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Abstract

We consider a package assignment problem with money, in which a finite set M of

objects is allocated to agents. Each agent receives a package of objects and makes a

payment, and has preferences over pairs consisting of a package and a payment. These

preferences are not necessarily quasi-linear. The admissible set of object allocations is

chosen by the planner to pursue specific objectives in conjunction with the rule. A rule

satisfies constrained efficiency if no allocation―whose object allocation is admissible

under the rule―Pareto dominates the allocation selected by the rule. We study the com-

patibility between constraints on admissible object allocations and desirable properties

of rules, and characterize the rules that satisfy both. We establish that: A rule satisfies

constrained efficiency, no wastage, equal treatment of equals, strategy-proofness, indi-

vidual rationality, and no subsidy if and only if its admissible set of object allocations

is bundling unit-demand for some partition of M , satisfies no wastage and anonymity,

and the rule is a bundling unit-demand minimum price Walrasian rule.
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1 Introduction

1.1 Constraints in auctions

Since the 1990s, governments in many countries have used auctions to allocate frequency

licenses to cellphone carriers. These auctions not only generate substantial revenue but also

have significant economic implications. In such auctions, it is common to impose constraints

on license allocations. For example, to prevent monopolistic power or to ensure broader

participation among carriers, a single carrier is often limited in the number of licenses it

can acquire.1 In some cases, certain licenses are set aside for new entrants to promote their

participation in the cellphone market.2

Because electromagnetic frequencies are physically continuous, the allocation of frequency

licenses is inherently flexible. However, licenses are bundled into specific frequency bands

before the auction, and each carrier is allowed to obtain only one or a few such bundled bands.

This bundling introduces a constraint on the allocation. Similar constraints frequently arise

in other public auctions―for example, those involving land, housing, or other public assets

distributed to citizens.

1.2 Compatibility between constraints and desirable properties

Although constraints are introduced to promote desirable allocations, their effects are not

necessarily compatible with fundamental properties of rules―such as efficiency, fairness, and

incentive compatibility. For example, by limiting the flexibility of allocations, constraints may

compromise efficiency. Therefore, it is essential to examine how such constraints interact with

these properties. This paper investigates the compatibility between constraints on object

allocations and desirable rule properties, and characterizes the rules that satisfy both.

1.3 Main results

1.3.1 Model description

We consider a model with a set N of agents and a set M of objects, where objects are

allocated to agents. Each agent receives a package of objects and makes a payment for it.

Agents have preferences over pairs consisting of a package and a payment. These preferences

are not necessarily quasi-linear and may reflect income effects and financial constraints, which

1For example, frequency license auctions in the USA (2020), UK (2018, 2021), France (2020), Italy (2018),
Australia (2021), Korea (2018), and Spain (2018, 2022), among others.

2For example, frequency license auctions in Canada (2019, 2021), Korea (2024), and Belgium (2022),
among others.
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are particularly relevant in large-scale auctions, such as frequency license auctions and other

public resource allocations.

A (feasible) object allocation specifies how objects are assigned to agents. An allocation

includes both an object allocation and the agents’ payments. An allocation rule, or a rule

for short, is a function from a set of preference profiles to the set of admissible allocations.

We distinguish between feasibility and admissibility of object allocations. The feasible set

is determined by technological constraints outside the planner’s control, whereas the admis-

sible set is a subset of the feasible set, chosen by the planner to achieve specific objectives in

conjunction with the rule. Importantly, the admissible set is not exogenous but is defined as

part of the rule itself: an admissible object allocation is one that can arise for some preference

profile under the rule. In other words, the admissible set corresponds to the range of object

allocations under the rule.

1.3.2 Desirable properties of rules

We assume that the planner is concerned only with her total revenue from an allocation. An

allocation Pareto dominates another if each agent and the planner weakly prefer the former

to the latter, and at least one agent or the planner strictly prefers it. A rule is Pareto efficient

if it always selects an allocation that is not dominated by any other allocation whose object

allocation is feasible. It is constrained efficient if it always selects an allocation that is not

dominated by any other allocation whose object allocation is admissible under the rule. Since

the admissible set of object allocations is a subset of the feasible set, constrained efficiency is

generally weaker than Pareto efficiency, unless the two sets coincide. Moreover, the smaller

the admissible set, the weaker the requirement of constrained efficiency. Thus, there is a

trade-off: the stronger the requirement of constrained efficiency, the more diverse the set

of admissible object allocations―though satisfying the stronger requirement becomes more

demanding. A rule satisfies no wastage if all objects are always allocated to agents. Note

that no wastage is also an efficiency requirement, though weaker than Pareto efficiency.

Strategy-proofness is a dominant strategy incentive compatibility condition, requiring that

no agent ever benefit from misrepresenting his preferences. Individual rationality is a vol-

untary participation condition, requiring that each agent find his assigned pair (a package

of objects and a payment) at least as desirable as receiving no object and paying nothing.

No subsidy is a condition that prevents disinterested agents from participating in the rule

solely to obtain subsidies, requiring that each agent’s payment always be non-negative. Equal

treatment of equals is a fundamental fairness condition, requiring that whenever two agents

have identical preferences, they receive the same level of welfare.
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1.3.3 Constraints compatible with desirable properties

We first investigate which admissible sets of object allocations are compatible with the de-

sirable properties of constrained efficiency, no wastage, equal treatment of equals, strategy-

proofness, individual rationality, and no subsidy.

A constraint is a subset of the set of feasible object allocations. Note that the admissible

set of object allocations under a rule is itself a constraint. A constraint satisfies anonymity if

for each object allocation in the constraint, any permutation of agents also yields an object

allocation that belongs to the constraint. A constraint satisfies no wastage if, in every object

allocation that belongs to the constraint, all objects are assigned to agents.

Given a partition B of M , a constraint is called B-bundling if, in each object allocation

in the constraint, each agent is allowed to receive a subset of B or nothing. A B-bundling
constraint is said to be of unit-demand if, in each object allocation in the constraint, each

agent is allowed to receive exactly one element of B or nothing. Thus, under a B-bundling
unit-demand constraint, each agent may receive one package from B or nothing. If each

package in B is interpreted as a single “object,” then the B-bundling unit-demand constraint

becomes essentially equivalent to the unit-demand model, in which each agent is allowed to

receive at most one object.

We establish that: if there exists a rule satisfying constrained efficiency, no wastage, equal

treatment of equals, strategy-proofness, individual rationality, and no subsidy, then the set

of admissible object allocations must be B-bundling unit-demand for some partition B of M

with at most |N | elements, and must satisfy no wastage and anonymity (Proposition).

Proposition thus shows that compatibility with these desirable properties imposes strong

restrictions on the admissible set: it must be much smaller than the feasible set of object

allocations, thereby necessarily sacrificing Pareto efficiency.

1.4 Rules satisfying desirable properties

Next, we investigate rules that satisfy the desirable properties―namely, constrained effi-

ciency, no wastage, equal treatment of equals, strategy-proofness, individual rationality, and

no subsidy.

As noted earlier, when the admissible set of object allocations is B-bundling unit-demand

and satisfies both no wastage and anonymity―as in the conclusion of Proposition―the math-

ematical structure of our model becomes equivalent to the unit-demand model à la Demange

and Gale (1985), in which each agent may receive at most one object. In that setting, the

minimum price Walrasian (MPW) rules not only exist but are also the only rules that satisfy

Pareto efficiency, strategy-proofness, individual rationality, and no subsidy (Demange and
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Gale, 1985; Morimoto and Serizawa, 2015; Wakabayashi et al., 2025). For any B-bundling
unit-demand constraint satisfying no wastage and anonymity, we define the counterpart of

an MPW rule in our model, referred to as a bundling minimum price Walrasian (MPW )

rule.

By applying the above characterization results in the unit-demand model (Demange and

Gale, 1985; Morimoto and Serizawa, 2015; Wakabayashi et al., 2025), we establish the follow-

ing: A rule satisfies constrained efficiency, no wastage, equal treatment of equals, strategy-

proofness, individual rationality, and no subsidy if and only if the set of admissible object

allocations is B-bundling unit-demand for some partition B of M with at most |N | elements,

satisfies no wastage and anonymity, and the rule is a B-bundling unit-demand MPW rule.

(Theorem)

1.5 Implications of results

Our results (Proposition and Theorem) suggest that, unless the set of admissible object

allocations is carefully selected, it is impossible to design a rule that satisfies the desirable

properties. Moreover, they have a practical implication: if the planner aims to satisfy the

desirable properties―constrained efficiency, no wastage, equal treatment of equals, strategy-

proofness, individual rationality, and no subsidy―then she must adopt a bundling unit-

demand constraint satisfying no wastage and anonymity, and must employ the associated

bundling unit-demand MPW rule.

It is worth noting that the constraints used in public auctions in many countries can be

classified as bundling unit-demand constraints that satisfy both no wastage and anonymity.3

While a primary motivation for adopting such constraints has been to reduce the risk of

collusion among bidders (Binmore and Klemperer, 2002), our results provide a novel rationale

for this auction design: bundling unit-demand constraints are the only ones that permit the

existence of a rule satisfying (constrained) efficiency, fairness, and strategy-proofness.

1.6 Related literature

1.6.1 Quasi-linear preferences

The literature on object allocation problems with money is extensive. A common assumption

in this literature is that agents have quasi-linear preferences. This assumption is particularly

3For example, the European 3G frequency license auctions in the U.K., the Netherlands, Italy, and Den-
mark, as well as recent auctions in Korea (2024), Hong Kong (2019), Finland (2018, 2020), and Poland
(2023). Additionally, auctions allocating public housing to citizens inherently follow bundling unit-demand
constraints.
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useful because it renders the problem of efficient object allocation equivalent to simply max-

imizing the sum of valuations.

One of the most celebrated results in the literature is that if a class of preferences consists

solely of quasi-linear preferences and is sufficiently rich, then the Vickrey rules (Vickrey, 1961)

are the only rules that satisfy Pareto efficiency, strategy-proofness, individual rationality, and

no subsidy (see, e.g., Holmström, 1979; Chew and Serizawa, 2007). Notably, Holmström’s

(1979) characterization continues to hold when Pareto efficiency is replaced by constrained

efficiency and the Vickrey rules are replaced by the constrained Vickrey rules―that is, the

constrained Vickrey rules are the only rules that satisfy constrained efficiency, strategy-

proofness, individual rationality, and no subsidy.4 This paper contributes to the literature

by extending Holmström’s result to settings with non-quasi-linear preferences, while also

incorporating two additional but relatively weak requirements: a fairness condition―equal

treatment of equals―and an efficiency condition―no wastage.

1.6.2 Non-quasi-linear preferences

Although the assumption of quasi-linear preferences is analytically convenient, it limits the

applicability of results to situations where payments are small relative to agents’ incomes

or budgets, such that income effects and budget constraints can be ignored. However, in

many important applications of object allocation problems with money―such as frequency

license auctions―payments are typically large, making income effects and budget constraints

non-negligible. Motivated by this limitation, a small but growing literature has begun to

examine object allocation problems with money under non-quasi-linear preferences.

Some studies in this literature assume that agents have unit-demand preferences. As

discussed in Section 1.4, when agents have unit-demand and non-quasi-linear preferences, the

MPW rules are the only rules that satisfy Pareto efficiency, strategy-proofness, individual

rationality, and no subsidy (see, e.g., Demange and Gale, 1985; Morimoto and Serizawa,

2015; Wakabayashi et al., 2025).

In contrast, other studies assume that agents have multi-demand preferences, as in this

paper. A series of results has shown that when agents have multi-demand and non-quasi-

linear preferences, no rule satisfies Pareto efficiency, fairness, and strategy-proofness simul-

taneously (see, e.g., Kazumura and Serizawa, 2016; Baisa, 2020; Malik and Mishra, 2021;

Kazumura, 2022; Shinozaki et al., 2025). These impossibility results imply that at least one

of these three properties―Pareto efficiency, fairness, or strategy-proofness―must be relaxed

4A constrained Vickrey rule modifies the standard Vickrey rule by restricting attention to admissible
object allocations when determining the object allocation and the payments. See Definition 5 in Section 3.4.2
for the formal definition.
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or abandoned in this setting. This paper contributes to the literature by relaxing Pareto effi-

ciency to constrained efficiency and characterizing rules that satisfy the remaining desirable

properties. Moreover, to the best of our knowledge, this is the first paper to explicitly study

constrained efficiency and strategy-proofness in package assignment problems with money

under non-quasi-linear preferences.

The aforementioned studies assume that the set of admissible object allocations is exoge-

nously given, whereas our framework allows the planner to endogenously determine this set

as part of the rule design. In this respect, the models considered in those studies can be seen

as special cases of our more general framework.56

1.6.3 Walrasian equilibrium allocation under constraints

Recently, several papers have investigated the existence and structure of (standard, non-

bundling) Walrasian equilibrium allocations in package assignment problems with money

under (non-)quasi-linear preferences (see, e.g., Fleiner et al., 2019; Kojima et al., 2020;

Schlegel, 2022; Baldwin et al., 2023; Nguyen and Vohra, 2024). While Walrasian rules

―that is, rules that select a Walrasian equilibrium allocation for each preference profile

―satisfy Pareto efficiency (or constrained efficiency in constrained settings) and fairness

(under anonymous constraints), they generally fail to satisfy strategy-proofness. This paper

complements these studies by focusing on rules that satisfy strategy-proofness.

Bando et al. (2025) analyze a two-sided many-to-one matching model with money, under

individual constraints and quasi-linear preferences. They show that the gross substitutes

condition (Kelso and Crawford, 1982) on the preferences of a multi-demand agent (i.e., a

firm) is both necessary and sufficient for the existence of a strategy-proof Walrasian rule

on the unit-demand side of the market (i.e., the workers). Since their study concerns a

two-sided matching model with money and assumes quasi-linear preferences, their result is

logically independent of ours.

1.7 Structure of the paper

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

presents the main results. Section 4 concludes. All formal proofs are provided in the Ap-

pendix.

5Two notable exceptions are Baisa (2020) and Shinozaki et al. (2025), which examine models with identical
objects. Since the package assignment model studied in this paper accommodates heterogeneous objects, their
models do not constitute special cases of the present framework.

6To be precise, our results do not imply theirs (and vice versa), as the previous studies do not explicitly
assume fairness properties such as equal treatment of equals.
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2 Model

There are n ≥ 2 agents and m ≥ 1 objects. The set of agents is denoted by N ≡ {1, . . ., n}.
Our generic notations for agents are i, j, k, etc. The set of objects is denoted by M with

|M | = m. Our generic notations for objects are a, b, c, etc. Let M ≡ 2M .7 A subset of M ,

i.e., an element of M, is referred to as a package. Each agent i ∈ N receives a package

Ai ∈ M and pays ti ∈ R. A (consumption) pair consisting of a package and a payment of

agent i is denoted by zi ≡ (Ai, ti) ∈ M × R. Let 0 ≡ (∅, 0) ∈ M × R denote the pair where

an agent i ∈ N receives no object and makes no payment.

2.1 Preferences

Each agent i ∈ N has a complete and transitive preference Ri over M × R. The strict and

indifference relations associated with Ri are denoted by Pi and Ii, respectively. We assume

that each preference Ri satisfies the following properties.

Money monotonicity. For each Ai ∈ M and each ti,t
′
i ∈ R with ti < t′i, we have (Ai, ti) Pi (Ai, t

′
i).

Object monotonicity. For each Ai, A
′
i ∈ M with A′

i ⊊ Ai and each ti ∈ R, we have

(Ai, ti) Pi (A
′
i, ti).

Possibility of compensation. For each zi ∈ M × R and each Ai ∈ M, there exist two

payments ti, t
′
i ∈ R such that (Ai, ti) Ri zi and zi Ri (Ai, t

′
i).

Continuity. For each zi ∈ M × R, the upper contour set at zi, {z′i ∈ M × R : z′i Ri zi},
and the lower contour set at zi, {z′i ∈ M × R : zi Ri z

′
i}, are both closed.

Our generic notation for a class of preferences satisfying the above four properties is R,

which we refer to as a domain.8 Let R denote the class of all preferences satisfying the

above four properties.

Given Ri ∈ R, Ai ∈ M, and zi ∈ M × R, possibility of compensation and continuity to-

gether imply that there exists a payment V (Ai, zi;Ri) ∈ R such that
(
Ai, V (Ai, zi;Ri)

)
Ii zi.

9

By money monotonicity, such a payment V (Ai, zi;Ri) is unique. We call the payment

7Given a set G, 2G denotes the power set of G, i.e., 2G = {G′ : G′ ⊆ G}.
8Note that, due to object monotonicity, any domain we consider in this paper does not include any unit-

demand preference, where a preference Ri is said to exhibit unit demand if for each Ai ∈ M\{∅} and each
ti ∈ R, there exists a ∈ Ai such that

(
{a}, ti

)
Ri (Ai, ti).

9For a formal proof of the existence of such a payment, see Lemma 1 of Kazumura and Serizawa (2016).
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V (Ai, zi;Ri) the valuation of Ai at zi for Ri. It represents the amount of payment that

makes receiving package Ai together with the payment is indifferent to zi according to pref-

erence Ri.

Given Ri ∈ R, Ai ∈ M, and ti ∈ R, let w(Ai, ti;Ri) ≡ V
(
Ai, (∅, ti);Ri

)
− ti. We call

w(Ai, ti;Ri) the willingness to pay of Ai at ti for Ri. It represents the maximal amount

of money that an agent is willing to pay for the package Ai when he currently owns no object

and has made a payment of ti. By object monotonicity, for each Ai, A
′
i ∈ M with A′

i ⊊ Ai

and each ti ∈ R, it holds that w(Ai, ti;R) > w(A′
i, ti;Ri).

Payment𝟎∅

{𝑎}

{𝑏}

{𝑎, 𝑏}

𝑅𝑖𝑅𝑖

𝑧𝑖
′ ≡ 𝑏 , 𝑡𝑖

′

𝑧𝑖 ≡ 𝑎 , 𝑡𝑖

𝑡𝑖

−𝑡𝑖
′ 𝑉 𝑏 , 𝑧𝑖; 𝑅𝑖

𝑤 𝑏 , 𝜏𝑖; 𝑅𝑖

𝜏𝑖 ≡
𝑉 ∅, 𝑧𝑖; 𝑅𝑖−𝜏𝑖

′ ≡ −𝑉 ∅, 𝑧𝑖
′; 𝑅𝑖

−𝑉 {𝑎}, 𝑧𝑖
′; 𝑅𝑖

𝑉 𝑎, 𝑏 , 𝑧𝑖; 𝑅𝑖

𝑤 𝑎, 𝑏 , 𝜏𝑖; 𝑅𝑖
−𝑉 𝑎, 𝑏 , 𝑧𝑖

′; 𝑅𝑖𝑤 {𝑎, 𝑏}, 𝜏𝑖
′; 𝑅𝑖

∅, 𝜏𝑖∅, 𝜏𝑖
′

𝑤 {𝑎}, 𝜏𝑖
′; 𝑅𝑖

Figure 1: An illustration of a preference.

Figure 1 provides an illustration of a preference Ri. Each horizontal line represents a

package, and each point on a line indicates a payment level. Thus, each point corresponds to

a pair consisting of a package and a payment. The vertical line represents the set of pairs with

zero payment. The solid lines represent the indifference curves associated with the preference

Ri. Note that the valuations and willingness to pay for Ri are also depicted in Figure 1.

We introduce two special classes of preferences that are of particular importance.

First, the following class consists of preferences without income effects, which has been

studied extensively in the literature (e.g., Holmström, 1979).

Definition 1. A preference Ri ∈ R is quasi-linear if for each (Ai, ti), (A
′
i, t

′
i) ∈ M × R and

each δ ∈ R, (Ai, ti) Ii (A
′
i, t

′
i) implies (Ai, ti + δ) Ii (A

′
i, t

′
i + δ).

Let RQ denote the class of all quasi-linear preferences.

Figure 2 illustrates a quasi-linear preference. As shown in the figure, under a quasi-linear

preference, the willingness to pay of each package is independent of the payment. Thus, for

each Ai ∈ M and each ti, t
′
i ∈ R, we have w(Ai, ti;Ri) = w(Ai, t

′
i;Ri) ≡ w(Ai;Ri). Moreover,

if a preference Ri is quasi-linear, it can be represented by a utility function ui : M × R → R

9



Payment
∅

{𝑎}

{𝑏}

{𝑎, 𝑏}

𝑅𝑖𝑅𝑖

∅, 𝑡𝑖
′ ∅, 𝑡𝑖

𝑤 {𝑏}, 𝑡𝑖
′; 𝑅𝑖 𝑅𝑖

𝑤 {𝑎, 𝑏}, 𝑡𝑖
′; 𝑅𝑖

𝑤 {𝑎}, 𝑡𝑖; 𝑅𝑖

𝑤 {𝑏}, 𝑡𝑖; 𝑅𝑖 𝑅𝑖

Parallel

𝑤 {𝑎}, 𝑡𝑖
′; 𝑅𝑖

𝑤 𝑎, 𝑏 , 𝑡𝑖; 𝑅𝑖

Figure 2: An illustration of a quasi-linear preference.

such that for each zi ≡ (Ai, ti) ∈ M × R, ui(zi) = w(Ai;Ri) − ti. Thus, our concept of

willingness to pay aligns with the quasi-linear valuation under quasi-linear preferences.

Second, the following class consists of preferences with additive willingness to pay over

packages.

Definition 2. A preference Ri is additive if for each Ai, A
′
i ∈ M with Ai ∩ A′

i = ∅ and

each ti ∈ R, we have

w(Ai ∪ A′
i, ti;Ri) = w(Ai, ti;Ri) + w(A′

i, ti;Ri).

Let RAdd denote the class of all additive preferences. Note that RAdd includes preferences

that are additive but not necessarily quasi-linear, i.e., RAdd ̸⊆ RQ.

Payment
∅

{𝑎}

𝑅𝑖

∅, 𝑡𝑖
′ ∅, 𝑡𝑖

𝑤 {𝑏}, 𝑡𝑖
′; 𝑅𝑖

𝑤 {𝑎}, 𝑡𝑖; 𝑅𝑖

𝑤 {𝑏}, 𝑡𝑖; 𝑅𝑖

𝑅𝑖

𝑤 {𝑎}, 𝑡𝑖
′; 𝑅𝑖

{𝑏}

𝑤 {𝑎, 𝑏}, 𝑡𝑖
′; 𝑅𝑖

= 𝑤 {𝑎}, 𝑡𝑖
′; 𝑅𝑖 +𝑤 {𝑏}, 𝑡𝑖

′; 𝑅𝑖

{𝑎, 𝑏}

𝑤 𝑎, 𝑏 , 𝑡𝑖; 𝑅𝑖

= 𝑤 {𝑎}, 𝑡𝑖; 𝑅𝑖 +𝑤 {𝑏}, 𝑡𝑖; 𝑅𝑖

𝑤 {𝑎}, 𝑡𝑖; 𝑅𝑖

𝑤 {𝑏}, 𝑡𝑖; 𝑅𝑖𝑤 {𝑏}, 𝑡𝑖
′; 𝑅𝑖

𝑤 {𝑎}, 𝑡𝑖
′; 𝑅𝑖

Figure 3: An illustration of an additive preference.

Figure 3 is an illustration of an addtive preference Ri. As shown in the figure, the will-

ingness to pay of a package at each payment is equivalent to the sum of the willingness to
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pay of the individual objects contained in the package at that payment. Note that when a

preference is additive but not quasi-linear, as depicted in Figure 3, the shapes of the indif-

ference curves can vary depending on the payment, but each indifference curve consistently

reflects the additive willingness to pay.

A domain R is said to be rich if it includes all additive preferences, i.e., R ⊇ RAdd.

Many non-quasi-linear domains studied in the literature are rich. Examples include the net

substitutes domain (Kelso and Crawford, 1982; Baldwin et al., 2023), the net complements

domain (Rostek and Yoder, 2020; Baldwin et al., 2023), the net substitutes and complements

domain (Sun and Yang, 2006; Baldwin et al., 2023), the single improvement domain (Gul

and Stacchetti, 1999; Nguyen and Vohra, 2024), and the no complementarities domain (Gul

and Stacchetti, 1999), among others. The conditions defining these domains are based on the

Hicksian demand, which represents the demand for a package along the locus of its valuation.

The additivity of preferences ensures that this locus satisfies the conditions characterizing

these domains.10

2.2 Allocations

An object allocation is an n-tuple A ≡ (Ai)i∈N ∈ Mn such that for each distinct i, j ∈ N ,

Ai ∩ Aj = ∅. Let A denote the set of all object allocations. Given A ∈ A and N ′ ⊆ N ,

let A−N ′ ≡ (Ri)i∈N\N ′ . In particular, for given A ∈ A and two distinct agents i, j ∈ N , let

A−i ≡ (Ak)k∈N\{i} and A−i,j ≡ (Ak)k∈N\{i,j}.

An allocation is an n-tuple z ≡ (Ai, ti)i∈N ∈ (M × R)n such that (Ai)i∈N ∈ A. Let Z

denote the set of allocations. Given z ≡ (Ai, ti)i∈N ∈ Z, its associated object allocation and

payment profile are denoted by A ≡ (Ai)i∈N and t ≡ (ti)i∈N respectively. When convenient,

we write z ≡ (A, t) ∈ Z.

2.3 Rules

A preference profile is an n-tuple R ≡ (Ri)i∈N ∈ Rn. Given R ∈ Rn and N ′ ⊆ N , let

RN ′ ≡ (Ri)i∈N ′ and R−N ′ ≡ (Ri)i∈N\N ′ . In particular, for given R ∈ Rn and two distinct

agents i, j ∈ N , let Ri,j ≡ R{i,j}, R−i ≡ R−{i}, and R−i,j ≡ R−{i,j}.

An (allocation) rule on Rn is a mapping f : Rn → Z. With a slight abuse of notation,

we may write f ≡ (A, t), where A : Rn → A and t : Rn → Rn are the object allocation

and the payment rules associated with f , respectively. The package that agent i receives

and his payment under a rule f at a preference profile R are denoted by Ai(R) and ti(R),

respectively, so that fi(R) =
(
Ai(R), ti(R)

)
.

10For the formal definitions of the domains listed above, see Example 11 in Appendix D.
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2.4 Admissible object allocations and constraints

We refer to a subset of A as a constraint. Our generic notation for a constraint is C ⊆ A.

Given a rule f on Rn, let Af ≡
{
A ∈ A : ∃R ∈ Rn such that A(R) = A

}
denote the

range of object allocations under a rule f ≡ (A, t). Note that Af ⊆ A itself is a constraint.

We distinguish between feasibility and admissibility of object allocations.

The feasible set is determined by technology, which is beyond the control of the (social)

planner. We assume that all object allocations in A are feasible.11 Thus, A represents the

set of feasible object allocations.

In contrast, an admissible set is a subset C ⊆ A of the feasible set (i.e., a constraint),

selected by the planner for policy purposes, together with a rule f―as illustrated in Example 1

below. Unlike the feasible set, an admissible set is part of the planner’s policy choice.

We emphasize that the planner selects an admissible set C simultaneously with a rule f ;

that is, C is not exogenously fixed but is jointly determined with the rule. Therefore, the

planner must choose a rule f such that every outcome object allocation A ∈ Af is admissible

under the chosen constraint (i.e., Af ⊆ C). Conversely, the admissible set C must also be

consistent with the rule f (i.e., C ⊆ Af ). Thus, given a rule f , we identify Af with the

admissible set C (i.e., Af = C), and refer to it as the set of admissible object allocations

(under f), or simply the admissible set (under f).

The following example illustrates the above point: an admissible set is chosen by the

planner simultaneously with a rule.

Example 1 (Admissible object allocations). (i) Suppose that, in order to control the

market power of agents after the allocation of objects, the planner restricts each agent from

receiving more than three objects. Then, the planner selects a rule f such thatAf =
{
A ∈ A :

∀i ∈ N, |Ai| ≤ 3
}
.

(ii) Suppose that agents 1 and 2 are newcomers, and to ensure their continued participation

in the market, the planner sets aside some objects―say, a and b―specifically for them. Then,

the planner selects a rule f such that Af =
{
A ∈ A : {a, b} ⊆ A1 ∪ A2

}
.

The planner aims to design rules that satisfy certain desirable properties. However, such

rules may fail to exist under some Af . Therefore, the choice of Af must ensure compatibility

with these properties. In Section 3, we examine the compatibility between Af and the

desirable properties. In the next subsection, we introduce these desirable properties of rules.

11All our results remain valid even if the feasible set is an arbitrary non-empty subset of A.
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2.5 Properties of rules

2.5.1 Efficiency properties

Given R ∈ Rn, an allocation z ≡ (A, t) ∈ Z is said to (Pareto) dominate another allocation

z′ ≡ (A′, t′) ∈ Z for R if the following three conditions hold: (i) for each i ∈ N , zi Ri z
′
i; (ii)∑

i∈N ti ≥
∑

i∈N t′i; and (iii) for some j ∈ N , zj Pj z
′
j, or

∑
i∈N ti >

∑
i∈N t′i. This notion of

domination takes into account not only the preferences of the agents but also the planner’s

preference.12 We assume that the planner is concerned only with her total revenue.13

The next property requires that a rule select an efficient allocation that is not dominated

by any other allocation.

Pareto efficiency. For each R ∈ Rn, there exists no z ≡ (A, t) ∈ Z that dominates f(R)

for R.

The next property requires that a rule select an allocation that is efficient over the set of

admissible object allocations Af . Note that we impose constraints only on object allocations,

with no restrictions on payments.

Constrained efficiency. For each R ∈ Rn, there exists no z ≡ (A, t) ∈ Z with A ∈ Af

that dominates f(R) for R.

If Af = A, then constrained efficiency coincides with standard Pareto efficiency. If

Af ⊊ A, then constrained efficiency is strictly weaker than Pareto efficiency, and the smaller

Af is, the weaker the condition becomes. Thus, if Af includes a sufficiently rich variety

of admissible object allocations, the planner can implement a wider range of outcomes, al-

though it becomes more difficult to ensure constrained efficiency. Conversely, if Af includes

only a narrow set of admissible object allocations, constrained efficiency becomes easier to

satisfy, but the planner can implement only a limited range of outcomes. This illustrates a

fundamental trade-off between the ease of achieving constrained efficiency and the variety of

admissible object allocations.

Remark 1 (Constrained efficiency). A rule f ≡ (A, t) on Rn satisfies constrained effi-

12Without incorporating the planner’s preference, any allocation z ≡ (A, t) ∈ Z would be dominated by
another allocation z′ ≡ (A′, t′) ∈ Z such that A′ = A and t′i < ti for each i ∈ N .

13Accordingly, the planner has a (quasi-linear) preference R0 over Z such that, for any two allocations
(A, t), (A′, t′) ∈ Z, it holds that (A, t) R0 (A′, t′) if and only if

∑
i∈N ti ≥

∑
i∈N t′i.
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ciency if and only if for each R ∈ Rn, we have

A(R) ∈ arg max
A∈Af

∑
i∈N

V
(
Ai, fi(R);Ri

)
.

If R ∈ (RQ)n, then this condition is equivalent to

A(R) ∈ arg max
A∈Af

∑
i∈N

w(Ai;Ri).

The next property requires that all objects be allocated to agents for each preference

profile.

No wastage. For each R ∈ Rn,
⋃

i∈N Ai(R) = M .

Note that Pareto efficiency implies no wastage. Thus, one justification for no wastage

is that it represents a mild form of efficiency. Another justification is based on practical

observations: in real-life auctions, even if some objects are not sold in a one-shot auction,

they are typically sold in subsequent auctions. As a result, all objects are eventually sold,

and no wastage is effectively satisfied in the long run (Kazumura et al., 2020b).

2.5.2 Incentive properties

The following property is a dominant strategy incentive compatibility, which requires that

no agent can ever benefit from misrepresenting his preferences.

Strategy-proofness. For each R ∈ Rn, each i ∈ N , and each R′
i ∈ R, fi(R) Ri fi(R

′
i, R−i).

The next property requires that each agent have an incentive to participate in the rule

voluntarily―that is, each agent find his outcome pair (a package and a payment) under the

rule at least as desirable as receiving no object and paying nothing.

Individual rationality. For each R ∈ Rn and each i ∈ N , fi(R) Ri 0.

The next property requires that each agent’s payment always be non-negative.

No subsidy. For each R ∈ Rn and each i ∈ N , ti(R) ≥ 0.
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If agents receive subsidies, those with no interest in the objects may participate in the rule

solely to obtain them. No subsidy eliminates this incentive for disinterested agents. Moreover,

when the objects are initially public assets, providing subsidies alongside the allocation may

invite public criticism. No subsidy helps to avoid such criticism.

2.5.3 Fairness properties

Next, we introduce three fairness properties. The first requires that any two agents with

identical preferences receive the same welfare level under the rule.

Equal treatment of equals. For each R ∈ Rn and each i, j ∈ N , if Ri = Rj, then

fi(R) Ii fj(R).

The second fairness property requires that if agents’ preferences are permuted, then their

welfare levels be permuted accordingly. Given a preference profile R ∈ Rn and a permutation

π : N → N on N ,14 let Rπ ∈ Rn denote the permuted preference profile according to π, such

that for each i ∈ N , Rπ
i = Rπ(i).

Anonymity. For each R ∈ Rn, each permutation π : N → N on N , and each i ∈ N ,

fi(R) Ii fπ(i)(R
π).15

The third fairness property requires that no agent prefer any other agent’s outcome pair

(a package and a payment) to his own under the rule.

No envy. For each R ∈ Rn and each i, j ∈ N , fi(R) Ri fj(R).

The following remark clarifies the relationships among the fairness properties and shows

that equal treatment of equals is the weakest of them.

Remark 2 (Relationships between fairness properties). Let R be a domain, and let

f be a rule on Rn.

(i) If f satisfies anonymity, then it also satisfies equal treatment of equals, but the converse

does not necessarily hold.

(ii) If f satisfies no envy, then it also satisfies equal treatment of equals, but again, the

14A permutation on a set G is a bijection from G to itself.
15This definition is equivalent to the following condition: for each R ∈ Rn, each i, j ∈ N , and each

R′
i, R

′
j ∈ R with R′

i = Rj and R′
j = Ri, we have fi(R) Ii fj(R

′
i,j , R−i,j) and fj(R) Ij fi(R

′
i,j , R−i,j). Note

that anonymity is often referred to as anonymity in welfare in the literature.
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converse does not necessarily hold.

(iii) In general, anonymity and no envy are independent―that is, neither property implies

the other.

We assume that the planner aims to design a rule that satisfies the following desirable

properties: constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

individual rationality, and no subsidy.

3 Main results

In this section, we study rules satisfying the desirable properties.

3.1 Bundling unit-demand constraints

First, we examine the conditions that the desirable properties impose on the set of admissible

object allocations Af .

A constraint C ⊆ A satisfies no wastage if all objects are allocated to agents―that is,

if
⋃

i∈NAi = M . As the name suggests, this condition is essential for a rule to satisfy no

wastage.

A constraint C satisfies anonymity if it is a symmetric set―that is, for each A ∈ C and

each permutation π of N , we have Aπ ∈ C. This condition is essential for a rule to satisfy

fairness properties such as equal treatment of equals, anonymity, and no envy.

We introduce bundling constraints, under which objects are bundled into several packages,

and each agent receives a collection of these packages instead of individual objects. Given

a partition B ≡ {B1, . . . , BK} of M ,16 a constraint C is said to be B-bundling if for each

i ∈ N , Ai = ∅ or there is L ⊆ {1, . . . , K} such that Ai =
⋃

l∈L Bl. A special case of bundling

is B ≡
{
{a} : a ∈ M

}
, where no objects are bundled―that is, each package consists of a

single object.

Example 2 (No wastage, anonymity, bundling constraints). Let n = 2 and m =

5. Let M = {a, b, c, d, e}. Let B be a partition of M such that B ≡ {B1, B2}, where

B1 ≡ {a, b, c} and B2 ≡ {d, e}. B-bundling constraint requires that each agent receive one of

∅, B1, B2 or M, but not any other package―such as {a}, {e}, {a, b}, {a, e}, {c, d}, {a, b, c, e},

16A set B ≡ {B1, . . . , BK} is a partition of M if (i) for each k, Bk ⊆ M and Bk ̸= ∅, (ii) for each distinct

k, k′ ∈ {1, . . .,K}, Bk ∩ Bk′ = ∅, and (iii)
⋃K

k=1Bk = M .
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etc. Let

C1 ≡
{
(∅, B1 ∪ B2), (∅, B2), (B1, B2), (B1, ∅)

}
,

C2 ≡
{
(∅, B1 ∪ B2), (B1, B2), (B2, B1)

}
,

C3 ≡
{
(∅, B1), (B1, ∅), (B1 ∪ B2, ∅), (∅, B1 ∪ B2)

}
.

Then, C1 is B-bundling but satisfies neither no wastage nor anonymity. C2 is B-bundling and

satisfies no wastage but not anonymity. C3 is B-bundling and satisfies anonymity but not no

wastage.

A B-bundling constraint C is said to be unit-demand if each agent receives at most one

package in B―that is, for each A ∈ C and each i ∈ N , we have Ai ∈ B ∪
{
∅
}
. A constraint

C is referred to as bundling unit-demand if it is a B-bundling unit-demand constraint for

some partition B. Note that a B-bundling unit-demand constraint can satisfy no wastage

only if |B| ≤ n.

Example 3 (Bundling unit-demand constraint). Let n = 3 and m = 5. Let M =

{a, b, c, d, e}. Let B be a partition of M such that B ≡ {B1, B2}, where B1 ≡ {a, b, c} and

B2 ≡ {d, e}. Let C be a constraint such that

C ≡
{
(∅, B1, B2), (∅, B2, B1), (B1, ∅, B2), (B1, B2, ∅), (B2, ∅, B1), (B2, B1, ∅)

}
.

Then, C is a B-bundling unit-demand constraint satisfying no wastage and anonymity. Recall

that B ≡
{
{a′} : a′ ∈ M

}
. Since

∣∣B∣∣ = m > n, no B-bundling unit demand constraint

satisfies no wastage.

Note that, given a partition B of M with |B| ≤ n, the B-bundling unit-demand constraint

C that satisfies no wastage and anonymity is unique and can be identified with B. Given

a partition B ≡ {B1, . . . , BK} of M with |B| ≤ n, let C∗(B) denote the B-bundling unit-

demand constraint satisfying no wastage and anonymity. That is,

C∗(B) ≡

{
A ∈ A : ∀i ∈ N, Ai ∈ B ∪ {∅} and

⋃
i∈N

Ai = M

}
.

As mentioned above, no wastage and anonymity of Af are essential for the associated

rule f to satisfy no wastage and the fairness properties. In addition, the properties of con-

strained efficiency, strategy-proofness, individual rationality, and no subsidy impose further

restrictions on Af . The following proposition shows that, in order for a rule f to satisfy all

these properties, Af must also be a bundling unit-demand constraint.
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Proposition. Let R be a rich domain. Let f be a rule on Rn satisfying constrained efficiency,

no wastage, equal treatment of equals, strategy-proofness, individual rationality, and no

subsidy. Then, Af is B-bundling unit-demand for some partition B of M with |B| ≤ n, and

satisfies no wastage and anonymity―that is, Af = C∗(B).

Although Af is selected by the planner, it cannot be chosen arbitrarily. The planner must

ensure that Af is compatible with the desirable properties of rules. If a rule fails to satisfy

some of the desirable properties under Af , then the planner must forgo either Af or some

of the desirable properties. Proposition shows that if the planner aims to design a rule f

satisfying constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

individual rationality, and no subsidy, then she must choose Af = C∗(B) for some partition

B of M with |B| ≤ n.

Recall that the strength of constrained efficiency depends on Af : the larger Af is, the

more demanding the requirement becomes. Therefore, when designing a rule that satisfies

the above properties―including constrained efficiency―the planner may need to ensure that

Af is sufficiently small. For example, in Example 2, C∗(B) contains only 6 object allocations.

In general, the maximum number of object allocations that C∗(B) can contain is n!,17 which

is much smaller than the number of feasible object allocations. For instance, when n = 3

and m = 5, as in Example 2, the total number of feasible object allocations is: 1 + 15 +

90+ 270+ 405+ 243 = 1024.18 Thus, in Proposition, the set of admissible object allocations

Af under a rule f satisfying the desirable properties is significantly smaller than the set of

feasible ones A. This reduction represents the cost of satisfying those properties.

3.2 Bundling unit-demand MPW rule

Before turning to our main theorem, we briefly explain its underlying idea. Demange and Gale

(1985), Morimoto and Serizawa (2015) (hereafter M&S), and Wakabayashi et al. (2025) (here-

after WSS) study the unit-demand model―that is, a model with heterogeneous objects where

each agent receives at most one object―and show that, in this setting, the minimum price

Walrasian (MPW ) rules are the only rules satisfying Pareto efficiency, strategy-proofness,

individual rationality, and no subsidy.

Given a B-bundling unit-demand constraint for some partition B of M , we can reinterpret

each package in B as a single “object.” Under this interpretation, our model becomes math-

ematically equivalent to the unit-demand model. Accordingly, we can define a counterpart

17This maximum is attained when |B| = n.
18To see this, note that the number of feasible object allocations in which k = 0, 1, 2, 3, 4, 5 objects are

allocated to three agents is given by 3k × 5Ck. The total number is obtained by summing these values over
k = 0 to 5.
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of the MPW rules in our setting, which we call the bundling unit-demand minimum price

Walrasian (MPW ) rules .

Our rich domain induces the same preference domain over packages and payments as those

considered in M&S and WSS. As a result, the bundling unit-demand MPW rules inherit

the key properties of the MPW rules: they satisfy strategy-proofness, no wastage, equal

treatment of equals, individual rationality, and no subsidy. Moreover, since constrained

efficiency corresponds to Pareto efficiency over admissible object allocations, the bundling

unit-demand MPW rules also satisfy constrained efficiency. Finally, the results of M&S and

WSS imply that the bundling unit-demand MPW rules are the only rules satisfying all these

desirable properties.

Now, we move on to the formal discussion. Given a partition B of M , let B0 ≡ B ∪ {∅}.
Note that B0 ⊆ M. Given a preference Ri ∈ R, let Ri|B0 denote the restriction of Ri

to B0 × R. That is, for each (Bi, ti), (B
′
i, t

′
i) ∈ B0 × R, (Bi, ti) Ri|B0 (B′

i, t
′
i) if and only if

(Bi, ti) Ri (B
′
i, t

′
i). Given a domain R, let R|B0 ≡ {Ri|B0 : Ri ∈ R}. For a given preference

profile R ∈ Rn, let R|B0 ≡ (Ri|B0)i∈N .

Given a partition B of M , a B-bundling price vector is a vector p ≡ (pB)B∈B0 ∈ R|B0|
+

such that p∅ = 0. Note that a B-bundling price vector assigns a price to each package

Bi ∈ B, not to each individual object. Given a preference Ri ∈ R and a B-bundling price

vector p ∈ R|B0|
+ , the B-bundling unit-demand set for Ri at p is defined as

D(Ri, p,B) ≡
{
Bi ∈ B0 : ∀B′

i ∈ B0, (Bi, pBi
) Ri|B0 (B′

i, pB′
i
)
}
.

We introduce a bundling unit-demand Walrasian equilibrium, which serves as the coun-

terpart to a Walrasian equilibrium in the unit-demand model, adapted to our setting with a

bundling unit-demand constraint.19

Definition 3. Given a partition B of M and R ∈ Rn, a pair (z, p) ≡
(
(A, t), p

)
∈ Z × R|B0|

+

of an allocation z ≡ (A, t) with A ∈ C∗(B) and a B-bundling price vector p, is a B-bundling
unit-demand Walrasian equilibrium for R if the following two conditions hold:

(i) For each i ∈ N , Ai ∈ D(Ri, p,B) and ti = pBi
.

(ii) For each B ∈ B, if there exists no i ∈ N such that Ai = B, then pB = 0.

Condition (i) states that each agent receives his most preferred package at given prices

and pays the price of the package he receives. Condition (ii) states that the price of any

package not allocated to any agent is zero.

Given a partition B of M and a preference profile R ∈ Rn, if (z, p) is a B-bundling

19For the definition of a Walrasian equilibrium in the unit-demand model, see, for example, M&S and WSS.

19



unit-demand Walrasian equilibrium for R, then z is called a B-bundling unit-demand

Walrasian equilibrium allocation for R, and p is called a B-bundling unit-demand

Walrasian equilibrium price vector for R. Let P (R,B) denote the set of such price

vectors.

It is known that in the unit-demand model, the set of Walrasian equilibrium price vectors

forms a non-empty complete lattice, and hence there exists a unique minimum Walrasian

equilibrium price vector with respect to the vector inequality (Demange and Gale, 1985;

Alkan and Gale, 1990). The following fact states that an analogous result holds in our

setting when a bundling unit-demand constraint is imposed and each package in the given

partition is treated as an “object.”

Fact 1 (Demange and Gale, 1985; Alkan and Gale, 1990). Let B be a partition of

M and R ∈ Rn. Then, P (R,B) forms a non-empty complete lattice, and has a (unique)

minimum element p ∈ P (R,B) such that for each p′ ∈ P (R,B), p ≤ p′.20

Given a partition B of M and a preference profile R ∈ Rn, let pmin(R,B) denote the

minimum element of P (R,B), whose existence and uniqueness are guaranteed by Fact 1.

Let Zmin(R,B) denote the set of B-bundling unit-demand Walrasian equilibrium allocations

supported by pmin(R,B)―that is,

Zmin(R,B)

≡
{
z ∈ Z :

(
z, pmin(R,B)

)
is a B-bundling unit-demand Walrasian equilibrium for R

}
.

Now, we are ready to define a bundling unit-demand MPW rule in our model, which

serves as the counterpart to an MPW rule in the unit-demand model.

Definition 4. Given a partition B of M , a rule f on Rn with Af = C∗(B) is a B-bundling
unit-demand minimum price Walrasian (MPW) rule if for eachR ∈ Rn, f(R) ∈ Zmin(R,B).

Given a partition B of M and R ∈ Rn, Zmin(R,B) is essentially unique.21 Thus, for

a given partition B of M , the B-bundling unit-demand MPW rules are essentially unique.

However, since there are many possible partitions of M , each partition gives rise to a distinct

bundling unit-demand MPW rule. Therefore, there exists a large class of such rules, each

corresponding to a different partition of M .

It is well known that, in the unit-demand model, the MPW rules satisfy several desirable

properties: Pareto efficiency, no wastage, equal treatment of equals, anonymity, no envy,

20Given p, p′ ∈ RK , p ≤ p′ if and only if pk ≤ p′k for each k = 1, . . .,K.
21To be precise, Zmin(R,B) is unique up to ties, and all allocations in Zmin(R,B) are welfare-equivalent in

the sense that for each z, z′ ∈ Zmin(R,B) and each i ∈ N , zi Ii z
′
i.
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strategy-proofness, individual rationality, and no subsidy (Demange and Gale, 1985). More-

over, on a sufficiently rich domain―known as the classical domain―these rules are the only

ones that satisfy Pareto efficiency, strategy-proofness, individual rationality, and no subsidy

(M&S; WSS). Since a bundling unit-demand constraint renders the mathematical structure of

our model equivalent to that of the unit-demand model, and the classical domain corresponds

to R|B0 in our setting, these results carry over to our model.

Fact 2 (Demange and Gale, 1985; Morimoto and Serizawa, 2015; Wakabayashi

et al., 2025). Let B be a partition of M such that |B| ≤ n. Let R be a domain such that

R|B0 = R|B0.

(i) A B-bundling unit-demand MPW rule satisfies Af = C∗(B), and satisfies the following

properties: constrained efficiency, no wastage, equal treatment of equals, anonymity, no

envy, strategy-proofness, individual rationality, and no subsidy.

(ii) A rule on Rn with Af = C∗(B) satisfies constrained efficiency, strategy-proofness, in-

dividual rationality, and no subsidy if and only if it is a B-bundling unit-demand MPW

rule.

Note that Fact 2 focuses on rules f for which Af = C∗(B) for some partition B of M .

3.3 Main theorem

The following theorem presents the main result of this paper. It establishes that, on any rich

domain, the bundling unit-demand MPW rules are the only rules that satisfy constrained

efficiency, no wastage, equal treatment of equals, strategy-proofness, individual rationality,

and no subsidy.

Theorem. Let R be a rich domain. A rule f on Rn satisfies constrained efficiency, no

wastage, equal treatment of equals, strategy-proofness, individual rationality, and no subsidy

if and only if there exists a partition B of M such that: (i) |B| ≤ n, (ii) Af = C∗(B), and
(iii) f is a B-bundling unit-demand MPW rule.

Recall that, Af is not a fixed set but a variable chosen jointly with a rule f . Thus,

the strength of the requirement for constrained efficiency depends on the choice of Af . As

shown in Proposition, in order to satisfy constrained efficiency, no wastage, equal treatment

of equals, strategy-proofness, individual rationality, and no subsidy, Af must be selected

from among the bundling unit-demand constraints.

Note that this proposition does not specify how the rule should select an outcome allo-

cation from a given bundling unit-demand constraint for each preference profile. Theorem
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addresses this point: it states that, to satisfy the above properties, the rule must select an

allocation according to a bundling unit-demand MPW rule.

Note that Theorem holds for any rich domain. In particular, it applies to cases where the

objects are substitutes, complements, or both―namely, the net substitutes domain, the net

complements domain, and the net substitutes and complements domain.

We have employed equal treatment of equals as a fairness property. Although it is one

of the central fairness concepts in the literature, other important notions include anonymity

and no envy. We now discuss how Theorem would change if we replace equal treatment of

equals with anonymity or no envy.

First, recall that any bundling unit-demand MPW rule satisfies both anonymity and no

envy (Fact 2 (i)). Thus, the “if” part of Theorem still holds even when equal treatment of

equals is replaced with either anonymity or no envy.

Second, recall that both anonymity and no envy are stronger than equal treatment of

equals (see Remark 2 (i) and (ii)). Thus, the “only if” part of Theorem also remains valid

even if we replace equal treatment of equals with either anonymity or no envy.

Thus, the conclusion of Theorem remains unchanged if we replace equal treatment of

equals with either anonymity or no envy.

Corollary 1. Let R be a rich domain.

(i) A rule f on Rn satisfies constrained efficiency, no wastage, anonymity, strategy-proofness,

individual rationality, and no subsidy if and only if there exists a partition B of M such that:

(i-i) |B| ≤ n, (i-ii) Af = C∗(B), and (i-iii) f is a B-bundling unit-demand MPW rule.

(ii) A rule f on Rn satisfies constrained efficiency, no wastage, no envy, strategy-proofness,

individual rationality, and no subsidy if and only if there exists a partition B of M such that:

(ii-i) |B| ≤ n, (ii-ii) Af = C∗(B), and (ii-iii) f is a B-bundling unit-demand MPW rule.

3.4 Outline of the proof

Given Proposition and Fact 2, the remaining step in proving Theorem is to verify that any

rich domain R satisfies the domain condition stated in Fact 2―that is, R|B0 = R|B0 for

some partition B of M . This step is relatively straightforward. Hence, the main difficulty in

proving Theorem lies in establishing Proposition.

We further observe that:

(i) no wastage of Af follows directly from no wastage of a rule f , and

(ii) once we show that Af is a B-bundling unit-demand for some partition B of M , no wastage

of Af implies that |B| ≤ n.
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Therefore, the main challenge in proving Proposition is to establish that Af is a B-
bundling unit-demand constraint for some partition B of M , and that Af satisfies anonymity.

In this subsection, we outline the proofs of these two key properties.

3.4.1 Strategy-proofness

In the proof, the properties of strategy-proof rules play a crucial role. We therefore begin by

reviewing these properties.

We introduce some notations. Given a rule f ≡ (A, t) on Rn and an agent i ∈ N , let Mi

denote the set of packages that may be assigned to agent i under f :

Mi ≡
{
Ai ∈ M : ∃R ∈ Rn such that Ai(R) = Ai

}
.

Furthermore, given R−i ∈ Rn−1, agent i’s package option set for R−i under f is defined

as the set of packages that agent i can possibly receive given R−i under f :

Mi(R−i) ≡
{
Ai ∈ M : ∃Ri ∈ R such that Ai(Ri, R−i) = Ai

}
.

For a given rule f on Rn, it follows that for each i ∈ N and each R−i ∈ Rn−1, we have

Mi(R−i) ⊆ Mi ⊆ M.

It is well known that under a strategy-proof rule, each agent’s payment depends only on

the package he receives and the preferences of the other agents: once an agent’s package is

fixed, his own preference does not affect his payment. Formally, if a rule f on Rn satisfies

strategy-proofness, then for each i ∈ N , each R−i ∈ Rn−1, and each Ai ∈ Mi(R−i), there

exists a unique payment ti(R−i;Ai) ∈ R such that for some Ri ∈ R, we have fi(Ri, R−i) =(
Ai, ti(R−i;Ai)

)
.22 Given Ai ∈ Mi(R−i), let zi(R−i;Ai) ≡

(
Ai, ti(R−i;Ai)

)
.

Another well-known property of strategy-proof rules is that, for each R ∈ Rn and each

i ∈ N , agent i receives the most preferred outcome pair from the set
{
zi(R−i;Ai) : Ai ∈ Mi(R−i)

}
.23

The following remark formalizes this observation.

Remark 3 (Strategy-proofness). Let R be a domain. Let f be a rule on Rn satisfying

strategy-proofness. Let R ∈ Rn and i ∈ N . For each Ai ∈ Mi(R−i), fi(R) Ri zi(R−i;Ai).

22To see that there exists at most one such a payment, suppose for contradiction that there exist dis-
tinct ti, t

′
i ∈ R and Ri, R

′
i ∈ R such that fi(Ri, R−i) = (Ai, ti) and fi(R

′
i, R−i) = (Ai, t

′
i). Without loss of

generality, suppose t′i < ti. Then, fi(R
′
i, R−i) = (Ai, t

′
i) Pi (Ai, ti) = fi(Ri, R−i), which contradicts strategy-

proofness.
23To see this, suppose for contradiction that zi(R−i;A

′
i) Pi zi(R−i;Ai) = fi(R) for some A′

i ∈ Mi(R−i).
Since A′

i ∈ Mi(R−i), there exists R′
i ∈ R such that Ai(R

′
i, R−i) = A′

i. Thus, fi(R
′
i, R−i) =

zi(R−i;A
′
i) Pi fi(R), which contradicts strategy-proofness.
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Given a non-empty set M′ ⊆ M of packages, a payment vector τ ∈ R|M′| on M′, and a

package Ai ∈ M′, we say that a preference Ri ∈ R demands Ai at τ (on M′) if for each

A′
i ∈ M′\{Ai}, it holds that (Ai, τAi

) Pi (A
′
i, τA′

i
). Note that under a strategy-proof rule f on

Rn, given R ∈ Rn and i ∈ N , if Ri demands Ai ∈ Mi(R−i) at τ ≡
(
ti(R−i;A

′
i)
)
A′

i∈Mi(R−i)

on Mi(R−i), then strategy-proofness implies Ai(R) = Ai (see Remark 3).

Finally, a rule f ≡ (A, t) onRn satisfiesmonotonicity if for each i ∈ N , each Ri, R
′
i ∈ R,

and each R−i ∈ Rn−1, the following inequality holds:

V
(
Ai(R), fi(R);Ri

)
−V
(
Ai(R

′
i, R−i), fi(R);Ri

)
≥ V

(
Ai(R), fi(R);R′

i

)
−V
(
Ai(R

′
i, R−i), fi(R);R′

i

)
.

Note that if Ri, R
′
i ∈ RQ, then this condition is equivalent to:

w
(
Ai(R);Ri

)
− w

(
Ai(R

′
i, R−i);Ri

)
≥ w

(
Ai(R);R′

i

)
− w

(
Ai(R

′
i, R−i);R

′
i

)
.

It is well established that monotonicity is a necessary condition for strategy-proofness

(Bikhchandani et al., 2006; Kazumura et al., 2020a).

Fact 3 (Monotonicity). Let R be a domain. Let f be a rule on Rn satisfying strategy-

proofness. Then, f satisfies monotonicity.

3.4.2 Characterization of the constrained Vickrey rules

The characterization of the (constrained) Vickrey rules (Vickrey, 1961) by Holmström (1979)

also plays an important role in the proof.

Definition 5 (Vickrey, 1961). Given R ⊆ RQ, a rule f ≡ (A, t) on Rn is a constrained

Vickrey rule if for each R ∈ Rn, the following two conditions hold:

(i) We have

A(R) ∈ arg max
A∈Af

∑
i∈N

w(Ai;Ri).

(ii) For each i ∈ N ,

ti(R) = max
A∈Af

∑
j∈N\{i}

w(Aj;Rj)−
∑

j∈N\{i}

w
(
Aj(R);Rj

)
.

Holmström (1979) considers a general model that includes the package assignment prob-

lems with money as a special case and characterizes the class of rules satisfying both (con-

strained) efficiency and strategy-proofness on sufficiently rich quasi-linear domains. His

characterization result implies that the constrained Vickrey rules are the only rules satis-
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fying constrained efficiency, strategy-proofness, individual rationality, and no subsidy on

(RAdd ∩ RQ)n.24

Fact 4 (Holmström, 1979). A rule f on (RAdd ∩ RQ)n satisfies constrained efficiency,

strategy-proofness, individual rationality, and no subsidy if and only if it is a constrained

Vickrey rule.

3.4.3 Proof of bundling unit-demand constraint: An outline

We now outline the proof that if a rule f on a rich domain Rn satisfies constrained efficiency,

no wastage, equal treatment of equals, strategy-proofness, individual rationality, and no

subsidy, then Af must be a B-bundling unit-demand constraint for some partition B of M .

Let R be a rich domain, and let f ≡ (A, t) be a rule on Rn that satisfies the above properties.

The proof proceeds in three steps:

(i) In the first step (Step 1), we establish that for each i ∈ N and each Ai, A
′
i ∈ Mi\{∅}, it

holds that Ai ∩ A′
i = ∅. Thus, the set of packages available to agent i under the rule f , Mi,

consists of mutually disjoint packages, and agent i can receive at most one package from Mi.

Note, however, that Mi\{∅} may not form a partition of M , since we do not necessarily have⋃(
Mi\{∅}

)
= M .

(ii) In the second step (Step 2), we show that for each i, j ∈ N , Mi = Mj. In proving this

result, the fairness property equal treatment of equals plays a key role.

(iii) In the third step (Step 3), we complete the proof by showing that Af is a B-bundling
unit-demand for B ≡

⋃
i∈N
(
Mi \ {∅}

)
. Given the results from Steps 1 and 2, no wastage of

Af (which follows from no waastage of f) ensures that B is indeed a partition of M .

Given Step 1, Steps 2 and 3 follow relatively easily. Thus, Step 1 is the crucial part of

the proof, and we illustrate it for the simplest case where n = m = 2 and R = R. Let

M = {a, b}.
We establish that for each i ∈ N and each distinct Ai, A

′
i ∈ Mi\{∅}, we have Ai ∩ A′

i = ∅.
Suppose for contradiction that there exist i ∈ N and distinct Ai, A

′
i ∈ Mi\{∅} such that

Ai ∩ A′
i ̸= ∅. Without loss of generality, suppose i = 1. Since A1, A

′
1 ̸= ∅, A1 ∩ A′

1 ̸= ∅, and
M = {a, b}, we may assume without loss of generality that A1 = {a} and A′

1 = {a, b}.
The proof consists of four claims.

24To be precise, Holmström (1979) studies a public goods model and establishes that, on a smoothly
connected quasi-linear domain, the Groves rules (Groves, 1973) are the only rules satisfying Pareto efficiency
and strategy-proofness. Note that RAdd ∩ RQ is a smoothly connected quasi-linear domain, so his result
applies to this domain. Moreover, if we interpret Af as the set of public goods, his characterization implies
that the (constrained) Groves rules are the only rules satisfying constrained efficiency and strategy-proofness
on (RAdd ∩ RQ)n. Then, by incorporating individual rationality and no subsidy, we can further conclude that
the constrained Vickrey rules are the only (constrained) Groves rules satisfying these additional properties
on (RAdd ∩ RQ)n. Thus, we obtain Fact 4.
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First, note that when agent 2 has an additive quasi-linear preference R2 ∈ RAdd ∩ RQ

constrained efficiency implies that agent 1 can obtain any package A′′
1 ∈ M1 by declaring

a suitable preference R1 ∈ RAdd ∩ RQ for which the willingness to pay of A′′
1 is sufficiently

high and that of the objects not in A′′
1 is sufficiently low.

Claim 1. For each A′′
1 ∈ M1 and each R2 ∈ RAdd ∩ RQ, there exists R1 ∈ RAdd ∩ RQ such

that A1(R1, R2) = A′′
1, and so A′′

1 ∈ M1(R2).

Note that Claim 1 implies that for each R2 ∈ RAdd ∩ RQ, we haveM1(R2) = M1. In par-

ticular, since A1, A
′
1 ∈ M1, it follows that for each R2 ∈ RAdd ∩ RQ, we have A1, A

′
1 ∈ M1(R2).

Recall that, as discussed in Section 3.4.1, under a strategy-proof rule, an agent’s payment

depends solely on the package he receives and the preferences of the other agents. Also recall

from Section 3.4.2 that the constrained Vickrey rules are the only rules satisfying constrained

efficiency, strategy-proofness, individual rationality, and no subsidy on the domain (RAdd ∩
RQ)n (see Fact 4).

Combining these two facts, we conclude that when agent 2 has an additive quasi-linear

preference, agent 1’s payment must coincide with that under the constrained Vickrey rule.

Claim 2. For each R2 ∈ RAdd ∩ RQ and each A′′
1 ∈ M1(R2), we have

t1(R2;A
′′
1) = w(M ;R2)− w(M\A′′

1;R2) = w(A′′
1;R2).

Let R2 ∈ RAdd ∩ RQ be such that w
(
{a};R2

)
= 1, w

(
{b};R2

)
= 1, and w

(
{a, b};R2

)
=

w
(
{a};R2

)
+ w

(
{b};R2

)
= 2. Let τ ∈ R|M| be a payment vector on M such that for each

A′′
1 ∈ M1(R2), τA1 = t1(R2;A1). Recall that A1, A

′
1 ∈ M1(R2) (see Claim 1). According to

Claim 2, we compute τA1 and τA′
1
as follows:

τA1 = t1(R2;A1) = w(A1;R2) = w
(
{a};R2

)
= 1,

τA′
1
= t1(R2;A

′
1) = w(A′

1;R2) = w
(
{a, b};R2

)
= 2.

Similarly, let R′
2 ∈ RAdd ∩ RQ be such that w

(
{a};R′

2

)
= 2, w

(
{b};R′

2

)
= 2, and

w
(
{a, b};R′

2

)
= w

(
{a};R′

2

)
+ w

(
{b};R′

2

)
= 4. Let τ ′ ∈ R|M| be a payment vector on M

such that for each A′′
1 ∈ M1(R

′
2), τ

′
A1

= t1(R
′
2;A1). Since A1, A

′
1 ∈ M1(R

′
2) (see Claim 1),

we apply Claim 2 to compute τ ′A1
and τ ′A′

1
as follows:

τ ′A1
= t1(R

′
2;A1) = w(A1;R

′
2) = w

(
{a};R′

2

)
= 2,

τ ′A′
1
= t1(R

′
2;A

′
1) = w(A′

1;R
′
2) = w

(
{a, b};R′

2

)
= 4.
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Note that

τ ′A1
= 2 > 1 = τA1 . (1)

This discrepancy in payments allows us to construct a (non-quasi-linear and not necessarily

additive) preference R1 ∈ R such that R1 demands A1 = {a} at τ and A′
1 = {a, b} at τ ′.

Claim 3 (Figure 4). There exists R1 ∈ R that demands A1 at τ and A′
1 at τ ′.

Payment𝟎 = ∅, 𝜏∅ = ∅, 𝜏∅
′∅

𝐴1 = {𝑎}

{𝑏}

𝐴1
′ = {𝑎, 𝑏}

𝑅1𝑅1

( 𝑎 , 𝜏 𝑎 )1

( 𝑏 , 𝜏 𝑏 )

( 𝑎, 𝑏 , 𝜏 𝑎,𝑏 )

( 𝑎 , 𝜏 𝑎
′ )

( 𝑏 , 𝜏 𝑏
′ )

( 𝑎, 𝑏 , 𝜏 𝑎,𝑏
′ )

4

2

Figure 4: An illustration of Claim 3.

Figure 4 illustrates Claim 3.

Given Claim 3, strategy-proofness implies that A1(R) = A1 = {a} and A1(R
′
2, R−2) =

A′
1 = {a, b} (see Remark 3). Since there are only two agents, no wastage of f implies that

agent 2 receives the remaining objects. Therefore, we obtain the following:

Claim 4. We have A2(R) = M\A1(R) = {b} and A2(R1, R
′
2) = M\A1(R1, R

′
2) = ∅.

Claim 4 crucially relies on the fact that there are only two agents. Indeed, if there are three

or more agents, no wastage does not necessarily imply that agent 2 receives the remaining

objects.

Now, we are in a position to derive a contradiction. Observe that

w
(
A2(R);R′

2

)
− w(A2(R1, R

′
2);R

′
2

)
= w({b};R′

2)

= 2 > 1 = w
(
{b};R2

)
= w

(
A2(R);R2

)
− w(A2(R1, R

′
2);R2

)
, (2)

where the first and last equalities follow from Claim 4. However, this contradictsmonotonicity

of f (see Fact 3).
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3.4.4 Challenges arising from many agents and domain restrictions

The outline of the proof presented in Section 3.4.3 assumes that there are two agents (i.e.,

n = 2) and that the domain is unrestricted (i.e., R = R). The two-agent assumption

simplifies the argument, as the no wastage property ensures that once the package assigned

to one agent is determined, the other agent must receive the remaining objects.

In contrast, the full proof is substantially more complex, as it must account for both the

allocation of objects among more than two agents and the restriction on the domain. In what

follows, we describe how these features complicate the argument and explain how we address

them.

Many agents. First, we explain how the existence of three or more agents complicates

the proof. The outline in Section 3.4.3 crucially relies on two types of tractability regarding

admissible object allocations: intrapersonal tractability and interpersonal tractability . Intrap-

ersonal tractability refers to the tractability of the packages available to a single agent (see

Claim 1), while interpersonal tractability refers to the tractability of the packages available

to two agents (see Claim 4). In the outlined proof, both types of tractability are guaranteed

by the two-agent assumption.

In the full proof, where there may be three or more agents, both types of tractability may

fail under constrained efficiency. Indeed, recall that when there are only two agents, an agent

can receive any package available under the rule by reporting certain preferences, regardless of

the other agent’s preferences (thus ensuring interpersonal tractability; see Claim 1). However,

when there are three or more agents, the packages available to a given agent may depend on

the preferences of the others―that is, intrapersonal tractability fails. The following example

demonstrates this issue.

Example 4. Let n = 3 and m = 3, and let M = {a, b, c}. Let R be a rich domain. Let f be

a rule on Rn satisfying constrained efficiency (and no wastage), such that

Af =
{(

{a}, {b}, {c}
)
,
(
{a, b}, {c}, ∅

)}
.

Let R−1 ∈ (RAdd ∩ RQ)2 be such that w
(
{b};R2

)
= 1, w

(
{c};R2

)
= 5, and w

(
{c};R3

)
=

1. Since w
(
{b};R2

)
+ w

(
{c};R3

)
= 1 + 1 = 2 < 5 = w

(
{c};R2

)
, constrained efficiency

implies that for each R1 ∈ R, A1(R1, R−1) = {a, b}. Thus, there exists no R1 ∈ R such that

A1(R1, R−1) = {a}. Thus, M1(R−1) =
{
{a, b}

}
. However, under other preferences of the

remaining agents―for example, when all other agents have the same additive quasi-linear

preferences―agent 1 can obtain either {a} or {a, b}, depending on the preference he reports.
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Thus, for some R′
−1 ∈ (RAdd ∩ RQ)2, M1(R

′
−1) =

{
{a}, {a, b}

}
= M1.

To address this form of intractability, we proceed as follows: given a package Ai ∈ Mi that

is available to agent i under the rule, we identify a preference profile R−i ∈ (RAdd ∩ RQ)n−1

of the other agents such that Ai ∈ Mi(R−i) (see Lemma 2 in Appendix A.1.2). Note that

this form of tractability is weaker than that established in Claim 1, where Mi(R−i) = Mi

for each R−i ∈ (RAdd ∩ RQ)n−1. Nevertheless, this partial tractability still provides a useful

foundation for our analysis.

Furthermore, when there are three or more agents, determining how the remaining pack-

ages are allocated to the other agents once a package is assigned to one agent becomes a non-

trivial problem―that is, interpersonal tractability fails. To recover interpersonal tractability,

we exploit the implications of equal treatment of equals, along with the other desirable prop-

erties, to identify which packages may be available to two agents (see Lemma 5, Lemma 6,

and Lemma 7 in Appendix A.1.3). Note that in the full proof of this part, equal treatment of

equals plays a central role in restoring interpersonal tractability. By contrast, in the outline

of the proof for the two-agent case, it plays no role, as full interpersonal tractability is already

guaranteed by the no wastage property.

Note that non-quasi-linear preferences do not play an essential role in the above discussion

on the tractability of admissible object allocations. Nevertheless, this perspective is novel, as

prior studies have not explicitly examined tractability under constrained efficiency and equal

treatment of equals.

Restricted domains. In addition to the challenges posed by allocation constraints, we must

also address those arising from restricted domains. Since our richness condition requires that

the domain include all (possibly non-quasi-linear) additive preferences, we are free to select

only additive preferences in the proof. Claim 3 in the outline shows that there exists some

preference R1 ∈ R that demands a package A1 = {a} at τ and another package A′
1 = {a, b} at

τ ′. If we were allowed to choose non-additive, non-quasi-linear preferences from the domain,

then constructing such a preference would be relatively straightforward (see Figure 4). The

challenge, however, is to construct an additive non-quasi-linear preference that satisfies a

property analogous to Claim 4. Although such an additive non-quasi-linear preference cannot

be constructed for certain packages A1, A
′
1 and payment vectors τ, τ ′ under some constraints,25

we identify conditions on the packages, payment vectors, and the constraint that ensure the

25For example, let M = {a, b}, and let τ, τ ′ ∈ R|M| be two object monotonic payment vectors such that
τ∅ = 0, τ{a} = τ{b} = 1, τ{a,b} = 2, τ ′∅ = 0, τ ′{a} = τ ′{b} = 2, and τ ′{a,b} = 4. Then, no additive pref-

erence Ri demands Ai = ∅ at τ on M and A′
i = {a, b} at τ ′ on M. To see this, let Ri ∈ RAdd be

an additive preference that demands A′
i = {a, b} at τ ′ on M. Then, since

(
{a, b}, τ ′{a,b}

)
Pi

(
{b}, τ ′{b}

)
,
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existence of such a preference (see Lemma 8 and Lemma 9 in Appendix A.1.4).

3.4.5 Proof of anonymity: An outline

Next, we prove that Af satisfies anonymity, assuming―as established in Section 3.4.3―
that it is a B-bundling unit-demand constraint for some partition B of M . As we shall see,

the fairness condition of equal treatment of equals, together with the characterization of

constrained Vickrey rules (Fact 4), plays a crucial role.

Let R be a rich domain, and let f ≡ (A, t) be a rule on Rn that satisfies constrained

efficiency, no wastage, equal treatment of equals, strategy-proofness, individual rationality,

and no subsidy. Suppose for contradiction that Af fails to satisfy anonymity. Assume Af is

a B-bundling unit-demand constraint for some partition B of M .

To illustrate the essence of the argument, we focus on the simplest case where n = m = 2,

as in Section 3.4.3, and let M = {a, b}. Since m = 2, there are only two possible partitions

of M , which we consider in turn.

Case 1. B = {M}.

Given that Af is a B-bundling unit-demand constraint, satisfies no wastage (which follows

from no wastage of f), but violates anonymity, we must have either Af =
{
(M, ∅)

}
or

Af =
{
(∅,M)

}
. Without loss of generality, let Af =

{
(M, ∅)

}
.

For each i ∈ N , let Ri ∈ RAdd ∩ RQ be such that w
(
{a};Ri

)
= w

(
{b};Ri

)
= 3 and

w(M ;Ri) = w
(
{a};Ri

)
+ w

(
{b};Ri

)
= 6. Note that R1 = R2. Note also that by richness of

R, R ∈ Rn. Since f satisfies constrained efficiency, stratey-proofness, individual rationality,

and no subsidy, its restriction to (RAdd ∩ RQ)n satisfies the four properties as well. Thus,

V
(
{b},

(
{a, b}, τ ′{a,b}

)
;Ri

)
< τ ′{b}, which implies

V
(
{a, b},

(
{a, b}, τ ′{a,b}

)
;Ri

)
−V

(
{b},

(
{a, b}, τ ′{a,b}

)
;Ri

)
= τ ′{a,b}−V

(
{b},

(
{a, b}, τ ′{a,b}

))
> τ ′{a,b}−τ ′{b} = 4−2 = 2.

Similarly, since
(
{a, b}, τ ′{a,b}

)
Pi

(
{a}, τ ′{a}

)
, τ ′{a} > V

(
{a},

(
{a, b}, τ ′{a,b}

)
;Ri

)
. Then,

V
(
{a},

(
{a, b}, τ ′{a,b}

)
;Ri

)
−V

(
∅,
(
{a, b}, τ ′{a,b}

)
;Ri

)
= V

(
{a, b},

(
{a, b}, τ ′{a,b}

)
;Ri

)
−V

(
{b},

(
{a, b}, τ ′{a,b}

)
;Ri

)
> 2,

where the first equality follows from additivity of Ri. Thus,

τ ′{a} − V
(
∅,
(
{a, b}, τ ′{a,b}

)
;Ri

)
> V

(
{a},

(
{a, b}, τ ′{a,b}

)
;Ri

)
− V

(
∅,
(
{a, b}, τ ′{a,b}

)
;Ri

)
> 2 = τ ′{a},

where the first inequality follows from τ ′{a} > V
(
{a},

(
{a, b}, τ ′{a,b}

)
;Ri

)
. Thus,

V
(
∅,
(
{a, b}, τ ′{a,b}

)
;Ri

)
< 0, which implies

(
{a, b}, τ ′{a,b}

)
Pi 0. Thus, by τ{a,b} = 2 < 4 = τ ′{a,b},(

{a, b}, τ{a,b}
)
Pi

(
{a, b}, τ ′{a,b}

)
Pi 0. Thus, Ri does not demand Ai = ∅ at τ on M.
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it follows from Fact 4 that f coincides with a constrained Vickrey rule on (RAdd ∩ RQ)n.

Thus, since R ∈ (RAdd ∩ RQ)n, f(R) is an outcome of a constrained Vickrey rule for R.

Thus, since Af = {(M, ∅)}, A(R) = (M, ∅), t1(R) = w
(
∅;R2

)
− w

(
∅;R2

)
= 0, and t2(R) =

w(M ;R1)− w(M ;R1) = 0. Thus,

w
(
A1(R);R1

)
− t1(R) = w(M ;R1) = 6 ̸= 0 = w(∅;R2) = w

(
A2(R);R2

)
− t2(R).

However, since R1 = R2, this contradicts equal treatment of equals.

Case 2. B =
{
{a}, {b}

}
.

As in Case 1, Af must be either
{(

{a}, {b}
)}

or
{(

{b}, {a}
)}

. Without loss of generality,

let Af =
{(

{a}, {b}
)}

.

For each i ∈ N , let Ri ∈ RAdd ∩ RQ be such that w
(
{a};Ri

)
= 3 and w

(
{b};Ri

)
= 1.

Note that R1 = R2. It follows from richness of R that R ∈ Rn. As in Case 1, since

R ∈ (RAdd ∩ RQ)n, f(R) is an outcome of a constrained Vickrey rule for R (see Fact 4).

Thus, since Af =
{(

{a}, {b}
)}

, A(R) =
(
{a}, {b}

)
, t1(R) = w

(
{b};R2

)
− w

(
{b};R2

)
= 0,

and t2(R) = w
(
{a};R1

)
− w

(
{a};R1

)
= 0. Thus,

w
(
A1(R);R1

)
− t1(R) = w

(
{a};R1

)
= 3 ̸= 1 = w({b};R2) = w

(
A2(R);R2

)
− t2(R).

However, since R1 = R2, this contradicts equal treatment of equals.

3.5 Independence of the properties

All the properties in Theorem are indispensable. The following examples demonstrate that

if any one of these properties is dropped, then there exists a rule that (i) differs from any

bundling unit-demand MPW rule and (ii) satisfies all the remaining properties. Example 5

further shows that even when equal treatment of equals is replaced by stronger properties

such as anonymity or no envy, constrained efficiency remains indispensable for Theorem. In

all the following examples, let R be a rich domain.

Example 5 (Dropping constrained efficiency). Let n = 4 and M = {a, b}.26 Let

B =
{
{a}, {b}

}
. Let g be a B-bundling unit-demand MPW rule, and let R0 ∈ R. We define

26It is straightforward to extend the discussion here to the case where n ≥ 4 and m ≥ 2. Whether con-
strained efficiency is indispensable for Theorem when n = 2 remains an open question. When m = 1, the class
of rules on a rich domain that satisfy no wastage, equal treatment of equals, strategy-proofness, individual
rationality, and no subsidy coincides with the class of bundling unit-demand MPW rules (Sakai, 2013). Thus,
in that case, constrained efficiency can be dispensed with in Theorem.
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a rule f based on g as follows.

Informally, if all agents except one―say, agent i―have the same preference R0, then agent

i is allowed to choose between the outcome under g and the outcome under a {M}-bundling
unit-demand MPW rule (which coincides with the bundling second-price rule for the grand

bundle M). If there is no such agent for which all other agents have preference R0, then f

coincides with g.

The formal definition of f is as follows:

(i) If |{i ∈ N : Ri = R0}| = 3, and for the unique i ∈ N such that Ri ̸= R0, we have(
M,V (M,0;R0)

)
Pi gi(R), then define fi(R) =

(
M,V (M,0;R0)

)
and fj(R) = 0 for each

j ∈ N\{i}.
(ii) If |{i ∈ N : Ri = R0}| ̸= 3, or if |{i ∈ N : Ri = R0}| = 3 and for the unique i ∈ N such

that Ri ̸= R0, gi(R) Ri

(
M,V (M,0;R0)

)
, then let f(R) = g(R).

Note that Af =
{
A ∈ A : ∀i ∈ N, Ai = ∅, {a}, {b}, or M,

⋃4
i=1Ai = M

}
. Note also

that f is not a bundling unit-demand MPW rule with any partition of M .

Claim 5. The rule f satisfies no wastage, equal treatment of equals, anonymity, no envy,

strategy-proofness, individual rationality, and no subsidy, but it violates constrained effi-

ciency.

We defer the proof of Claim 5 to Appendix C.

Example 6 (Dropping no wastage). Let f be the no trade rule on Rn, that is, the rule

such that for each R ∈ Rn and each i ∈ N , fi(R) = 0. Note that Af =
{
(∅, . . . , ∅)

}
. Then:

(i) f is not a bundling unit-demand MPW rule with any partition of M , and

(ii) it satisfies constrained efficiency, equal treatment of equals, strategy-proofness, individual

rationality, and no subsidy, but violates no wastage.

Example 7 (Dropping equal treatment of equals). Let i ∈ N , and let A ∈ A be such

that Ai = M and Aj = ∅ for each j ∈ N\{i}. Let f be a rule on Rn such that for each

R ∈ Rn, we have fi(R) = (M, 0) and fj(R) = 0 for each j ∈ N\{i}―that is, agent i is the

dictator under f . Note that Af = {A}. Then:
(i) f is not a bundling unit-demand MPW rule with any partition of M , and

(ii) it satisfies constrained efficiency, no wastage, strategy-proofness individual rationality,

and no subsidy, but violates equal treatment of equals.

Example 8 (Dropping strategy-proofness). Let f be a generalized pay-as-bid rule on

Rn, that is, a rule such that for each R ∈ Rn, A(R) ∈ arg max
A∈A

∑
i∈N V (Ai,0;Ri), and for

each i ∈ N , ti(R) = V
(
Ai(R),0;Ri

)
. Note that Af =

{
A ∈ A :

⋃
i∈N Ai = M

}
. Then:
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(i) f is not a bundling unit-demand MPW rule with any partition of M , and

(ii) it satisfies constrained efficiency, no wastage, equal treatment of equals, individual ratio-

nality, and no subsidy, but violates strategy-proofness.

Example 9 (Dropping individual rationality). Let B be a partition of M . Let f be

a B-bundling unit-demand MPW rule with a (common and fixed) participation fee e > 0.

Note that Af = C∗(B). Then:
(i) f is not a bundling unit-demand MPW rule with any partition of M , and

(ii) it satisfies constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

and no subsidy, but violates individual rationality.

Example 10 (Dropping no subsidy). Let B be a partition of M . Let f be a B-bundling
unit-demand MPW rule associated with a (common and fixed) participation subsidy s < 0.

Note that Af = C∗(B). Then:
(i) f is not a bundling unit-demand MPW rule with any partition of M , and

(ii) it satisfies constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

and individual rationality, but violates no subsidy.

4 Conclusion

We have studied the package assignment problem with money, in which the set of admissible

object allocations is selected by the planner. We have shown that the only admissible sets of

object allocations that ensure the existence of a rule satisfying a set of desirable properties

―namely, constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

individual rationality, and no subsidy―are the bundling unit-demand constraints (Proposi-

tion). Furthermore, we have shown that the only rules satisfying these properties are the

bundling unit-demand MPW rules (Theorem).

In practice, certain technological characteristics suggest that some objects are comple-

ments, while others are substitutes for most agents. In such cases, policymakers often aim

to bundle complementary objects within the same packages and to separate substitutes into

different ones in order to achieve more efficient allocations―an approach that corresponds

to a special case of our bundling unit-demand constraints. Importantly, our domain richness

condition is sufficiently weak to ensure that the results apply to such environments.

Bundling unit-demand constraints are commonly adopted in practical auction designs,

including the European 3G frequency license auctions and recent 5G license auctions in

several countries. Our results provide a novel theoretical justification for this widely used

design principle.
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Appendix

A Proof of Proposition

In this section, we provide the proof of Proposition.

A.1 Preliminaties

In this subsection, we present the lemmas that will be used in the proof of Proposition.

A.1.1 Strategy-proofness

We begin by presenting a lemma related to strategy-proofness.

The following lemma states that, under a strategy-proof rule, each agent who receives

more objects must pay a higher amount. This result follows directly from object monotonicity

and strategy-proofness (in particular, Remark 3), and the proof is therefore omitted.

Lemma 1 (Object monotonic payments). Let R be a domain. Let f be a rule on Rn

satisfying strategy-proofness. Let i ∈ N and R−i ∈ Rn−1. For each Ai, A
′
i ∈ Mi(R−i) with

Ai ⊋ A′
i, we have ti(R−i;Ai) > ti(R−i;A

′
i).

A.1.2 Intrapersonal tractability of object allocations

We now turn to the issue of intrapersonal tractability of admissible object allocations, cor-

responding to Claim 1 in the proof outline presented in Section 3.4.3. As discussed in Sec-

tion 3.4.4, a key challenge posed by constrained efficiency is the potential loss of intrapersonal

tractability―that is, the difficulty of identifying the set of packages available to an individ-

ual agent. Under constrained efficiency, this set may depend on the preferences of the other

agents, which significantly complicates the analysis. To circumvent this difficulty, the follow-

ing lemma provides a sufficient condition on the preference profiles of the other agents that

ensures agent i can obtain a specified package Ai.

This condition consists of two components (see Figure 5):

(i) all other agents have the same willingness to pay of each object, except for those in Ai

and one object a not in Ai;

(ii) there exists an agent j ̸= i who, conditional on agent i receiving Ai, is assigned object a

and has a strictly higher willingness to pay of a than the other agents.

Note that if there are only two agents, this condition always holds, and the following lemma

reduces to Claim 1 in Section 3.4.3.
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𝐴𝑖

𝑎
𝑀

∀𝑗, 𝑘 ≠ 𝑖,

∀𝑏 ∈ 𝑀 ∖ 𝐴𝑖 ∪ 𝑎 ,

𝑤 {𝑏 ; 𝑅𝑗) = 𝑤( 𝑏 ; 𝑅𝑘).

Figure 5: An illustration of the package Ai and the object a in Lemma 2.

Lemma 2 (Intrapersonal tractability). Let R be a rich domain, and let f be a rule

on Rn satisfying constrained efficiency and no wastage. Let i ∈ N and Ai ∈ Mi. Let

j ∈ N\{i} and a ∈ M\Ai be such that for some A−i ∈ Mn−1, (Ai, A−i) ∈ Af and a ∈ Aj.

Let R−i ∈ (RAdd ∩ RQ)n−1 be such that the following two conditions hold:

(i) For each k ∈ M\{i} and each b ∈ M\
(
Ai ∪ {a}

)
, w
(
{b};Rk

)
= w

(
{b};Rj

)
.

(ii) For each k ∈ N\{i}, w
(
{a};Rk

)
≤ w

(
{a};Rj

)
.

Then, there exists Ri ∈ RAdd ∩ RQ such that Ai(Ri, R−i) = Ai, and so Ai ∈ Mi(R−i).

Proof. Let Ri ∈ RAdd ∩ RQ be an additive quasi-linear preference such that the willingness

to pay of the objects in Ai is sufficiently large, while the willingness to pay of the objects

not in Ai is sufficiently small. Specifically, let Ri ∈ RAdd ∩ RQ satisfy the following two

conditions:

• For each A′
i ∈ M with A′

i ⊋ Ai,

w(A′
i\Ai;Ri) < w

(
A′

i\Ai;Rj

)
, (3)

• For each b ∈ Ai,

w
(
{b};Ri

)
> w(M\Ai;Ri) +

∑
k∈N\{i}

w(M ;Rk). (4)

Note that, by object monotonicity of Rj, the right-hand side of (3) is positive, so we can

indeed choose such a preference Ri satisfying (3). Moreover, by richness of R, R ∈ Rn.

We show that Ai(R) = Ai. Suppose for contradiction that Ai(R) ≠ Ai. By our assump-

tion, there exists A−i ∈ Mn−1 such that (Ai, A−i) ∈ Af and a ∈ Aj. We consider two cases.
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Case 1. Ai(R) ⊋ Ai.

By no wastage of Af (which follows from no wastage of f),
⋃

k∈N Ak(R) =
⋃

k∈N Ak = M .

We have

∑
k∈N\{i}

w(Ak;Rk) = w
(
{a};Rj

)
+ w

(
Aj\{a};Rj

)
+

∑
k∈N\{i,j}

w(Ak;Rk)

= w
(
{a};Rj

)
+ w

 ⋃
k∈N\{i}

Ak

 \{a};Rj


= w(M\Ai;Rj), (5)

where the first equality follows from a ∈ Aj and additivity of Rj; the second from additivity

of R−i and the assumption that w
(
{b};Rk

)
= w

(
{b};Rj

)
for each k ∈ N\{i} and each

b ∈ M\
(
Ai ∪ {a}

)
(and hence giving objects of agents in N\{i, j} to agent j does not change

the total willingness to pay among agents in N\{i}); and the last from
⋃

k∈N Ak = M and

additivity of Rj. Since Ai(R) ⊇ Ai, we have Ak(R) ⊆ M\Ai for each k ∈ N\{i}. Then,

∑
k∈N\{i}

w
(
Ak(R);Rk

)
≤ w

(
{a};Rj

)
+ w

(
Aj(R)\{a};Rj

)
+

∑
k∈N\{i,j}

w
(
Ak(R)\{a};Rk

)

= w
(
{a};Rj

)
+ w

 ⋃
k∈N\{i}

Ak(R)

 \{a};Rj


= w

(
M\Ai(R);Rj

)
, (6)

where the inequality follows from additivity of R−i and the assumption that w
(
{a};Rk

)
≤ w

(
{a};Rj

)
for each k ∈ N\{i} (and hence assigning object a to agent j (weakly) increases the to-

tal willingness to pay among agents in N\{i}); the first equality uses additivity of R−i

and that Ak(R) ⊆ M\Ai for each k ∈ N\{i}, along with w
(
{b};Rk

)
= w

(
{b};Rj

)
for each

b ∈ M\
(
Ai ∪ {a}

)
(and hence giving objects of agents in N\{i, j}, except for object a,

to agent j does not change the total willingness to pay); the last equality follows from⋃
k∈N\{i} Ak(R) = M\Ai(R) (which follows from

⋃
k∈N Ak(R) = M) and additivity of Rj.
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We have

∑
k∈N

w(Ak;Rk)−
∑
k∈N

w
(
Ak(R);Rk

)
=

∑
k∈N\{i}

(
w(Ak;Rk)− w

(
Ak(R);Rk

))
−w
(
Ai(R)\Ai;Ri

)
≥ w(M\Ai;Rj)− w

(
Ai\Ai(R);Rj

)
− w

(
Ai(R)\Ai;Ri

)
= w

(
Ai(R)\Ai;Rj

)
− w

(
Ai(R)\Ai;Ri

)
> 0,

where the first equality uses additivity of Ri and Ai(R) ⊋ Ai; the first inequality follows from

(5) and (6); the second equality uses additivity of Rj and Ai(R) ⊋ Ai; and the last inequality

follows from Ai(R) ⊋ Ai and (3). Since A ∈ Af , this contradicts constrained efficiency.

Case 2. Ai(R) ̸⊇ Ai.

By Ai(R) ̸⊇ Ai, Ai\Ai(R) ̸= ∅, so we can choose some b ∈ Ai\Ai(R). Then,

∑
k∈N

w(Ak;Rk)−
∑
k∈N

w
(
Ak(R);Rk

)
= w

(
Ai\Ai(R);Ri

)
− w

(
Ai(R)\Ai;Ri

)
−

∑
k∈N\{i}

(
w
(
Ak(R);Rk

)
− w(Ak;Rk)

)
≥ w

(
{b};Ri

)
− w(M\Ai;Ri)−

∑
k∈N\{i}

w(M ;Rk)

> 0,

where the first equality uses additivity of Ri; the first inequality follows from b ∈ Ai\Ai(R)

and object monotonicity; and the last inequality from (4). Since A ∈ Af , this contradicts

constrained efficiency.

A.1.3 Interpersonal tractability of object allocations

We now examine the interpersonal tractability of admissible object allocations, corresponding

to Claim 4 in the proof outline presented in Section 3.4.3. As discussed in Section 3.4.4,

constrained efficiency may compromise interpersonal tractability by making it difficult to

determine which combinations of packages are available to multiple agents. To address this

issue, we draw on the implications of equal treatment of equals, together with the other

desirable properties, to identify which combinations of packages may be available to any two

agents.
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Throughout this subsection, let R be a rich domain, and let f ≡ (A, t) be a rule on Rn

satisfying constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

individual rationality, and no subsidy.

The next two lemmas form the foundation of our analysis of interpersonal tractability.

Note that by richness, RAdd ∩ RQ ⊆ RAdd ⊆ R.

Lemma 3. Let g ≡ (Ag, tg) be the restriction of f to (RAdd ∩ RQ)n. Then, Af = Ag.

Proof. Since g is the restriction of f to (RAdd ∩ RQ)n, we have Ag ⊆ Af . To show Af ⊆ Ag,

let A ∈ Af . For each i ∈ N , let Ri ∈ RAdd ∩ RQ be such that for each a ∈ Ai, w
(
{a};Ri

)
=

m + 1, and for each a ∈ M\Ai, w
(
{a};Ri

)
= 1. By richness, R ∈ Rn. By the defi-

nition of R, {A} = arg max
A′∈A

∑
i∈N w(A′

i;Ri). Moreover, since A ∈ Af , we have {A} =

arg max
A′∈Af

∑
i∈N w(A′

i;Ri). Thus, by constrained efficiency of f , we have A(R) = A. Since g is

the restriction of f to (RAdd ∩ RQ)n and R ∈ (RAdd ∩ RQ)n, we also have Ag(R) = A(R) =

A. Thus, A ∈ Ag.

Lemma 4. Let R ∈ (RAdd ∩ RQ)n, and let i, j ∈ N satisfy Ri = Rj. Then,

max
A∈Af

∑
k∈N\{i}

w(Ak;Rk) = max
A∈Af

∑
k∈N\{j}

w(Ak;Rk).

Proof. Let g ≡ (Ag, tg) be the restriction of f to (RAdd ∩ RQ)n. Since f satisfies constrained

efficiency, strategy-proofness, individual rationality, and no subsidy, so does g. Therefore,

by Fact 4, g is a constrained Vickrey rule on (RAdd ∩ RQ)n. Thus, for each k ∈ N , we have

w
(
Ag

k(R);Rk

)
− tgk(R) = w

(
Ag

k(R);Rk

)
−

max
A∈Ag

∑
l∈N\{k}

w(Al;Rl)−
∑

l∈N\{k}

w
(
Ag

l (R);Rl

)
=
∑
l∈N

w
(
Ag

l (R);Rl

)
− max

A∈Ag

∑
l∈N\{k}

w(Al;Rl). (7)

Since Ri = Rj, equal treatment of equals of g implies that gi(R) Ii gj(R), so w
(
Ag

i (R);Ri

)
−

tgi (R) = w
(
Ag

j (R);Rj

)
− tgj (R). Moreover, Af = Ag (see Lemma 3). Thus, by (7),

∑
k∈N

w
(
Ag

k(R);Rk

)
− max

A∈Af

∑
k∈N\{i}

w(Ak;Rk) =
∑
k∈N

w
(
Ag

k(R);Rk

)
− max

A∈Af

∑
k∈N\{j}

w(Ak;Rk).

Canceling
∑

k∈N w
(
Ag

k(R);Rk

)
from both sides yields the desired equality.

The following lemma establishes a basic form of interpersonal tractability: if a package

is available to some agent under an admissible object allocation, then there exists another
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admissible object allocation in which a different agent receives a package that includes all

objects in the original package.

Lemma 5 (Interpersonal tractability (i)). Let A ∈ Af , and let i, j ∈ N be two distinct

agents. Then, there exists A′ ∈ Af such that A′
j ⊇ Ai.

Proof. Suppose for contradiction that for each A′ ∈ Af , we have A′
j ̸⊇ Ai. Note that Ai ̸= ∅.

Let Ri ∈ RAdd ∩ RQ be such that for each a ∈ Ai, w
(
{a};Ri

)
= m + 1, and for each

a ∈ M\Ai, w
(
{a};Ri

)
= 1. Let Rj = Ri, and for each k ∈ N\{i, j}, let Rk ∈ RAdd ∩ RQ

be such that for each a ∈ M , w
(
{a};Rk

)
= 1. Since A ∈ Af and i ∈ N\{j}, we have

max
A′∈Af

∑
k∈N\{j}

w(A′
k;Rk) ≥ w(Ai;Ri) = (m+ 1)|Ai|.

In contrast, for each A′ ∈ Af , we have A′
j ̸⊇ Ai, and hence |A′

j ∩ Ai| < |Ai|. Therefore, by

the construction of R−i, the total willingness to pay among agents in N\{i} is at most the

amount obtained when agent j receives |Ai| − 1 objects from Ai, and the remaining objects

are allocated to agents in N\{i} (that is, agent j cannot receive all the objects in Ai). Thus,

max
A′∈Af

∑
k∈N\{i}

w(A′
k;Rk) ≤ (m+ 1)

(
|Ai| − 1

)
+ |M\Ai|+ 1 < (m+ 1)|Ai|,

where the last inequality uses |M\Ai| < m (since Ai ̸= ∅). Combining these inequalities, we

obtain

max
A′∈Af

∑
k∈N\{j}

w(A′
k;Rk) ≥ (m+ 1)|Ai| > max

A′∈Af

∑
k∈N\{i}

w(A′
k;Rk),

which contradicts Lemma 4.

Given a non-empty set M′ ⊆ M of packages, a package Ai ∈ M′ is said to be maximal

(in M′) if there does not exist any A′
i ∈ M′ such that Ai ⊊ A′

i.

The following lemma shows that if a package is maximal in those available to a given

agent under the rule, then it is also available to any other agent and remains maximal in

that agent’s available set under the rule.

Lemma 6 (Interpersonal tractability (ii)). Let i, j ∈ N be two distinct agents, and let

Ai ∈ Mi be a package that is maximal in Mi. Then, (i) Ai ∈ Mj, and (ii) Ai is maximal

in Mj.

Proof. By Lemma 5, there exists Aj ∈ Mj such that Aj ⊇ Ai. To prove (i) and (ii), it is

sufficient to show that for each Aj ∈ Mj with Aj ⊇ Ai, we have Aj = Ai. Suppose for

contradiction that there exists Aj ∈ Mj such that Aj ⊋ Ai. Then, again by Lemma 5,
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there exists A′
i ∈ Mi such that A′

i ⊇ Aj. Since Aj ⊋ Ai, we have A
′
i ⊋ Ai, contradicting the

assumption that Ai is maximal in Mi.

The following lemma states that for any two agents, if one agent has a maximal package

and there exists an object not included in that package, then there exists an admissible object

allocation in which the agent receives the maximal package while the other agent receives

that object.

Lemma 7 (Interpersonal tractability (iii)). Let i, j ∈ N be two distinct agents, and

let Ai ∈ Mi\{∅} be a package that is maximal in Mi. Let a ∈ M\Ai. Then, there exists

A′ ∈ Af such that A′
i = Ai and a ∈ A′

j.

Proof. By Ai ∈ Mi, there exists A−i ∈ Mn−1 such that A ≡ (Ai, A−i) ∈ Af . Since Af sat-

isfies no wastage (which follows from no wastage of f) and a ∈ M\Ai, there exists k ∈ N\{i}
such that a ∈ Ak. If k = j, then A ∈ Af satisfies the desired properties: agent i receives Ai

and a ∈ Aj. Suppose instead that k ̸= j.

We now establish that there exists A′ ∈ Af such that A′
i = Ai and A′

j ⊇ Ak. Note that

for such A′ ∈ Af , since a ∈ Ak ⊆ A′
j, A

′ satisfies the desired properties.

We proceed by contradiction. Suppose that for each A′ ∈ Af with A′
i = Ai, it holds that

A′
j ̸⊇ Ak. Note that Ak ̸= ∅. The proof now proceeds in three steps.

Step 1. We begin by constructing a preference profile. Let Ri ∈ RAdd ∩ RQ be such that

for each a ∈ Ai, w
(
{a};Ri

)
= (m + 1)2, and for each a ∈ M\Ai, w

(
{a};Ri

)
= 1. For

each l ∈ {j, k}, let Rl ∈ RAdd ∩ RQ be such that for each a ∈ Ak, w
(
{a};Rl

)
= m + 1,

and for each a ∈ M\Ak, w
(
{a};Rl

)
= 1. Note that Rj = Rk. For each l ∈ N\{i, j, k}, let

Rl ∈ RAdd ∩ RQ be such that for each a ∈ M , w
(
{a};Rl

)
= 1.

Step 2. Next, we show that for each A′ ∈ arg max
A′′∈Af

∑
l∈N\{k} w(A

′′
l ;Rl), we have A′

i = Ai.

Let A′ ∈ arg max
A′′∈Af

∑
l∈N\{k} w(A

′′
l ;Rl). We claim that A′

i ⊇ Ai. Suppose for contradiction

40



that A′
i ̸⊇ Ai. Then, A

′
i ∩ Ai ⊊ Ai, and hence |A′

i ∩ Ai| < |Ai|. Therefore,

∑
l∈N\{k}

w(A′
l;Rl) ≤ (m+ 1)2|A′

i ∩ Ai|+ |A′
j ∩ Ak|(m+ 1) +m−

(
|A′

i ∩ Ai|+ |A′
j ∩ Ak|

)
≤ (m+ 1)2|A′

i ∩ Ai|+m(m+ 1) +m

< (m+ 1)2|Ai|

= w(Ai;Ri)

≤
∑

l∈N\{k}

w(Al;Rl),

where the right-hand side of the first inequality corresponds to the case in which all objects

are allocated at A′; and the third inequality uses the facts that |A′
i ∩ Ai| < |Ai| and (m +

1)2 > m(m+1)+m. However, since A ∈ Af , this contradicts A′ ∈ arg max
A′′∈Af

∑
l∈N\{k} w(A

′′
l ;Rl).

Thus, we must have A′
i ⊇ Ai, and since Ai is maximal in Mi, it follows that A

′
i = Ai.

Step 3. Finally, we derive a contradiction. Let A′ ∈ arg max
A′′∈Af

∑
l∈N\{k} w(A

′′
l ;Rl). By

Step 2, A′
i = Ai. Thus, by our assumption, A′

j ̸⊇ Ak. Thus, A′
j ∩ Ak ⊊ Ak, and hence

|A′
j ∩ Ak| < |Ak|. Then, we have

max
A′′∈Af

∑
i∈N\{k}

w(A′′
l ;Rl) =

∑
l∈N\{k}

w(A′
l;Rl)

≤ (m+ 1)2|A′
i ∩ Ai|+ (m+ 1)|A′

j ∩ Ak|+m− |A′
i ∩ Ai| − |A′

j ∩ Ak|

≤ (m+ 1)2|Ai|+ (m+ 1)|A′
j ∩ Ak|+m

< (m+ 1)2|Ai|+ (m+ 1)|Ak|

= w(Ai;Ri) + w(Ak;Rk)

≤
∑

l∈N\{j}

w(Al;Rl)

≤ max
A′′∈Af

∑
l∈N\{j}

w(A′′
l ;Rl),

where the right-hand side of the first inequality corresponds to the case in which all objects are

allocated at A′; the second inequality uses A′
i = Ai; the third inequality uses |A′

j ∩ Ak| < |Ak|
and m + 1 > m; and the last follows from A ∈ Af . However, this contradicts Lemma 4,

completing the proof.
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A.1.4 Existence of preferences in a rich domain

We examine the existence of an additive preference that demands a package Ai at a payment

vector τ and another package A′
i at another payment vector τ ′. The lemmas presented here

correspond to Claim 3 in the proof outline provided in Section 3.4.3.

As discussed in Section 3.4.4, if we were allowed to choose arbitrary non-additive, non-

quasi-linear preferences from the domain, then constructing such a preference would be

relatively straightforward. The main challenge, however, lies in constructing an additive,

non-quasi-linear preference.

We begin with the following remark, which describes how to construct a non-quasi-linear

preference by interpolating between two given quasi-linear preferences.

Remark 4 (Figure 6). Let Ai, A
′
i ∈ M, and let τAi

, τ ′A′
i
∈ R. Let Ri, R

′
i ∈ RQ be two quasi-

linear preferences satisfying that for each A′′
i ∈ M, w(A′′

i ;Ri)−w(Ai;Ri)+τAi
< w(A′′

i ;R
′
i)−

w(A′
i;R

′
i)+ τ ′A′

i
. Let τ ′Ai

≡ w(Ai, R
′
i)−w(A′

i;R
′
i)+ τ ′A′

i
, so τAi

< τ ′Ai
. Let α : [τAi

, τ ′Ai
] → [0, 1]

be such that for each ti ∈ [τAi
, τ ′Ai

], α(ti) =
ti−τAi

τ ′Ai
−τAi

. We now define a preference R′′
i as follows:

for each A′′
i ∈ M and each ti ∈ R,

ti − V
(
A′′

i , (Ai, ti);R
′′
i

)

=


w(Ai;Ri)− w(A′′

i ;Ri) if ti ≤ τAi
,(

1− α(ti)
)(
w(Ai;Ri)− w(A′′

i ;Ri)
)
+ α(ti)

(
w(Ai;R

′
i)− w(A′′

i ;R
′
i)
)

if τAi
≤ ti ≤ τ ′Ai

,

w(Ai;R
′
i)− w(A′′

i ;R
′
i) if ti ≥ τ ′Ai

.

Note that R′′
i satisfies the following properties: for each A′′

i ∈ M,

τAi
− V

(
A′′

i , (Ai, τAi
);R′′

i

)
= w(Ai;Ri)− w(A′′

i ;Ri),

τ ′A′
i
− V

(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
= w(A′

i;R
′
i)− w(A′′

i ;R
′
i).

Figure 6 is an illustration of Remark 4. Remark 4 states that given two quasi-linear

preferences Ri, R
′
i such that for each A′′

i ∈ M, w(A′′
i ;Ri) − w(Ai;Ri) + τAi

< w(A′′
i ;R

′
i) −

w(A′
i;R

′
i) + τ ′A′

i
―that is, the indifference curve of Ri through (Ai, τAi

) lies entirely to the

left of that of R′
i through (A′

i, τ
′
A′

i
)―we can construct a preference R′′

i with the following

properties:

(i) Each indifference curve to the left of (Ai, τAi
) is parallel to that of Ri.

(ii) Each indifference curve to the right of (A′
i, τ

′
A′

i
) is parallel to that of R′

i.

(iii) Each indifference curve in between is formed by interpolating between the two, that is,

by taking a convex combination of the corresponding willingness to pay for Ri and R′
i.
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Figure 6: An illustration of Remark 4.

Given a non-empty set M′ ⊆ M of packages, a payment vector τ ∈ R|M′| is said to be

object monotonic (on M′) if for each Ai, A
′
i ∈ M′ with A′

i ⊋ Ai, it holds that τA′
i
> τAi

.

Two distinct packages Ai, A
′
i ∈ M′ are said to be adjacent (in M′) if one of the following

holds:

(i) Ai ⊊ A′
i, and there is no A′′

i ∈ M′ such that Ai ⊊ A′′
i ⊊ A′

i; or

(ii) A′
i ⊊ Ai, and there is no A′′

i ∈ M′ such that A′
i ⊊ A′′

i ⊊ Ai.

The following lemma provides a sufficient condition for the existence of an additive non-

quasi-linear preference that demands package Ai at a given payment vector τ on M′, and

demands another package A′
i―which is adjacent to Ai―at another payment vector τ ′ on

M′. Figure 7 illustrates the lemma. In the figure, a solid horizontal line indicates that the

corresponding package is included in M′, while a dotted horizontal line indicates that it is

not. Accordingly, in Figure 7, M′ =
{
∅, {a}, {b}, {c}, {b, c}

}
.

Lemma 8 (Figure 7). Let M′ ⊆ M be a non-empty set of packages. Let Ai, A
′
i ∈ M′ be

two adjacent packages in M′, satisfying the following conditions: (i) Ai ̸= ∅, (ii) Ai ⊊ A′
i,

and (iii) for each A′′
i ∈ M′ with A′′

i ∩ A′
i ̸= ∅, A′′

i ⊆ A′
i. Let τ, τ ′ ∈ R|M′| be two payment

vectors on M′ such that: (iv) τAi
< τ ′Ai

, and (v) τ, τ ′ are object monotonic on M′. Then,

there exists an additive preference that demands Ai at τ on M′, and A′
i at τ

′ on M′.

Proof. The proof proceeds in four steps.

Step 1. We begin by constructing two additive quasi-linear preferences. Let Ki, Li, εi ∈ R++
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Figure 7: An illustration of Lemma 8.

be a triple of positive constants, where Ki is sufficiently large and εi is sufficiently small, such

that the following conditions are satisfied:

• For each A′′
i ∈ M′,

Ki > εim+max
{
τAi

− τA′′
i
, τ ′A′

i
− τ ′A′′

i

}
. (8)

• For each A′′
i ∈ M′ with A′′

i ⊋ Ai,

εi|A′′
i \Ai| < τA′′

i
− τAi

, (9)

τ ′A′
i
− τ ′Ai

< Li|A′
i\Ai| < τ ′A′

i
− τAi

. (10)

Since τ and τ ′ are object monotonic on M′, we can always choose a sufficiently small

εi > 0 satisfying (9). Furthermore, given object monotonicity of τ ′, the assumption that

Ai ⊊ A′
i, and that τAi

< τ ′Ai
, we can select Li > 0 satisfying (10).

Let Ri ∈ RAdd ∩ RQ be such that for each a ∈ Ai, w
(
{a};Ri

)
= Ki, and each a ∈ M\Ai,

w
(
{a};Ri

)
= εi. Similarly, let R′

i ∈ RAdd ∩ RQ be such that for each a ∈ Ai, w
(
{a};R′

i

)
=

Ki, for each a ∈ A′
i\Ai, w

(
{a};R′

i

)
= Li, and for each a ∈ M\A′

i, w
(
{a};R′

i

)
= εi.

Step 2. Next, we construct an additive non-quasi-linear preference based on Ri and R′
i. For
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each A′′
i ∈ M, observe that

w(A′′
i ;Ri)− w(Ai;Ri) + τAi

= εi|A′′
i \Ai| −Ki|Ai\A′′

i |+ τAi

< εi|A′′
i \A′

i| −Ki|Ai\A′′
i | − Li|A′

i\Ai|+ τ ′A′
i

≤ εi|A′′
i \A′

i| −Ki|Ai\A′′
i | − Li|A′

i\(Ai ∪ A′′
i )|+ τ ′A′

i

= w(A′′
i ;R

′
i)− w(A′

i;R
′
i) + τ ′A′

i
,

where the first inequality follows from (10); and the second inequality uses A′
i\(Ai ∪ A′′

i ) ⊆ A′
i\Ai

(and hence |A′
i\(Ai ∪ A′′

i )| ≤ |A′
i\Ai|). This confirms that the indifference curve of Ri through

(Ai, τAi
) lies entirely to the left of that of R′

i through (A′
i, τ

′
A′

i
). Hence, by Remark 4, we can

define a preference R′′
i ∈ R such that for each A′′

i ∈ M,

τAi
− V

(
A′′

i , (Ai, τAi
);R′′

i

)
= w(Ai;Ri)− w(A′′

i ;Ri), (11)

τ ′A′
i
− V

(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
= w(A′

i;R
′
i)− w(A′′

i ;R
′
i). (12)

By additivity of Ri, R
′
i, we can ensure that R′′

i ∈ RAdd (see Remark 4).

Step 3. We now show that R′′
i demands Ai at τ on M′. Let A′′

i ∈ M′\{Ai}. If A′′
i ̸⊇ Ai,

then Ai\A′′
i ̸= ∅, and we have

τAi
− V

(
A′′

i , (Ai, τAi
);R′′

i

)
= w(Ai;Ri)− w(A′′

i ;Ri) = Ki|Ai\A′′
i | − εi|A′′

i \Ai| > τAi
− τA′′

i
,

where the first equality follows from (11); and the inequality from (8) and Ai\A′′
i ̸= ∅. Instead,

if A′′
i ⊋ Ai, then

τAi
− V

(
A′′

i , (Ai, τAi
);R′′

i

)
= w(Ai;Ri)− w(A′′

i ;Ri) = −εi|A′′
i \Ai| > τAi

− τA′′
i
,

where the first equality follows from (11); the second equality from A′′
i ⊋ Ai; and the inequal-

ity from (9) and A′′
i ⊋ Ai. In both cases, we obtain τAi

− V
(
A′′

i , (Ai, τAi
);R′′

i

)
> τAi

− τA′′
i
,

or equivalently, V
(
A′′

i , (Ai, τAi
);R′′

i

)
< τA′′

i
. This implies that (Ai, τAi

) P ′′
i (A′′

i , τA′′
i
). Since

A′′
i ∈ M′\{Ai} was arbitrary, we conclude that R′′

i demands Ai at τ on M′.

Step 4. Finally, we show that R′
i demands A′

i at τ
′ on M′. Let A′′

i ∈ M′\{A′
i}. We consider

two cases.

Case 1. A′′
i ∩ A′

i = ∅.
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Since Ai ⊊ A′
i, Ai ̸= ∅ and A′′

i ∩ A′
i = ∅, it follows that Ai\A′′

i ̸= ∅. Then,

τ ′A′
i
− V

(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
= w(A′

i;R
′
i)− w(A′′

i ;R
′
i)

= |Ai\A′′
i |Ki +

∣∣A′
i\(Ai ∪ A′′

i )
∣∣Li − |A′′

i \A′
i|εi > τ ′A′

i
− τ ′A′′

i
,

where the first equality follows from (12), and the inequality from (8) and Ai\A′′
i ̸= ∅.

Case 2. A′′
i ∩ A′

i ̸= ∅.

By assumption, A′′
i ⊆ A′

i. Thus, by A′′
i ̸= A′

i, we have A′′
i ⊊ A′

i. Since Ai ⊊ A′
i, and Ai

and A′
i are adjacent in M′, we have either A′′

i = Ai or Ai ̸⊆ A′′
i . If A

′′
i = Ai, then

τ ′A′
i
− V

(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
= w(A′

i;R
′
i)− w(Ai;R

′
i) = |A′

i\Ai|Li > τ ′A′
i
− τ ′A′′

i
,

where the first equality follows from (12); the second equality uses Ai ⊊ A′
i; and the inequality

from (10). Instead, if Ai ̸⊆ A′′
i , then Ai\A′′

i ̸= ∅, so we have

τ ′A′
i
− V

(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
= w(A′

i;R
′
i)− w(A′′

i ;R
′
i)

= |Ai\A′′
i |Ki +

∣∣A′
i\(Ai ∪ A′′

i )
∣∣Li − |A′′

i \A′
i|εi > τ ′A′

i
− τ ′A′′

i
,

where the first equality follows from (12), and the inequality uses (8) and Ai\A′′
i ̸= ∅.

In all cases, we have τ ′A′
i
−V
(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
> τ ′A′

i
−τ ′′A′′

i
, or equivalently, V

(
A′′

i , (A
′
i, τ

′
A′

i
);R′′

i

)
< τ ′A′′

i
.

Therefore, (A′
i, τ

′
A′

i
) P ′′

i (A′′
i , τ

′
A′′

i
). Since A′′

i ∈ M′\{A′
i} was arbitrary, we conclude that R′′

i

demands A′
i at τ

′ on M′.

Furthermore, the next lemma provides a sufficient condition for the existence of an addi-

tive non-quasi-linear preference that demands a package Ai at a given payment vector τ on

M′, and a maximal package A′
i satisfying A′

i ∩ Ai = ∅ at another given payment vector τ ′

on M′. Figure 8 illustrates this result, where M′ =
{
∅, {b}, {c}, {a, b}, {b, c}

}
.

Lemma 9 (Figure 8). Let M′ ⊆ M be a non-empty set of packages. Let Ai, A
′
i ∈ M′ be

two packages satisfying the following conditions: (i) A′
i ̸= ∅, (ii) Ai ∩ A′

i = ∅, and (iii) A′
i is

maximal in M′. Let τ, τ ′ ∈ R|M′| be two payment vectors on M′ such that: (iv) τAi
< τ ′Ai

,

and (v) τ, τ ′ are object monotonic on M′. Then, there exists an additive preference that

demands Ai at τ on M′ and A′
i at τ

′ on M′.
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Figure 8: An illustration of Lemma 9.

Proof. We proceed with the proof in four steps.

Step 1. We begin by constructing two additive quasi-linear preferences. Let Ki, Li, εi ∈ R++

be a triple of positive constants, where Ki and Li are sufficiently large and εi is sufficiently

small, satisfying the following conditions:

• Li ≥ Ki.

• For each A′′
i ∈ M′,

Ki > εim+max
{
τAi

− τA′′
i
, τAi

− τ ′A′′
i
, τ ′A′

i
− τ ′Ai

}
. (13)

• For each A′′
i ∈ M′ with A′

i ̸⊆ A′′
i ,

τ ′A′
i
− τAi

+Ki|Ai| − εi|A′
i|

Li|A′
i| − εi|Ai|+Ki|Ai| − εi|A′

i|

<
τ ′A′′

i
− τ ′Ai

+Ki|Ai\A′′
i | − εi|A′′

i \Ai|
Li|A′

i ∩ A′′
i |+ εi|A′′

i \A′
i| − εi|Ai|+Ki|Ai\A′′

i | − εi|A′′
i \Ai|

. (14)

• For each A′′
i ∈ M′ with A′′

i ⊋ Ai,

εi|A′′
i \Ai| < min

{
τA′′

i
− τAi

, τ ′A′′
i
− τAi

}
. (15)

• εi|Ai| < τ ′Ai
− τAi

.
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For each A′′
i ∈ M′ with A′

i ̸⊆ A′′
i , A

′
i\A′′

i ̸= ∅, so A′
i ∩ A′′

i ⊊ A′
i. Thus, we can choose Li

satisfying (14). Furthermore, since τ and τ ′ are object monotonic on M′ and τAi
< τ ′Ai

, we

can choose εi ∈ R++ satisfying (15) and εi|Ai| < τ ′Ai
− τAi

.

Let Ri ∈ RAdd ∩ RQ be such that for each a ∈ Ai, w
(
{a};Ri

)
= Ki, and for each

a ∈ M\Ai, w
(
{a};Ri

)
= εi. Similarly, let R′

i ∈ RAdd ∩ RQ be such that for each a ∈ A′
i,

w
(
{a};R′

i

)
= Li, and for each a ∈ M\A′

i, w
(
{a};R′

i

)
= εi. Note that since Ai ∩ A′

i = ∅, we
have w(Ai;R

′
i) = εi|Ai| and w(A′

i;R
′
i) = Li|A′

i|.

Step 2. Next, we construct an additive non-quasi-linear preference based on the two quasi-

linear preferences Ri and R′
i constructed in Step 1. For each A′′

i ∈ M, we have

w(A′′
i ;Ri)− w(Ai;Ri) + τAi

= εi|A′′
i \Ai| −Ki|Ai\A′′

i |+ τAi

≤ Li|A′′
i ∩ A′

i|+ εi|A′′
i \Ai|+ τAi

< Li|A′′
i ∩ A′

i|+ εi|A′′
i \A′

i| − εi|Ai|+ τ ′Ai

= w(A′′
i ;R

′
i)− w(Ai;R

′
i) + τ ′Ai

,

where the second inequality follows from εi|Ai| < τ ′Ai
−τAi

. This implies that the indifference

curve of Ri through (Ai, τAi
) lies entirely to the left of that of R′

i through (Ai, τ
′
Ai
). Thus,

by Remark 4, the following preference R′′
i ∈ R is well-defined: for each A′′

i ∈ M and each

ti ∈ R,

ti − V
(
A′′

i , (Ai, ti);R
′′
i

)

=


w(Ai;Ri)− w(A′′

i ;Ri) if ti ≤ τAi
,(

1− α(ti)
)(
w(Ai;Ri)− w(A′′

i ;Ri)
)
+ α(ti)

(
w(Ai;R

′
i)− w(A′′

i ;R
′
i)
)

if τAi
≤ ti ≤ τ ′Ai

,

w(Ai;R
′
i)− w(A′′

i ;R
′
i) if ti ≥ τ ′Ai

,

where α : [τAi
, τ ′Ai

] → [0, 1] is a function such that for each ti ∈ [τAi
, τ ′Ai

], α(ti) =
ti−τAi

τ ′Ai
−τAi

. By

additivity of Ri, R
′
i, we have R′′

i ∈ RAdd. By Remark 4, we also have that for each A′′
i ∈ M,

τAi
− V

(
A′′

i , (Ai, τAi
);R′′

i

)
= w(Ai;Ri)− w(A′′

i ;Ri), (16)

τ ′Ai
− V

(
A′′

i , (Ai, τ
′
Ai
);R′′

i

)
= w(Ai;R

′
i)− w(A′′

i ;R
′
i). (17)

Using (13), (15), and (16), we can show that R′′
i demands Ai at τ on M′ as in Step 3 of

Lemma 8. In the next two steps, we will demonstrate that R′′
i demands A′

i at τ
′ on M′.
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Step 3. We now claim that for each A′′
i ∈ M′\{Ai}, it holds that (Ai, τAi

) P ′′
i (A′

i, τ
′
A′

i
).

This can be established in the same manner as in Step 3 of Lemma 8, using (13), (15), and

(16). We therefore omit the details.

Step 4. Finally, we show that R′′
i demands A′

i at τ
′ on M′.

We first establish that (A′
i, τ

′
A′

i
) P ′′

i (Ai, τ
′
Ai
). Observe that

τ ′Ai
− V

(
A′

i, (Ai, τ
′
Ai
);R′′

i

)
= w(Ai;R

′
i)− w(A′

i;R
′
i) = εi|Ai| − Li|A′

i| ≤ εi|Ai| −Ki|A′
i| < τ ′Ai

− τ ′A′
i
,

where the first equality follows from (17); the first inequality from Li ≥ Ki; and the second

inequality uses (13) and A′
i ̸= ∅. Therefore, we have V

(
A′

i, (Ai, τ
′
Ai
);R′′

i

)
> τ ′A′

i
, which implies

that (A′
i, τ

′
A′

i
) P ′′

i (Ai, τ
′
Ai
).

Let A′′
i ∈ M′\{Ai, A

′
i}. We consider the following two cases.

Case 1. w(Ai;R
′
i)− τ ′Ai

≥ w(A′′
i ;R

′
i)− τ ′A′′

i
.

Then,

τ ′Ai
− V

(
A′′

i , (Ai, τ
′
Ai
);R′′

i

)
= w(Ai;R

′
i)− w(A′′

i ;R
′
i) ≥ τ ′Ai

− τ ′A′′
i
,

where the equality follows from (17), and the inequality uses the assumption that w(Ai;R
′
i)−

τ ′Ai
≥ w(A′′

i ;R
′
i) − τ ′A′′

i
. Thus, V

(
A′′

i , (Ai, τ
′
Ai
);R′′

i

)
≤ τ ′A′′

i
, so (Ai, τ

′
Ai
) R′′

i (A′′
i , τ

′
A′′

i
). This,

together with (A′
i, τ

′
A′

i
) P ′′

i (Ai, τ
′
Ai
), implies that (A′

i, τ
′
A′

i
) P ′′

i (A′′
i , τ

′
A′′

i
).

Case 2. w(A′′
i ;R

′
i)− τ ′A′′

i
≥ w(Ai;R

′
i)− τ ′Ai

.

Let tA′′
i
≡ V

(
Ai, (A

′′
i , τ

′
A′′

i
);R′′

i

)
. Then, in a similar way to Case 1, we can show that

(A′′
i , τ

′
A′′

i
) R′′

i (Ai, τ
′
Ai
), Thus, (Ai, tA′′

i
) I ′′i (A′′

i , τ
′
A′′

i
) R′′

i (Ai, τ
′
Ai
), which implies that tA′′

i
≤ τ ′Ai

.

By Step 3, (Ai, τAi
) P ′′

i (A′′
i , τ

′
A′′

i
). Thus, (Ai, τAi

) P ′′
i (A′′

i , τ
′
A′′

i
) I ′′i (Ai, tA′′

i
), which implies

tA′′
i
> τAi

. Thus, tA′′
i
∈ [τAi

, τ ′Ai
]. Thus,

tA′′
i
− τ ′A′′

i
= tA′′

i
− V

(
A′′

i , (Ai, tA′′
i
);R′′

i

)
=
(
1− α(tA′′

i
)
)(
w(Ai;Ri)− w(A′′

i ;Ri)
)
+ α(tA′′

i
)
(
w(Ai;R

′
i)− w(A′′

i ;R
′
i)
)
,

where the first equality follows from τ ′A′′
i
= V

(
A′′

i , (Ai, tA′′
i
);R′′

i

)
, which in turn follows from

(Ai, tA′′
i
) I ′′i (A′′

i , τ
′
A′′

i
); and the second equality follows from the definition of R′′

i . Rearranging
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this, we obtain

α(tA′′
i
) =

τ ′A′′
i
− tA′′

i
+
(
w(Ai;Ri)− w(A′′

i ;Ri)
)(

w(A′′
i ;R

′
i)− w(Ai;R′

i)
)
+
(
w(Ai;Ri)− w(A′′

i ;Ri)
)

=
τ ′A′′

i
− tA′′

i
+Ki|Ai\A′′

i | − εi|A′′
i \Ai|

Li|A′′
i ∩ A′

i|+ εi|A′′
i \A′

i| − εi|Ai|+Ki|Ai\A′′
i | − εi|A′′

i \Ai|
.

Let tA′
i
≡ V

(
Ai, (A

′
i, τ

′
A′

i
);R′′

i

)
. By (Ai, tA′

i
) I ′′i (A′

i, τ
′
A′

i
) P ′′

i (Ai, τ
′
Ai
), we have tA′

i
< τ ′Ai

.

By Step 3, (Ai, τAi
) P ′′

i (A′
i, τ

′
A′

i
) I ′′i (Ai, tA′

i
), which implies tA′

i
> τAi

. Thus, tA′
i
∈ [τAi

, τ ′Ai
].

Thus, in the same way as above, we can show that

α(tA′
i
) =

τ ′A′
i
− tA′

i
+
(
w(Ai;Ri)− w(A′

i;Ri)
)(

w(A′
i;R

′
i)− w(Ai;R′

i)
)
+
(
w(Ai;Ri)− w(A′

i;Ri)
)

=
τ ′A′

i
− tA′

i
+Ki|Ai| − εi|Ai|

Li|A′
i| − εi|Ai|+Ki|Ai| − εi|A′

i|
.

Since A′
i is maximal in M′, A′

i ̸⊆ A′′
i . Then,

α(tA′
i
) =

τ ′A′
i
− tA′

i
+Ki|Ai| − εi|Ai|

Li|A′
i| − εi|Ai|+Ki|Ai| − εi|A′

i|

≤
τ ′A′

i
− τAi

+Ki|Ai| − εi|Ai|
Li|A′

i| − εi|Ai|+Ki|Ai| − εi|A′
i|

<
τ ′A′′

i
− τ ′Ai

+Ki|Ai\A′′
i | − εi|A′′

i \Ai|
Li|A′′

i ∩ A′
i|+ εi|A′′

i \A′
i| − εi|Ai|+Ki|Ai\A′′

i | − εi|A′′
i \Ai|

≤
τ ′A′′

i
− tA′′

i
+Ki|Ai\A′′

i | − εi|A′′
i \Ai|

Li|A′′
i ∩ A′

i|+ εi|A′′
i \A′

i| − εi|Ai|+Ki|Ai\A′′
i | − εi|A′′

i \Ai|

= α(tA′′
i
),

where the first inequality follows from tA′
i
≥ τAi

; the second inequality uses (14) and A′
i ̸⊆ A′′

i ;

and the third inequality uses tA′′
i
≤ τ ′Ai

. Since α(ti) =
ti−τAi

τ ′Ai
−τAi

is an increasing function

in ti, α(tA′
i
) < α(tA′′

i
) implies that tA′

i
< tA′′

i
. Thus, V

(
Ai, (A

′
i, τ

′
A′

i
);R′′

i

)
= tA′

i
< tA′′

i
=

V
(
Ai, (A

′′
i , τ

′
A′′

i
);R′′

i

)
, which implies that (A′

i, τ
′
A′

i
) P ′′

i (A′′
i , τ

′
A′′

i
).

Thus, for each A′′
i ∈ M′\{A′

i}, (A′
i, τ

′
A′

i
) P ′′

i (A′′
i , τ

′
A′′

i
), so R′′

i demands A′
i at τ ′ on M′.

This completes the proof.

A.2 Proof of Proposition

We now proceed to the proof of Proposition. Let f ≡ (A, t) be a rule on Rn that satisfies

constrained efficiency, no wastage, equal treatment of equals, strategy-proofness, individual
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rationality, and no subsidy.

We begin with a brief outline of the proof. To show Af = C∗(B) for some partition B of

M with |B| ≤ n, it suffices to show the following four properties:

(i) Af is a B-bundling unit-demand constraint for some partition B of M .

(ii) |B| ≤ n.

(iii) Af satisfies no wastage.

(iv) Af satisfies anonymity.

Among these properties, (iii) follows directly from no wastage of f . Moreover, once (i) is

established, (ii) follows as a consequence of no wastage. Thus, it remains to prove that Af

satisfies properties (i) and (iv). In the first part (Appendix A.2.1), we prove property (i). This

part, outlined in Section 3.4.3, is the most technically involved in the paper and repeatedly

relies on no wastage of Af (i.e., property (iii)). In the second part (Appendix A.2.2), we prove

property (iv). A simple outline of the proof of this part in the two-agent, two-object case is

provided in Section 3.4.5. This part builds on the result that Af is a bundling unit-demand

constraint (i.e., property (i)) and again relies on no wastage of Af .

A.2.1 Bundling unit-demand constraint

In this subsection, we show that there exists a partition B of M such that Af is a B-bundling
unit-demand constraint and |B| ≤ n. The proof proceeds in three steps.

Step 1. We first show that for each i ∈ N and each distinct Ai, A
′
i ∈ Mi\{∅}, we have

Ai ∩ A′
i = ∅. Suppose for contradiction that there exist i ∈ N and distinct Ai, A

′
i ∈ Mi\{∅}

such that Ai ∩ A′
i ̸= ∅. The proof basically follows the outline provided in Section 3.4.3.

If A′
i is not maximal in Mi, then there exists A′′

i ∈ Mi such that A′′
i ⊋ A′

i. Since

Ai ∩ A′
i ̸= ∅, it follows that Ai ∩ A′′

i ̸= ∅. Therefore, without loss of generality, we may

assume that A′
i is maximal in Mi.

Since R is rich, we have RAdd ∩ RQ ⊆ RAdd ⊆ R. Let g be the restriction of f on

Rn to (RAdd ∩ RQ)n. Since f satisfies constrained efficiency, strategy-proofness, individual

rationality, and no subsidy, its restriction g also satisfies these properties. Thus, by Fact 3, g

is a constrained Vickrey rule. Thus, for each R ∈ (RAdd ∩ RQ)n, f(R) = g(R) is an outcome

of a constrained Vickrey rule, and hence
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ti(R) = ti
(
R−i;Ai(R)

)
= max

A′′∈Ag

∑
j∈N\{i}

w(A′′
j ;Rj)−

∑
j∈N\{i}

w(Aj(R);Rj)

= max
A′′∈Af

∑
j∈N\{i}

w(A′′
j ;Rj)−

∑
j∈N\{i}

w(Aj(R);Rj), (18)

where the last equality uses Af = Ag (see Lemma 3). Note that (18) corresponds to Claim 2

in the outline of the proof presented in Section 3.4.3.

Let R0 ∈ RAdd ∩ RQ be such that for each a ∈ M , w
(
{a};R0

)
= 1.

We consider two cases.

Case 1. For each A′′
i ∈ Mi with A′′

i ∩ A′
i ̸= ∅, it holds that A′′

i ⊆ A′
i.

Since Ai ∩ A′
i ̸= ∅, we have Ai ⊆ A′

i. Given that Ai ̸= A′
i, we have Ai ⊊ A′

i. Without

loss of generality, assume that Ai and A′
i are adjacent in Mi. Since Ai ̸= ∅, we can choose

a ∈ Ai. Since Ai ⊊ A′
i, we have A′

i\Ai ̸= ∅, so we can choose some b ∈ A′
i\Ai. Note that

a ̸= b. Figure 9 illustrates the packages Ai and A′
i.

𝐴𝑖
′

𝐴𝑖
𝑏

𝑎

Figure 9: An illustration of the packages in Case 1.

By Ai ∈ Mi, there exists A−i ∈ Mn−1 such that A ≡ (Ai, A−i) ∈ Af . By no wastage

of Af (which follows from no wastage of f) and b ̸∈ Ai, there exists j ∈ N\{i} such that

b ∈ Aj. Let Rj ∈ RAdd ∩ RQ be such that w
(
{b};Rj

)
= m + 1, and for each c ∈ M\{b},

w
(
{c};Rj

)
= 1. Let R′

j ∈ RAdd ∩ RQ be such that w
(
{a};R′

j

)
= 3m, w({b};R′

j) = m + 2,

and for each c ∈ M\{a, b}, w
(
{c};R′

j

)
= 1. For each k ∈ N\{i, j}, let Rk = R0.

Let τ, τ ′ ∈ R|Mi| be two object monotonic payment vectors on Mi such that for each
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A′′
i ∈ Mi(R−i), τA′′

i
= ti(R−i;A

′′
i ), and for each A′′

i ∈ Mi(R
′
j, R−i,j), τ

′
A′′

i
= ti(R

′
j, R−i,j;A

′′
i ).

Note that by Lemma 1, we can choose such τ, τ ′ satisfying object monotonicity on Mi.
27

Recall that A ∈ Af and b ∈ Aj. Thus, since w
(
{b};Rj

)
≥ w

(
{b};Rk

)
and w

(
{c};Rj

)
=

w
(
{c};Rk

)
for each k ∈ N\{i, j} and each c ∈ M\

(
Ai ∪ {b}

)
, Lemma 2 implies that there

exists Ri ∈ RAdd ∩ RQ such that Ai(Ri, R−i) = Ai, and thus Ai ∈ Mi(R−i). This corre-

sponds to Claim 1 in the outline of the proof presented in Section 3.4.3. Then, we have

τAi
= ti(R−i;Ai) = ti(R)

= max
A′′∈Af

∑
k∈N\{i}

w(A′′
k;Rk)−

∑
k∈N\{i}

w(Ak(R);Rk)

≤ max
A′′∈Af

∑
k∈N\{i}

w(A′′
k;Rk)

≤ w
(
{b};Rj

)
+ w

(
M\{b};R0

)
= 2m, (19)

where the first equality uses Ai ∈ Mi(R−i); the second equality follows from Ai(R) = Ai; the

third equality uses that R ∈ (RAdd ∩ RQ)n and (18); and the second inequality follows from

the fact that for each c ∈ M\{b}, w
(
{b};Rj

)
≥ w

(
{c};Rj

)
= w

(
{c};R0

)
, so that assigning

object b to agent j maximizes the total willingness to pay among agents in N\{i}.
By the same argument as above, we can invoke Lemma 2 to claim that there exists

R′
i ∈ RAdd ∩ RQ such that Ai(R

′
i,j, R−i,j) = Ai.

28 Thus, Ai ∈ Mi(R
′
j, R−i,j). Since A′

i is

maximal in Mi, A
′
i ∈ Mj (see Lemma 6). Since a ∈ Ai = Ai(R

′
i,j, R−i,j), a ̸∈ Aj(R

′
i,j, R−i,j).

Given A ∈ Af , a ̸∈ Aj(R
′
i,j, R−i,j), and b ∈ Aj, constrained efficiency implies that b ∈ Aj(R

′
i,j, R−i,j),

because―conditional on agent j not receiving object a (i.e., a ̸∈ Aj(R
′
i,j, R−i,j))―assigning

27For each A′′
i ∈ Mi\Mi(R−i), define τA′′

i
∈ R as follows:

(i) If there is no Ãi ∈ Mi such that Ãi ⊋ A′′
i , then τA′′

i
= maxÃi∈Mi(R−i)

τÃi
+ 1.

(ii) If there is no Ãi ∈ Mi such that Ãi ⊊ A′′
i , then τA′′

i
= minÃi∈Mi(R−i)

τÃi
− 1.

(iii) If there are Ãi, Ai ∈ Mi such that Ãi ⊊ A′′
i ⊊ Ai, then

max
Ãi∈Mi(R−i):Ãi⊊A′′

i

τÃi
< τA′′

i
< min

Ãi∈Mi(R−i):Ãi⊋A′′
i

τÃi
.

Note that in case (iii), we can choose such τA′′
i
due to Lemma 1. Then, using Lemma 1, it is straightforward

to show that τ is an object monotonic payment vector on Mi. An object monotonic payment vector τ ′ on
Mi can be constructed in the same manner.

28This also corresponds to Claim 1 in the outline of the proof presented in Section 3.4.3.
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object b to agent j maximizes the total willingness to pay. Then,

τ ′Ai
= ti(R

′
j, R−i,j;Ai) = ti(R

′
i,j, R−i,j)

= max
A′′∈Af

w(A′′
j ;R

′
j) +

∑
k∈N\{i,j}

w(A′′
k;Rk)


−

w
(
Aj(R

′
i,j, R−i,j);R

′
j

)
+

∑
k∈N\{i,j}

w
(
Ak(R

′
i,j, R−i,j);Rk

)
≥ w(A′

i;Rj)−

w
(
Aj(R

′
i,j, R−i,j);R

′
j

)
+

∑
k∈N\{i,j}

w
(
Ak(R

′
i,j, R−i,j);Rk

)
≥ w

(
{a};R′

j

)
+ w

(
{b};R′

j

)
−

w
(
Aj(R

′
i,j, R−i,j);R

′
j

)
+

∑
k∈N\{i,j}

w
(
Ak(R

′
i,j, R−i,j);Rk

)
≥ w

(
{a};R′

j

)
+ w

(
{b};R′

j

)
−
(
w
(
{b};R′

j

)
+ w

(
M\{b};R0

))
= w

(
{a};R′

j

)
− w

(
M\{b};R0

)
= 2m+ 1, (20)

where the first equality uses that Ai ∈ Mi(R
′
j, R−i,j); the second equality follows from

Ai(R
′
i,j, R−i,j) = Ai; the third equality uses that (R′

i,j, R−i,j) ∈ (RAdd ∩ RQ)n and (18); the

first inequality uses A′
i ∈ Mj; the second inequality follows from a, b ∈ A′

i and additivity of

R′
j; and the third inequality follows from b ∈ Aj(R

′
i,j, R−i,j), a ̸∈ Aj(R

′
i,j, R−i,j), and from the

fact that for each c ∈ M\{a, b}, w
(
{b};R′

j

)
≥ w

(
{c};R′

j

)
= w

(
{c};R0

)
, so that assigning

object b to agent j maximizes the total willingness to pay among agents in N\{i}.
Combining (19) and (20), we obtain

τ ′Ai
≥ 2m+ 1 > 2m ≥ τAi

.

This inequality corresponds to inequality (1) in the outline of the proof presented in Sec-

tion 3.4.3. Recall that τ and τ ′ are both object monotonic on Mi. Note that ∅ ̸= Ai ⊊ A′
i,

that Ai and A′
i are adjacent in Mi, and that, by the assumption of Case 1, for each A′′

i ∈ Mi

with A′
i ∩ A′′

i ̸= ∅, it holds that A′′
i ⊆ A′

i. Thus, the assumptions of Lemma 8 are satisfied,

and so the lemma implies that there exists R′′
i ∈ RAdd that demands Ai at τ and A′

i at τ
′ on

Mi. Note that this corresponds to Claim 3 in the proof outline provided in Section 3.4.3.

Recall that Ai ∈ Mi(R−i), and note that Mi(R−i) ⊆ Mi. Thus, since R
′′
i demands Ai at

τ on Mi, it follows that for each A′′
i ∈ Mi(R−i)\{Ai}, zi(R−i;Ai) = (Ai, τAi

) P ′′
i (A′′

i , τA′′
i
) =

zi(R−i;A
′′
i ). Therefore, by strategy-proofness, Ai(R

′′
i , R−i) = Ai (see Remark 3). Since

54



a ∈ Ai, we have a ∈ Ai(R
′′
i , R−i), and hence a ̸∈ Aj(R

′′
i , R−i). Also, since A ∈ Af , a ̸∈ Aj(R

′′
i , R−i),

and b ∈ Aj, it follows from constrained efficiency that b ∈ Aj(R
′′
i , R−i), as assigning object b

to agent j, conditional on agent j not receiving object a (i.e., a ̸∈ Aj(R
′′
i , R−i)), maximizes

the total willingness to pay.

Since w
(
{c};R′

j

)
= w

(
{c};R0

)
= w

(
{c};Rk

)
for each k ∈ N\{i, j} and each c ∈ M\A′

i,

Lemma 2 implies that A′
i ∈ Mi(R

′
j, R−i,j). Thus, since Mi(R

′
j, R−i,j) ⊆ Mi and R′′

i de-

mands A′
i at τ

′ on Mi, it follows that for each A′′
i ∈ Mi(R

′
j, R−i,j)\{A′

i}, zi(R′
j, R−i,j;A

′
i) =

(A′
i, τ

′
A′

i
) P ′′

i (A′′
i , τ

′
A′′

i
) = zi(R

′
j, R−i,j;A

′′
i ). Therefore, by strategy-proofness, Ai(R

′′
i , R

′
j, R−i,j) =

A′
i (see Remark 3). Since a, b ∈ A′

i = Ai(R
′′
i , R

′
j, R−i,j), it follows that a, b ̸∈ Aj(R

′′
i , R

′
j, R−i,j).

To sum up, we have

a ̸∈ Aj(R
′′
i , R−i), b ∈ Aj(R

′′
i , R−i), a, b ̸∈ Aj(R

′′
i , R

′
j, R−i,j). (21)

This corresponds to Claim 4 in the outline of the proof presented in Section 3.4.3. Then,

w
(
Aj(R

′′
i , R−i);R

′
j

)
− w

(
Aj(R

′′
i , R

′
j, R−i,j);R

′
j

)
=
(
|Aj(R

′′
i , R−i)\{a}|+ (m+ 2)

)
− |Aj(R

′′
i , R

′
j, R−i,j)|

>
(
|Aj(R

′′
i , R−i)\{a}|+ (m+ 1)

)
− |Aj(R

′′
i , R

′
j, R−i,j)|

= w
(
Aj(R

′′
i , R−i);Rj

)
− w

(
Aj(R

′′
i , R

′
j, R−i,j);Rj

)
,

where the first and the second equalities follow from (21) and additivity of Rj, R
′
j. This

inequality corresponds to inequality (2) in the outline of the proof presented in Section 3.4.3.

However, it contradicts monotonicity of f (see Fact 3).

Case 2. There exists A′′
i ∈ Mi such that A′

i ∩ A′′
i ̸= ∅ and A′′

i ̸⊆ A′
i.

ByAi ∩ A′
i ̸= ∅, we may assume without loss of generality that A′′

i = Ai. Since Ai ∩ A′
i ̸= ∅,

we can choose some a ∈ Ai ∩ A′
i. Since Ai ̸⊆ A′

i, we also have Ai\A′
i ̸= ∅, so we can choose

some b ∈ Ai\A′
i. Note that a ̸= b. If there exists A′′

i ∈ Mi such that A′′
i ⊋ Ai, then a ∈ A′

i ∩ A′′
i

and b ∈ A′′
i \A′

i. Therefore, without loss of generality, we may assume that Ai is maximal in

Mi.

Let j ∈ N\{i}. Since A′
i is maximal in Mi, A

′
i ∈ Mj, and it is also maximal in Mj

(see Lemma 6). Since A′
i is maximal in Mj and b ̸∈ A′

i, there exists A′′ ∈ Af such that

A′′
j = A′

i and b ∈ A′′
i (see Lemma 7). Since A′′

i ∩ A′′
j = ∅ and A′′

j = A′
i, we have A

′′
i ∩ A′

i = ∅.
Therefore, as a ∈ A′

i, we have a ̸∈ A′′
i .

55



In summary, we obtain

a, b ∈ Ai, a ∈ A′
i, b ̸∈ A′

i, b ∈ A′′
i , a ̸∈ A′′

i .

Figure 10 illustrates the packages Ai, A
′
i, and A′′

i .

𝐴𝑖
′ = 𝐴𝑗

′′

𝑎

𝐴𝑖

𝐴𝑖
′′

𝑎
𝑏

Figure 10: An illustration of the packages in Case 2.

LetRj ∈ RAdd ∩ RQ be such that w
(
{a};Rj

)
= m+1, and for each c ∈ M\{a}, w

(
{c};Rj

)
=

1. Let R′
j ∈ RAdd ∩ RQ be such that w

(
{a};R′

j

)
= 4m + 1, w

(
{b};R′

j

)
= 3m, and for each

c ∈ M\{a, b}, w
(
{c};R′

j

)
= w

(
{c};R0

)
. For each k ∈ N\{i, j}, let Rk = R0.

Let τ, τ ′ ∈ R|Mi| be two object monotonic payment vectors on Mi such that for each

A′′′
i ∈ Mi(R−i), we have τA′′′

i
= ti(R−i;A

′′′
i ), and for each A′′′

i ∈ Mi(R
′
j, R−i,j), we have

τ ′A′′′
i
= ti(R

′
j, R−i,j;A

′′′
i ). By Lemma 1, such τ, τ ′ can be chosen to satisfy object monotonicity

on Mi.
29

Recall that A′′ ∈ Af and a ∈ A′′
j . Thus, since w

(
{a};Rj

)
≥ w

(
{a};Rk

)
and w

(
{c};Rj

)
=

w
(
{c};Rk

)
for each k ∈ N\{i, j} and each c ∈ M\

(
A′′

i ∪ {a}
)
, Lemma 2 implies that there

exists Ri ∈ RAdd ∩ RQ such that Ai(Ri, R−i) = A′′
i . Thus, A

′′
i ∈ Mi(R−i). This corresponds

29For a detailed discussion, see footnote 25.
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to Claim 1 in the outline of the proof presented in Section 3.4.3. Then,

τA′′
i
= ti(R−i;A

′′
i ) = ti(R)

= max
A′′′∈Af

∑
k∈N\{i}

w(A′′′
k ;Rk)−

∑
k∈N\{i}

w
(
Ak(R);Rk

)
≤ max

A′′′∈Af

∑
k∈N\{i}

w(A′′′
k ;Rk)

≤ w
(
{a};Rj

)
+ w

(
M\{a};R0

)
= 2m, (22)

where the first equality follows from A′′
i ∈ Mi(R−i); the second equality from Ai(R) = A′′

i ; the

third equality uses R ∈ (RAdd ∩ RQ)n and (18); and the second inequality follows from the

fact that, for each c ∈ M\{a}, we have w
(
{a};Rj

)
≥ w

(
{c};Rj

)
= w

(
{c};R0

)
, so assigning

object a to agent j maximizes the total willingness to pay among agents in N\{i}.
By the same argument as above, Lemma 2 implies that there exists R′

i ∈ RAdd ∩ RQ

such that Ai(R
′
i, R

′
j, R−i,j) = A′′

i .
30 Thus, A′′

i ∈ Mi(R
′
j, R−i,j). Since A′

i is maximal in Mi,

A′
i ∈ Mj (see Lemma 6). By b ∈ A′′

i and Ai(R
′
i,j, R−i,j) = A′′

i , we have b ̸∈ Aj(R
′
i,j, R−i,j).

Thus, given A′′ ∈ Af and a ∈ A′′
j , it follows from constrained efficiency that a ∈ Aj(R

′
i,j, R−i,j),

because―conditional on agent j not receiving object b (i.e., b ̸∈ Aj(R
′
i,j, R−i,j))―assigning

object a to agent j maximizes the total willingness to pay. Then,

τ ′A′′
i
= ti(R

′
j, R−i,j;A

′′
i ) = ti(R

′
i,j, R−i,j)

= max
A′′′∈Af

w(A′′′
j ;R

′
j) +

∑
k∈N\{i,j}

w(A′′′
k ;Rk)


−

w
(
Aj(R

′
i,j, R−i,j);R

′
j

)
+

∑
k∈N\{i,j}

w
(
Ak(R

′
i,j, R−i,j);Rk

)
≥ w(Ai;R

′
j)−

w
(
Aj(R

′
i,j, R−i,j);R

′
j

)
+

∑
k∈N\{i,j}

w
(
Ak(R

′
i,j, R−i,j);Rk

)
≥ w

(
{a};R′

j

)
+ w

(
{b};R′

j

)
−

w
(
Aj(R

′
i,j, R−i,j);R

′
j

)
+

∑
k∈N\{i,j}

w
(
Ak(R

′
i,j, R−i,j);Rk

)
≥ w

(
{a};R′

j

)
+ w

(
{b};R′

j

)
−
(
w
(
{a};R′

j

)
+ w

(
M\{a};R0

))
= w

(
{b};R′

j

)
− w

(
M\{a};R0

)
= 2m+ 1, (23)

30Note that this also corresponds to Claim 1 in the outline of the proof presented in Section 3.4.3.
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where the first equality follows from A′′
i ∈ Mi(R

′
j, R−i,j); the second equality from Ai(R

′
i,j, R−i,j) =

A′′
i ; the third equality uses (R′

i,j, R−i,j) ∈ (RAdd ∩ RQ)n and (18); the first inequality follows

from Ai ∈ Mj; the second inequality from a, b ∈ Ai and additivity of R′
j; and the third in-

equality from the facts that a ∈ Aj(R
′
i,j, R−i,j), b ̸∈ Aj(R

′
i,j, R−i,j), and for each c ∈ M\{a, b},

w
(
{b};R′

j

)
≥ w

(
{c};R′

j

)
= w

(
{c};R0

)
, so that assigning object a to agent j maximizes the

total willingness to pay among agents in N\{i}.
By (22) and (23),

τ ′A′′
i
≥ 2m+ 1 > 2m ≥ τA′′

i
.

This inequality corresponds to inequality (1) in the outline of the proof presented in Sec-

tion 3.4.3. Recall that τ and τ ′ are both object monotonic on Mi. Thus, since A
′
i ∩ A′′

i = ∅,
A′

i ̸= ∅, and A′
i is maximal in Mi, we can invoke Lemma 9 to conclude that there exists

R′′
i ∈ RAdd that demands A′′

i at τ and A′
i at τ

′ on Mi. Note that this corresponds to Claim 3

in the proof outline provided in Section 3.4.3.

Recall that A′′
i ∈ Mi(R−i). Thus, since Mi(R−i) ⊆ Mi and R′′

i demands A′′
i at τ on

Mi, it follows that for each A′′′
i ∈ Mi(R−i)\{A′′

i }, zi(R−i;A
′′
i ) = (A′′

i , τA′′
i
) P ′′

i (A′′′
i , τA′′′

i
) =

zi(R−i;A
′′′
i ). Therefore, by strategy-proofness, Ai(R

′′
i , R−i) = A′′

i (see Remark 3). Since

b ∈ A′′
i = Ai(R

′′
i , R−i), it follows that b ̸∈ Aj(R

′′
i , R−i). On the other hand, since A′′ ∈ Af

and a ∈ A′′
j , constrained efficiency implies that a ∈ Aj(R

′′
i , R−i), as, conditional on agent j

not receiving object b (i.e., b ̸∈ Aj(R
′′
i , R−i)), assigning object a to agent j maximizes the

total willingness to pay.

Recall that A′
i ̸= ∅ is maximal in Mi. Thus, since b ̸∈ A′

i, there exists A′′′ ∈ Af such

that A′′′
i = A′

i and b ∈ A′′′
j (see Lemma 7). Moreover, since w

(
{b};R′

j

)
≥ w

(
{b};Rk

)
and

w
(
{c};R′

j

)
= w

(
{c};Rk

)
for each k ∈ N\{i, j} and each c ∈ M\

(
A′

i ∪ {b}
)
, Lemma 3 im-

plies that A′
i ∈ Mi(R

′
j, R−i,j). Since Mi(R

′
j, R−i,j) ⊆ Mi and R′′

i demands A′
i at τ

′ on Mi,

it follows that for each Ãi ∈ Mi(R
′
j, R−i,j)\{A′

i}, zi(R′
j, R−i,j;A

′
i) = (A′

i, τ
′
A′

i
) P ′′

i (Ãi, τ
′
Ãi
) =

zi(R
′
j, R−i,j; Ãi). Hence, by strategy-proofness, Ai(R

′′
i , R

′
j, R−i,j) = A′

i (see Remark 3).

Since a ∈ A′
i = Ai(R

′′
i , R

′
j, R−i,j), it follows that a ̸∈ Aj(R

′′
i , R

′
j, R−i,j). Furthermore, since

A′′′ ∈ Af and b ∈ A′′′
j , constrained efficiency implies that b ∈ Aj(R

′′
i , R

′
j, R−i,j), as, condi-

tional on agent j not receiving object a (i.e., a ̸∈ Aj(R
′′
i , R

′
j, R−i,j)), assigning object b to

agent j maximizes the total willingness to pay.

To sum up, we have

a ∈ Aj(R
′′
i , R−i), b ̸∈ Aj(R

′′
i , R−i), a ̸∈ Aj(R

′′
i , R

′
j, R−i,j), b ∈ Aj(R

′′
i , R

′
j, R−i,j). (24)
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This corresponds to Claim 4 in the outline of the proof presented in Section 3.4.3. Then,

w
(
Aj(R

′′
i , R−i);R

′
j

)
− w

(
Aj(R

′′
i , R

′
j, R−i,j);R

′
j

)
=
(
|Aj(R

′′
i , R−i)\{a}|+ (4m+ 1)

)
−
(
|Aj(R

′′
i , R

′
j, R−i,j)\{b}|+ 3m

)
>
(
|Aj(R

′′
i , R−i)\{a}|+ (m+ 1)

)
−
(
|Aj(R

′′
i , R

′
j, R−i,j)\{b}|+ 1

)
= w

(
Aj(R

′′
i , R−i);Rj

)
− w

(
Aj(R

′′
i , R

′
j, R−i,j);Rj

)
,

where the first and the second equalities follow from (24) and additivity of Rj, R
′
j. This

inequality corresponds to inequality (2) in the outline of the proof presented in Section 3.4.3.

However, this contradicts monotonicity of f (see Fact 3).

Step 2. In this step, we show that for each i, j ∈ N , Mi = Mj. Let i, j ∈ N be two

distinct agents. We show that Mi ⊆ Mj; the reverse inclusion follows symmetrically. Let

Ai ∈ Mi. If Ai ̸= ∅, then by Step 1, Ai is maximal in Mi. Hence, Ai ∈ Mj (see Lemma 6).

Now suppose Ai = ∅. To show that Ai ∈ Mj, suppose for contradiction that Ai ̸∈ Mj. For

each k ∈ N , let Rk ∈ RAdd ∩ RQ be such that for each a ∈ M , w
(
{a};Rk

)
= 1. Note that

Ri = Rj.

By Ai ∈ Mi, there exists A−i ∈ Mn−1 such that A ≡ (Ai, A−i) ∈ Af . Given that Ai = ∅
and using no wastage of Af (which follows from no wastage of f), we have

⋃
k∈N\{i} Ak = M .

Therefore,

max
A′∈Af

∑
k∈N\{i}

w(A′
k;Rk) ≥

∑
k∈N\{i}

w(Ak;Rk) = m, (25)

where the inequality uses A ∈ Af .

Let A′ ∈ Af . Since Ai = ∅ ̸∈ Mj, we have A′
j ̸= ∅. By no wastage of Af , it follows that⋃

k∈N\{j} A
′
k = M\A′

j. Therefore,

∑
k∈N\{j}

w(A′
k;Rk) = m− |A′

j| < m,

where the inequality follows from A′
j ̸= ∅. Since A′ ∈ Af was arbitrary, we obtain

max
A′∈Af

∑
k∈N\{j}

w(A′
k;Rk) < m. (26)

By (25) and (26),

max
A′∈Af

∑
k∈N\{i}

w(A′
k;Rk) ≥ m > max

A′∈Af

∑
k∈N\{j}

w(A′
k;Rk),
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which contradicts Lemma 4.

Step 3. We now complete the proof. Let B ≡
⋃

i∈N
(
Mi\{∅}

)
. By no wastage of Af ,

we have
⋃
B = M . By Step 2, for each i ∈ N , we have B = Mi\{∅}. Then, by Step 1,

for each distinct Ai, A
′
i ∈ B, Ai ∩ A′

i = ∅. Thus, B is a partition of M . Furthermore, for

each A ∈ Af and each i ∈ N , since Ai ∈ Mi and B = Mi\{∅}, we have Ai ∈ B ∪ {∅}.
Hence, Af is a B-bundling unit-demand constraint. Finally, by no wastage of Af , we have

|B| ≤ n, since otherwise more than n non-empty packages would be assigned to distinct

agents, contradicting feasibility. ■

A.2.2 Anonymity

In this subsection, we prove that Af satisfies anonymity. The argument in this subsection

corresponds to the outline given in Section 3.4.5.

A permutation π : N → N is said to be a transposition on N if there exist i, j ∈ N such

that π(i) = j, π(j) = i, and for each k ∈ N\{i, j}, π(k) = k. Note that any permutation on

N can be written as a product of transpositions. Hence, to prove that Af satisfies anonymity,

it suffices to show that for each A ∈ Af and each transposition π on N , Aπ ∈ Af . The proof

proceeds in two steps.

Step 1. We show that for each A ∈ Af and each transposition π on N such that for some

i, j ∈ N , π(i) = j, π(j) = i, and Aj = ∅, we have Aπ ∈ Af . The argument in Step 1

corresponds to Case 1 in the outline presented in Section 3.4.5. Let A ∈ Af . Let π be a

transposition on N such that for some distinct i, j ∈ N , π(i) = j, π(j) = i, and Aj = ∅.
If Ai = ∅, then Aπ = A ∈ Af . Suppose that Ai ̸= ∅. To show Aπ ∈ Af , suppose for

contradiction that Aπ ̸∈ Af .

For each k ∈ {i, j}, let Rk ∈ RAdd ∩ RQ be such that for each a ∈ Ai, w
(
{a};Rk

)
=

m+1, and for each a ∈ M\Ai, w
(
{a};Rk

)
= 1. Note that Ri = Rj. For each k ∈ N\{i, j}, let

Rk ∈ RAdd ∩ RQ be such that for each a ∈ Ak, w
(
{a};Rk

)
= m+1, and for each a ∈ M\Ak,

w
(
{a};Rk

)
= 1.

By A ∈ Af ,

max
A′∈Af

∑
k∈N\{j}

w(A′
k;Rk) ≥

∑
k∈N\{j}

w(Ak;Rk) = (m+ 1)
∑

k∈N\{j}

|Ak|. (27)

Let A′ ∈ Af . We claim A′
j ̸⊇ Ai, or there exists k ∈ N\{i, j} such that A′

k ̸⊇ Ak. For

contradiction, suppose that A′
j ⊇ Ai, and for each k ∈ N\{i, j}, A′

k ⊇ Ak. Then, we have
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⋃
k∈N\{i} A

′
k ⊇

⋃
k∈N\{j} Ak. By no wastage of Af (which follows from no wastage of f),

A ∈ Af implies that
⋃

k∈N\{j} Ak = M\Aj = M , where the last equality follows from Aj = ∅.
Also, by no wastage of Af and A′ ∈ Af ,

⋃
k∈N\{i} A

′
k = M\A′

i. Thus, M\A′
i ⊇ M , and hence

A′
i = ∅ = Aj. Since Af is a bundling unit-demand constraint (see Appendix A.2.1) and

Ai ̸= ∅, Ai is maximal in Mi. Thus, since Mi = Mj (see Step 2 of Appendix A.2.1) Ai is

also maximal in Mj. Thus, by A′
j ⊇ Ai, A

′
j = Ai. Let N+(A) ≡ {k ∈ N : Ak ̸= ∅}. Since

Af is a bundling unit-demand constraint, for each k ∈ N+(A)\{i, j} such that Ak ̸= ∅, Ak

is maximal in Mk, so A′
k ⊇ Ak implies A′

k = Ak. Thus,

A′
j ∪

 ⋃
k∈N+(A)\{i,j}

A′
k

 = Ai ∪

 ⋃
k∈N+(A)\{i,j}

Ak

 =
⋃
k∈N

Ak = M,

where the second equality follows from Aj = ∅, and the last one from no wastage of Af . This

implies that for each k ∈ N\
(
{i, j} ∪ N+(A)

)
, A′

k = ∅ = Ak. Therefore, we conclude that

A′ = Aπ. However, this contradicts that A′ ∈ Af and Aπ ̸∈ Af .

Thus, we have A′
j ̸⊇ Ai, or there exists k ∈ N\{i, j} such that A′

k ̸⊇ Ak. Thus, we have

A′
j ∩ Ai ⊊ Ai, or there exists k ∈ N\{i, j} such that A′

k ∩ Ak ⊊ Ak. Thus,

∑
k∈N\{i}

w(A′
k;Rk) = (m+ 1)

|A′
j ∩ Ai|+

∑
k∈N\{i,j}

|A′
k ∩ Ak|

+ |A′
j\Ai|+

∑
k∈N\{i,j}

|A′
k\Ak|

≤ (m+ 1)

|A′
j ∩ Ai|+

∑
k∈N\{i,j}

|A′
k ∩ Ak|

+m

< (m+ 1)
∑

k∈N\{j}

|Ak|,

where the second inequality uses the fact that A′
j ∩ Ai ⊊ Ai, or there exists k ∈ N\{i, j} such

that A′
k ∩ Ak ⊊ Ak (and hence |A′

j ∩ Ai| +
∑

k∈N\{i,j} |A′
k ∩ Ak| <

∑
k∈N\{j} |Ak|). Since

A′ ∈ Af was arbitrary, we have

max
A′′∈Af

∑
k∈N\{i}

w(A′′
k;Rk) < (m+ 1)

∑
k∈N\{j}

|Ak|. (28)

By (27) and (28),

max
A′′∈Af

∑
k∈N\{j}

w(A′′
k;Rk) ≥ (m+ 1)

∑
k∈N\{j}

|Ak| > max
A′′∈Af

∑
k∈N\{i}

w(A′′
k;Rk),

which contradicts Lemma 4.
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Step 2. Next, we show that for each A ∈ Af and each transposition π on N such that for

some i, j ∈ N , π(i) = j, π(j) = i, and Ai, Aj ̸= ∅, we have Aπ ∈ Af . The argument in Step 2

corresponds to Case 2 in the outline presented in Section 3.4.5. Let A ∈ Af . Let π be a

transposition on N such that for some distinct i, j ∈ N , π(i) = j, π(j) = i, and Ai, Aj ̸= ∅.
We show that Aπ ∈ Af . There are two cases.

Case 1. There exists k ∈ N\{i, j} such that Ak = ∅.

𝐴 = 𝐴𝑖 , 𝐴𝑗 , 𝐴𝑘 , 𝐴−{𝑖,𝑗,𝑘}

𝐴𝜋1
= 𝐴𝑘 , 𝐴𝑗 , 𝐴𝑖 , 𝐴−{𝑖,𝑗,𝑘}

𝐴𝜋2𝜋1
= 𝐴𝑗 , 𝐴𝑘 , 𝐴𝑖 , 𝐴−{𝑖,𝑗,𝑘}

𝐴𝜋 = 𝐴𝜋3𝜋2𝜋1
= 𝐴𝑗 , 𝐴𝑖 , 𝐴𝑘 , 𝐴−{𝑖,𝑗,𝑘}

𝑖 𝑗 𝑘 𝑁 ∖ {𝑖, 𝑗, 𝑘}

agents

Figure 11: An illustration of the packages A, Aπ1
, Aπ2π1

, and Aπ3π2π1
in Case 1 of Step 2

We introduce a notation: given two transpositions π1 and π2 onN , we define Aπ2π1 ≡ (Aπ1
)π

2
.

Let π1 be a transposition on N such that π1(i) = k and π1(k) = i. By Ak = ∅, Step 1 implies

that Aπ1 ∈ Af . Let π2 be a transposition on N such that π2(i) = j and π2(j) = i, and π3 a

transposition on N such that π3(j) = k and π3(k) = j. Then, by successively applying Step

1 and using Ak = ∅, we obtain Aπ3π2π1 ∈ Af . Thus, since Aπ = Aπ3π2π1
(see Figure 11), it

follows that Aπ ∈ Af .

Case 2. For each k ∈ N\{i, j}, Ak ̸= ∅.

To show Aπ ∈ Af , suppose for contradiction that Aπ ̸∈ Af .

We first claim that for each A′ ∈ Af , A′
j ̸⊇ Ai, or there exists k ∈ N\{i, j} such that

A′
k ̸⊇ Ak. Suppose for contradiction that there exists A′ ∈ Af such that A′

j ⊇ Ai, and

for each k ∈ N\{i, j}, A′
k ⊇ Ak. Since Af is a bundling unit-demand constraint (see Ap-

pendix A.2.1) and Ai ̸= ∅, it follows as in Step 1 that A′
j = Ai. Moreover, for each

k ∈ N\{i, j}, since Ak ̸= ∅, Ak is maximal in Mk. Hence, A
′
k ⊇ Ak implies that A′

k = Ak. It

then follows that
⋃

k∈N\{i} A
′
k =

⋃
k∈N\{j} Ak, and using no wastage of Af , we obtain A′

i = Aj.
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Therefore, Aπ = A′, contradicting the assumption that A′ ∈ Af and Aπ ̸∈ Af .

It follows that for each A′ ∈ Af , A′
j ̸⊇ Ai, or there exists k ∈ N\{i, j} such that A′

k ̸⊇ Ak.

The remaining part of the proof, including the construction of a preference profile, follows

the same argument as in Step 1. Thus, we omit the details. ■

B Proof of Theorem

In this section, we present the proof of Theorem.

We show that for each rich domain R and each partition B of M , we have R|B0 = R|B0 .

Let R be a rich domain, and let B be a partition of M . Since R ⊆ R, it follows that

R|B0 ⊆ R|B0 .

We now show the reverse inclusion, i.e., R|B0 ⊆ R|B0 . Let Ri|B0 ∈ R|B0 , where Ri ∈ R.

Let R′
i ∈ RAdd be such that for each Bi ∈ B and each ti ∈ R, w(Bi, ti;R

′
i) = w(Bi, ti;Ri).

Note that such R′
i ∈ RAdd can be defined because B is a partition of M . By richness of R, it

follows that R′
i ∈ R. Hence, R′

i|B0 ∈ R|B0 . By the definition of R′
i, for each Bi, B

′
i ∈ B0 and

each ti, t
′
i ∈ R, we have (Bi, ti) R

′
i (B

′
i, ti) if and only if (Bi, ti) Ri (B

′
i, t

′
i). This implies that

R′
i|B0 = R|B0 . Thus, since R′

i|B0 ∈ R|B0 , we conclude that Ri|B0 ∈ R|B0 .

We now complete the proof of Theorem. We have already shown R|B0 = R|B0 . Thus, the

“if” part of Theorem follows from Fact 2 (i). We next prove the “only if” part of Theorem.

Suppose that a rule f on Rn satisfies constrained efficiency, no wastage, equal treatment

of equals, strategy-proofness, individual rationality, and no subsidy. By Proposition, there

exists a partition B of M such that Af = C∗(B) and |B| ≤ n. Since R|B0 = R|B0 , it then

follows from Fact 2 (ii) that f is a B-bundling MPW rule. ■

C Proof of Claim 5

In this section, we provide the proof of Claim 5. For each R ∈ Rn such that fi(R) =(
M,V (M,0;R0)

)
for some i ∈ N , we have f(R) ̸= g(R). Note that, by richness of R, there

exists such R ∈ Rn. Thus, f is different from any bundling MPW rule.

We show that f satisfies the properties except for constrained efficiency. Since g satisfies

no wastage, equal treatment of equals, anonymity, no envy, individual rationality, and no

subsidy, f inherits these properties.

We now show that f satisfies strategy-proofness.31 Let R ∈ R4. We show that agent 1

31If n = 3 and the domain includes non-additive preferences, the same type of rule f as in Example 5 is
not strategy-proof. In the case n = 3, the rule is defined as follows. Let R0 ∈ R.
(i) If |{i ∈ N : Ri = R0}| = 2, and for the unique i ∈ N with Ri ̸= R0, it holds that(
M,V (M,0;R0)

)
Pi gi(R), then define fi(R) =

(
M,V (M,0;R0)

)
and fj(R) = 0 for each j ∈ N\{i}.
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cannot benefit from misrepresenting his preferences; the same argument applies to any i ̸= 1.

There are three cases.

Case 1.
∣∣{i ∈ N \ {1} : Ri = R0

}∣∣ ≤ 1.

In this case, for each R′
1 ∈ R, we have |{i ∈ N : R′

i = R0| ≤ 2, where R′
i = Ri for each

i ∈ N\{1}. Hence, by the definition of the rule f , it follows that f1(R
′
1, R−1) = g1(R

′
1, R−1)

for each R′
1 ∈ R. Since g is strategy-proof (see Fact 2 (i)), agent 1 cannot benefit from

misrepresenting his preferences.

Case 2.
∣∣{i ∈ N\{1} : Ri = R0

}∣∣ = 2.

In this case, for each R′
1 ∈ R, we have either f1(R

′
1, R−1) = g1(R

′
1, R−1) or f1(R

′
1, R−1) =

0. We claim that f1(R) R1 g1(R). Note that either (i) f1(R) = g1(R) or (ii) f1(R) ̸= g1(R)

and f1(R) = 0.

In case (i), the claim holds trivially. In case (ii), since exactly two agents other than

agent 1 have preference R0, the rule assigns f1(R) = 0 only when R1 = R0. In this case,

we can compute pmin(R,B) ≡
(
pmin
a (R,B), pmin

b (R,B)
)
=
(
V
(
{a},0;R0

)
, V
(
{b},0;R0

))
.32

Thus, since R1 = R0, we have f1(R) = 0 I1 g1(R).

(ii) If |{i ∈ N : Ri = R0}| ̸= 2, or if |{i ∈ N : Ri = R0}| = 2 but the above condition(
M,V (M,0;R0)

)
Pi gi(R) fails, then let f(R) = g(R).

This rule f is not strategy-proof. To see this, let R0 ∈ RAdd ∩ RQ be such that w
(
{a};R0

)
= w

(
{b};R0

)
=

2 and w(M ;R0) = 4. Let R1 ∈ R ∩ RQ be such that w
(
{a};R1

)
= w

(
{b};R1

)
= 1 and w(M ;R1) = 5, and

let R2 = R3 = R0. Note that agent 1 has a non-additive preference R1.
Then, g2(R) =

(
{a}, 1

)
and f2(R) = 0. Let R′

2 ∈ RAdd ∩ RQ be such that w
(
{a};R′

2

)
= w

(
{b};R′

2

)
= 3

and w(M ;R′
2) = 6. Then, f2(R

′
2, R−2) = g2(R

′
2, R−2) =

(
{a}, 1

)
. Hence, f(R′

2, R−2) P2 f(R), and f fails
strategy-proofness.

In this example, the non-additivity of R1 is crucial for agent 2 to benefit from misreporting R′
2. Even

when n = 3, if the domain includes only additive preferences, the same type of rule f as in Example 5 is
strategy-proof. Therefore, constrained efficiency is indispensable for the conclusion of Theorem.

32To see this, let z ∈ Zmin(R,B) be a B-bundling unit-demand Walrasian equilibrium allocation supported
by pmin(B, R). Given R1 = R0 and

∣∣{i ∈ N\{1} : Ri = R0

}∣∣ = 2, exactly three agents have the same
preference R0. Since B contains only two packages, at least one of these agents―say agent j―must receive 0
under z. If pmin

a (R,B) < V
(
{a},0;R0

)
, then agent j would strictly prefer package {a} to his assigned package

Aj = ∅ at price pmin(R,B), contradicting the definition of a B-bundling unit-demand Walrasian equilibrium.
Thus, pmin

a (R,B) ≥ V
(
{a},0;R0

)
. Similarly, we have pmin

b (R,B) ≥ V ({b},0;R0).

Let p′ ≡
(
V
(
{a},0;R0

)
, V
(
{b},0;R0

))
be a B-bundling price vector. Let k ∈ N be the unique agent with

Rk ̸= R0 (such k exists since exactly three agents have preference R0).
Consider an allocation z′ ≡ (A′, t′) such that: (i) A′ ∈ C∗(B); (ii) agent k receives his most preferred

package in B at price p′; (iii) the remaining packages in B are allocated arbitrarily among the other agents;
and (iv) for each l ∈ N , t′l = p′A′

l
.

Then, (z′, p′) is a B-bundling unit-demand Walrasian equilibrium for R, so p′ ∈ P (B, R). We already
showed p′ ≤ pmin(R,B). Since pmin(R,B) is the minimum element of P (B, R) and p′ ∈ P (B, R), we have

pmin(R,B) ≤ p′. Combining these inequalities yields pmin(R,B) = p′ =
(
V
(
{a},0;R0

)
, V
(
{b},0;R0

))
.
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Therefore, we have f1(R) R1 g1(R). Given that
∣∣{i ∈ N\{1} : Ri = R0

}∣∣ = 2, we

have, for each R′
1 ∈ R, either f1(R

′
1, R−1) = g1(R

′
1, R−1) or f1(R

′
1, R−1) = 0. By strategy-

proofness of g (see Fact 2 (i)), we have f1(R) R1 g1(R) R1 g1(R
′
1, R−1) for each R′

1 ∈ R, and

by individual rationality of g (Fact 2 (i)), f1(R) R1 g1(R) R1 0. Thus, in either case, agent

1 cannot benefit by misrepresenting his preferences.

Case 3.
∣∣{i ∈ N \ {1} : Ri = R0

}∣∣ = 3.

We show that f1(R) R1 g1(R) and f1(R) R1 (M,V (M,0;R0)). There are three cases.

First, suppose R1 = R0. Then, since more than three agents have preference R0,

f1(R) = g1(R). It follows from individual rationality of g (see Fact 2 (i)) that f1(R) =

g1(R) R1 0 I1
(
M,V (M,0;R1)

)
=
(
M,V (M,0;R0)

)
.

Second, suppose R1 ̸= R0 and g1(R) R1

(
M,V (M,0;R0)

)
. Then, since three agents other

than agent 1 have preference R0, we have f1(R) = g1(R), and hence f1(R) = g1(R) R1

(
M,V (M,0;R0)

)
.

Finally, if R1 ̸= R0 and
(
M,V (M,0;R0)

)
P1 g1(R), then, again by the fact that three

agents other than agent 1 have preference R0, f1(R) =
(
M,V (M,0;R0)

)
. Thus, f1(R) =(

M,V (M,0;R0)
)
P1 g1(R).

In all three cases, we conclude that f1(R) R1 g1(R) and f1(R) R1

(
M,V (M,0;R0)

)
.

Moreover, since
∣∣{i ∈ N \ {1} : Ri = R0

}∣∣ = 3, it follows from the definition of the rule f

that for each R′
1 ∈ R, f1(R

′
1, R−1) ∈

{
g1(R

′
1, R−1),

(
M,V (M,0;R0)

)}
. Then, by strategy-

proofness of g (see Fact 2 (i)), we have f1(R) R1 g1(R) R1 g1(R
′
1, R−1). Thus, agent 1 cannot

benefit from misrepresenting his preferences.

Finally, we show that f violates constrained efficiency. Let R ∈ (RAdd∩RQ)4 be such that:

(i) w
(
{a};R1

)
= 2, w

(
{b};R1

)
= 2, and w(M ;R1) = 4; (ii) R2 = R1; (iii) w

(
{a};R3

)
= 1,

w
(
{b};R3

)
= 3, and w(M ;R3) = 4; and (iv) w

(
{a};R4

)
= 5, w

(
{b};R4

)
= 5, and

w(M ;R4) = 10. Then, f(R) = g(R) =
(
0,0,

(
{b}, 2

)
,
(
{a}, 2

))
. Let z ≡

(
0,0, (∅,−1), (M, 7)

)
.

Note that A ≡ (∅, ∅, ∅,M) ∈ Af , where A is the object allocation associated with z. More-

over, z Pareto dominates f(R) for R. Therefore, f violates constrained efficiency. ■

D Rich domains

In this section, we present examples of rich domains to which Theorem applies.

A price vector is a vector p ≡ (pa)a∈M ∈ Rm
+ . Note that a price vector differs from

a bundling price vector in that a price vector specifies the price of each object , whereas a
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bundling price vector specifies the price of each package. Thus, a price vector corresponds to

a B-bundling price vector.

Given a preference Ri ∈ R and a price vector p ∈ Rm
+ , the (Walrasian) demand set

for Ri at p is defined as

D(Ri, p) ≡

Ai ∈ M : ∀A′
i ∈ M,

(
Ai,
∑
a∈Ai

pa

)
Ri

A′
i,
∑
a∈A′

i

pa

 ,

where we set
∑

a∈∅ pa ≡ 0. In words, the demand set for Ri at p is the set of most preferred

packages at the given price vector p.

Given a preference Ri ∈ R, a price vector p ∈ Rm
+ , and zi ∈ M × R, the Hicksian de-

mand set for Ri at p and zi is defined as

DH(Ri, p, zi) ≡

Ai ∈ M : ∃ti ∈ R such that (Ai, ti) ∈ arg min
(A′

i,t
′
i)∈M×R:(A′

i,t
′
i)Ri zi

∑
a∈A′

i

pa − t′i

 .

Here, a payment is considered a good, with its price normalized to −1. Thus, the expen-

diture for (Ai, ti) at price vector p is equal to
∑

a∈Ai
pa − ti. The Hicksian demand set at

p and zi is the set of expenditure-minimizing packages that yield at least as high a welfare

level as zi.

The following are examples of rich domains. These domains have recently attracted

attention because they ensure the existence of a Walrasian equilibrium without requiring

quasi-linearity.

Example 11 (Rich domains). The following are all rich domains.

• A preference Ri satisfies the net substitutes condition (Kelso and Crawford, 1982;

Baldwin et al., 2023) if for each price vector p ∈ Rm
+ , each zi ∈ M × R, each a ∈ M ,

each δ ∈ R++, and each Ai ∈ DH(Ri, p, zi), there exists A′
i ∈ DH(Ri, p + δea, zi) such

that Ai\{a} ⊆ A′
i. That is, a preference satisfies the net substitutes condition if, when-

ever the price of an object increases, the Hicksian demand for the other objects does not

decrease. This condition reflects substitutability among all objects and guarantees the

existence of a Walrasian equilibrium (Kelso and Crawford, 1982; Baldwin et al., 2023).

Let RNS denote the class of all preferences that satisfy the net substitutes condition.

Then, RNS is a rich domain (Kelso and Crawford, 1982; Baldwin et al., 2023).33

33To be more specific, the richness of RNS follows from two established results:

– Baldwin et al. (2023) show that a preference Ri satisfies the net substitutes condition, provided that for
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• A preference Ri satisfies the net complements condition (Rostek and Yoder, 2020;

Baldwin et al., 2023) if for each p, p′ ∈ Rm
+ with p ≥ p′, each zi ∈ M × R, eachAi ∈ DH(Ri, p, zi),

and each A′
i ∈ DH(Ri, p

′, zi), we have that Ai ∩ A′
i ∈ DH(Ri, p, zi) and Ai ∪ A′

i ∈ DH(Ri, p
′, zi).

Roughly speaking, a preference satisfies the net complements condition if, as prices in-

crease, the Hicksian demand for the objects does not increase. The net complements

condition reflects complementarity among all objects and ensures the existence of a

Walrasian equilibrium (Rostek and Yoder, 2020; Baldwin et al., 2023). Let RNC de-

note the class of all preferences that satisfy the net complements condition. Then, RNC

is a rich domain (Rostek and Yoder, 2020; Baldwin et al., 2023).

• Let B be a partition of M such that |B| = 2. Thus, M is partitioned into two sets,

M1 and M2. A preference Ri satisfies the net substitutes and complements con-

dition (with respect to B) (Sun and Yang, 2006; Baldwin et al., 2023) if for each

price vector p ∈ Rm
+ , each zi ∈ X × R, each distinct j, k ∈ {1, 2}, each a ∈ Mj, each

δ ∈ R++, and each Ai ∈ DH(Ri, p, zi), there exists A′
i ∈ DH(Ri, p + δea, zi) such that

(Ai ∩ Mj)\{a} ⊆ A′
i ∩ Mj and A′

i ∩ Mk ⊆ Ai ∩ Mk. That is, the net substitutes and

complements condition requires that when the price of an object in Mj increases, the

Hicksian demand for other objects in the same set does not decrease, while the demand

for objects in the other set does not increase. This condition reflects substitutability

within each set and complementarity across sets. It guarantees the existence of a Wal-

rasian equilibrium (Sun and Yang, 2006; Baldwin et al., 2023). Given a partition B of

M with |B| = 2, let RNSC(B) denote the class of all preferences that satisfy the net

substitutes and complements condition with respect to B. Then, RNSC(B) is a rich

domain (Sun and Yang, 2006; Baldwin et al., 2023).

• A preference Ri satisfies the single improvement condition (Gul and Stacchetti,

1999; Nguyen and Vohra, 2024) if for each price vector p ∈ Rm
+ and each Ai ̸∈ D(Ri, p),

there exists A′
i ∈ M such that

(
A′

i,
∑

a∈A′
i
pa

)
Pi

(
Ai,
∑

a∈Ai
pa
)
, |Ai\A′

i| ≤ 1, and

|A′
i\Ai| ≤ 1. That is, a preference satisfies the single improvement condition if any

suboptimal bundle (in terms of Walrasian demand) can be improved by removing,

adding, or swapping a single object. The single improvement condition is equivalent to

the net substitutes condition under quasi-linear preferences (Gul and Stacchetti, 1999),

each payment ti ∈ R, the quasi-linear preference R′
i ∈ RQ with willingness to pay w(·;R′

i) = w(·, ti;Ri)
satisfies the net substitutes condition.

– Kelso and Crawford (1982) establish that all additive quasi-linear preferences satisfy the net substitutes
condition.

By the same argument, one can also show that the net complements domain and the net substitutes and
complements domain introduced below are both rich.

67



and has played a central role in the design of dynamic auctions that converge to a

Walrasian equilibrium under quasi-linear preferences (Gul and Stacchetti, 2000).34 It

also guarantees the existence of a Walrasian equilibrium even without assuming quasi-

linearity (Nguyen and Vohra, 2024). Let RSI denote the class of all preferences that

satisfy the single improvement condition. Then, RSI is a rich domain.35

• Gul and Stacchetti (1999) also introduce another condition that is equivalent to both

the net substitutes condition and the single improvement condition under quasi-linear

preferences. A preference Ri satisfies the no complementarities condition (Gul

and Stacchetti, 1999) if for each price vector p ∈ Rm
+ , each Ai, A

′
i ∈ D(Ri, p), and each

A′′
i ∈ M with A′′

i ⊆ Ai, there exists A
′′′
i ∈ M such that A′′′

i ⊆ A′
i andAi\(A′′

i ∪ A′′′
i ) ∈ D(Ri, p).

This condition guarantees the existence of a Walrasian equilibrium without assuming

quasi-linearity (Nguyen and Vohra, 2024). Let RNoC denote the class of all preferences

that satisfy the no complementarities condition. Then, RNoC is a rich domain.

We can also define the gross substitutes condition (Kelso and Crawford, 1982), the gross

complements condition (Rostek and Yoder, 2020), and the gross substitutes and complements

condition (Sun and Yang, 2006) in terms of the Walrasian demand set instead of the Hicksian

demand set. However, none of these domains is rich.
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