−φ(
√

tξ (θ −m))|< 1√
2π

.

Also there is t > 0 such that for all m ∈ Θ and t > t,

Φ(
√

tξ (θ −m))−Φ(
√

tξ (θ −m))>
1
3
. (22)

Plugging these into (21), we have

|m̃(m, tξ )−m|< 1√
tξ

· 3√
2π

for all m ∈ Θ and t > t, which implies (i).

Next, we will prove (iv). Note that

|φ(
√

tξ (θ −m))−φ(
√

tξ (θ −m))|= 1√
2π

∣∣∣∣∣∣
(

1

(
√

e)(θ−m)2

)tξ

−
(

1
(
√

e)(θ−m)2

)tξ
∣∣∣∣∣∣ .

Pick θ ∗ ∈ (θ ,θ). Then there is a neighborhood U of θ ∗ such that we have 1
(
√

e)(θ−m)2
< 1 and

1
(
√

e)(θ−m)2
< 1 for all m ∈U . Then there is t ′ such that

|φ(
√

tξ (θ −m))−φ(
√

tξ (θ −m))|< 1
t

for all m ∈U and t > t ′. Plugging this and (22) into (21), we have (iv).

Finally, we will prove (ii) and (iii). Let φ̃(m, 1
ξ
) denote the pdf of the truncated normal induced

by N(m, 1
ξ
). Then for any x > 0 and m < θ ,

φ̃

(
θ , 1

ξ

)
[θ + x]

φ̃

(
θ , 1

ξ

)
[θ ]

=
φ(
√

ξ x)
φ(0)

>
φ(
√

ξ (θ −m+ x))

φ(
√

ξ (θ −m))
=

φ̃

(
m, 1

ξ

)
[θ + x]

φ̃

(
m, 1

ξ

)
[θ ]

.

This means that the truncated normal induced by N(θ , 1
ξ
) first-order stochastically dominates that

induced by N(m, 1
ξ
) for all m < θ . Hence

θ < m̃(m,ξ )< m̃(θ ,ξ )

for all m < θ . Together with part (i) of the lemma, we obtain (ii). The proof of (iii) is similar and

hence omitted. Q.E.D.
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When A1 = A2, players have the same view about the world and hence have the same posterior

belief every period, i.e., we have mt
1 = mt

2 and ξ t
1 = ξ t

2 after every history. Hence we only need to

consider how player 1’s belief (mt
1,ξ

t
1) evolves over time.

Since Assumption 1 holds in this example, just as we show in the proof of Proposition 3, the

stochastic process (mt
1,ξ

t
1) is a perturbed solution to the difference equations (36) and (38) for i= 1.

(Here we do not need to consider (37) or (39), as we know that (mt
i,ξ

t
i ) = (m̂t

−i, ξ̂
t
−i) in the case of

full projection.) Also, as shown in Lemma 3 in the proof of Proposition 1(ii), the process (mt
1,ξ

t
1)

is bounded almost surely. Hence Lemma 1 applies, so that the continuous-time interpolation w :

[0,∞)→ R2 of the stochastic process (mt
1,ξ

t
1)

∞
t=1 is an asymptotic pseudotrajectory of the ODE

dm1(t)
dt

=
I1(m1(t))(θ1(m1(t))−m1(t))

ξi(t)
, (23)

dξ1(t)
dt

= I1(m1(t))−ξ1(t), (24)

where θ1(m1) and I1(m1) are defined as θ1(m1,m2, m̂1, m̂2) and I1(m1, m̂2) for m2 = m̂1 = m̂2 =m1.

For the special case of A1 = A2 = a, simple algebra shows that θ1(m1)−m1 < 0 for any m1 >

m∗
1(A1,A2) = θ ∗, while θ1(m1)−m1 > 0 for any m1 < m∗

1(A1,A2) = θ ∗. So regardless of the

initial value (m1(0),ξ1(0)), the solution to the above ODE converges to the interior steady state

(m∗
1(A1,A2), I1(m∗

1(A1,A2))).

A standard argument shows that the same result holds even when A1 = A2 is slightly perturbed

from a; we have θ1(m1)−m1 < 0 for any m1 > m∗
1(A1,A2), while θ1(m1)−m1 > 0 for any m1 <

m∗
1(A1,A2). So the solution to the ODE always converges to the interior steady state.

This means that when A1 =A2 is close to a, the interior steady state (m∗
1(A1,A2), I1(m∗

1(A1,A2)))

is globally attracting in the sense of Benaı̈m (1999). Then his theorem shows that the stochastic

process (mt
1,ξ

t
1) almost surely converges to the interior steady state, as desired.

B.2 Proof of Proposition 1(ii)

We will first show that the process converges to the interior steady state with zero probability. Then

we will show that the process converges to the boundary steady states.

5



Part 1: Non-convergence to the interior steady state First, we will show that there is zero

probability of the process converging to the interior steady state. As we have seen in the proof of

Proposition 1(i), Assumption 1 is satisfied in this team-production example. Also, simple algebra

shows that when A1 = A2 = a, we have ∂θ1(x(m))
∂m1

+ ∂θ1(x(m))
∂ m̂2

= 2 and ∂ θ̂1(x(m))
∂m1

+ ∂ θ̂1(x(m))
∂ m̂2

= −2.

This immediately implies that (11) holds in this example. Hence from Proposition 3(i), the beliefs

converge to the interior steady state with zero probability, whenever (A1,A2) is regular.

So it suffices to show that any (A1,A2) with A1 , A2 is regular. From Proposition 3(iii), we

only need to show that any (A1,A2) with A1 , A2 satisfies (12).

Recall that given m, θi(m) solves Q(xi(mi),x−i(m−i),a,θ ∗)−Q(xi(mi), x̂−i(m̂−i),Ai,θi) = 0.

By the implicit function theorem, we have

∂θi

∂mi
=

∂Q∗

∂xi

∂xi
∂mi

− ∂Qi
∂xi

∂xi
∂mi

∂Qi
∂θi

=

∂Q∗

∂xi

∂xi
∂mi

− ∂Qi
∂xi

∂xi
∂mi

R(xi(mi), x̂−i(m̂−i),Ai)
,

∂θi

∂m−i
=

∂Q∗

∂x−i

∂x−i
∂m−i

∂Qi
∂θi

=

∂Q∗

∂x−i

∂x−i
∂m−i

R(xi(mi), x̂−i(m̂−i),Ai)
,

∂θi

∂ m̂i
= 0,

∂θi

∂ m̂−i
=−

∂Qi
∂ x̂−i

∂ x̂−i
∂ m̂−i

∂Qi
∂θi

=−
∂Qi
∂ x̂−i

∂ x̂−i
∂ m̂−i

R(xi(mi), x̂−i(m̂−i),Ai)

where Qi = Q(xi(mi), x̂−i(m̂−i),Ai,θi) denotes player i’s subjective expectation and

Q∗ = Q(xi(mi),x−i(m−i),a,θ ∗) denotes the true mean. Using these equations, the left-hand side

of (12) can be rewritten as

∂Q∗

∂x1

∂x1
∂m1

− ∂Q1
∂x1

∂x1
∂m1

R(x1(m1), x̂2(m̂2),A1)
−

∂Q1
∂ x̂2

∂ x̂2
∂ m̂2

R(x1(m1), x̂2(m̂2),A1)
+

∂Q∗

∂x2

∂x2
∂m2

R(x2(m2), x̂1(m̂1),A2)

=

∂Q∗

∂x1

∂x1
∂m1

−2∂Q1
∂x1

∂x1
∂m1

R(x1(m1), x̂2(m̂2),A1)
+

∂Q∗

∂x2

∂x2
∂m2

R(x2(m2), x̂1(m̂1),A2)
.

Here the equality follows from the fact that we have ∂Q1
∂x1

∂x1
∂m1

= ∂Q1
∂ x̂2

∂ x̂2
∂ m̂2

at any steady state where

m1 = m̂2. Similarly, the right-hand side of (12) is written as

∂Q∗

∂x2

∂x2
∂m2

−2∂Q2
∂x2

∂x2
∂m2

R(x2(m2), x̂1(m̂1),A2)
+

∂Q∗

∂x1

∂x1
∂m1

R(x1(m1), x̂2(m̂2),A1)
.

6



Hence (12) reduces to

−2∂Q1
∂x1

∂x1
∂m1

R(x1(m1), x̂2(m̂2),a)
,

−2∂Q2
∂x2

∂x2
∂m2

R(x2(m2), x̂1(m̂1),A2)

which is further simplified to

− m1

1−m1
,− m2

1−m2

because at the steady state, we have mi = m̂−i so that xi(mi) = x̂i(m̂−i) = 1−mi, ∂Qi
∂xi

=−θi(m) =

−mi, and R(xi(mi), x̂−i(m̂−i),Ai) = xi(mi)+ x̂−i(m̂−i) = 2(1−mi). This inequality indeed holds

(and hence (12) is satisfied) whenever A1 , A2, because mi
1−mi

is increasing in mi on the set Θ, and

the consistency condition implies that m∗
1 , m∗

2 in any interior steady state with A1 , A2.

Part 2: Convergence to boundary beliefs With an abuse of notation, we will write (mt ,ξ t) =

(mt
i,ξ

t
i )

t
i=1, because we do not need to compute (m̂t

i, ξ̂
t
i ) in the case of full projection.

We will first show that the stochastic process (mt ,ξ t) is bounded with probability one. Recall

that regardless of the parameter Ai, a Nash equilibrium given a state θi is xi = x̂−i = 1−θi. Hence

on the equilibrium path, each player’s production is at least x= 1−θ and does not exceed x= 1−θ .

Let mi be such that

Ai −mi(x+ x) = a−θ
∗(x+ x).

In words, mi ∈ R denotes a state with which player i’s subjective expectation about the output

matches the true mean, when player i thinks that the opponent chooses the maximal effort x but in

reality she chooses the minimal effort x. Note that this mi is the minimum of θi(m) over all m, and

that mi need not be in the state space Θ. Similarly, let mi be such that

Ai −mi(x+ x) = a−θ
∗(x+ x).

This is a state with which player i’s subjective expectation about the output matches the true mean,

when player i thinks that the opponent chooses the minimal effort x but in reality she chooses the

maximal effort x. Note that this mi is the maximum of θi(m) over all m.

The following lemma shows that almost surely, mt
i is in a neighborhood of [mi,mi] after a long

time. This immediately implies that the process (mt ,ξ t) is bounded almost surely; indeed, since

xi ∈ [x,x] for each i, Ii(xτ) has the minimal value I = Ii(x,x) and the maximal value I = Ii(x,x), and

7



hence it is obvious that ξ t
i is always in the bounded interval [I, I]. We omit the proof of the lemma,

as it is very similar to that of Lemma 5 of Heidhues, Kőszegi, and Strack (2021).

Lemma 3. Given any (A1,A2), almost surely, mi ≤ liminft→∞ mt
i ≤ limsupt→∞ mt

i ≤ mi for each i.

As we have seen in the proof of Proposition 1(i), Assumption 1 holds in this team-production

game. Then just as we show in the proof of Proposition 3, the stochastic process (mt ,ξ t) is a

perturbed solution to the difference equations (36) and (38). (Here we do not need to consider (37)

or (39), as we know that (mt
i,ξ

t
i ) = (m̂t

−i, ξ̂
t
−i) in the case of full projection.) This, together with the

boundedness of (mt ,ξ t), implies that Lemma 1 applies, so that the continuous-time interpolation

w : [0,∞)→ R4 of the stochastic process (mt ,ξ t)∞
t=1 is an asymptotic pseudotrajectory of the ODE

dmi(t)
dt

=
Ii(mi(t))(θi(m(t))−mi(t))

ξi(t)
, (25)

dξi(t)
dt

= Ii(mi(t))−ξi(t), (26)

where θi(mi,m−i) and Ii(mi) are defined as θi(mi,m−i, m̂i, m̂−i) and Ii(mi, m̂−i) for m̂i = m−i and

m̂−i = mi.

Intuitively, this means that the asymptotic motion of the stochastic process (mt ,ξ t) is approx-

imated by the ODE (25) and (26). So in order to know the long-run outcome of the stochastic

process, it suffices to investigate the ODE.

The next lemma characterizes the behavior of the solution to the ODE when players’ misper-

ception is small.

Lemma 4. There are A < a and A > a such that for any (A1,A2) ∈ (A,A)2 and for any i, there

are values θ ′
−i and θ ′′

−i with θ < θ ′
−i < θ ′′

−i < θ and differentiable functions fi : [θ ′
−i,θ

′′
−i] → Θ,

f̃i : [θ ,θ ′′
−i]→ [θ ,mi], and f̂i : [θ ′

−i,θ ]→ [mi,θ ] such that the following properties hold:

(i) f ′i (m−i) > 1 for all m−i, fi(θ
′
−i) = θ , fi(θ

′′
−i) = θ , f̃ ′i (m−i) < 0 for all m−i, f̃i(θ) = mi,

f̃i(θ
′′
−i) = θ , f̂ ′i (m−i)< 0 for all m−i, f̂i(θ

′
−i) = θ , f̂i(θ) = mi,

(ii) For any m−i < θ , θi(m)−mi is positive if mi < mi, is zero if mi = mi, and is negative if

mi > mi.
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(iii) For any m−i ∈ [θ ,θ ′
−i), θi(m)−mi is positive if mi < f̃i(m−i), is zero if mi = f̃i(m−i), and is

negative if mi > f̃i(m−i),

(iv) For any m−i ∈ [θ ′
−i,θ

′′
−i], θi(m)−mi is positive if mi < f̂i(m−i), is zero if mi = f̂i(m−i), is neg-

ative if mi ∈ ( f̂i(m−i), fi(m−i)), is zero if mi = fi(m−i), is positive if mi ∈ ( fi(m−i), f̃i(m−i)),

is zero if mi = f̃i(m−i), and is negative if mi > f̃i(m−i).

v) For any m−i ∈ (θ ′′
−i,θ ], θi(m)−mi is positive if mi < f̂i(m−i), is zero if mi = f̂i(m−i), and

and is negative if mi > f̂i(m−i).

(vi) For any m−i > θ , θi(m)−mi is positive if mi < mi, is zero if mi = mi, and is negative if

mi > mi.

Proof. We will first explain how to choose θ ′
−i, θ ′′

−i, fi, f̃i, and f̂i. Let θ ′
−i be a state θ which solves

Ai −θ(xi(θ)+ x−i(θ)) = a−θ
∗(xi(θ)+ x−i(θ)).

When Ai = a, the right-hand side (a−θ ∗(2−θ −θ)) is less than the left-hand side (a−θ(2−2θ))

at θ = θ , and is greater than that at θ = θ ∗. Also the right-hand side is increasing in θ . Hence

θ ′
−i which solves the equality above is unique and θ < θ ′

−i < θ ∗. Then by the continuity, the same

result holds as long as (A1,A2) is close to (a,a).

Similarly, let θ ′′
−i be a state θ which solves

Ai −θ(xi(θ)+ x−i(θ)) = a−θ
∗(xi(θ)+ x−i(θ)).

Then again, for Ai close to a, θ ′′
−i is uniquely determined and θ ∗ < θ ′′

−i < θ . Hence we have

θ < θ ′
−i < θ ′′

−i < θ as stated in the lemma.

Then for each m−i ∈ [θ ,θ ′′
−i], define f̃i(m−i) as a value mi which solves

Ai −mi(xi(θ)+ x−i(θ)) = a−θ
∗(xi(θ)+ x−i(m−i)),

i.e., with this belief mi, player i’s subjective expectation about the output matches the true mean

when she believes that the Nash equilibrium for θ will be chosen but in reality the opponent

chooses the Nash equilibrium action for m−i. Note that the above equation is linear in mi, and
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hence indeed has a unique solution. By the definition, f̃i(θ) = mi and f̃i(θ
′′
−i) = θ . Also by the

implicit function theorem, f̃i(m−i) is decreasing in m−i, as stated in the lemma.

Similarly, for each m−i ∈ [θ ′
−i,θ ], define f̂i(m−i) as a value mi which solves

Ai −mi(xi(θ)+ x−i(θ)) = a−θ
∗(xi(θ)+ x−i(m−i)).

Again this equation is linear in mi, and hence has a unique solution. Also it is easy to check that

f̂i(θ
′
−i) = θ , f̂i(θ) = mi, and f̂i(m−i) is decreasing in m−i.

Also for each m−i ∈ [θ ′
−i,θ

′′], define fi(m−i) as a value mi ∈ Θ which solves

Ai −mi(xi(mi)+ x−i(mi)) = a−θ
∗(xi(mi)+ x−i(m−i)).

To see that this equation has a solution, let

g(mi,m−i) = Ai −mi(xi(mi)+ x−i(mi))−a+θ
∗(xi(mi)+ x−i(m−i)).

By the definition of θ ′′
−i, g(θ ,θ ′′

−i) = 0. Then since g is decreasing in m−i, we have g(θ ,m−i)≥ 0

for all m−i ∈ [θ ′
−i,θ

′′]. Likewise, since g(θ ,θ ′
−i) = 0. we have g(θ ,m−i)≤ 0 for all m−i ∈ [θ ′

−i,θ
′′].

Taken together, given any m−i ∈ [θ ′
−i,θ

′′], we have g(θ ,m−i)≤ 0 ≤ g(θ ,m−i), so there is at least

one mi ∈ Θ which solves g(mi,m−i) = 0. Also this solution is unique, because given any m−i ∈

[θ ′
−i,θ

′′], g is strictly increasing in mi when mi ∈ Θ. (Note that g is a quadratic function of mi.)

By the definition of θ ′
−i and θ ′′

−i, we have fi(θ
′
−i) = θ and fi(θ

′′
−i) = θ . Also, by the implicit

function theorem,

f ′i (m−i) =−
∂g

∂m−i

∂g
∂mi

=
θ ∗

−2+4mi −θ ∗ .

We have f ′i (m−i) = 2 at mi = m−i = θ ∗ = 0.8 and f ′i (m−i) > 1 for any mi,m−i ∈ Θ. So all the

properties stated in part (i) holds.

Next, we will prove part (iv). Pick m−i ∈ (θ ′
−i,θ

′′
−i) arbitrarily. By the definition of f̂i, we

have θi(m) = f̂i(m−i) for any mi ≤ θ . Hence θi(m)−mi is positive for mi < f̂i(m−i), is zero for

mi = f̂i(m−i), and is negative for mi ∈ ( f̂i(m−i),θ ], as stated in the lemma.

For mi ∈ (θ , fi(m−i), we claim that θi(m)−mi is negative. Suppose not so that θi(m)−mi ≥ 0.

If θi(m)−mi = 0, then by the definition of fi, we must have mi = fi(m−i), which contradicts with
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mi < fi(m−i). If θi(m)−mi > 0, then there must be m′
i ∈ (θ ,mi) such that θi(m′

i,m−i)−m′
i =

0. (This is so because θi(θ ,m−i)− θ < 0.) But then we must have m′
i = fi(m−i), which is a

contradiction. Hence θi(m)−mi is negative in this case.

By the symmetry, for mi > fi(m−i), all the properties stated in part (iv) of the lemma are

satisfied. Also, by the definition of fi, we have θi(m)−mi = 0 for mi = fi(m−i). Hence part (iv)

follows.

The proofs of the other parts of the lemma are very similar, and hence omitted. Q.E.D.

Figure 3 highlights what is shown in the lemma above. Here the the horizontal axis represents

m−i and the vertical axis represents mi. The origin is the interior steady-state belief. The large

dotted square is ×i=1,2[mi,mi], and recall that after a long time, (mt
1,m

t
2) is in a neighborhood of

this square almost surely. The small dotted square is the state space ×i=1,2Θ. The thick polygonal

line is the set of points at which dθi(t)
dt = θi(m(t))−mi(t) = 0; the downward-sloping line at the

top is the graph of the function f̃i(m−i) defined in the lemma above, the upward-sloping line in the

middle is the graph of fi, and the downward-sloping line at the bottom is the graph of f̂i. On the

left side of this thick line, dθi(t)
dt = θi(m(t))−mi(t)> 0, which means that the solution θi(t) to the

ODE increases over time. In contrast, on the right side of the line, dθi(t)
dt = θi(m(t))−mi(t) < 0,

and hence θi(t) decreases over time. See the thick arrows in the figure.

Figure 4 describes how the solution to the ODE behaves when both m1(t) and m2(t) change

over time. The horizontal axis represents m1 and the vertical axis represents m2. The two thick

polygonal lines are the set of points at which dmi(t)
dt = 0. If the current value m(t) is on the polygonal

line with dm1(t)
dt = 0, only m2(t) changes at the next instant, so m(t) moves vertically, as shown by

the arrows in the figure. Similarly, If the current value is on the polygonal line with dm2(t)
dt = 0,

only m1(t) changes at the next instant, so m(t) moves horizontally. For all other points, both m1

and m2 move simultaneously. We cannot pin down the exact motion of m(t) in this case (hence

we have fork arrows in the picture) because it depends on the current value of ξ (t), which is not

specified here; in general, when ξ1 is relatively larger than ξ2, m1 moves faster than m2, and hence

the arrow becomes flatter.

As can be seen from the figure, the polygonal lines intersect three times, and these are the steady

states of the ODE. That is, the ODE have one interior steady state (the origin) and two boundary
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Figure 3: Motion of mi(t) for Fixed m−i Figure 4: Motion of m(t)

steady states ((m1,m2) and (m1,m2)). From the figure, it is easy to check that given any initial

value (m,ξ ), the solution to the ODE eventually converges to one of these steady states. How-

ever, this does not imply that the set of steady states is globally attracting in the sense of Benaı̈m

(1999); a problem is that in a neighborhood of the origin (the interior steady state), (dm1(t)
dt , dm2(t)

dt )

is approximately (0,0), meaning that the motion of m(t) can be very slow. Accordingly, for some

initial value, it takes arbitrarily long time for the solution to reach a neighborhood of the boundary

steady state, so we cannot find a uniform bound T appearing in the definition of attracting sets.

Nonetheless, we can show that mt converge to the boundary steady states. This implies the

result we want, as in such a case the actual belief µ t
i converges to 1θ or 1

θ
.

Formally, our goal is to prove the following lemma. Let B = {(m1,m2, I, I),(m1,m2, I, I)}

denote the set of the boundary steady states. Also, let M = (×i=1,2[mi,mi])× [I, I]2. For a point

v ∈ Rn and a set B ⊂ Rn, let d(v,B) = minv′∈B |v− v′| denote the distance from v to B.

Lemma 5. Pick a particular path w : R → R4 such that (i) w is an asymptotic pseudotrajectory of

the ODE, (ii) limt→∞ d(w(t),M) = 0, and (iii) limt→∞ w(t) , p. (Note that these properties hold

with probability one, as shown by the earlier lemmas.) Then limt→∞ d(w,B) = 0.

Proof. Pick w as stated. Since limt→∞ w(t) , p, there is ε > 0 such that for any T > 0, there is

t > T such that w(t) < (×i=1,2[m∗
i − ε,m∗

i + ε])× [I, I]2. Pick such ε .

Now, note that the inverse function f−1
i is increasing and f−1

i (m∗
i ) = m∗

−i. Hence we have
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f−1
i (m∗

i − ε)< f−1
i (m∗

i )< f−1
i (m∗

i + ε). Then there is η > 0 such that

f−1
i (m∗

i − ε)+2η < f−1
i (m∗

i )< f−1
i (m∗

i + ε)−2η (27)

for all i. Pick such η > 0. Then let A ⊂ R4 be such that

A = {(m,ξ ) ∈ M|min{m1 −m∗
1,m2 −m∗

2} ≤ η}∩{(m,ξ )|max{m1 −m∗
1,m2 −m∗

2} ≥ −η}.

See Figure 5.

Figure 5: The projection of the set A. Figure 6: The projection of the set A′.

From Figure 4, given any initial value chosen from the ε-neighborhood of M, the solution to

the ODE converges to this set A. Also, the solution does not enter a neighborhood of the origin

on the way to a neighborhood of A; this means that the solution reaches a neighborhood of A by

some time T , which is independent of the initial value. Thus the set A is attracting in the sense of

Benaı̈m (1999), and its basin is the ε-neighborhood of M.

Theorem 6.10 of Benaı̈m (1999) asserts that if a path w visits the basin W of an attracting

set A infinitely often and if W is compact, then w converges to the set A. Since we assume that

limt→∞ d(w(t),M) = 0, our path w indeed visits the ε-neighborhood of M infinitely often (actually

w stays there forever, after a long time). Also ε-neighborhood of M is compact. Hence w converges

to the set A, i.e., limt→∞ d(w(t),A) = 0. This in particular implies that there is T > 0 such that for

any t > T , w(t) stays in the η-neighborhood of the set A.
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At the same time, by the assumption w leaves the set (×i=1,2[m∗
i −ε,m∗

i +ε])× [I, I]2 infinitely

often. This means that w visits the set

A′ = {(m,ξ )|d((m,ξ ),A)≤ η and m <×i=1,2(m∗
i − ε,m∗

i + ε)}

infinitely often. See Figure 6.

Note that this set A′ is compact and is a basin of the set B of the boundary steady states.25

Hence again from Theorem 6.10 of Benaı̈m (1999), w converges to B, as desired. Q.E.D.

B.3 Proof of Proposition 2

Part (i). Suppose that A1 = A2 = a. Then the interior steady state belief (m1,m2, m̂1, m̂2) solves the

system of equations

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x1(m1, m̂2), x̂2(m1, m̂2),m1,a) = 0, (28)

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x1(m1, m̂2), x̂2(m1, m̂2), m̂2,a) = 0, (29)

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x̂1(m̂1,m2),x2(m̂1,m2),m2,a) = 0, (30)

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x̂1(m̂1,m2),x2(m̂1,m2), m̂1,a) = 0. (31)

At the steady state belief mi = m̂i = θ ∗, the Jacobian of the above system is
− ∂Q

∂x2

∂ x̂2
∂m1

− ∂Q
∂θ

− ∂Q
∂x2

∂ x̂2
∂ m̂2

∂Q
∂x2

∂x2
∂m2

∂Q
∂x2

∂x2
∂ m̂1

− ∂Q
∂x2

∂ x̂2
∂m1

− ∂Q
∂x2

∂ x̂2
∂ m̂2

− ∂Q
∂θ

∂Q
∂x2

∂x2
∂m2

∂Q
∂x2

∂x2
∂ m̂1

∂Q
∂x1

∂x1
∂m1

∂Q
∂x1

∂x1
∂ m̂2

− ∂Q
∂x1

∂ x̂1
∂m2

− ∂Q
∂θ

− ∂Q
∂x1

∂ x̂1
∂ m̂1

∂Q
∂x1

∂x1
∂m1

∂Q
∂x1

∂x1
∂ m̂2

− ∂Q
∂x1

∂ x̂1
∂m2

− ∂Q
∂x1

∂ x̂1
∂ m̂1

− ∂Q
∂θ

 .

25 To see that A′ is a basin of B, pick any point (m,ξ ) ∈ A′. If (m,ξ ) is in the fourth quadrant, we have dm1(0)
dt > 0

and dm2(0)
dt < 0, i.e., the solution m(t) to the ODE move toward the south-east direction, and eventually converge to the

boundary point (m1,m2). See Figure 4. Also the solution does not enter the ε-neighborhood of the origin, so it reaches
a neighborhood of the boundary point by some time T which is independent of the initial value. Next, consider the
case in which (m,ξ ) is in the first quadrant. In this case we have either m1 < m∗

1 +2η or m2 < m∗
2 +2η , and without

loss of generality, we will focus on the case with m2 < m∗
2+2η . Then from (27), the point (m,ξ ) is below the graph of

f1 (the flatter upward-sloping line in Figure 4). Then again we have dm1(0)
dt > 0 and dm2(0)

dt < 0, so that the solution m(t)
moves toward the south-east direction and eventually converges to the boundary point (m1,m2). A similar argument
applies when (m,ξ ) is in the second or the third quadrant. Hence A′ is indeed a basin of B.
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This matrix is regular, as its determinant is

D =

∣∣∣∣∣∣∣∣∣∣∣

−∂Q
∂θ

∂Q
∂θ

0 0

− ∂Q
∂x2

∂ x̂2
∂m1

− ∂Q
∂x2

∂ x̂2
∂ m̂2

− ∂Q
∂θ

∂Q
∂x2

∂x2
∂m2

∂Q
∂x2

∂x2
∂ m̂1

0 0 −∂Q
∂θ

∂Q
∂θ

∂Q
∂x1

∂x1
∂m1

∂Q
∂x1

∂x1
∂ m̂2

− ∂Q
∂x1

∂ x̂1
∂m2

− ∂Q
∂x1

∂ x̂1
∂ m̂1

− ∂Q
∂θ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

−∂Q
∂θ

0 0 0

− ∂Q
∂x2

∂ x̂2
∂m1

− ∂Q
∂x2

∂ x̂2
∂m1

− ∂Q
∂x2

∂ x̂2
∂ m̂2

− ∂Q
∂θ

∂Q
∂x2

∂x2
∂m2

∂Q
∂x2

∂x2
∂ m̂1

+ ∂Q
∂x2

∂x2
∂m2

0 0 −∂Q
∂θ

0
∂Q
∂x1

∂x1
∂m1

∂Q
∂x1

∂x1
∂m1

+ ∂Q
∂x1

∂x1
∂ m̂2

− ∂Q
∂x1

∂ x̂1
∂m2

− ∂Q
∂x1

∂ x̂1
∂ m̂1

− ∂Q
∂x1

∂ x̂1
∂m2

− ∂Q
∂θ

∣∣∣∣∣∣∣∣∣∣∣
=

(
∂Q
∂θ

)2
∣∣∣∣∣∣ −

∂Q
∂x2

∂ x̂2
∂m1

− ∂Q
∂x2

∂ x̂2
∂ m̂2

− ∂Q
∂θ

∂Q
∂x2

∂x2
∂ m̂1

+ ∂Q
∂x2

∂x2
∂m2

∂Q
∂x1

∂x1
∂m1

+ ∂Q
∂x1

∂x1
∂ m̂2

− ∂Q
∂x1

∂ x̂1
∂ m̂1

− ∂Q
∂x1

∂ x̂1
∂m2

− ∂Q
∂θ

∣∣∣∣∣∣
=

(
∂Q
∂θ

)2
{(

∂Q
∂θ

)2

+
∂Q
∂θ

(
∂Q
∂x1

∂x1

∂m1
+

∂Q
∂x1

∂x1

∂ m̂2
+

∂Q
∂x2

∂ x̂2

∂m1
+

∂Q
∂x2

∂ x̂2

∂ m̂2

)}

=

(
∂Q
∂θ

)3(
∂Q
∂θ

+
∂Q
∂x1

∂x1

∂m1
+

∂Q
∂x1

∂x1

∂ m̂2
+

∂Q
∂x2

∂ x̂2

∂m1
+

∂Q
∂x2

∂ x̂2

∂ m̂2

)
, 0.

Here the second to the last inequality uses the fact that xi = x̂i when A1 = A2 = a, and the last

inequality follows from (10) and ∂Q
∂θ

= R(x1(θ
∗),x2(θ

∗),a) , 0.

The regularity of the Jacobian implies that for any direction b = (b1,b2,b3,b4), if we slightly

perturb (m1,m2, m̂1, m̂2) toward the direction b from the steady state belief mi = m̂i = θ ∗, then the

resulting belief (m′
1,m

′
2, m̂

′
1, m̂

′
2) does not solve the system of equations (28) through (31). This

implies the result we want.

Part (ii). Pick λ ∈ [0,1] arbitrarily. Given any (A1,A2), the interior steady state belief (m1,m2, m̂1, m̂2)

solves the system of equations

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x1(m1, m̂2), x̂2(m1, m̂2),m1,A1) = 0,

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x1(m1, m̂2), x̂2(m1, m̂2), m̂2, Â2) = 0,

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x̂1(m̂1,m2),x2(m̂1,m2),m2,A2) = 0,

Q(x1(m1, m̂2),x2(m̂1,m2),θ
∗,a)−Q(x̂1(m̂1,m2),x2(m̂1,m2), m̂1, Â1) = 0.

When A1 = A2 = a, mi = m̂i = θ ∗ solves this system of equations. At this steady state, the Jacobian
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of this system is exactly the same as that appearing in the proof of part (i), which is regular.

Hence it follows from the implicit function theorem that there are Aλ < a, Aλ > a, a neighborhood

Uλ ⊂ R4 of (θ ∗,θ ∗,θ ∗,θ ∗), and a continuous function m∗
λ

: [Aλ ,Aλ ]
2 → Uλ such that given any

(A1,A2)∈ [Aλ ,Aλ ]
2, m∗

λ
(A1,A2) is a unique steady state in Uλ . Since λ is chosen from the compact

interval [0,1], a standard argument shows that we can find A, A, U , and m∗ which work for all

λ ∈ [0,1].

B.4 Proof of Proposition 3

We will first prove part (i). As explained in the main text, each player i’s posterior belief at the

beginning of period t +1 is the truncated normal distribution induced by N(mt+1
i , 1

tξ t+1
i

), where the

parameters mt+1
i and ξ

t+1
i are given by (6) and (7). Similarly, each hypothetical player i’s belief is

the truncated normal distribution induced by N(m̂t+1
i , 1

tξ̂ t+1
i

), where the parameters mt+1
i and ξ

t+1
i

are given by (8) and (9).

Arranging (6) through (9), we obtain the following recursive equations which completely de-

scribe the evolution of (mt ,ξ t) = (mt
i,ξ

t
i , m̂

t
i, ξ̂

t
i )

2
i=1:

mt+1
i −mt

i =
1
t

Ii(xt
i, x̂

t
−i)
(

θi(xt)−mt
i −

εt

R(xt
i ,x̂

t
−i,Ai)

)
t−1

t ξ t
i +

1
t Ii(xt

i, x̂
t
−i)

 , (32)

m̂t+1
−i − m̂t

−i =
1
t


Î−i(xt

i, x̂
t
−i)

(
θ̂−i(xt)− m̂t

−i −
εt

R(xt
i ,x̂

t
−i,Â−i)

)
t−1

t ξ̂ t
−i +

1
t Î−i(xt

i, x̂
t
−i)

 , (33)

ξ
t+1
i −ξ

t
i =

1
t

(
Ii(xt

i, x̂
t
−i)−ξ

t
i
)
, (34)

ξ̂
t+1
−i − ξ̂

t
−i =

1
t

(
Î−i(xt

i, x̂
t
−i)− ξ̂

t
−i

)
. (35)

The first equation (32) implies that player i updates the mean belief mt
i depending on how her

estimate θi(xt)− ετ

R(xt
i ,x̂

t
−i,Ai)

based on the new information today differs from her current mean

belief mt
i. If the new estimate coincides with the current mean belief, she does not update it.

Otherwise, the mean belief moves toward the new estimate, and its magnitude is amplified by the

(relative) informativeness of the signal today. The second equation (33) asserts that hypothetical

player −i updates the mean belief m̂t
−i in a similar way.
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The third and fourth equations also have a similar interpretation; ξ t
i and ξ̂ t

−i are updated de-

pending on how the informativeness Ii(xt
i, x̂

t
−i) of the signal today differs from the average infor-

mativeness of the past signals.

Since we assume that the equilibrium action (xt
i, x̂

t
−i) is approximated by (xi(mt

i, m̂
t
−i), x̂−i(mt

i, m̂
t
−i))

with approximation error O( 1
tα ) and that θi(x) and Ii(x) are Lipschitz-continuous, the parameters

(mt ,ξ t), which solves the difference equations above, is a perturbed solution to

mt+1
i −mt

i =
1
t

Ii(mt
i, m̂

t
−i)
(

θi(mt)−mt
i −

εt

R(xi(mt
i ,m̂

t
−i),x̂−i(mt

i ,m̂
t
−i),Ai)

)
ξ t

i

 , (36)

m̂t+1
−i − m̂t

−i =
1
t


Î−i(mt

i, m̂
t
−i)

(
θ̂−i(mt)− m̂t

−i −
εt

R(xi(mt
i ,m̂

t
−i),x̂−i(mt

i ,m̂
t
−i),Â−i)

)
ξ̂ t
−i

 , (37)

ξ
t+1
i −ξ

t
i =

1
t

(
Ii(mt

i, m̂
t
−i)−ξ

t
i
)
, (38)

ξ̂
t+1
−i − ξ̂

t
−i =

1
t

(
Î−i(mt

i, m̂
t
−i)−ξ

t
i
)
, (39)

where θi(m) = θi(x(m)), θ̂−i(m) = θ̂−i(x(m)), Ii(mi, m̂−i) = Ii(xi(mi), x̂i(mi)), and Î−i(mi, m̂−i) =

Î−i(xi(mi), x̂i(mi)). Note that this system of equations is a special case of the difference equation

(18) considered in Appendix A. Hence the asymptotic behavior of (mt ,ξ t) is approximated by the

ODE

dmi(t)
dt

=
Ii(mi(t), m̂−i(t))(θi(m(t))−mi(t))

ξi(t)
, (40)

dm̂−i(t)
dt

=
Î−i(mi(t), m̂−i(t))(θ̂−i(m(t))− m̂−i(t))

ξ̂−i(t)
, (41)

dξi(t)
dt

= Ii(mi(t), m̂−i(t))−ξi(t), (42)

dξ̂−i(t)
dt

= Î−i(mi(t), m̂−i(t))− ξ̂−i(t). (43)

Suppose that A1 = A2 = a, and let ξ ∗ = I1(θ
∗,θ ∗) = I2(θ

∗,θ ∗). Then obviously mi = m̂i = θ ∗

and ξi = ξ̂i = ξ ∗ constitute a steady state of the ODE above. The following lemma shows that this

steady state is linearly unstable if (and only if) the assumption (11) holds.

Lemma 6. Suppose that A1 = A2 = a. The following two conditions are equivalent.
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(i) At the steady state mi = m̂i = θ ∗ and ξi = ξ̂i = ξ ∗, the Jacobian of the system (40) through

(43) has at least one eigenvalue whose real part is positive.

(ii) (11) holds.

Also whenever (i) holds, the Jacobian has only one positive eigenvalue; the other eigenvalues are

negative.

Proof. Note that θi(m(t))−mi(t) = θ̂−i(m(t))− m̂−i(t) = 0 in any steady state of the ODE. Hence

the Jacobian J of the ODE at the steady state is

J =



∂θ1
∂m1

−1 ∂θ1
∂ m̂2

∂θ1
∂m2

∂θ1
∂ m̂1

0 0 0 0
∂ θ̂2
∂m1

∂ θ̂2
∂ m̂2

−1 ∂ θ̂2
∂m2

∂ θ̂2
∂ m̂1

0 0 0 0
∂θ2
∂m1

∂θ2
∂ m̂2

∂θ2
∂m2

−1 ∂θ2
∂ m̂1

0 0 0 0
∂ θ̂1
∂m1

∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

∂ θ̂1
∂ m̂1

−1 0 0 0 0
∂ I1
∂m1

∂ I1
∂ m̂2

0 0 −1 0 0 0
∂ Î2
∂m1

∂ Î2
∂ m̂2

0 0 0 −1 0 0

0 0 ∂ I2
∂m2

∂ I2
∂ m̂1

0 0 −1 0

0 0 ∂ Î1
∂m2

∂ Î1
∂ m̂1

0 0 0 −1



. (44)

Obviously the above matrix J has an eigenvalue λ =−1 (multiplicity 4). The remaining eigen-

values of J are the ones for the submatrix

J′ =


∂θ1
∂m1

−1 ∂θ1
∂ m̂2

∂θ1
∂m2

∂θ1
∂ m̂1

∂ θ̂2
∂m1

∂ θ̂2
∂ m̂2

−1 ∂ θ̂2
∂m2

∂ θ̂2
∂ m̂1

∂θ2
∂m1

∂θ2
∂ m̂2

∂θ2
∂m2

−1 ∂θ2
∂ m̂1

∂ θ̂1
∂m1

∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

∂ θ̂1
∂ m̂1

−1

 .

Let

J′
λ
=


∂θ1
∂m1

−1−λ
∂θ1
∂ m̂2

∂θ1
∂m2

∂θ1
∂ m̂1

∂ θ̂2
∂m1

∂ θ̂2
∂ m̂2

−1−λ
∂ θ̂2
∂m2

∂ θ̂2
∂ m̂1

∂θ2
∂m1

∂θ2
∂ m̂2

∂θ2
∂m2

−1−λ
∂θ2
∂ m̂1

∂ θ̂1
∂m1

∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

∂ θ̂1
∂ m̂1

−1−λ

 .
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Since we look at the case with A1 = A2 = a, we have θi(m) = θ̂−i(m) for all m, and hence ∂θi
∂mi

=

∂ θ̂−i
∂mi

, ∂θi
∂m−i

= ∂ θ̂−i
∂m−i

, ∂θi
∂ m̂i

= ∂ θ̂−i
∂ m̂i

, and ∂θi
∂ m̂−i

= ∂ θ̂−i
∂ m̂−i

. Hence

|J′
λ
|=

∣∣∣∣∣∣∣∣∣∣∣

−1−λ 1+λ 0 0
∂ θ̂2
∂m1

∂ θ̂2
∂ m̂2

−1−λ
∂ θ̂2
∂m2

∂ θ̂2
∂ m̂1

0 0 −1−λ 1+λ

∂ θ̂1
∂m1

∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

∂ θ̂1
∂ m̂1

−1−λ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

−1−λ 0 0 0
∂ θ̂2
∂m1

∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

−1−λ
∂ θ̂2
∂m2

∂ θ̂2
∂m2

+ ∂ θ̂2
∂ m̂1

0 0 −1−λ 0
∂ θ̂1
∂m1

∂ θ̂1
∂m1

+ ∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

−1−λ

∣∣∣∣∣∣∣∣∣∣∣
= (1+λ )2

∣∣∣∣∣∣
∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

−1−λ
∂ θ̂2
∂m2

+ ∂ θ̂2
∂ m̂1

∂ θ̂1
∂m1

+ ∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

−1−λ

∣∣∣∣∣∣ .
Hence the matrix J′ has an eigenvalue λ = −1 (multiplicity 2). The remaining eigenvalues solve

the quadratic equation

λ
2 +

(
2− ∂ θ̂2

∂m1
− ∂ θ̂2

∂ m̂2
− ∂ θ̂1

∂m2
− ∂ θ̂1

∂ m̂1

)
λ

+

{(
∂ θ̂2

∂m1
+

∂ θ̂2

∂ m̂2
−1

)(
∂ θ̂1

∂m2
+

∂ θ̂1

∂ m̂1
−1

)
−

(
∂ θ̂2

∂m2
+

∂ θ̂2

∂ m̂1

)(
∂ θ̂1

∂m1
+

∂ θ̂1

∂ m̂2

)}
= 0 (45)

Recall that when A1 = A2 = a, θ̂−i solves

Q(xi(mi, m̂−i),x−i(m−i, m̂i),θ
∗,a)−Q(xi(mi, m̂−i), x̂−i(mi, m̂−i), θ̂−i,a) = 0.

So by the implicit function theorem, at the steady state, we have

∂ θ̂−i

∂mi
=−

∂Q
∂x−i

∂x−i
∂mi

∂Q
∂θ

=−∂ θ̂−i

∂ m̂i
and

∂ θ̂−i

∂ m̂−i
=−

∂Q
∂x−i

∂x−i
∂m−i

∂Q
∂θ

=− ∂ θ̂−i

∂m−i
. (46)

Plugging this, the quadratic equation (45) reduces to

λ
2 +

(
2− ∂ θ̂2

∂m1
− ∂ θ̂2

∂ m̂2
− ∂ θ̂1

∂m2
− ∂ θ̂1

∂ m̂1

)
λ +

(
1− ∂ θ̂2

∂m1
− ∂ θ̂2

∂ m̂2
− ∂ θ̂1

∂m2
− ∂ θ̂1

∂ m̂1

)
= 0 (47)
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The solution to this equation is

λ =

(
∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

+ ∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

−2
)
±
√(

∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

+ ∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

)2

2

=−1,
∂ θ̂2

∂m1
+

∂ θ̂2

∂ m̂2
+

∂ θ̂1

∂m2
+

∂ θ̂1

∂ m̂1
−1

This means that the eigenvalues of the matrix J′ are λ =−1 (multiplicity 3) and λ = ∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

+

∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

−1. This proves the result we want, as (11) implies that the latter eigenvalue is positive.

Q.E.D.

Suppose that (11) holds. Then from the lemma above, when A1 = A2 = a, the Jacobian of the

ODE has one positive eigenvalue and seven negative eigenvalues (actually all of them are λ =−1)

at the steady state. Now, by the continuity, the same result holds even when (A1,A2) is perturbed;

that is, there are A < a and A > a such that for any γ ∈ [0,1] and for any (A1,A2) ∈ (A,A)2, the

Jacobian of the ODE has one positive eigenvalue and seven negative eigenvalues at the steady state

m∗(A1,A2) defined in Proposition 2.26

Pick (A1,A2) ∈ (A,A)2 and γ ∈ (0,1] arbitrarily, and let J denote the Jacobian of the ODE at

the steady state. Let H be the affine space spanned by the generalized eigenvectors associated with

these seven negative eigenvalues. Also let

b =

(
− 1

R(x1, x̂2,A1)
,− 1

R(x1, x̂2, Â2)
,− 1

R(x2, x̂1,A2)
,− 1

R(x2, x̂1, Â1)
,0,0,0,0

)
be the coefficient on the noise term ε in the difference equations (36) through (39). (Note that both

H and b are evaluated at the steady state m∗(A1,A2). So for example, xi in the above display is

xi(m∗
i , m̂

∗
−i), and x̂−i is x̂−i(m∗

i , m̂
∗
−i).) Then it directly follows from Proposition 7 that if b < H,

then players’ beliefs converge to m∗(A1,A2) with zero probability.

Now, since the matrix J has the form (44), it is obvious that the space H is represented as

H = {(h1, ĥ2,h2, ĥ1,ξ1, ξ̂2,ξ2, ξ̂1)|∀(h1, ĥ2,h2, ĥ1) ∈ H ′∀ξ1,ξ2, ξ̂1, ξ̂2 ∈ R}

where H ′ ⊂ R4 is the space spanned by the generalized eigenvectors associated with the negative

eigenvalues of the matrix J′. Hence the condition b < H is equivalent to b′ < H ′, which establishes

part (i).
26 Since γ is chosen from the compact space [0,1], a standard argument shows that there are A and A which work

for all γ .
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For part (ii), note that when A1 = A2 = a, the eigenvalues of the matrix J′ are λ = −1 (mul-

tiplicity 3) and λ = ∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

+ ∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

− 1 > 0, as shown in the proof of Lemma 6. This

immediately implies part (ii), as a small perturbation of (A1,A2) does not change the signs of the

eigenvalues.

Now we will prove part (iii). So let γ = 1 and pick (A1,A2)∈ (A,A)2. Let J denote the Jacobian

of the ODE at the steady state for this (A1,A2). Since J has the form (44), it has an eigenvalue

λ =−1 (multiplicity 4), and the remaining eigenvalues are the ones for the submatrix J′.

Since γ = 1, we have θi(m) = θ̂−i(m) for all m. Hence the argument similar to the one in the

proof of Lemma 6 shows that the submatrix J′ has an eigenvalue λ =−1 (multiplicity 2), and the

remaining two eigenvalues are the ones for the matrix

J′′ =

 ∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

−1 ∂ θ̂2
∂m2

+ ∂ θ̂2
∂ m̂1

∂ θ̂1
∂m1

+ ∂ θ̂1
∂ m̂2

∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

−1

 .

Note that the eigenvalues of this matrix are λ = −1 and λ = ∂ θ̂2
∂m1

+ ∂ θ̂2
∂ m̂2

+ ∂ θ̂1
∂m2

+ ∂ θ̂1
∂ m̂1

− 1 at

A1 = A2 = a. When (A1,A2) is perturbed, it still has one negative eigenvalue and one positive

eigenvalue. Let λ1 denote the negative one and λ2 denote the positive one.

Let

ei =

ei,1

ei,2


denote the eigenvector of the matrix J′′ associated with the eigenvalue λi. Then by the definition,

this vector ei solves

J′′ei = λiei.

This, together with the fact that θi(m) = θ̂−i(m), implies that

J′e∗i = λie∗i

where

e∗i =


ei,1

ei,1

ei,2

ei,2

 .
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So e∗1 and e∗2 are the eigenvectors of J′.

When γ = 1, the first two components of b′ are the same, and so are the remaining two com-

ponents. Accordingly, b′ is represented as a linear combination of e∗1 and e∗2. Then since the

generalized eigenvalues of J′ are linearly independent, the condition b′ < H ′ holds if and only if

b′ , αe∗1 for all α ∈ R. In other words, we have b′ <H ′ if and only if b′ is not an eigenvector of H ′

for the eigenvalue λ = λ1. This condition is equivalent to

H ′b′ , λ1b′ ⇔


∂ θ̂2
∂m1

+
∂ θ̂2
∂ m̂2

−1

R(x1,x̂2,A1)
+

∂ θ̂2
∂m2

+
∂ θ̂2
∂ m̂1

R(x2,x̂1,A2)
∂ θ̂1
∂m1

+
∂ θ̂1
∂ m̂2

R(x1,x̂2,A1)
+

∂ θ̂1
∂m2

+
∂ θ̂1
∂ m̂1

−1

R(x2,x̂1,A2)

 , λ1

 1
R(x1,x̂2,A1)

1
R(x2,x̂1,A2)


This condition is satisfied whenever

∂ θ̂2

∂m1
+

∂ θ̂2

∂ m̂2
−1+

R(x1, x̂2,A1)

R(x2, x̂1,A2)

(
∂ θ̂2

∂m2
+

∂ θ̂2

∂ m̂1

)
,

∂ θ̂1

∂m2
+

∂ θ̂1

∂ m̂1
−1+

R(x2, x̂1,A2)

R(x1, x̂2,A1)

(
∂ θ̂1

∂m1
+

∂ θ̂1

∂ m̂2

)
,

which implies part (iii).

B.5 Proof of Proposition 4

We show that if different players have different initial priors in the team-production example, then

the posteriors eventually converge to the boundary steady states with positive probability. The

proof consists of two steps. In the first step, we show that for some initial priors, the posterior will

eventually converge to the boundary steady state with positive probability. Then in the second step,

we show that whenever different players have different initial priors, with positive probability, the

posterior will move to the belief considered in the first step (which means that the posterior will

converge to the boundary steady state afterwards).

Before we start the proof, note that in this setup, each player i’s posterior in period t is a

truncated normal distribution induced by N(mt
i,

1
tξ t

i
), where

mt
i =

ξ 1
i m1

i +∑
t−1
τ=1 Ii(xτ

i , x̂
τ
−i)

(
θi(xτ)− ετ√

Ii(xτ
i ,x̂

τ
−i)

)
ξ 1

i +∑
t−1
τ=1 Ii(xτ

i , x̂
τ
−i)

,

ξ
t
i =

1
t

(
ξ

1
i +

t−1

∑
τ=1

Ii(xτ
i , x̂

τ
−i)

)
.
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Note that these formulas are a bit different from those for the case with the uniform initial prior.

Step 1: Convergence for some initial priors. We show that if the initial belief is close to the

one for the boundary steady state, then the belief will converge to that steady state with positive

probability. Without loss of generality, we will focus on one of the boundary steady state, say,

(1
θ
,1θ ).

Note that in this steady state, player 1’s belief θ1 = θ solves the consistency condition (1),

but does not explain the actual observation perfectly. Indeed, for player 1’s expectation (about the

output y) to match the true mean, her belief must be concentrated on m > θ which solves

θ
∗(x1(θ)+ x2(θ)) = m(x1(θ)+ x2(θ)).

Let fm denote the density of the normal distribution N(m,1) with mean m and variance 1, and

KL( f |g) denote the KL divergence between densities f and g. Then since the true output dis-

tribution at the steady state is N(θ ∗(x1(θ) + x2(θ)),1) and player 1’s subjective distribution is

N(θ(x1(θ)+ x2(θ)),1), we have

−KL( f
θ(x1(θ)+x2(θ))

| f
θ∗(x1(θ)+x2(θ))

)< 0

⇔
∫

f
θ∗(x1(θ)+x2(θ))

(y) log
f
θ(x1(θ)+x2(θ))

(y)

f
θ∗(x1(θ)+x2(θ))

(y)
dy < 0

⇔
∫

f
θ∗(x1(θ)+x2(θ))

(y) log
f
θ(x1(θ)+x2(θ))

(y)

fm(x1(θ)+x2(θ))
(y)

dy < 0.

Then from Lemma 2 of Frick, Iijima, and Ishii (2023), there is l1 ∈ (0,1) such that

∫
f
θ∗(x1(θ)+x2(θ))

(y)

(
f
θ(x1(θ)+x2(θ))

(y)

fm(x1(θ)+x2(θ))
(y)

)l1

dy < 1.

Similarly, in this steady state, player 2’s belief θ2 = θ does not explain the actual observa-

tion perfectly; for player 2’s subjective expectation to match the true mean, her belief must be

concentrated on m < θ which solves

θ
∗(x1(θ)+ x2(θ)) = m(x1(θ)+ x2(θ)).

Then the argument similar to the above one shows that there is l2 ∈ (0,1) such that

∫
f
θ∗(x1(θ)+x2(θ))

(y)

(
fθ(x1(θ)+x2(θ))(y)
fm(x1(θ)+x2(θ))(y)

)l2

dy < 1.
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By the continuity, the above inequalities still hold even if the actions are perturbed a bit. For-

mally, we have the following result:

Lemma 7. There is ξ ∗ > 0 such that for any m1 ≥ θ , m2 ≤ θ , and ξ1,ξ2 > ξ ∗, we have

∫
f
θ∗(x1(m1,

1
ξ1
)+x2(m2,

1
ξ2
))(y)

 f
θ(x1(m1,

1
ξ1
)+x2(m1,

1
ξ1
))(y)

fm(x1(m1,
1

ξ1
)+x2(m1,

1
ξ1
))(y)

l1

dy < 1

and ∫
f
θ∗(x1(m1,

1
ξ1
)+x2(m2,

1
ξ2
))(y)

 f
θ(x1(m2,

1
ξ2
)+x2(m2,

1
ξ2
))(y)

fm(x1(m2,
1

ξ2
)+x2(m2,

1
ξ2
))(y)

l2

dy < 1.

In what follows, pick ξ ∗ > 0 as stated in the lemma above. Without loss of generality, we

assume that

exp(
ξ ∗(m−θ)2

2
)> 4, (48)

exp(
ξ ∗(θ −m)2

2
)> 4. (49)

Note that these inequalities indeed hold as long as ξ ∗ is large enough.

Our goal in this step is to prove the following lemma, which shows that for some initial prior,

the posterior converges to the boundary steady state with positive probability.

Lemma 8. Suppose that m1
1 >

θ+m
2 , m1

2 <
θ+m

2 , and ξ 1
i > ξ ∗ for each i. Then

Pr
(

lim
t→∞

µ
t = (1

θ
,1θ )

)
> 0.

In the rest of this step, we will prove this lemma. Pick the initial prior as stated in the lemma.

Let

L1
1 =

exp
(
−ξ 1

1 (θ−m1
1)

2

2

)
exp
(
−ξ 1

1 (m−m1
1)

2

2

)


l1

.

In words, L1
1 is the l1th-power of the likelihood of the parameters θ and m induced by the normal

distribution N(m1,
1
ξ1
). (Intuitively, this distribution is player 1’s initial prior when the state space
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is not restricted to Θ.) Similarly define Lt
1 for each later period t = 2,3, · · · , using the posterior

N(mt
1,

1
tξ t

1
) in period t. By the definition, we have

Lt+1
1 = Lt

1

 f
θ(x1(mt

1,
1

tξ t
1
)+x2(mt

1,
1

tξ t
1
)(y

t)

fm(x1(mt
1,

1
tξ t

1
)+x2(mt

1,
1

tξ t
1
)(y

t)

l1

.

Likewise, for each t, let Lt
2 be the l2th-power of the likelihood between the parameters m and

θ induced by the normal distribution N(mt
2,

1
tξ t

2
). Then we have

Lt+1
2 = Lt

2

 f
θ(x1(mt

2,
1

tξ t
2
)+x2(mt

2,
1

tξ t
2
)(y

t)

fm(x1(mt
2,

1
tξ t

2
)+x2(mt

2,
1

tξ t
2
)(y

t)

l2

.

Consider a hypothetical situation such that starting from the initial prior considered above, the

actions in each period t is given by

(xt
1, x̂

t
2) =

 (x1(mt
1,

1
tξ t

1
), x̂2(mt

1,
1

tξ t
1
)) if mt

1 ≥ θ

(x1(θ ,
1

tξ t
1
), x̂2(θ ,

1
tξ t

1
)) if mt

1 < θ

,

(xt
2, x̂

t
1) =

 (x2(mt
2,

1
tξ t

2
), x̂1(mt

2,
1

tξ t
2
)) if mt

2 ≤ θ

(x2(θ ,
1

tξ t
2
), x̂1(θ ,

1
tξ t

2
)) if mt

2 > θ

In words, this is the situation in which players choose actions as if their mean beliefs are always in

a neighborhood of the initial value, in that player 1’s mean belief mt
1 is never below θ and player

2’s mean belief is never above θ .

From Lemma 7, in this hypothetical situation, both Lt
1 and Lt

2 are supermartingales. Hence

from Dubin’s uncrossing inequality,

Pr
(

Lt
1 > exp

(
ξ ∗(m−θ)2

2

)
for some t

)
≤

L1
1

exp
(

ξ ∗(m−θ)2

2

) <
1
4

(50)

Pr
(

Lt
2 > exp

(
ξ ∗(θ −m)2

2

)
for some t

)
≤

L1
2

exp
(
(ξ ∗θ−m)2

2

) <
1
4

(51)

Here, the last inequality in each line follows from (48), (49), and L1
i ≤ 1 (which follows from

m1
1 >

θ+m
2 and m1

2 <
θ+m

2 ),
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Note that if mt
1 < θ in some t, then

Lt
1 =

exp
(
− tξ t

1(θ−mt
1)

2

2

)
exp
(
− tξ t

1(m−mt
1)

2

2

)


l1

= exp

(
tξ t

1{(m−mt
1)

2 − (θ −mt
1)

2}
2

)l1

> exp
(

ξ ∗(m−θ)2

2

)l1

where the last inequality follows from the fact that tξ t
i is increasing in t and ξ 1

1 > ξ ∗. Hence Lt
1 ≤

exp
(

ξ ∗(m−θ)2

2

)
implies mt

1 ≥ θ . Likewise, Lt
2 ≤ exp

(
ξ ∗(θ−m)2

2

)
implies mt

2 ≤ θ . Accordingly, in

the hypothetical situation,

Pr
(
mt

1 ≥ θ and mt
2 ≤ θ for all t = 1,2, · · ·

)
≥ Pr

(
Lt

1 ≤ exp
(

ξ ∗(m−θ)2

2

)
and Lt

2 ≤ exp
(

ξ ∗(θ −m)2

2

)
for all t = 1,2, · · ·

)
> 1−Pr

(
Lt

1 > exp
(

ξ ∗(m−θ)2

2

)
for some t

)
−Pr

(
Lt

2 > exp
(

ξ ∗(θ −m)2

2

)
for some t

)
>

1
2
.

where the last inequality follows from (50) and (51). This in turn implies that

Pr
(
mt

1 ≥ θ and mt
2 ≤ θ for all t = 1,2, · · ·

)
>

1
2

for the original situation, and since mt
1 ≥ θ for all t implies µ t

1 → 1
θ

and mt
2 ≤ θ for all t implies

µ t
2 → 1θ , we obtain the result we want.

Step 2: Convergence for all priors with (m1
1,ξ

1
1 ) , (m1

2,ξ
1
2 ). Now we will show that when-

ever different players have different initial beliefs, with positive probability, the posterior beliefs

converge to the boundary steady state. The following lemma proves a result slightly weaker than

that; it shows the convergence to the boundary steady state when E[θ |µ1] , E[θ |µ2].

Lemma 9. Pick the initial values (m1
1,ξ

1
1 ) and (m1

2,ξ
1
2 ) such that E[θ |µ1] , E[θ |µ2]. Then

Pr
(

lim
t→∞

µ
t = (1

θ
,1θ )

)
> 0.
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Proof. For shorthand notation, let It
i denote the informativeness Ii(xt

i, x̂
t
−i) of the signal in period

t. Pick initial beliefs as stated in the lemma. Since E[θ |µ1] , E[θ |µ2], we have x1
1 = x̂1

2 , x1
2 = x̂t

1,

which implies I1
1 , I1

2 . For now we assume I1
1 > I1

2 and prove the lemma. Later on we will explain

how to fix the proof when I1
1 < I1

2 .

Since we assume I1
1 > I1

2 , there is λ > 0 such that√
I1
2 < λ (2−2θ)<

√
I1
1 . (52)

Pick such λ . Also, pick a natural number T ∗ such that T ∗R2 > ξ ∗, where ξ ∗ > 0 is chosen as in

the first step.

Suppose that the noise in the first T ∗ periods is

(ε1, · · · ,εT ∗
) = (−K,λK,0,0, · · · ,0) (53)

for some K > 0. That is, assume that the noise takes a negative value, then a positive value, and

then zero for a while. Then the parameter mT ∗+1
i for the posterior belief is

mT ∗+1
i =

ξ 1
i m1

i + I1
i

(
mi(x1)+ K√

I1
i

)
+ I2

i

(
mi(x2)− λK√

I2
i

)
+∑

T ∗
t=3 It

i mi(xt)

ξ 1
i +∑

T ∗
t=1 It

i

=

ξ 1
i m1

i +∑
T ∗
t=1 It

i mi(xt)+K
(√

I1
i −λ

√
I2
i

)
ξ 1

i +∑
T ∗
t=1 It

i
.

When K → ∞, we have

m2
i =

ξ 1
i m1

i + I1
i

(
mi(x1)+ K√

I1
i

)
ξ 1

i + I1
i

→ ∞

for each i, and hence x2
i = x̂2

−i → 1− θ , implying
√

I2
i → 2− 2θ . Plugging this into the above

equation for mt∗+1
i , it follows from (52) and the boundedness of mi(xt) and It

i that27

lim
K→∞

mT ∗+1
1 = ∞ and lim

K→∞
mT ∗+1

2 =−∞.

So if we take a large K > 0,

mT ∗+1
1 > m and mT ∗+1

2 < m. (54)

27 Indeed, m ≤ mi(xt)≤ m and (2−2θ)2 ≤ It
i ≤ (2−2θ)2.
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Pick such K. The inequalities (54) imply that, after the particular noise realization (53), the pos-

terior belief µT ∗+1 satisfies the condition stated in Lemma 8 in the first step. (By the definition of

T ∗, we have (T ∗+1)ξ T ∗+1
i > ξ ∗ for any noise realization.)

Also, since the inequalities (54) are strict, they are still satisfied even if the noise sequence

is perturbed; this means that as long as the noise sequence (ε1, · · · ,εT ∗
) is in a neighborhood of

(−K,λK,0,0, · · · ,0), the posterior belief µT ∗+1 satisfies the condition stated in Lemma 8. Since

this event occurs with positive probability, the result follows.

Next, consider the case in which I1
1 < I1

2 . In this case, there is λ > 0 such that√
I1
1 < λ (2−2θ)<

√
I1
2 .

Pick such λ , and consider the noise realization

(ε1, · · · ,εT ∗
) = (K,−λK,0,0, · · · ,0).

Then the argument similar to the above one shows the result we want. Q.E.D.

To complete the proof, it suffices to show that starting from any initial beliefs with E[θ |µ1] =

E[θ |µ2], the posterior in some period t > 1 satisfies E[θ |µ t
1] , E[θ |µ t

2] with positive probability.

The following lemma shows that such a result indeed holds for t = 2.

Lemma 10. Suppose that (m1
1,ξ

1
1 ) , (m

1
2,ξ

1
2 ) and that E[θ |µ1] = E[θ |µ2]. Then

Pr
(
E[θ |µ2

1 ] , E[θ |µ2
2 ]
)
> 0.

Proof. Pick initial beliefs as stated, and let θ ′ = E[θ |µ1].

We first prove that ξ 1
1 , ξ 1

2 . Suppose not so that ξ 1
1 = ξ 1

2 . Since we assume (m1
1,ξ

1
1 ), (m

1
2,ξ

1
2 ),

we have m1
1 ,m1

2. But then we have E[θ |µ1] , E[θ |µ2], a contradiction. So we must have ξ 1
1 , ξ 1

2 .

Given the noise ε1 in period one, the parameter m2
i of the posterior belief is

m2
i =

ξ 1
i m1

i +(2−2θ ′)2mi(x1)− (2−2θ ′)ε1

ξ 1
i +(2−2θ ′)2 .

Then simple algebra shows that the parameters m2
1 and m2

2 coincides (i.e., m2
1 = m2

2) if

ε
1 =

(
ξ 1

1 m1
1 +(2−2θ ′)2m1(x1)

ξ 1
1 +(2−2θ ′)2 −

ξ 1
2 m1

2 +(2−2θ ′)2m2(x1)

ξ 1
2 +(2−2θ ′)2

)(
2−2θ ′

ξ 1
1 +(2−2θ ′)2 −

2−2θ ′

ξ 1
2 +(2−2θ ′)2

)−1

.
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Let ε∗ denote this right-hand side. Note that this value ε∗ is well-defined since ξ 1
1 , ξ 1

2 .

Suppose that the noise in period one is exactly ε1 = ε∗. Then from the argument above, we have

m2
1 = m2

2. At the same time, we have ξ 2
1 , ξ 2

2 , since ξ 2
i =

ξ 1
1 +I1

i
2 , ξ 1

1 , ξ 1
2 , and I1

1 = I1
2 = (2−2θ ′)2.

Accordingly, we have E[θ |µ2
1 ] , E[θ |µ2

2 ] given the noise ε1 = ε∗.

Also, by the continuity, the same inequality holds even if the noise is perturbed. That is, we

have E[θ |µ2
1 ] , E[θ |µ2

2 ] as long as ε1 is in a neighborhood of ε∗. This completes the proof, as

such an event occurs with positive probability. Q.E.D.

B.6 Proof of Proposition 6

The proof is similar to that of Proposition 3, so we will give only the outline of the proof.

Note first that the evolution of the posterior belief in our one-sided misspecification model is

very similar to that for the two-sided misspecification case. Indeed, each player i’s posterior belief

at the beginning of period t + 1 is the truncated normal distribution induced by N(mt+1
i , 1

tξ t+1
i

),

where the evolution of the parameters mt+1
i and ξ

t+1
i is determined by the difference equations

(32) and (34) with I1(x1, x̂2) being replaced with I1(x1,x2). Then the argument similar to that in

the proof of Proposition 3 shows that this evolution is approximated by the following ODEs

dmi(t)
dt

=
Ii(m(t))(θi(m(t))−mi(t))

ξi(t)
, (55)

dξi(t)
dt

= Ii(m(t))−ξi(t). (56)

where θi(m) = θi(x(m)), I1(m) = I1(x1(m),x2(m2)), and I2(m) = I2(x2(m2), x̂1(m2)).

Suppose that A1 = A2 = a. Obviously (m1,m2,ξ1,ξ2) = (θ ∗,θ ∗, I1(θ
∗,θ ∗), I2(θ

∗,θ ∗)) is a

steady state of the ODE. The following lemma shows that this steady state is linearly unstable if

(and only if) the assumption (16) holds.

Lemma 11. Suppose that A1 = A2 = a. The following two conditions are equivalent.

(i) At the steady state (m1,m2,ξ1,ξ2)= (θ ∗,θ ∗, I1(θ
∗,θ ∗), I2(θ

∗,θ ∗)), the Jacobian of the ODE

(55) and (56) has at least one eigenvalue whose real part is positive.

(ii) (16) holds.
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Proof. Note that θi(m)−mi = 0 and ξi = Ii in any steady state. Note also that ∂ I2
∂m1

= 0, as player

2 does not know player 1’s actual belief. Hence the Jacobian J of the ODE at the steady state can

be written as

J =


∂θ1
∂m1

−1 ∂θ1
∂m2

0 0
∂θ2
∂m1

∂θ2
∂m2

−1 0 0
∂ I1
∂m1

∂ I1
∂m2

−1 0

0 ∂ I2
∂m2

0 −1

 .

Obviously this Jacobian J has an eigenvalue λ = −1 (multiplicity 2). The remaining two

eigenvalues of J are the ones for the submatrix

J′ =

 ∂θ1
∂m1

−1 ∂θ1
∂m2

∂θ2
∂m1

∂θ2
∂m2

−1

 .

The eigenvalues of this matrix J′ solve

λ
2 −
(

∂θ1

∂m1
+

∂θ2

∂m2
−2
)

λ +

(
∂θ1

∂m1
−1
)(

∂θ2

∂m2
−1
)
− ∂θ1

∂m2

∂θ2

∂m1
= 0.

Since player 1 is perfectly rational, we have θ1(m) = θ ∗ for all m, which implies ∂θ1
∂m1

= ∂θ1
∂m2

= 0.

Hence the quadratic equation above is simplified to

λ
2 +

(
2− ∂θ2

∂m2

)
λ +

(
1− ∂θ2

∂m2

)
= 0,

whose solution is λ =−1, ∂θ2
∂m2

−1. This proves the result we want. Q.E.D.

By the continuity, the result of the lemma above holds even when A2 is perturbed. That is,

there are A < a and A > a such that for any A2 ∈ (A,A), the interior steady state (θ ∗,m∗
2(A2)) is

linearly unstable. Hence it follows from Proposition 7 that for any A2 ∈ (A,A) such that b < H,

players’ beliefs converge to m∗(A2) with zero probability. Here, H is the affine space spanned by

the eigenvectors of J associated with the eigenvalues with negative real parts, and

b =

(
− 1

R(x1(m∗
1),x2(m∗

2),A2)
,− 1

R(x2(m∗
2), x̂1(m∗

2),A2)
,0,0

)
.

The argument similar to that in the proof of Proposition 3 shows that (17) implies b < H. Hence

the result follows.
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B.7 Proof of Proposition 7

Let N be a neighborhood of p, and choose a function η : N → R+ as in Section 3 of Pemantle

(1990), given the ODE (19). Roughly, η(v) measures the distance between a point v and (the set

of) the paths pointing to the steady state p. For example, any point v with η(v) = 0 is on such a

path, so starting from this point v, a solution to the ODE (19) converges to p.

On the other hand, any point v with η(v) > 0 is not on such a path. So the solution to the

ODE does not converge to p. Indeed, as shown by Proposition 3(v) of Pemantle (1990), we have

Dv(η)(F(v)) > 0 for any v with η(v) > 0. So a solution to the ODE moves away from the paths

converging to p. (Here, the notation for multidimensional derivatives uses Dv(η) for the differen-

tial of η at a point v.)

Let St = η(v(t)) and Xt = St − St−1. Lemma 1 of Pemantle (1990) shows that after every

history Ft , the stochastic process {Sk} can exceed c∗√
t (i.e., v(t) leaves a neighborhood of the paths

converging to p) at some point in the future with probability at least 0.5. The following lemma

shows that the same result holds in our setup. The proof can be found in Appendix B.7.1

Lemma 12. There is a constant c∗ > 0 and t∗ such that for any t > t∗ and Ft ,

Pr
(

sup
k>t

Sk >
c∗√

t
or v(k) <N for some k > t

∣∣∣∣Ft

)
> 0.5.

Lemma 2 of Pemantle (1990) shows that once the process {v(t)} leaves a c∗√
t -neighborhood of

p as stated in the lemma above, then it fails to return to p with positive probability. The proof can

be found in Appendix B.7.2

Lemma 13. Let c∗ > 0 be as in Lemma 12. Then there is a > 0 such that

Pr
(

inf
k>t

Sk >
c∗

2
√

t
or v(k) <N for some k ≥ t

∣∣∣∣Ft ,St ≥
c∗√

t

)
≥ a.

The rest of the proof is exactly the same as the argument in the full paragraph on page 711

of Pemantle (1990): Suppose that Pr(v(t) → p) > 0. Then there is some history Ft after which

the probability that v(M) converges to p and never leaves the neighborhood N is at least 1− a
2 .

However, Lemmas 12 and 13 imply that the probability that v(M) fails to converge to p or leaves

N is at least a
2 conditional on any history Ft . This is a contradiction.
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B.7.1 Proof of Lemma 12

Without loss of generality, assume that N (the domain of the “distance function” η) is a closed

ball surrounding p. (This is so because given a neighborhood U of the point p, we can al-

ways find a closed ball N ⊆ U containing p.) Then enlarge the domain of η by letting η(v) =

η(argmaxṽ∈N d(ṽ,N )) for each v <N . Here d(v,N ) measures the Euclidean distance between

v and the ball N . This function η is well-defined because N is a closed ball. Since η is Lipschitz

in N , it is so in the entire space Rn.

Pick a sufficiently large t, and define a stopping time τ = {M ≥ t|SM > c∗√
t }. We will show that

Pr(τ = ∞|Ft)< 0.5.

Step 1: Inequalities (12) and (14) of Pemantle (1990).

In the proof Pemantle (1990), he shows that there is k2 > 0 such that for any M > t with

SM ≤ c∗√
t ,

E[2XM+1SM|FM]≥ k2S2
M

M+1
+O

(
SM

M2

)
, (57)

E[X2
M+1|FM] is at least

const.
M2 . (58)

See (12) and (14) of Pemantle (1990). His proof relies on the assumption that the noise term has a

bounded support (and hence the step size is of order 1
t+1 ). We will show that the same result holds

in our setup where the noise is Gaussian.

Note that for any v, ṽ ∈ Rn and sufficiently large M,

E
[

η

(
v+

b(M, ṽ)ε
M+1

)∣∣∣∣FM

]
=E[η(v+ zb(M, ṽ)ε)], where z = 1

M+1

=η(v)+
∂E[η(v+ zb(M, ṽ)ε)]

∂ z

∣∣∣∣
z=0

z+O(z2)

=η(v)+
n

∑
i=1

∂η(v)
∂vi

bi(M, ṽ)E[ε]z+O(z2)

=η(v)+O(z2) = η(v)+O
(

1
M2

)
.
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To obtain the second equation, we regard the whole term as a function of z and apply Taylor

expansion at z = 0. Intuitively, this shows that the impact of the noise ε in period M on the

expected value of η(v(M+1)) is of order O( 1
M2 ). Then we have

E[SM+1|FM]

=E
[

η

(
v(M)+

1
M+1

(
F̃(t,v(M))+b(M,v(M))ε

))∣∣∣∣FM

]
=η

(
v(M)+

F̃(t,v(M))

M+1

)
+O

(
1

M2

)
= η

(
v(M)+

F(v(M))

M+1

)
+O

(
1

M2

)
≥ k2SM

M+1
+O

(
1

M2

)
,

which immediately implies (57). Here the third equation follows from the Lipschitz continuity

of η , and |F(v)− F̃(M,v)| < K
M . The last inequality follows from Proposition 3(iv) of Pemantle

(1990).

To obtain (58), note that

E[X2
M+1|FM] =(E[X+

M+1|FM])2

≥(Pr(|ε(M)|< 1|FM)E[X+
M+1|FM, |ε(M)|< 1])2.

Conditional on |ε(M)| < 1, the step size v(M + 1)− v(M) is of order 1
M+1 . Hence as in the first

display on page 709 of Pemantle (1990), we have

E[X+
M+1|FM, |ε(M)|< 1]

≥E

[(
Dv(M)(η)

(
F̃(M,v(M))+b(M,v(M))ε

M+1

)
+O(|v(M+1)− v(M)|2)

)+
∣∣∣∣∣FM, |ε(M)|< 1

]

=E

[(
Dv(M)(η)

(
F(v(M))+b(M,v(M))ε

M+1

)
+O

(
1

M2

))+
∣∣∣∣∣FM, |ε(M)|< 1

]

≥E

[(
Dv(M)(η)

(
b(M,v(M))ε

M+1

)
+O

(
1

M2

))+
∣∣∣∣∣FM, |ε(M)|< 1

]

≥const.
M+1

+O
(

1
M2

)
.

Here the equality follows from linearity of Dv(η), |F(v)− F̃(M,v)|< K
M , and the fact that the step

size v(M+1)− v(M) is of order 1
M+1 . The second to the last inequality follows from Proposition
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3(v) of Pemantle (1990). The last inequality uses the fact that the gradient of η at p is c′h for some

c′ > 0 and h ∈ H∗, which implies Dv(η)(b(M,v(M)))≥ c′κ for any v(M) in a neighborhood of p.

Substituting this inequality to the previous one, we obtain (58).

Step 2: Main Proof.

As argued in the full paragraph on page 709 of Pemantle (1990), combining (57) and (58)

yields

E[2XM+1SM +X2
M+1|FM]≥ const.

M2 ,

which in turn implies

E[S2
τ∧(M+1)|Ft ]−E[S2

τ∧M|Ft ] = E[1τ>M(2XM+1SM +X2
M+1)|Ft ]

= E[E[1τ>M(2XM+1SM +X2
M+1)|FM]|Ft ]

≥ const.
M2 E[1τ>M|Ft ]

≥ const.
M2 Pr(τ = ∞|Ft)

for M > t. Pemantle (1990) applies this inequality iteratively and obtains

E[S2
τ∧M|Ft ]≥ S2

t + const. ·Pr(τ = ∞|Ft)
M−1

∑
i=t

1
i2

≥ const. ·Pr(τ = ∞|Ft)

(
1
t
− 1

M

)
. (59)

Then in the first paragraph on page 710, Pemantle (1990) shows that

4(c∗)2

t
≥ E(S2

M∧τ |Ft), (60)

using the assumption that the noise has a bounded support (which ensures that the step size is of

order 1
M+1 ). We can show that the same result holds in our setup, the proof can be found at the end.

Then the rest of the proof is the same as Pemantle (1990): Combining (59) and (60),

4(c∗)2

t
≥ const. ·Pr(τ = ∞|Ft)

(
1
t
− 1

M

)
.

This inequality holds for all M, and when M → ∞, it reduces to

4(c∗)2 ≥ const. ·Pr(τ = ∞|Ft).

By taking c∗ small enough, we have Pr(τ = ∞|Ft)≤ 0.5, as desired.
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Step 3: Proof of (60).

We will show that (60) holds in our setup: Let L > 0 be the Lipschitz constant of η , and ĉ > 0

be such that |F̃(M,v)− v|< ĉ for all M > t and for all v in a neighborhood of p. Then

|SM∧τ −S(M∧τ)−1)|< L|v(M∧ τ)− v((M∧ τ)−1)|

≤ ĉL+nb|ε|L
M∧ τ

≤ ĉL+nb|ε|L
t

. (61)

whenever v(M) is in the neighborhood of p. Since the mean of the half-normal distribution is
√

2√
π

and its variance is 1− 2
π

, we have

E[|SM∧τ −S(M∧τ)−1||Ft ]<
const.

t
,

E[(SM∧τ −S(M∧τ)−1)
2|Ft ]<

const.
t2 .

Then we have

E[S2
M∧τ |Ft ] = E[{S(M∧τ)−1 +(SM∧τ −S(M∧τ)−1)}2|Ft ]

≤
(

c∗√
t

)2

+2
c∗√

t
const.

t
+

const.
t2

where the inequality uses S(M∧τ)−1 ≤ c∗√
t (which follows from the definition of τ), the Lipschitz-

continuity of η , and the previous inequalities. When t is large, the last line is less than 4(c∗)2

t , and

hence (60) follows.

B.7.2 Proof of Lemma 13

The proof is almost the same as that of Pemantle (1990). However, at some places, his proof uses

the assumption that the noise has a bounded support (which ensures that the step size of the process

is of order 1
t+1 ). In what follows, we will explain how to extend his argument to our setup with

Gaussian noise.

Enlarge the domain of η as in the proof of Lemma 12. Pick t large enough, and assume that

St ≥ c∗√
t . Let τ = inf{k ≥ t|Sk ≤ c∗

2
√

t }. Recall that Xk = Sk − Sk−1 is a difference sequence. Let
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µk = E[Xk|Fk−1]. Consider a martingale {Zk}∞
k=t defined as Zk = St +∑

k
j=t+1Yj, where Yk = 0 for

τ > k and Yk = Xk −µk for τ ≤ k.

In the seventh to the last line on page 710, Pemantle (1990) argues that if the step size is of

order 1
k , then {Zk} is L2-bounded (and hence the martingale convergence theorem applies).

In our setup, we can still prove that {Zk} is L2-bounded. It is well-known that a martingale

{Zk} is L2-bounded if and only if

∑
k

E[(Zk −Zk−1)
2]< ∞.

We will show that this inequality holds in our model. Using the argument similar to (61), we have

|Sk −Sk−1|<
ĉL+nb|ε|L

k
, (62)

and hence

E[(Sk −Sk−1)
2|Fk−1]<

const.
k2 , E[|Sk −Sk−1||Fk−1]<

const.
k

.

These inequalities imply

E[(Zk −Zk−1)
2|Fk−1]≤ E[(Xk −µk)

2|Fk−1]

= E[(Sk −Sk−1)
2 −2µk(Sk −Sk−1)+µ

2
k |Fk−1]

= E[(Sk −Sk−1)
2 −2E[Sk −Sk−1|Fk−1](Sk −Sk−1)+(E[Sk −Sk−1|Fk−1])

2|Fk−1]

<
const.

k2 .

Hence we have E[(Zk −Zk−1)
2] < const.

k2 for every k. Then obviously ∑k E[(Zk −Zk−1)
2] < ∞, as

desired.

Also in the last line on page 710, Pemantle (1990) shows that if the step size is of order 1
k , then

Var

(
τ

∑
k=t+1

Yk

)
≤

∞

∑
k=t+1

const.
k2 ,

In our model, we can still prove the same inequality. It is well-known that the covariance of the

martingale difference (Yi,Yj) is zero, and hence

Var

(
τ

∑
k=t+1

Yk

)
= Var

(
∞

∑
k=t+1

Yk

)
=

∞

∑
k=t+1

Var(Yk).

Note that E[(Zk−Zk−1)
2]< const.

k2 . Because Var(Yk)=E[(Zk−Zk−1)
2], the desired inequality holds.
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C Examples

Example of Non-Convergence: Team Production

Suppose that the output function is given by

Q(x1 + x2,a,θ) = a−θ (x1 + x2)

and player i’s payoff is y+ xi − 1
2x2

i , where y = Q+ ε and a ∈ R. Suppose also that Θ = [θ ,θ ]

where 0 < θ < θ < 1.

Given misspecified parameters A1,A2, the incentive-compatibility conditions are:

x1 = 1−θ1,

x̂2 = 1− θ̂2,

x2 = 1−θ2,

x̂1 = 1− θ̂1.

From these equations, we obtain ∂xi(mi,m̂−i)
∂mi

=−1 and ∂xi(mi,m̂−i)
∂ m̂−i

= 0. Note also that ∂Q
∂θ

=−(x1 + x2)

and ∂Q
∂xi

=−θ .

At m1 = m2 = m̂1 = m̂2 = θ ∗, we have xi = x̂i = 1−θ ∗. Hence, the left hand side of Condition

(13) equals

−−θ ∗ · (0−1−1+0)
−2(1−θ ∗)

=
θ ∗

1−θ ∗ .

At θ ∗ = 0.8, the above value equals 4.

We next consider one-sided misspecification where only player 2 has the above bias. Given the

misspecified parameter A2, the incentive-compatibility conditions at the interior steady state are:

x1 = 1−θ
∗,

x2 = 1−θ2,

x̂1 = 1− θ̂1.

By the similar derivation as above, the left hand side of Condition (16) equals

−−θ ∗ · (−1)
−2(1−θ ∗)

=
θ ∗

2(1−θ ∗)
.

Note that the above value is larger than 1 if and only if θ ∗ > 2
3 .
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Example of Non-Convergence: Team Production When Efforts Are Substi-

tutes

Suppose that the output function is given by

Q(x1 + x2,a,θ) = a−θ

(
1

x1 + x2
− s
)

where a,s ∈ R, and player i’s payoff is y− c(xi) where the cost function is c(xi) =
1
8x2

i . Suppose

also that Θ = [θ ,θ ] where 0 < θ < θ . Note that Qxi,Qa > 0, QxiA = 0, and Qxiθ > 0. In what

follows, we assume s < 1

2(θ)
1
3

; it implies that Qθ is negative and bounded away from zero given

players’ incentive-compatibility conditions.

For example, suppose a is large so that Q > 0. The output function Q represents the outcome

of joint production, where the marginal benefit of effort is decreasing in θ .28

Given misspecified parameters A1,A2, the incentive-compatibility conditions are:

θ1

(x1 + x̂2)2 =
1
4

x1,

θ̂2

(x1 + x̂2)2 =
1
4

x̂2,

θ2

(x̂1 + x2)2 =
1
4

x2,

θ̂1

(x̂1 + x2)2 =
1
4

x̂1.

These four equations imply x1 =
2

2
3 θ1

(θ1+θ̂2)
2
3

, x̂2 =
2

2
3 θ̂2

(θ1+θ̂2)
2
3

, x2 =
2

2
3 θ2

(θ2+θ̂1)
2
3

, x̂1 =
2

2
3 θ̂1

(θ2+θ̂1)
2
3

. From

this, we obtain ∂xi(mi,m̂−i)
∂mi

= 2
2
3

(mi+m̂−i)
2
3
− 2

3
2

2
3 mi

(mi+m̂−i)
5
3

and ∂xi(mi,m̂−i)
∂ m̂−i

=−2
3

2
2
3 mi

(mi+m̂−i)
5
3

. Note also that

∂Q
∂θ

=− 1
x1+x2

+ s and ∂Q
∂xi

= θ
1

(x1+x2)2 .

At m1 = m2 = m̂1 = m̂2 = θ ∗, we have xi = x̂i = (θ ∗)
1
3 , ∂xi(mi,m̂−i)

∂mi
= 2

3(θ∗)
2
3

, and ∂xi(mi,m̂−i)
∂ m̂−i

=

28 Note that a ≤ 0 (and hence Q < 0) also fits other economic situations. For example, the output function Q
represents the degree of pollution or damage (e.g., CO2 emissions or agricultural drought), where agents can mitigate
it by exerting effort (e.g., using eco-friendly products or investing to irrigation) and they have different views on Q.
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− 1

3(θ∗)
2
3

. Hence, the left hand side of Condition (13) equals

−

(θ∗)
1
3

4 ·
[
− 1

3(θ∗)
2
3
+ 2

3(θ∗)
2
3
+ 2

3(θ∗)
2
3
− 1

3(θ∗)
2
3

]
− 1

2(θ∗)
1
3
+ s

=

1

6(θ∗)
1
3

1

2(θ∗)
1
3
− s

.

At s = θ ∗ = 0.5, the above value is about 1.62, thus Condition (13) is satisfied.

Example of Non-Convergence: Games with Conflicting Interests

Suppose that the output function is given by

Q(x1,x2,a,θ) = θ (x2 − x1 +a) ,

player 2’ payoff is y− 1
2x2

2, player 1’s payoff is −y− 1
2k x2

1, and y = Q+ε , where xi ≥ 0, k > 0, and

a ∈ R. Suppose also that Θ = [θ ,θ ] where 0 < θ < θ .

Given misspecified parameters A1,A2, the incentive-compatibility conditions are:

x1 = kθ1,

x̂2 = θ̂2,

x2 = θ2,

x̂1 = kθ̂1.

From these equations, we obtain ∂x1(m1,m̂2)
∂m1

= k, ∂x2(m2,m̂1)
∂m2

= 1, and ∂xi(mi,m̂−i)
∂ m̂−i

= 0. Note also that
∂Q
∂x1

=−θ , ∂Q
∂x2

= θ , and ∂Q
∂θ

= (x2 − x1 +a).

At m1 = m2 = m̂1 = m̂2 = θ ∗, we have x1 = x̂1 = kθ ∗ and x2 = x̂2 = θ ∗. Hence, the left hand

side of Condition (13) equals

−0+θ ∗− kθ ∗+0
θ ∗− kθ ∗+a

=
(k−1)θ ∗

a− (k−1)θ ∗ .

So Condition (13) is satisfied if and only if (k−1)θ ∗ < a < 2(k−1)θ ∗.

We next consider one-sided misspecification where only player 2 has the above bias. Given the
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misspecified parameter A2, the incentive-compatibility conditions at the interior steady state are:

x1 = x̂2 = kθ
∗,

x2 = θ2,

x̂1 = θ̂1.

By the similar derivation as above, the left hand side of Condition (16) equals

− θ ∗

θ ∗− kθ ∗+a
=

θ ∗

(k−1)θ ∗−a
.

Note that the above value is larger than 1 if and only if (k−2)θ ∗ < a < (k−1)θ ∗.

Example of Non-Convergence: Cournot Duopoly

Suppose that the output function is given by

Q(x1 + x2,a,θ) = a−θ(x1 + x2)

where a > 0. Player i’s payoff is yxi − c(xi), where yxi is firm i’s revenue and c(xi) is firm i’s

production cost. Suppose also that Θ = [θ ,θ ] where 0 < θ < θ .

Given misspecified parameters A1,A2, the incentive-compatibility conditions are:

A1 −θ1(2x1 + x̂2)− c′(x1) = 0,

Â2 − θ̂2(x1 +2x̂2)− c′(x̂2) = 0,

A2 −θ2(2x2 + x̂1)− c′(x2) = 0,

Â1 − θ̂1(x2 +2x̂1)− c′(x̂1) = 0.

By applying the implicit function theorem to these equations, we have −2m1 − c′′(x1) −m1

−m̂2 −2m̂2 − c′′(x̂2)

 ∂x1(m1,m̂2)
∂m1

∂ x̂2(m1,m̂2)
∂m1

=

 2x1 + x̂2

0


and  −2m1 − c′′(x1) −m1

−m̂2 −2m̂2 − c′′(x̂2)

 ∂x1(m1,m̂2)
∂ m̂2

∂ x̂2(m1,m̂2)
∂ m̂2

=

 0

x1 +2x̂2

 .
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From this, we obtain ∂x1(m1,m̂2)
∂m1

=− (2x1+x̂2)(2m̂2+c′′(x̂2))
(2m1+c′′(x1))(2m̂2+c′′(x̂2))−m1m̂2

and
∂x1(m1,m̂2)

∂ m̂2
= (x1+2x̂2)m1

(2m1+c′′(x1))(2m̂2+c′′(x̂2))−m1m̂2
(as well as the above, ∂x2(m2,m̂1)

∂m2
, ∂x2(m2,m̂1)

∂ m̂1
are obtained

in the same manner). Note also that ∂Q
∂θ

=−(x1 + x2) and ∂Q
∂xi

=−θ .

At Ai = a and hence m1 = m2 = m̂1 = m̂2 = θ ∗, we have ∂xi(mi,m̂−i)
∂mi

= − 3xi(2θ∗+c′′(xi))
(2θ∗+c′′(xi))2−θ∗2 and

∂xi(mi,m̂−i)
∂ m̂−i

= 3xiθ
∗

(2θ∗+c′′(xi))2−θ∗2 . Hence, Condition (13) is

θ
∗
−2 3xi(2θ∗+c′′(xi))

(2θ∗+c′′(xi))2−θ∗2 +2 3xiθ
∗

(2θ∗+c′′(xi))2−θ∗2

−2xi
= θ

∗ 3(θ ∗+ c′′(xi))

(2θ ∗+ c′′(xi))2 −θ ∗2 > 1. (63)

By the assumptions of the interior and unique Nash equilibrium for any θ ∈ Θ, the second-order

conditions must hold at the Nash-equilibrium action xi: θ ∗+c′′(xi)> 0 and (2θ ∗+c′′(xi))
2−θ ∗2 >

0. By rearranging (63) with using these second-order conditions, Condition (13) can be simplified

to c′′(xi)< 0.

D A Model with Misspecified Type Distribution

Here we will present a model with a continuum of agents where they overestimste how common

their opinion is. We will show that the result in the main text remains true even in this setup.

Suppose that there is a unit mass of players. Each period, each player chooses an action and

observes a public signal y, which is given by

y = Q(x,a,θ)+ ε.

Here, x is the average of the chosen action in that period, θ is an unknown state, a is a fixed

parameter, and ε is a noise which follows the standard normal distribution. Each player’s payoff is

u(x,y), which depends on her own action x and the realized signal y.

We assume that there are two types of the players. A half of the population is type 1, who

(incorrectly) thinks that the true parameter is A1. The other half of the population is type 2, who

thinks that the true parameter is A2.

Crucially, we assume that each type overestimates how common her own type is. That is, each

type i (incorrectly) believes that the share of type i is 0.5+ γ , where γ > 0. We also assume that

higher-order beliefs are naive, in that each type i thinks that it is common knowledge that the share

of type i is 0.5+ γ .
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In this model, each type i has inferential naivety and mispredicts the other type’s action. To

analyze such a situation, it is useful to consider two hypothetical types. Specifically, hypothetical

type −i is a player who thinks that (a) the true parameter is A−i and that (b) the fraction of type i

is 0.5+ γ while the fraction of hypothetical type −i is 0.5− γ . Intuitively, hypothetical type −i is

the type which appears in type i’s strategic thinking, i.e., type i thinks that there are only type i and

hypothetical type −i, and optimizes the behavior.

Let xt
i and µ t

i denote type i’s action and belief in period t. Likewise, let x̂t
i and µ̂ t

i denote

hypothetical type i’s action and belief. Suppose that players are myopic and Bayesian, so that the

posteriors are updated by Bayes’ rule and players choose a Nash equilibrium each period, just as

in our main model. In this setup, a steady state is defined as (x∗1,x
∗
2, x̂

∗
1, x̂

∗
2,θ

∗
1 ,θ

∗
2 , θ̂

∗
1 , θ̂

∗
2 ) which

satisfies

x∗i ∈ argmax
xi

E[u(xi,Q((0.5+ γ)x∗i +(0.5− γ)x̂∗−i,Ai,θi)+ ε)] ∀i,

x̂∗−i ∈ argmax
x̂−i

E[u(x̂−i,Q((0.5+ γ)x∗i +(0.5− γ)x̂∗−i,A−i, θ̂−i)+ ε)] ∀i,

θi ∈ arg min
θ ′∈Θ

|Q((0.5+ γ)x∗i +(0.5− γ)x̂∗−i,Ai,θ
′)−Q(0.5(x∗1 + x∗2),a,θ

∗)| ∀i,

θ̂−i ∈ arg min
θ ′∈Θ

|Q((0.5+ γ)x∗i +(0.5− γ)x̂∗−i,A−i,θ
′)−Q(0.5(x∗1 + x∗2),a,θ

∗)| ∀i.

In what follows, we assume that the function Q is linear in θ as in the main model. Then each

type i’s posterior belief is truncated-normal. Formally, given an action profile x = (x1,x2, x̂1, x̂2),

let θi(x) denote a solution to

Q((0.5+ γ)xi +(0.5− γ)x̂−i,Ai,θ) = Q(0.5(x1 + x2),a,θ ∗),

and let

Ii(xi, x̂−i) = (R((0.5+ γ)xi +(0.5− γ)x̂−i,Ai))
2.

Then type i’s posterior belief µ
t+1
i is the truncated normal distribution induced by N(mt+1

i , 1
tξ t+1

i
),

where mt+1
i and ξ

t+1
i are given by (6) and (7).

Similarly, let θ̂i(x) denote a solution to

Q((0.5+ γ)x−i +(0.5− γ)x̂i,Ai,θ) = Q(0.5(x1 + x2),a,θ ∗),
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and let Îi(x−i, x̂i) = Ii(x−i, x̂i). Then hypothetical player i’s posterior is the truncated normal distri-

bution induced by N(m̂t+1
i , 1

tξ̂ t+1
i

), where m̂t+1
i and ξ̂

t+1
i are given by (8) and (9).

Suppose that Assumption 1 holds, so that the action in period t+1 is approximated by the limit

action (xi(mt
i, m̂

t
−i), x̂−i(mt

i, m̂
t
−i)) for large t.

The following is a counterpart to Proposition 2, which shows that small misspecification has a

small impact on the steady state for generic games. The proof is very similar to that of Proposition

2 and can be found at the end of this appendix.

Proposition 8. Suppose that when A1 = A2 = a, we have

∂Q
∂θ

+0.5
∂Q
∂x

(
∂x1

∂m1
+

∂x1

∂ m̂2
+

∂ x̂2

∂m1
+

∂ x̂2

∂ m̂2

)
, 0 (64)

at the steady state belief (i.e., θ = mi = m̂i = θ ∗ and xi = x̂i = xi(θ
∗,θ ∗) for each i). Then there is

an open neighborhood U ⊂ R4 of (m1,m2, m̂1, m̂2) = (θ ∗,θ ∗,θ ∗,θ ∗) such that

(i) When A1 = A2 = a, the steady state belief in the neighborhood U is unique and it is

(m1,m2, m̂1, m̂2) = (θ ∗,θ ∗,θ ∗,θ ∗).

(ii) There are A < a and A > a such that for any γ ≥ 0, there is a unique continuous function m∗ :

[A,A]2 →U such that m∗(a,a) = (θ ∗,θ ∗,θ ∗,θ ∗) and such that for each (A1,A2) ∈ (A,A)2,

m∗(A1,A2) is a steady state belief given (A1,A2).

Define b′ and H ′ as in Section 3.3, using θi(x) and θ̂i(x) specified in this appendix. A perception

profile (A1,A2) is regular if b′ < H ′.

The next proposition shows that our main result still holds even with a false-consensus effect:

It shows that the limit outcome is discontinuous in (A1,A2), and the probability of the beliefs

converging to the interior steady state suddenly drops from one to zero when (A1,A2) is perturbed

from (a,a). It also shows that an arbitrarily small γ (which measures the degree of the false-

consensus effect) is enough for this discontinuity result. Again the proof can be found at the end

of this appendix.

Proposition 9. Suppose that the assumption stated in Proposition 8 holds, so that there is a func-

tion m∗. Suppose that when A1 = A2 = a, θi(x) and θ̂i(x) defined in this appendix satisfies (11) at
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the steady state with correct learning (i.e., m1 = m2 = m̂1 = m̂2 = θ ∗). Then there are A < a and

A > a such that for any γ > 0 and for any regular (A1,A2) ∈ (A,A), we have

Pr( lim
t→∞

(µ t
1,µ

t
2) = (1m∗

1(A1,A2),1m∗
2(A1,A2))) = 0.

D.1 Proof of Proposition 8

Then the interior steady state belief (m1,m2, m̂1, m̂2) solves the system of equations

Q(0.5(x1(m1, m̂2)+ x2(m̂1,m2)),θ
∗,a)−Q((0.5+ γ)x1(m1, m̂2)+(0.5− γ)x̂2(m1, m̂2),m1,a) = 0,

Q(0.5(x1(m1, m̂2)+ x2(m̂1,m2)),θ
∗,a)−Q((0.5+ γ)x1(m1, m̂2)+(0.5− γ)x̂2(m1, m̂2), m̂2,a) = 0,

Q(0.5(x1(m1, m̂2)+ x2(m̂1,m2)),θ
∗,a)−Q((0.5− γ)x̂1(m̂1,m2)+(0.5+ γ)x2(m̂1,m2),m2,a) = 0,

Q(0.5(x1(m1, m̂2)+ x2(m̂1,m2)),θ
∗,a)−Q((0.5− γ)x̂1(m̂1,m2)+(0.5+ γ)x2(m̂1,m2), m̂1,a) = 0.

At the steady state belief mi = m̂i = θ ∗, the Jacobian of the above system is
−E1 − ∂Q

∂θ
−E2 0.5∂Q

∂x
∂x2
∂m2

0.5∂Q
∂x

∂x2
∂ m̂1

−E1 −E2 − ∂Q
∂θ

0.5∂Q
∂x

∂x2
∂m2

0.5∂Q
∂x

∂x2
∂ m̂1

0.5∂Q
∂x

∂x1
∂m1

0.5∂Q
∂x

∂x1
∂ m̂2

−E3 − ∂Q
∂θ

−E4

0.5∂Q
∂x

∂x1
∂m1

0.5∂Q
∂x

∂x1
∂ m̂2

−E3 −E4 − ∂Q
∂θ


where

E1 =
∂Q
∂x

{
γ

∂x1

∂m1
+(0.5− γ)

∂ x̂2

∂m1

}
,

E2 =
∂Q
∂x

{
γ

∂x1

∂ m̂2
+(0.5− γ)

∂ x̂2

∂ m̂2

}
,

E3 =
∂Q
∂x

{
γ

∂x2

∂m2
+(0.5− γ)

∂ x̂1

∂m2

}
,

E4 =
∂Q
∂x

{
γ

∂x2

∂ m̂1
+(0.5− γ)

∂ x̂1

∂ m̂1

}
.
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This matrix is regular, as its determinant is

D =

∣∣∣∣∣∣∣∣∣∣∣

−∂Q
∂θ

∂Q
∂θ

0 0

−E1 −E2 − ∂Q
∂θ

0.5∂Q
∂x

∂x2
∂m2

0.5∂Q
∂x

∂x2
∂ m̂1

0 0 −∂Q
∂θ

∂Q
∂θ

0.5∂Q
∂x

∂x1
∂m1

0.5∂Q
∂x

∂x1
∂ m̂2

−E3 −E4 − ∂Q
∂θ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

−∂Q
∂θ

0 0 0

−E1 −E1 −E2 − ∂Q
∂θ

0.5∂Q
∂x

∂x2
∂m2

0.5∂Q
∂x

(
∂x2
∂m2

+ ∂x2
∂ m̂1

)
0 0 −∂Q

∂θ
0

0.5∂Q
∂x

∂x1
∂m1

0.5∂Q
∂x

(
∂x1
∂m1

+ ∂x1
∂ m̂2

)
−E3 −E3 −E4 − ∂Q

∂θ

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
∂Q
∂θ

)2
∣∣∣∣∣∣ −E1 −E2 − ∂Q

∂θ
0.5∂Q

∂x

(
∂x2
∂m2

+ ∂x2
∂ m̂1

)
0.5∂Q

∂x

(
∂x1
∂m1

+ ∂x1
∂ m̂2

)
−E3 −E4 − ∂Q

∂θ

∣∣∣∣∣∣
=

(
∂Q
∂θ

)2
∣∣∣∣∣∣ −X − ∂Q

∂θ
X

X −X − ∂Q
∂θ

∣∣∣∣∣∣
=

(
∂Q
∂θ

)2
{(

∂Q
∂θ

)2

+2X
∂Q
∂θ

}

=

(
∂Q
∂θ

)3(
∂Q
∂θ

+2X
)
, 0.

Here X appearing in the third to the last line is defined as X = 0.5∂Q
∂x (

∂x2
∂m2

+ ∂x2
∂ m̂1

), and to obtain this

equality, we use the fact that X = 0.5∂Q
∂x (

∂x1
∂m1

+ ∂x1
∂ m̂2

) = 0.5∂Q
∂x (

∂ x̂2
∂m1

+ ∂ x̂2
∂ m̂2

) = 0.5∂Q
∂x (

∂ x̂1
∂m2

+ ∂ x̂1
∂ m̂1

).

The last inequality follows from (64) and ∂Q
∂θ

= R(x1(θ
∗),x2(θ

∗),a) , 0.

The rest of the proof is exactly the same as that of Proposition 2, and hence omitted.

D.2 Proof of Proposition 9

In the proof of Proposition 3, we have seen that the evolution of (mt ,ξ t ,) is described by the

difference equations (32) through (35), and its asymptotic motion is approximated by the ODE

(40) through (43). It is straightforward to see that the same result holds even in the model of the

false-consensus effect, provided that θi, Ii, θ̂i, and Îi appearing these equations are replaced with

the ones defined in this appendix, and that R(xi, x̂−i,Ai) and R(xi, x̂−i, Â−i) appearing in (32) and

45



(33) are replaced with with R((0.5+γ)xi+(0.5−γ)x̂−i,Ai) and R((0.5+γ)xi+(0.5−γ)x̂−i,A−i),

respectively.

Also, Lemma 6 remains true in the model of the self-consensus effect. Indeed, just as in the

proof of the original lemma, we can show that the Jacobian of the ODE has eigenvalues λ =

−1 (multiplicity 4) and λ = −ξ ∗ (multiplicity 2), and that the remaining eigenvalues solve the

quadratic equation (45). Now, since θ̂−i solves

Q(0.5(xi(mi, m̂−i)+x−i(m−i, m̂i)),a,θ ∗)−Q((0.5+γ)xi(mi, m̂−i)+(0.5−γ)x̂−i(mi, m̂−i),a,θ)= 0,

by the implicit function theorem, we have

∂ θ̂−i

∂m−i
+

∂ θ̂−i

∂ m̂i
= 0.5X ,

∂ θ̂−i

∂mi
+

∂ θ̂−i

∂ m̂−i
=−γX − (0.5− γ)X =−0.5X

where

X =

∂Q
∂x (

∂x1
∂m1

+ ∂x1
∂ m̂2

)

∂Q
∂θ

=

∂Q
∂x (

∂x2
∂m2

+ ∂x2
∂ m̂1

)

∂Q
∂θ

=

∂Q
∂x (

∂ x̂1
∂m2

+ ∂ x̂1
∂ m̂1

)

∂Q
∂θ

=

∂Q
∂x (

∂ x̂2
∂m1

+ ∂ x̂2
∂ m̂2

)

∂Q
∂θ

.

Hence we have(
∂ θ̂1

∂m1
+

∂ θ̂1

∂ m̂2

)(
∂ θ̂2

∂m2
+

∂ θ̂2

∂ m̂1

)
=

(
∂ θ̂1

∂m2
+

∂ θ̂1

∂ m̂1

)(
∂ θ̂2

∂m1
+

∂ θ̂2

∂ m̂2

)
.

Using this, (45) reduces to (47). Then the argument similar to the one in the proof of the original

Lemma 6 shows that the same result holds even in this case.

The rest of the proof is essentially the same as that of the proof of Proposition 3; we only

need to replace R(xi, x̂−i,Ai) and R(xi, x̂−i, Â−i) with R((0.5+γ)xi+(0.5−γ)x̂−i,Ai) and R((0.5+

γ)xi +(0.5− γ)x̂−i,A−i), respectively.
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