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Abstract

We consider a package assignment problem with money, in which a finite set M of
objects is allocated to agents. Each agent receives a package of objects and makes a
payment, and has preferences over pairs consisting of a package and a payment. These
preferences are not necessarily quasi-linear. The admissible set of object allocations is
chosen by the planner to pursue specific objectives in conjunction with the rule. A rule
satisfies constrained efficiency if no allocation—whose object allocation is admissible
under the rule—Pareto dominates the allocation selected by the rule. We study the com-
patibility between constraints on admissible object allocations and desirable properties
of rules, and characterize the rules that satisfy both. We establish that: A rule satisfies
constrained efficiency, no wastage, equal treatment of equals, strategy-proofness, indi-
vidual rationality, and no subsidy if and only if its admissible set of object allocations
is bundling unit-demand for some partition of M, satisfies no wastage and anonymity,

and the rule is a bundling unit-demand minimum price Walrasian rule.
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1 Introduction

1.1 Constraints in auctions

Since the 1990s, governments in many countries have used auctions to allocate frequency
licenses to cellphone carriers. These auctions not only generate substantial revenue but also
have significant economic implications. In such auctions, it is common to impose constraints
on license allocations. For example, to prevent monopolistic power or to ensure broader
participation among carriers, a single carrier is often limited in the number of licenses it
can acquire.! In some cases, certain licenses are set aside for new entrants to promote their
participation in the cellphone market.?

Because electromagnetic frequencies are physically continuous, the allocation of frequency
licenses is inherently flexible. However, licenses are bundled into specific frequency bands
before the auction, and each carrier is allowed to obtain only one or a few such bundled bands.
This bundling introduces a constraint on the allocation. Similar constraints frequently arise
in other public auctions—for example, those involving land, housing, or other public assets

distributed to citizens.

1.2 Compatibility between constraints and desirable properties

Although constraints are introduced to promote desirable allocations, their effects are not
necessarily compatible with fundamental properties of rules—such as efficiency, fairness, and
incentive compatibility. For example, by limiting the flexibility of allocations, constraints may
compromise efficiency. Therefore, it is essential to examine how such constraints interact with
these properties. This paper investigates the compatibility between constraints on object

allocations and desirable rule properties, and characterizes the rules that satisfy both.

1.3 Main results
1.3.1 Model description

We consider a model with a set N of agents and a set M of objects, where objects are
allocated to agents. Each agent receives a package of objects and makes a payment for it.
Agents have preferences over pairs consisting of a package and a payment. These preferences

are not necessarily quasi-linear and may reflect income effects and financial constraints, which

1For example, frequency license auctions in the USA (2020), UK (2018, 2021), France (2020), Italy (2018),
Australia (2021), Korea (2018), and Spain (2018, 2022), among others.

2For example, frequency license auctions in Canada (2019, 2021), Korea (2024), and Belgium (2022),
among others.



are particularly relevant in large-scale auctions, such as frequency license auctions and other
public resource allocations.

A (feasible) object allocation specifies how objects are assigned to agents. An allocation
includes both an object allocation and the agents’ payments. An allocation rule, or a rule
for short, is a function from a set of preference profiles to the set of admissible allocations.

We distinguish between feasibility and admissibility of object allocations. The feasible set
is determined by technological constraints outside the planner’s control, whereas the admis-
sible set is a subset of the feasible set, chosen by the planner to achieve specific objectives in
conjunction with the rule. Importantly, the admissible set is not exogenous but is defined as
part of the rule itself: an admissible object allocation is one that can arise for some preference
profile under the rule. In other words, the admissible set corresponds to the range of object

allocations under the rule.

1.3.2 Desirable properties of rules

We assume that the planner is concerned only with her total revenue from an allocation. An
allocation Pareto dominates another if each agent and the planner weakly prefer the former
to the latter, and at least one agent or the planner strictly prefers it. A rule is Pareto efficient
if it always selects an allocation that is not dominated by any other allocation whose object
allocation is feasible. It is constrained efficient if it always selects an allocation that is not
dominated by any other allocation whose object allocation is admissible under the rule. Since
the admissible set of object allocations is a subset of the feasible set, constrained efficiency is
generally weaker than Pareto efficiency, unless the two sets coincide. Moreover, the smaller
the admissible set, the weaker the requirement of constrained efficiency. Thus, there is a
trade-off: the stronger the requirement of constrained efficiency, the more diverse the set
of admissible object allocations—though satisfying the stronger requirement becomes more
demanding. A rule satisfies no wastage if all objects are always allocated to agents. Note
that no wastage is also an efficiency requirement, though weaker than Pareto efficiency.
Strategy-proofness is a dominant strategy incentive compatibility condition, requiring that
no agent ever benefit from misrepresenting his preferences. Individual rationality is a vol-
untary participation condition, requiring that each agent find his assigned pair (a package
of objects and a payment) at least as desirable as receiving no object and paying nothing.
No subsidy is a condition that prevents disinterested agents from participating in the rule
solely to obtain subsidies, requiring that each agent’s payment always be non-negative. Fqual
treatment of equals is a fundamental fairness condition, requiring that whenever two agents

have identical preferences, they receive the same level of welfare.



1.3.3 Constraints compatible with desirable properties

We first investigate which admissible sets of object allocations are compatible with the de-
sirable properties of constrained efficiency, no wastage, equal treatment of equals, strategy-
proofness, individual rationality, and no subsidy.

A constraint is a subset of the set of feasible object allocations. Note that the admissible
set of object allocations under a rule is itself a constraint. A constraint satisfies anonymity if
for each object allocation in the constraint, any permutation of agents also yields an object
allocation that belongs to the constraint. A constraint satisfies no wastage if, in every object
allocation that belongs to the constraint, all objects are assigned to agents.

Given a partition B of M, a constraint is called B-bundling if, in each object allocation
in the constraint, each agent is allowed to receive a subset of B or nothing. A B-bundling
constraint is said to be of unit-demand if, in each object allocation in the constraint, each
agent is allowed to receive exactly one element of B or nothing. Thus, under a B-bundling
unit-demand constraint, each agent may receive one package from B or nothing. If each
package in B is interpreted as a single “object,” then the B-bundling unit-demand constraint
becomes essentially equivalent to the unit-demand model, in which each agent is allowed to
receive at most one object.

We establish that: if there exists a rule satisfying constrained efficiency, no wastage, equal
treatment of equals, strategy-proofness, individual rationality, and no subsidy, then the set
of admissible object allocations must be B-bundling unit-demand for some partition B of M
with at most |N| elements, and must satisfy no wastage and anonymity (Proposition).

Proposition thus shows that compatibility with these desirable properties imposes strong
restrictions on the admissible set: it must be much smaller than the feasible set of object

allocations, thereby necessarily sacrificing Pareto efficiency.

1.4 Rules satisfying desirable properties

Next, we investigate rules that satisfy the desirable properties—namely, constrained effi-
ciency, no wastage, equal treatment of equals, strategy-proofness, individual rationality, and
no subsidy.

As noted earlier, when the admissible set of object allocations is B-bundling unit-demand
and satisfies both no wastage and anonymity —as in the conclusion of Proposition—the math-
ematical structure of our model becomes equivalent to the unit-demand model a la Demange
and Gale (1985), in which each agent may receive at most one object. In that setting, the
minimum price Walrasian (MPW) rules not only exist but are also the only rules that satisfy

Pareto efficiency, strategy-proofness, individual rationality, and no subsidy (Demange and
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Gale, 1985; Morimoto and Serizawa, 2015; Wakabayashi et al., 2025). For any B-bundling
unit-demand constraint satisfying no wastage and anonymity, we define the counterpart of
an MPW rule in our model, referred to as a bundling minimum price Walrasian (MPW')
rule.

By applying the above characterization results in the unit-demand model (Demange and
Gale, 1985; Morimoto and Serizawa, 2015; Wakabayashi et al., 2025), we establish the follow-
ing: A rule satisfies constrained efficiency, no wastage, equal treatment of equals, strategy-
proofness, individual rationality, and no subsidy if and only if the set of admissible object
allocations is B-bundling unit-demand for some partition B of M with at most | N| elements,
satisfies no wastage and anonymity, and the rule is a B-bundling unit-demand MPW rule.

(Theorem)

1.5 Implications of results

Our results (Proposition and Theorem) suggest that, unless the set of admissible object
allocations is carefully selected, it is impossible to design a rule that satisfies the desirable
properties. Moreover, they have a practical implication: if the planner aims to satisfy the
desirable properties—constrained efficiency, no wastage, equal treatment of equals, strategy-
proofness, individual rationality, and no subsidy—then she must adopt a bundling unit-
demand constraint satisfying no wastage and anonymity, and must employ the associated
bundling unit-demand MPW rule.

It is worth noting that the constraints used in public auctions in many countries can be
classified as bundling unit-demand constraints that satisfy both no wastage and anonymity.?
While a primary motivation for adopting such constraints has been to reduce the risk of
collusion among bidders (Binmore and Klemperer, 2002), our results provide a novel rationale
for this auction design: bundling unit-demand constraints are the only ones that permit the

existence of a rule satisfying (constrained) efficiency, fairness, and strategy-proofness.

1.6 Related literature
1.6.1 Quasi-linear preferences

The literature on object allocation problems with money is extensive. A common assumption

in this literature is that agents have quasi-linear preferences. This assumption is particularly

3For example, the European 3G frequency license auctions in the U.K., the Netherlands, Italy, and Den-
mark, as well as recent auctions in Korea (2024), Hong Kong (2019), Finland (2018, 2020), and Poland
(2023). Additionally, auctions allocating public housing to citizens inherently follow bundling unit-demand
constraints.



useful because it renders the problem of efficient object allocation equivalent to simply max-
imizing the sum of valuations.

One of the most celebrated results in the literature is that if a class of preferences consists
solely of quasi-linear preferences and is sufficiently rich, then the Vickrey rules (Vickrey, 1961)
are the only rules that satisty Pareto efficiency, strategy-proofness, individual rationality, and
no subsidy (see, e.g., Holmstrom, 1979; Chew and Serizawa, 2007). Notably, Holmstrom’s
(1979) characterization continues to hold when Pareto efficiency is replaced by constrained
efficiency and the Vickrey rules are replaced by the constrained Vickrey rules—that is, the
constrained Vickrey rules are the only rules that satisfy constrained efficiency, strategy-
proofness, individual rationality, and no subsidy.* This paper contributes to the literature
by extending Holmstrom’s result to settings with non-quasi-linear preferences, while also
incorporating two additional but relatively weak requirements: a fairness condition —equal

treatment of equals—and an efficiency condition—no wastage.

1.6.2 Non-quasi-linear preferences

Although the assumption of quasi-linear preferences is analytically convenient, it limits the
applicability of results to situations where payments are small relative to agents’ incomes
or budgets, such that income effects and budget constraints can be ignored. However, in
many important applications of object allocation problems with money—such as frequency
license auctions—payments are typically large, making income effects and budget constraints
non-negligible. Motivated by this limitation, a small but growing literature has begun to
examine object allocation problems with money under non-quasi-linear preferences.

Some studies in this literature assume that agents have unit-demand preferences. As
discussed in Section 1.4, when agents have unit-demand and non-quasi-linear preferences, the
MPW rules are the only rules that satisfy Pareto efficiency, strategy-proofness, individual
rationality, and no subsidy (see, e.g., Demange and Gale, 1985; Morimoto and Serizawa,
2015; Wakabayashi et al., 2025).

In contrast, other studies assume that agents have multi-demand preferences, as in this
paper. A series of results has shown that when agents have multi-demand and non-quasi-
linear preferences, no rule satisfies Pareto efficiency, fairness, and strategy-proofness simul-
taneously (see, e.g., Kazumura and Serizawa, 2016; Baisa, 2020; Malik and Mishra, 2021;
Kazumura, 2022; Shinozaki et al., 2025). These impossibility results imply that at least one

of these three properties— Pareto efficiency, fairness, or strategy-proofness—must be relaxed

4A constrained Vickrey rule modifies the standard Vickrey rule by restricting attention to admissible
object allocations when determining the object allocation and the payments. See Definition 5 in Section 3.4.2
for the formal definition.



or abandoned in this setting. This paper contributes to the literature by relaxing Pareto effi-
ciency to constrained efficiency and characterizing rules that satisfy the remaining desirable
properties. Moreover, to the best of our knowledge, this is the first paper to explicitly study
constrained efficiency and strategy-proofness in package assignment problems with money
under non-quasi-linear preferences.

The aforementioned studies assume that the set of admissible object allocations is exoge-
nously given, whereas our framework allows the planner to endogenously determine this set
as part of the rule design. In this respect, the models considered in those studies can be seen

as special cases of our more general framework."%

1.6.3 Walrasian equilibrium allocation under constraints

Recently, several papers have investigated the existence and structure of (standard, non-
bundling) Walrasian equilibrium allocations in package assignment problems with money
under (non-)quasi-linear preferences (see, e.g., Fleiner et al., 2019; Kojima et al., 2020;
Schlegel, 2022; Baldwin et al., 2023; Nguyen and Vohra, 2024). While Walrasian rules
—that is, rules that select a Walrasian equilibrium allocation for each preference profile
—satisfy Pareto efficiency (or constrained efficiency in constrained settings) and fairness
(under anonymous constraints), they generally fail to satisfy strategy-proofness. This paper
complements these studies by focusing on rules that satisfy strategy-proofness.

Bando et al. (2025) analyze a two-sided many-to-one matching model with money, under
individual constraints and quasi-linear preferences. They show that the gross substitutes
condition (Kelso and Crawford, 1982) on the preferences of a multi-demand agent (i.e., a
firm) is both necessary and sufficient for the existence of a strategy-proof Walrasian rule
on the unit-demand side of the market (i.e., the workers). Since their study concerns a
two-sided matching model with money and assumes quasi-linear preferences, their result is

logically independent of ours.

1.7 Structure of the paper

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
presents the main results. Section 4 concludes. All formal proofs are provided in the Ap-

pendix.

>Two notable exceptions are Baisa (2020) and Shinozaki et al. (2025), which examine models with identical
objects. Since the package assignment model studied in this paper accommodates heterogeneous objects, their
models do not constitute special cases of the present framework.

5To be precise, our results do not imply theirs (and vice versa), as the previous studies do not explicitly
assume fairness properties such as equal treatment of equals.
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2 Model

There are n > 2 agents and m > 1 objects. The set of agents is denoted by N = {1,...,n}.
Our generic notations for agents are 7, j, k, etc. The set of objects is denoted by M with
|M| = m. Our generic notations for objects are a,b,c, etc. Let M =2M.7 A subset of M,
i.e., an element of M, is referred to as a package. Each agent i € N receives a package
A; € M and pays t; € R. A (consumption) pair consisting of a package and a payment of
agent 7 is denoted by z; = (A;, ;) € M x R. Let 0 = (,0) € M x R denote the pair where

an agent ¢ € N receives no object and makes no payment.

2.1 Preferences

Each agent ¢ € N has a complete and transitive preference R; over M x R. The strict and
indifference relations associated with R; are denoted by P; and I;, respectively. We assume

that each preference R; satisfies the following properties.

Money monotonicity. For each A; € M and each ¢;,t; € R with¢; < t,, we have (A;,t;) P; (A;,t}).

Object monotonicity. For each A;, A € M with A, C A; and each ¢; € R, we have

Possibility of compensation. For each z; € M x R and each A; € M, there exist two
payments ¢;,t; € R such that (A;,¢;) R; z; and z; R; (A;,t)).
Continuity. For each z; € M x R, the upper contour set at z;, {2z € M x R: 2zl R; z;},

and the lower contour set at z;, {z/ € M x R: z R; 2!}, are both closed.

Our generic notation for a class of preferences satisfying the above four properties is R,
which we refer to as a domain.® Let R denote the class of all preferences satisfying the
above four properties.

Given R; € R, A; € M, and z; € M x R, possibility of compensation and continuity to-
gether imply that there exists a payment V(A;, z;; R;) € R such that (AZ-, V(A;, zi; RZ)) I; z.°

By money monotonicity, such a payment V(A;,z; R;) is unique. We call the payment

"Given a set G, 2¢ denotes the power set of G, i.e., 2¢ = {G' : G’ C G}.

8Note that, due to object monotonicity, any domain we consider in this paper does not include any unit-
demand preference, where a preference R; is said to exhibit unit demand if for each A; € M\{(0} and each
t; € R, there exists a € A; such that ({a},ti) R; (A, t).

9For a formal proof of the existence of such a payment, see Lemma 1 of Kazumura and Serizawa (2016).



V(A;, z;; R;) the valuation of A; at z; for R;. It represents the amount of payment that
makes receiving package A; together with the payment is indifferent to z; according to pref-
erence R;.

Given R; € R, A; € M, and t; € R, let w(A;, t; R;) = V(AZ-, (@,ti);Ri) —t;. We call
w(A;, t;; R;) the willingness to pay of A; at ¢; for R;. It represents the maximal amount
of money that an agent is willing to pay for the package A; when he currently owns no object
and has made a payment of ¢;. By object monotonicity, for each A;, A; € M with A, C A;
and each t; € R, it holds that w(A;,t;; R) > w(AL t;; R;).

{a, b} : : V({a, b}, z;; R;) g
| L Wbl Ry
i i V({{b}, z;; R;) Rl
(b} :
A i | w({b},7;; R))
(- \ -
al— L ;
: 7 . - .
w({a}, T{J R;) . i Zp = ({a}; tz)
E/ -1, = -V(® z;R) V(®,z Rl):
* %
’ @ 0 (@, 7:) Payment

Figure 1: An illustration of a preference.

Figure 1 provides an illustration of a preference R;. Fach horizontal line represents a
package, and each point on a line indicates a payment level. Thus, each point corresponds to
a pair consisting of a package and a payment. The vertical line represents the set of pairs with
zero payment. The solid lines represent the indifference curves associated with the preference
R;. Note that the valuations and willingness to pay for R; are also depicted in Figure 1.

We introduce two special classes of preferences that are of particular importance.

First, the following class consists of preferences without income effects, which has been

studied extensively in the literature (e.g., Holmstrém, 1979).

Definition 1. A preference R; € R is quasi-linear if for each (A;, t;), (4}, t)) € M x R and

1) 71 1) 71

Let R? denote the class of all quasi-linear preferences.

Figure 2 illustrates a quasi-linear preference. As shown in the figure, under a quasi-linear
preference, the willingness to pay of each package is independent of the payment. Thus, for
each A; € M and each t;,t; € R, we have w(A;, t;; R;) = w(A;, t}; R;) = w(A;; R;). Moreover,

if a preference R; is quasi-linear, it can be represented by a utility function u; : M x R — R



Parallel

{a, b} g

w({a, b}, t/; ;) w({a, b}, t;; RY)

{b}

R, w@LtiRO\Ri  w(b)tiR)

{a}

w({a}:, ti;R;) W({a}:; ti; Ry)

@.t) @ t) Payment

Figure 2: An illustration of a quasi-linear preference.

such that for each z; = (A;,t;) € M X R, u;(z;) = w(A;; R;) — t;. Thus, our concept of
willingness to pay aligns with the quasi-linear valuation under quasi-linear preferences.
Second, the following class consists of preferences with additive willingness to pay over

packages.

Definition 2. A preference R; is additive if for each A;, A; € M with A; N A = ) and

each t; € R, we have
w(A; U A} s Ri) = w( Ay, ti; Ri) + w(Aj ti; Ry).

Let R4 denote the class of all additive preferences. Note that R4 includes preferences

that are additive but not necessarily quasi-linear, i.e., R4% ¢ RY.

W({a'b}' t[" RL) W({a,b}, tLIRL)
= w({a}, t;; R;) + w({b}, ti}Ri) =w({a} t;; R) + w({b}, t; R)

{a, b}

/

R;

{b}

w({b}, t{; R;) a}, t,-,';Rli) w({b}, t;; R;) w({a}, t;; R;)

{a}

wiia), ¢/ R) 7 wbh i R) w{a), t R Wby tsR) |

©, ) ' ©,6) Payment

Figure 3: An illustration of an additive preference.

Figure 3 is an illustration of an addtive preference R;. As shown in the figure, the will-

ingness to pay of a package at each payment is equivalent to the sum of the willingness to
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pay of the individual objects contained in the package at that payment. Note that when a
preference is additive but not quasi-linear, as depicted in Figure 3, the shapes of the indif-
ference curves can vary depending on the payment, but each indifference curve consistently
reflects the additive willingness to pay.

A domain R is said to be rich if it includes all additive preferences, i.e., R O RA%.
Many non-quasi-linear domains studied in the literature are rich. Examples include the net
substitutes domain (Kelso and Crawford, 1982; Baldwin et al., 2023), the net complements
domain (Rostek and Yoder, 2020; Baldwin et al., 2023), the net substitutes and complements
domain (Sun and Yang, 2006; Baldwin et al., 2023), the single improvement domain (Gul
and Stacchetti, 1999; Nguyen and Vohra, 2024), and the no complementarities domain (Gul
and Stacchetti, 1999), among others. The conditions defining these domains are based on the
Hicksian demand, which represents the demand for a package along the locus of its valuation.
The additivity of preferences ensures that this locus satisfies the conditions characterizing

these domains.©

2.2 Allocations

An object allocation is an n-tuple A = (4;);eny € M" such that for each distinct 7,5 € N,
A;NA; = 0. Let A denote the set of all object allocations. Given A € A and N’ C N,
let A_n» = (Ri)ienar. In particular, for given A € A and two distinct agents i, j € N, let
A = (Akeniy and A = (Ap)ken\fiy-

An allocation is an n-tuple z = (A;,t;)ieny € (M x R)"™ such that (A4;);eny € A. Let Z
denote the set of allocations. Given z = (A;,t;)ien € Z, its associated object allocation and
payment profile are denoted by A = (A;);en and t = (¢;);en respectively. When convenient,
we write z = (A, t) € Z.

2.3 Rules

A preference profile is an n-tuple R = (R;);eny € R". Given R € R" and N' C N, let
Ry = (Ri)ien' and R_n» = (R;)ien\nv- In particular, for given R € R" and two distinct
agents ¢,7 € N, let R;; = Ry, Ry = R_g;), and R_;; = R_g .

An (allocation) rule on R" is a mapping f : R" — Z. With a slight abuse of notation,
we may write f = (A,t), where A : R" — A and t : R" — R" are the object allocation
and the payment rules associated with f, respectively. The package that agent ¢ receives
and his payment under a rule f at a preference profile R are denoted by A;(R) and t;(R),
respectively, so that f;(R) = (4i(R),t;(R)).

10For the formal definitions of the domains listed above, see Example 11 in Appendix D.
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2.4 Admissible object allocations and constraints

We refer to a subset of A as a constraint. Our generic notation for a constraint is C C A.

Given a rule f on R", let A7 = {A € A: 3R € R" such that A(R) = A} denote the
range of object allocations under a rule f = (A,t). Note that A/ C A itself is a constraint.

We distinguish between feasibility and admaissibility of object allocations.

The feasible set is determined by technology, which is beyond the control of the (social)
planner. We assume that all object allocations in A are feasible.!! Thus, A represents the
set of feasible object allocations.

In contrast, an admissible set is a subset C C A of the feasible set (i.e., a constraint),
selected by the planner for policy purposes, together with a rule f—as illustrated in Example 1
below. Unlike the feasible set, an admissible set is part of the planner’s policy choice.

We emphasize that the planner selects an admissible set C simultaneously with a rule f;
that is, C is not exogenously fixed but is jointly determined with the rule. Therefore, the
planner must choose a rule f such that every outcome object allocation A € A/ is admissible
under the chosen constraint (i.e., AS C C). Conversely, the admissible set C must also be
consistent with the rule f (i.e., C C Af). Thus, given a rule f, we identify A/ with the
admissible set C (i.e., A/ = C), and refer to it as the set of admissible object allocations
(under f), or simply the admissible set (under f).

The following example illustrates the above point: an admissible set is chosen by the

planner simultaneously with a rule.

Example 1 (Admissible object allocations). (i) Suppose that, in order to control the
market power of agents after the allocation of objects, the planner restricts each agent from
receiving more than three objects. Then, the planner selects a rule f such that A4/ = {A cA:
Vi € N, |4 < 3}.

(i) Suppose that agents 1 and 2 are newcomers, and to ensure their continued participation

in the market, the planner sets aside some objects—say, a and b—specifically for them. Then,

the planner selects a rule f such that Af = {A € A:{a,b} C A, U Ag}. ]

The planner aims to design rules that satisfy certain desirable properties. However, such
rules may fail to exist under some A/. Therefore, the choice of A/ must ensure compatibility
with these properties. In Section 3, we examine the compatibility between A/ and the

desirable properties. In the next subsection, we introduce these desirable properties of rules.

11 ANl our results remain valid even if the feasible set is an arbitrary non-empty subset of A.
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2.5 Properties of rules
2.5.1 Efficiency properties

Given R € R", an allocation z = (A,t) € Z is said to (Pareto) dominate another allocation
2= (A, t') € Z for R if the following three conditions hold: (i) for each i € N, z; R; zI; (ii)
Yienti = D ey ti; and (iii) for some j € N, z; P; 2%, or Y.yt > 3.y ti. This notion of
domination takes into account not only the preferences of the agents but also the planner’s
preference.'? We assume that the planner is concerned only with her total revenue.'?

The next property requires that a rule select an efficient allocation that is not dominated

by any other allocation.

Pareto efficiency. For each R € R", there exists no z = (A,t) € Z that dominates f(R)
for R.

The next property requires that a rule select an allocation that is efficient over the set of
admissible object allocations Af. Note that we impose constraints only on object allocations,

with no restrictions on payments.

Constrained efficiency. For each R € R", there exists no z = (A4,t) € Z with A € A’
that dominates f(R) for R.

If Af = A, then constrained efficiency coincides with standard Pareto efficiency. If
A’ C A, then constrained efficiency is strictly weaker than Pareto efficiency, and the smaller
A’ is, the weaker the condition becomes. Thus, if A/ includes a sufficiently rich variety
of admissible object allocations, the planner can implement a wider range of outcomes, al-
though it becomes more difficult to ensure constrained efficiency. Conversely, if A/ includes
only a narrow set of admissible object allocations, constrained efficiency becomes easier to
satisfy, but the planner can implement only a limited range of outcomes. This illustrates a
fundamental trade-off between the ease of achieving constrained efficiency and the variety of

admissible object allocations.

Remark 1 (Constrained efficiency). A rule f = (A,t) on R" satisfies constrained effi-

12Without incorporating the planner’s preference, any allocation z = (4,t) € Z would be dominated by
another allocation 2’ = (A’,t') € Z such that A’ = A and ¢, < ¢; for each i € N.

13 Accordingly, the planner has a (quasi-linear) preference Ry over Z such that, for any two allocations
(A1), (A',t') € Z, it holds that (A,t) Ry (A',t') if and only if Y,y t: > > .oy ti-
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ciency if and only if for each R € R", we have

A(R) € arg maXZV(Ai,fi(R);Ri).

AeAl N

If R € (R?)", then this condition is equivalent to

A(R) € arg maXZw(A,-; R;).
ACAT ien

The next property requires that all objects be allocated to agents for each preference

profile.
No wastage. For each R € R", J,cy Ai(R) = M.

Note that Pareto efficiency implies no wastage. Thus, one justification for no wastage
is that it represents a mild form of efficiency. Another justification is based on practical
observations: in real-life auctions, even if some objects are not sold in a one-shot auction,
they are typically sold in subsequent auctions. As a result, all objects are eventually sold,

and no wastage is effectively satisfied in the long run (Kazumura et al., 2020b).

2.5.2 Incentive properties

The following property is a dominant strategy incentive compatibility, which requires that

no agent can ever benefit from misrepresenting his preferences.

Strategy-proofness. For cach R € R", eachi € N, and each R, € R, f;(R) R; fi(R},R_;).
The next property requires that each agent have an incentive to participate in the rule

voluntarily—that is, each agent find his outcome pair (a package and a payment) under the

rule at least as desirable as receiving no object and paying nothing.

Individual rationality. For each R € R™ and each i € N, f;(R) R; 0.

The next property requires that each agent’s payment always be non-negative.

No subsidy. For each R € R™ and each i € N, t;(R) > 0.
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If agents receive subsidies, those with no interest in the objects may participate in the rule
solely to obtain them. No subsidy eliminates this incentive for disinterested agents. Moreover,
when the objects are initially public assets, providing subsidies alongside the allocation may

invite public criticism. No subsidy helps to avoid such criticism.

2.5.3 Fairness properties

Next, we introduce three fairness properties. The first requires that any two agents with

identical preferences receive the same welfare level under the rule.

Equal treatment of equals. For each R € R" and each 4,5 € N, if R; = R;, then
fi(R) I; [;(R).

The second fairness property requires that if agents’ preferences are permuted, then their
welfare levels be permuted accordingly. Given a preference profile R € R™ and a permutation
7: N — Non N, let R™ € R" denote the permuted preference profile according to , such
that for each i € N, R} = Rq;).

Anonymity. For each R € R", each permutation 7 : N — N on N, and each ¢ € N,
[i(R) I; fr@y(R™).2

The third fairness property requires that no agent prefer any other agent’s outcome pair

(a package and a payment) to his own under the rule.

No envy. For each R € R" and each i,j € N, f;(R) R; f;(R).

The following remark clarifies the relationships among the fairness properties and shows

that equal treatment of equals is the weakest of them.

Remark 2 (Relationships between fairness properties). Let R be a domain, and let
f be a rule on R"™.

(i) If f satisfies anonymity, then it also satisfies equal treatment of equals, but the converse
does not necessarily hold.

(ii) If f satisfies no envy, then it also satisfies equal treatment of equals, but again, the

YA permutation on a set G is a bijection from G to itself.

15This definition is equivalent to the following condition: for each R € R™, each 4,5 € N, and each
R;,R; € R with R; = Rj and R; = Ri, we have fl(R) Ii fj(R;j,R_i,j) and fJ(R) Ij fi(Rg,j;R—i,j)- Note
that anonymity is often referred to as anonymity in welfare in the literature.
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converse does not necessarily hold.
(iii) In general, anonymity and no envy are independent—that is, neither property implies

the other.

We assume that the planner aims to design a rule that satisfies the following desirable
properties: constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

individual rationality, and no subsidy.

3 Main results

In this section, we study rules satisfying the desirable properties.

3.1 Bundling unit-demand constraints

First, we examine the conditions that the desirable properties impose on the set of admissible
object allocations A/ .

A constraint C C A satisfies no wastage if all objects are allocated to agents—that is,
if U;eyA4i = M. As the name suggests, this condition is essential for a rule to satisfy no
wastage.

A constraint C satisfies anonymity if it is a symmetric set—that is, for each A € C and
each permutation 7m of N, we have A™ € C. This condition is essential for a rule to satisfy
fairness properties such as equal treatment of equals, anonymity, and no envy.

We introduce bundling constraints, under which objects are bundled into several packages,
and each agent receives a collection of these packages instead of individual objects. Given
a partition B = {By,..., Bx} of M,'® a constraint C is said to be B-bundling if for each
i€ N, A =0orthereis L C {1,..., K} such that A; = J,.; Bi. A special case of bundling
is B = {{a} cae M }, where no objects are bundled—that is, each package consists of a

single object.

Example 2 (No wastage, anonymity, bundling constraints). Let n = 2 and m =
5. Let M = {a,b,c,d,e}. Let B be a partition of M such that B = {B;, Bo}, where
By, = {a,b,c} and By = {d, e}. B-bundling constraint requires that each agent receive one of

(), Bi, By or M, but not any other package—such as {a}, {e}, {a, b}, {a, e}, {c,d}, {a,b,c, e},

16A set B = {By,...,Bx} is a partition of M if (i) for each k, By C M and By # 0, (ii) for each distinct
kK € {1,...,K}, By N By =0, and (iii) Ur—, By, = M.
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etc. Let

C' = {(0,B1UB,),(0,Bs), (B, B),(B1,0)},
C* = {(0, B1 U By), (B, By), (B, B1) },
C*={(0,Bi),(B1,0),(B1 U By,0), (0, By U By)}.

Then, C! is B-bundling but satisfies neither no wastage nor anonymity. C? is B-bundling and
satisfies no wastage but not anonymity. C3 is B-bundling and satisfies anonymity but not no

wastage. O]

A B-bundling constraint C is said to be unit-demand if each agent receives at most one
package in B—that is, for each A € C and each ¢ € N, we have A; € B U {@} A constraint
C is referred to as bundling unit-demand if it is a B-bundling unit-demand constraint for
some partition B. Note that a B-bundling unit-demand constraint can satisfy no wastage

only if |B|] < n.

Example 3 (Bundling unit-demand constraint). Let n = 3 and m = 5. Let M =
{a,b,c,d,e}. Let B be a partition of M such that B = {By, By}, where B; = {a,b,c} and
By = {d,e}. Let C be a constraint such that

C= {((Z)a By, By), (0, By, By), (B1,0, By), (B1, By, 0), (B2, 0, By), (B2, By, (Z))}

Then, C is a B-bundling unit-demand constraint satisfying no wastage and anonymity. Recall
that B = {{a’} : « € M}. Since |B| = m > n, no B-bundling unit demand constraint

satisfies no wastage. ]

Note that, given a partition B of M with |B| < n, the B-bundling unit-demand constraint
C that satisfies no wastage and anonymity is unique and can be identified with B. Given
a partition B = {By,..., B} of M with |B| < n, let C*(B) denote the B-bundling unit-

demand constraint satisfying no wastage and anonymity. That is,

C*(B) = {AEA:WGN, A, € BU {@} and UAZ-:M}.
ieN
As mentioned above, no wastage and anonymity of A’ are essential for the associated
rule f to satisfy no wastage and the fairness properties. In addition, the properties of con-
strained efficiency, strategy-proofness, individual rationality, and no subsidy impose further
restrictions on Af. The following proposition shows that, in order for a rule f to satisfy all

these properties, A/ must also be a bundling unit-demand constraint.
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Proposition. Let R be a rich domain. Let f be a rule on R™ satisfying constrained efficiency,
no wastage, equal treatment of equals, strategy-proofness, individual rationality, and no
subsidy. Then, A’ is B-bundling unit-demand for some partition B of M with |B| < n, and
satisfies no wastage and anonymity—that is, A = C*(B).

Although A/ is selected by the planner, it cannot be chosen arbitrarily. The planner must
ensure that A/ is compatible with the desirable properties of rules. If a rule fails to satisfy
some of the desirable properties under A7, then the planner must forgo either A/ or some
of the desirable properties. Proposition shows that if the planner aims to design a rule f
satisfying constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,
individual rationality, and no subsidy, then she must choose A/ = C*(B) for some partition
B of M with |B| < n.

Recall that the strength of constrained efficiency depends on A': the larger A7 is, the
more demanding the requirement becomes. Therefore, when designing a rule that satisfies
the above properties—including constrained efficiency—the planner may need to ensure that
A is sufficiently small. For example, in Example 2, C*(B) contains only 6 object allocations.
In general, the maximum number of object allocations that C*(B) can contain is n!,'” which
is much smaller than the number of feasible object allocations. For instance, when n = 3
and m = 5, as in Example 2, the total number of feasible object allocations is: 1+ 15 +
90 + 270 + 405 + 243 = 1024.'8 Thus, in Proposition, the set of admissible object allocations
A’ under a rule f satisfying the desirable properties is significantly smaller than the set of

feasible ones A. This reduction represents the cost of satisfying those properties.

3.2 Bundling unit-demand MPW rule

Before turning to our main theorem, we briefly explain its underlying idea. Demange and Gale
(1985), Morimoto and Serizawa (2015) (hereafter M&S), and Wakabayashi et al. (2025) (here-
after WSS) study the unit-demand model—that is, a model with heterogeneous objects where
each agent receives at most one object—and show that, in this setting, the minimum price
Walrasian (MPW) rules are the only rules satisfying Pareto efficiency, strategy-proofness,
individual rationality, and no subsidy.

Given a B-bundling unit-demand constraint for some partition B of M, we can reinterpret
each package in B as a single “object.” Under this interpretation, our model becomes math-

ematically equivalent to the unit-demand model. Accordingly, we can define a counterpart

17"This maximum is attained when |B| = n.

18To see this, note that the number of feasible object allocations in which & = 0,1,2,3,4,5 objects are
allocated to three agents is given by 3% x 5C}. The total number is obtained by summing these values over
k=0 to 5.
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of the MPW rules in our setting, which we call the bundling unit-demand minimum price
Walrasian (MPW) rules.

Our rich domain induces the same preference domain over packages and payments as those
considered in M&S and WSS. As a result, the bundling unit-demand MPW rules inherit
the key properties of the MPW rules: they satisfy strategy-proofness, no wastage, equal
treatment of equals, individual rationality, and no subsidy. Moreover, since constrained
efficiency corresponds to Pareto efficiency over admissible object allocations, the bundling
unit-demand MPW rules also satisfy constrained efficiency. Finally, the results of M&S and
WSS imply that the bundling unit-demand MPW rules are the only rules satisfying all these
desirable properties.

Now, we move on to the formal discussion. Given a partition B of M, let By = B U {(}}.
Note that By C M. Given a preference R; € R, let R;|g, denote the restriction of R;
to By x R. That is, for each (B, t;), (B}, t,) € By x R, (B;,t;) Ri|p, (B}, t;) if and only if

(B;,t;) R; (B, t)). Given a domain R, let R|s, = {Ri|s, : Ri € R}. For a given preference
profile R € R", let R|z, = (Ri|s,)ien-

Given a partition B of M, a B-bundling price vector is a vector p = (pg)pes, € R'fo‘
such that pp = 0. Note that a B-bundling price vector assigns a price to each package
B; € B, not to each individual object. Given a preference R; € R and a B-bundling price

vector p € leo‘, the B-bundling unit-demand set for R; at p is defined as
D(R;,p, B) = {Bi € By :VB; € By, (Bi,ps,) Rils, (Bz{;pB;)}-

We introduce a bundling unit-demand Walrasian equilibrium, which serves as the coun-
terpart to a Walrasian equilibrium in the unit-demand model, adapted to our setting with a

bundling unit-demand constraint.*

Definition 3. Given a partition B of M and R € R", a pair (z,p) = ((A,t),p) € 7 X R'f”‘
of an allocation z = (A, t) with A € C*(B) and a B-bundling price vector p, is a B-bundling
unit-demand Walrasian equilibrium for R if the following two conditions hold:

(i) For each i € N, A; € D(R;,p,B) and t; = pp,.

(ii) For each B € B, if there exists no ¢ € N such that A; = B, then pg = 0.

Condition (i) states that each agent receives his most preferred package at given prices
and pays the price of the package he receives. Condition (ii) states that the price of any
package not allocated to any agent is zero.

Given a partition B of M and a preference profile R € R", if (z,p) is a B-bundling

9For the definition of a Walrasian equilibrium in the unit-demand model, see, for example, M&S and WSS.

19



unit-demand Walrasian equilibrium for R, then z is called a B-bundling unit-demand
Walrasian equilibrium allocation for R, and p is called a B-bundling unit-demand
Walrasian equilibrium price vector for R. Let P(R,B) denote the set of such price
vectors.

It is known that in the unit-demand model, the set of Walrasian equilibrium price vectors
forms a non-empty complete lattice, and hence there exists a unique minimum Walrasian
equilibrium price vector with respect to the vector inequality (Demange and Gale, 1985;
Alkan and Gale, 1990). The following fact states that an analogous result holds in our
setting when a bundling unit-demand constraint is imposed and each package in the given

partition is treated as an “object.”

Fact 1 (Demange and Gale, 1985; Alkan and Gale, 1990). Let B be a partition of
M and R € R". Then, P(R,B) forms a non-empty complete lattice, and has a (unique)
minimum element p € P(R, B) such that for each p' € P(R,B), p < p'.?°

Given a partition B of M and a preference profile R € R", let p™"(R,B) denote the
minimum element of P(R,B), whose existence and uniqueness are guaranteed by Fact 1.
Let Z™"(R, B) denote the set of B-bundling unit-demand Walrasian equilibrium allocations
supported by p™*(R, B)—that is,

7™ (R, B)
= {z € Z: (z, ™ (R, B)) is a B-bundling unit-demand Walrasian equilibrium for R}.

Now, we are ready to define a bundling unit-demand MPW rule in our model, which

serves as the counterpart to an MPW rule in the unit-demand model.

Definition 4. Given a partition B of M, a rule f on R" with A/ = C*(B) is a B-bundling
unit-demand minimum price Walrasian (MPW) rule if for each R € R", f(R) € Z™"(R, B).

Given a partition B of M and R € R", Z™"(R,B) is essentially unique.”* Thus, for
a given partition B of M, the B-bundling unit-demand MPW rules are essentially unique.
However, since there are many possible partitions of M, each partition gives rise to a distinct
bundling unit-demand MPW rule. Therefore, there exists a large class of such rules, each
corresponding to a different partition of M.

It is well known that, in the unit-demand model, the MPW rules satisfy several desirable

properties: Pareto efficiency, no wastage, equal treatment of equals, anonymity, no envy,

DGiven p,p’ € RE, p < p' if and only if py < p), for each k=1,..., K.
21To be precise, Z™"(R, B) is unique up to ties, and all allocations in Z™®(R, B) are welfare-equivalent in
the sense that for each z,z' € Z™"(R,B) and each i € N, z; I; z/.
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strategy-proofness, individual rationality, and no subsidy (Demange and Gale, 1985). More-
over, on a sufficiently rich domain—known as the classical domain—these rules are the only
ones that satisty Pareto efficiency, strategy-proofness, individual rationality, and no subsidy
(M&S; WSS). Since a bundling unit-demand constraint renders the mathematical structure of
our model equivalent to that of the unit-demand model, and the classical domain corresponds

to R|p, in our setting, these results carry over to our model.

Fact 2 (Demange and Gale, 1985; Morimoto and Serizawa, 2015; Wakabayashi
et al., 2025). Let B be a partition of M such that |B| < n. Let R be a domain such that
Rls, = Rls,-

(i) A B-bundling unit-demand MPW rule satisfies A7 = C*(B), and satisfies the following
properties: constrained efficiency, no wastage, equal treatment of equals, anonymity, no
envy, strategy-proofness, individual rationality, and no subsidy.

(ii) A rule on R™ with A’ = C*(B) satisfies constrained efficiency, strategy-proofness, in-
dividual rationality, and no subsidy if and only if it is a B-bundling unit-demand MPW

rule.

Note that Fact 2 focuses on rules f for which A/ = C*(B) for some partition B of M.

3.3 Main theorem

The following theorem presents the main result of this paper. It establishes that, on any rich
domain, the bundling unit-demand MPW rules are the only rules that satisfy constrained
efficiency, no wastage, equal treatment of equals, strategy-proofness, individual rationality,

and no subsidy.

Theorem. Let R be a rich domain. A rule f on R"™ satisfies constrained efficiency, no
wastage, equal treatment of equals, strategy-proofness, individual rationality, and no subsidy
if and only if there exists a partition B of M such that: (i) |B| < n, (i) AY = C*(B), and
(iii) f is a B-bundling unit-demand MPW rule.

Recall that, A’ is not a fixed set but a variable chosen jointly with a rule f. Thus,
the strength of the requirement for constrained efficiency depends on the choice of Af. As
shown in Proposition, in order to satisfy constrained efficiency, no wastage, equal treatment
of equals, strategy-proofness, individual rationality, and no subsidy, A/ must be selected
from among the bundling unit-demand constraints.

Note that this proposition does not specify how the rule should select an outcome allo-

cation from a given bundling unit-demand constraint for each preference profile. Theorem
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addresses this point: it states that, to satisfy the above properties, the rule must select an
allocation according to a bundling unit-demand MPW rule.

Note that Theorem holds for any rich domain. In particular, it applies to cases where the
objects are substitutes, complements, or both—namely, the net substitutes domain, the net
complements domain, and the net substitutes and complements domain.

We have employed equal treatment of equals as a fairness property. Although it is one
of the central fairness concepts in the literature, other important notions include anonymity
and no envy. We now discuss how Theorem would change if we replace equal treatment of
equals with anonymity or no envy.

First, recall that any bundling unit-demand MPW rule satisfies both anonymity and no
envy (Fact 2 (i)). Thus, the “if” part of Theorem still holds even when equal treatment of
equals is replaced with either anonymity or no envy.

Second, recall that both anonymity and no envy are stronger than equal treatment of
equals (see Remark 2 (i) and (ii)). Thus, the “only if” part of Theorem also remains valid
even if we replace equal treatment of equals with either anonymity or no envy.

Thus, the conclusion of Theorem remains unchanged if we replace equal treatment of

equals with either anonymity or no envy.

Corollary 1. Let R be a rich domain.

(i) A rule f on R™ satisfies constrained efficiency, no wastage, anonymity, strategy-proofness,
individual rationality, and no subsidy if and only if there exists a partition B of M such that:
(i-i) |B| < n, (i-ii) AT = C*(B), and (i-iii) f is a B-bundling unit-demand MPW rule.

(ii) A rule f on R™ satisfies constrained efficiency, no wastage, no envy, strategy-proofness,
individual rationality, and no subsidy if and only if there exists a partition B of M such that:
(ii-i) |B| < n, (ii-ii) AY = C*(B), and (ii-iii) [ is a B-bundling unit-demand MPW rule.

3.4 Outline of the proof

Given Proposition and Fact 2, the remaining step in proving Theorem is to verify that any
rich domain R satisfies the domain condition stated in Fact 2—that is, R|s, = R|s, for
some partition B of M. This step is relatively straightforward. Hence, the main difficulty in
proving Theorem lies in establishing Proposition.

We further observe that:
(i) no wastage of A/ follows directly from no wastage of a rule f, and
(ii) once we show that A’ is a B-bundling unit-demand for some partition B of M, no wastage

of A/ implies that |B| < n.
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Therefore, the main challenge in proving Proposition is to establish that Af is a B-
bundling unit-demand constraint for some partition B of M, and that A7 satisfies anonymity.

In this subsection, we outline the proofs of these two key properties.

3.4.1 Strategy-proofness

In the proof, the properties of strategy-proof rules play a crucial role. We therefore begin by
reviewing these properties.
We introduce some notations. Given a rule f = (A,¢) on R™ and an agent i € N, let M,

denote the set of packages that may be assigned to agent ¢ under f:
M; = {A; € M : 3R € R" such that A;(R) = A;}.

Furthermore, given R_; € R" !, agent i’s package option set for R_; under f is defined

as the set of packages that agent ¢ can possibly receive given R_; under f:
M;(R_;) = {A; € M :3R; € R such that A;(R;, R_;) = A;}.

For a given rule f on R", it follows that for each i € N and each R_; € R"!, we have
M;(R-;)) € M; C M.

It is well known that under a strategy-proof rule, each agent’s payment depends only on
the package he receives and the preferences of the other agents: once an agent’s package is
fixed, his own preference does not affect his payment. Formally, if a rule f on R"™ satisfies
strategy-proofness, then for each i € N, each R_; € R"!, and each A; € M;(R_;), there
exists a unique payment t;(R_;; A;) € R such that for some R; € R, we have f;(R;, R_;) =
(Ai ti(R_i; A;)).2 Given A; € My(R_;), let z(R_;; A;) = (Ai t;(R_i; 4;)).

Another well-known property of strategy-proof rules is that, for each R € R™ and each
i € N, agent i receives the most preferred outcome pair from the set {zi(R_i; Ap) A e Mi(R-) } 23

The following remark formalizes this observation.

Remark 3 (Strategy-proofness). Let R be a domain. Let f be a rule on R" satisfying
strategy-proofness. Let R € R™ and ¢ € N. For each A; € M;(R_;), fi(R) R; zi(R_;; A;).

22To see that there exists at most one such a payment, suppose for contradiction that there exist dis-
tinct t;,¢, € R and R;, R, € R such that f;(R;, R_;) = (A;,t;) and fi(R}, R_;) = (A;,t;). Without loss of
generality, suppose ¢, < ¢;. Then, f;(R}, R_;) = (4;,t}) P; (4;,t;) = fi(R;, R—;), which contradicts strategy-
proofness.

Z3To see this, suppose for contradiction that z;(R_;; A}) P; z;(R_i; A;) = fi(R) for some A, € M;(R_;).
Since A} € M;(R_;), there exists R, € R such that A;(R;,,R_;) = A,  Thus, f;(R,,R_;) =
zi(R—i; AL) P; fi(R), which contradicts strategy-proofness.
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Given a non-empty set M’ C M of packages, a payment vector 7 € R™M'l on M’ and a
package A; € M’, we say that a preference R; € R demands A; at 7 (on M’) if for each
A € M'\{A;}, it holds that (A;, 7a,) Fi (A}, 7a;). Note that under a strategy-proofrule f on
R™, given R € R" and 7 € N, if R; demands A; € M;(R_;) at T = (tl-(R,i;A;))
on M;(R_;), then strategy-proofness implies A;(R) = A; (see Remark 3).

AleMi(R_;)

Finally, arule f = (A,t) on R" satisfies monotonicity if for each i € N, each R;, R, € R,
and each R_; € R" !, the following inequality holds:

V(Ai(R), fi(R); Ri)) =V (Ai(R;, R_,), fi(R); Ri) > V(Ai(R), fi(R); R}) =V (Ai(R;, R_y), fi(R); R;).
Note that if R;, R} € RY, then this condition is equivalent to:

It is well established that monotonicity is a necessary condition for strategy-proofness

(Bikhchandani et al., 2006; Kazumura et al., 2020a).

Fact 3 (Monotonicity). Let R be a domain. Let f be a rule on R"™ satisfying strategy-

proofness. Then, [ satisfies monotonicity.

3.4.2 Characterization of the constrained Vickrey rules

The characterization of the (constrained) Vickrey rules (Vickrey, 1961) by Holmstrém (1979)

also plays an important role in the proof.

Definition 5 (Vickrey, 1961). Given R C R?, arule f = (A, 1) on R" is a constrained
Vickrey rule if for each R € R", the following two conditions hold:
(i) We have

A(R) € arg maxZw(Ai; R;).
ACAT ien

(ii) For each i € N,

t;(R) = max w(A;; Rj) — Z w(A4;(R); R;).
JEN\{i} JEN\{3}

Holmstrom (1979) considers a general model that includes the package assignment prob-
lems with money as a special case and characterizes the class of rules satisfying both (con-
strained) efficiency and strategy-proofness on sufficiently rich quasi-linear domains. His

characterization result implies that the constrained Vickrey rules are the only rules satis-
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fying constrained efficiency, strategy-proofness, individual rationality, and no subsidy on

(RAdd N RQ)n.24

Fact 4 (Holmstrém, 1979). A rule f on (R4 N R9)" satisfies constrained efficiency,
strategy-proofness, individual rationality, and no subsidy if and only if it is a constrained

Vickrey rule.

3.4.3 Proof of bundling unit-demand constraint: An outline

We now outline the proof that if a rule f on a rich domain R" satisfies constrained efficiency,
no wastage, equal treatment of equals, strategy-proofness, individual rationality, and no
subsidy, then A/ must be a B-bundling unit-demand constraint for some partition B of M.
Let R be a rich domain, and let f = (A, t) be a rule on R™ that satisfies the above properties.

The proof proceeds in three steps:

(i) In the first step (Step 1), we establish that for each i € N and each A;, A} € M;\{0}, it
holds that A; N A, = (). Thus, the set of packages available to agent i under the rule f, M,
consists of mutually disjoint packages, and agent i can receive at most one package from M.
Note, however, that M;\{0} may not form a partition of M, since we do not necessarily have
U (MA\{0}) = M.

(ii) In the second step (Step 2), we show that for each i, j € N, M; = M;. In proving this
result, the fairness property equal treatment of equals plays a key role.

(iii) In the third step (Step 3), we complete the proof by showing that A/ is a B-bundling
unit-demand for B = J,.y (M; \ {0}). Given the results from Steps 1 and 2, no wastage of
A’ (which follows from no waastage of f) ensures that B is indeed a partition of M.

Given Step 1, Steps 2 and 3 follow relatively easily. Thus, Step 1 is the crucial part of
the proof, and we illustrate it for the simplest case where n = m = 2 and R = R. Let
M = {a,b}.

We establish that for each i € N and each distinct A;, A, € M;\{0}, we have A; N A, = 0.
Suppose for contradiction that there exist i € N and distinct A;, A} € M;\{0} such that
A; N AL 2 (. Without loss of generality, suppose i = 1. Since Ay, A} # 0, Ay N A} # 0, and
M = {a,b}, we may assume without loss of generality that A; = {a} and A} = {a, b}.

The proof consists of four claims.

2To be precise, Holmstrom (1979) studies a public goods model and establishes that, on a smoothly
connected quasi-linear domain, the Groves rules (Groves, 1973) are the only rules satisfying Pareto efficiency
and strategy-proofness. Note that R4 N R is a smoothly connected quasi-linear domain, so his result
applies to this domain. Moreover, if we interpret A/ as the set of public goods, his characterization implies
that the (constrained) Groves rules are the only rules satisfying constrained efficiency and strategy-proofness
on (R4 N R?)™. Then, by incorporating individual rationality and no subsidy, we can further conclude that
the constrained Vickrey rules are the only (constrained) Groves rules satisfying these additional properties
on (R4 N R?)". Thus, we obtain Fact 4.
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First, note that when agent 2 has an additive quasi-linear preference R, € R4% N R
constrained efficiency implies that agent 1 can obtain any package A € M; by declaring
a suitable preference R; € R4 N RY for which the willingness to pay of Af is sufficiently
high and that of the objects not in A7 is sufficiently low.

Claim 1. For each A] € My and each Ry € RAM N R there exists Ry € RA% N R? such
that A1(Ry, Ry) = AY, and so A} € Mi(R2).

Note that Claim 1 implies that for each Ry € R4% N R, we have M;(R,) = M,. In par-
ticular, since Ay, A} € My, it follows that for each Ry € RA% N RY we have Ay, A] € My (Ry).

Recall that, as discussed in Section 3.4.1, under a strategy-proof rule, an agent’s payment
depends solely on the package he receives and the preferences of the other agents. Also recall
from Section 3.4.2 that the constrained Vickrey rules are the only rules satisfying constrained
efficiency, strategy-proofness, individual rationality, and no subsidy on the domain (RA% N
RO (see Fact 4).

Combining these two facts, we conclude that when agent 2 has an additive quasi-linear

preference, agent 1’s payment must coincide with that under the constrained Vickrey rule.

Claim 2. For each Ry € R4 N RY and each A} € Mi(Ry), we have
t1(Re; AY) = w(M; Ry) — w(M\AY; Rp) = w(AYf; [a).

Let Ry € R4 N R? be such that w({a}; Rz) = 1, w({b}; R2) = 1, and w({a,b}; Ry) =
w({a}; Rs) + w({b}; Rs) = 2. Let 7 € RMI be a payment vector on M such that for each
Al € My(Ry), Ta, = t1(Ra; A1). Recall that Ay, A} € M;(Rs) (see Claim 1). According to

Claim 2, we compute 74, and 74/ as follows:
1

TA, = tl(Rg,A1> = ’LU(Al,RQ) = w({a},RQ) = 1,
Tay = ti(Ry; A7) = w(A}; Ry) = w({a,b}; Ry) = 2.

Similarly, let R € R4 N RY be such that w({a}; R)) = 2, w({b}; Ry) = 2, and
w({a,b}; Ry) = w({a}; Ry) + w({b}; Ry) = 4. Let 7/ € R™MI be a payment vector on M
such that for each A7 € My(R)), 7y, = t1(R5; Ar). Since A, A} € Mi(R)) (see Claim 1),

we apply Claim 2 to compute 7, and 71/4,1 as follows:

T, = ti(Ry; Ar) = w(Ay; Ry) = w({a}; Ry) =

2,
Th, = ti(Ry; A)) = w(AL; Ry) = w({a,b}; Ry) = 4.
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Note that

721:2>1:7'A1. (1)

This discrepancy in payments allows us to construct a (non-quasi-linear and not necessarily

additive) preference R; € R such that R; demands A; = {a} at 7 and A} = {a,b} at 7'.

Claim 3 (Figure 4). There exists Ry € R that demands A, at T and A} at 7.

4

A1 = {a, b} = *

({a,Yb}, T{a,b}) ({a: b}, T{a,b})

/ T({a}, Tga})

0 ’
0= (0,79) = (0,7¢) Payment

Figure 4: An illustration of Claim 3.

Figure 4 illustrates Claim 3.
Given Claim 3, strategy-proofness implies that A;(R) = A; = {a} and A;(R}, R_5) =
Al = {a,b} (see Remark 3). Since there are only two agents, no wastage of f implies that

agent 2 receives the remaining objects. Therefore, we obtain the following:
Clalm 4. W@ hCLUE AQ(R) = M\Al(R) = {b} G/ﬂd AQ(Rl, RIQ) = M\Al(Rl, RIQ) = Q)

Claim 4 crucially relies on the fact that there are only two agents. Indeed, if there are three
or more agents, no wastage does not necessarily imply that agent 2 receives the remaining
objects.

Now, we are in a position to derive a contradiction. Observe that

w(As(R); Ry) — w(Az(Ry, Ry); By) = w({b}; Ry)
=2>1= w({b};Rz) = w(Ag(R);Rz) — 'LU(AQ(RlyRIQ)§R2)> (2)

where the first and last equalities follow from Claim 4. However, this contradicts monotonicity

of f (see Fact 3).
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3.4.4 Challenges arising from many agents and domain restrictions

The outline of the proof presented in Section 3.4.3 assumes that there are two agents (i.e.,
n = 2) and that the domain is unrestricted (i.e., R = R). The two-agent assumption
simplifies the argument, as the no wastage property ensures that once the package assigned
to one agent is determined, the other agent must receive the remaining objects.

In contrast, the full proof is substantially more complex, as it must account for both the
allocation of objects among more than two agents and the restriction on the domain. In what
follows, we describe how these features complicate the argument and explain how we address

them.

Many agents.  First, we explain how the existence of three or more agents complicates
the proof. The outline in Section 3.4.3 crucially relies on two types of tractability regarding
admissible object allocations: intrapersonal tractability and interpersonal tractability. Intrap-
ersonal tractability refers to the tractability of the packages available to a single agent (see
Claim 1), while interpersonal tractability refers to the tractability of the packages available
to two agents (see Claim 4). In the outlined proof, both types of tractability are guaranteed
by the two-agent assumption.

In the full proof, where there may be three or more agents, both types of tractability may
fail under constrained efficiency. Indeed, recall that when there are only two agents, an agent
can receive any package available under the rule by reporting certain preferences, regardless of
the other agent’s preferences (thus ensuring interpersonal tractability; see Claim 1). However,
when there are three or more agents, the packages available to a given agent may depend on
the preferences of the others—that is, intrapersonal tractability fails. The following example

demonstrates this issue.

Example 4. Let n = 3 and m = 3, and let M = {a,b,c}. Let R be a rich domain. Let f be

a rule on R" satisfying constrained efficiency (and no wastage), such that

A7 = { ({ah. A0} e}). (a0}, {c}.0) }.

Let R_; € (R4 N R?)? be such that w({b}; Rs) = 1, w({c}; R2) = 5, and w({c}; R3) =
1. Since w({b}; Ro) + w({c};Rs) = 1+ 1 = 2 <5 = w({c}; Rs), constrained efficiency
implies that for each Ry € R, A;(Ry, R_1) = {a,b}. Thus, there exists no R; € R such that
Ai(Ri,R_1) = {a}. Thus, Mi(R_1) = {{a,b}}. However, under other preferences of the
remaining agents—for example, when all other agents have the same additive quasi-linear

preferences—agent 1 can obtain either {a} or {a, b}, depending on the preference he reports.
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Thus, for some R’ | € (R N R9)%, My(R.,) = {{a},{a,b}} = M. O

To address this form of intractability, we proceed as follows: given a package A; € M, that
is available to agent i under the rule, we identify a preference profile R_; € (RA% N R@)~1
of the other agents such that A; € M;(R_;) (see Lemma 2 in Appendix A.1.2). Note that
this form of tractability is weaker than that established in Claim 1, where M;(R_;) = M,
for each R_; € (RA% N R¥)"~L. Nevertheless, this partial tractability still provides a useful
foundation for our analysis.

Furthermore, when there are three or more agents, determining how the remaining pack-
ages are allocated to the other agents once a package is assigned to one agent becomes a non-
trivial problem—that is, interpersonal tractability fails. To recover interpersonal tractability,
we exploit the implications of equal treatment of equals, along with the other desirable prop-
erties, to identify which packages may be available to two agents (see Lemma 5, Lemma 6,
and Lemma 7 in Appendix A.1.3). Note that in the full proof of this part, equal treatment of
equals plays a central role in restoring interpersonal tractability. By contrast, in the outline
of the proof for the two-agent case, it plays no role, as full interpersonal tractability is already
guaranteed by the no wastage property.

Note that non-quasi-linear preferences do not play an essential role in the above discussion
on the tractability of admissible object allocations. Nevertheless, this perspective is novel, as
prior studies have not explicitly examined tractability under constrained efficiency and equal

treatment of equals.

Restricted domains. In addition to the challenges posed by allocation constraints, we must
also address those arising from restricted domains. Since our richness condition requires that
the domain include all (possibly non-quasi-linear) additive preferences, we are free to select
only additive preferences in the proof. Claim 3 in the outline shows that there exists some
preference R; € R that demands a package A; = {a} at 7 and another package A} = {a, b} at
7'. If we were allowed to choose non-additive, non-quasi-linear preferences from the domain,
then constructing such a preference would be relatively straightforward (see Figure 4). The
challenge, however, is to construct an additive non-quasi-linear preference that satisfies a
property analogous to Claim 4. Although such an additive non-quasi-linear preference cannot
be constructed for certain packages A, A} and payment vectors 7, 7/ under some constraints,?

we identify conditions on the packages, payment vectors, and the constraint that ensure the

ZFor example, let M = {a,b}, and let 7,7’ € RIMI be two object monotonic payment vectors such that
=0, T(ay = Ty = L, Tqapy = 2, 79 =0, T{a} = T{b} = 2, and T%a py = 4 Then, no additive pref-
erence R; demands A; = () at 7 on M and A, = {a,b} at 7 on M. To see this, let R; € R4 be
an additive preference that demands A} = {a,b} at 7/ on M. Then, since ({a, b}, 74, b}) p; ({b},T{b}),
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existence of such a preference (see Lemma 8 and Lemma 9 in Appendix A.1.4).

3.4.5 Proof of anonymity: An outline

Next, we prove that A/ satisfies anonymity, assuming—as established in Section 3.4.3—
that it is a B-bundling unit-demand constraint for some partition B of M. As we shall see,
the fairness condition of equal treatment of equals, together with the characterization of
constrained Vickrey rules (Fact 4), plays a crucial role.

Let R be a rich domain, and let f = (A,t) be a rule on R" that satisfies constrained
efficiency, no wastage, equal treatment of equals, strategy-proofness, individual rationality,
and no subsidy. Suppose for contradiction that A7 fails to satisfy anonymity. Assume A/ is
a B-bundling unit-demand constraint for some partition B of M.

To illustrate the essence of the argument, we focus on the simplest case where n = m = 2,
as in Section 3.4.3, and let M = {a,b}. Since m = 2, there are only two possible partitions

of M, which we consider in turn.
CaAse 1. B={M}.

Given that A’ is a B-bundling unit-demand constraint, satisfies no wastage (which follows
from no wastage of f), but violates anonymity, we must have either A/ = {(M ,@)} or
A = {(0, M)}. Without loss of generality, let A" = {(M,0)}.

For each i € N, let R; € R N R? be such that w({a}; R;) = w({b}; R;) = 3 and
w(M; R;) = w({a}; R;) + w({b}; R;) = 6. Note that Ry = Ry. Note also that by richness of
R, R € R". Since f satisfies constrained efficiency, stratey-proofness, individual rationality,

and no subsidy, its restriction to (R4% N R¥)" satisfies the four properties as well. Thus,

V({b}7 ({a, b}’T*Ea,b});Ri> < T{b}, which implies
V({a, b, ({a,b}, sy ); Ri)—V<{b}, ({a, b},T{/a’b});Ri) = Tgavb}—v({b}y ({a, b},fga’b})) > Tloy—Thy = 4-2=2.
Similarly, since ({a, b},TEa,b}) P, ({a},n’(a}), T{a} > V({a,}, ({a, b},TEa,b});Ri) Then,

V({a}, ({a,b},r{’a’b});RO—V(@, ({a, b},rga,b});Ri) - V({a,b}, ({a,b}m{a’b});Ri)—V({b}, ({a, b},T{a}b});Ri) > 9,

where the first equality follows from additivity of R;. Thus,
Tla} — V(@, ({a, b}, T{a’b});Ri) > V({a}, ({a, b},T{a’b});Ri) - V((Z), ({a, b},T%a’b}%Ri) > 2=T(,,

where  the  first  inequality  follows  from Tia} > V({a}, ({a,b}, Tfa b});Ri). Thus,

V((Z), ({a,b},Tfa,b});Ri) <0, which implies ({a,b},7/,,) P; 0. Thus, by 7(apy = 2<4 = 7/,
({a, b}, 7a1) Pi ({a, b},T{mb}) P; 0. Thus, R; does not demand A; = () at 7 on M.

30



it follows from Fact 4 that f coincides with a constrained Vickrey rule on (R4 N R@)".
Thus, since R € (R4 N R2)" f(R) is an outcome of a constrained Vickrey rule for R.
Thus, since A" = {(M,0)}, A(R) = (M,0), t:(R) = w(0; Rs) — w(0; R2) = 0, and t5(R) =
w(M; Ry) —w(M; Ry) = 0. Thus,

w(A(R); R1) = t1(R) = w(M; Ry) = 6 # 0 = w(D; Ry) = w(Ay(R); Ry) — ta(R).

However, since R; = R», this contradicts equal treatment of equals.
Cask 2. B = {{a}, {b}}.

Asin Case 1, A7 must be either {({a}, {b})} or {({b}, {a}) } Without loss of generality,
let A = {({a}, {b})}.

For each i € N, let R; € R4 N R¥ be such that w({a}; R;) = 3 and w({b}; R;) = 1.
Note that Ry = R,. It follows from richness of R that R € R™. As in Case 1, since
R € (R4 N RO, f(R) is an outcome of a constrained Vickrey rule for R (see Fact 4).
Thus, since A/ = {({a}, {b})}, A(R) = ({a}, {b}), t1(R) = w({b}; Ro) — w({b}; R2) =0,
and to(R) = w({a}; R1) — w({a}; R1) = 0. Thus,

w(AL(R); Ry) — t1(R) = w({a}; R1) = 3 # 1 = w({b}; Rz) = w(A2(R); Rz) — t2(R).

However, since R; = R», this contradicts equal treatment of equals.

3.5 Independence of the properties

All the properties in Theorem are indispensable. The following examples demonstrate that
if any one of these properties is dropped, then there exists a rule that (i) differs from any
bundling unit-demand MPW rule and (ii) satisfies all the remaining properties. Example 5
further shows that even when equal treatment of equals is replaced by stronger properties
such as anonymity or no envy, constrained efficiency remains indispensable for Theorem. In

all the following examples, let R be a rich domain.

Example 5 (Dropping constrained efficiency). Let n = 4 and M = {a,b}.?° Let
B = {{a},{b}}. Let g be a B-bundling unit-demand MPW rule, and let Ry € R. We define

26Tt is straightforward to extend the discussion here to the case where n > 4 and m > 2. Whether con-
strained efficiency is indispensable for Theorem when n = 2 remains an open question. When m = 1, the class
of rules on a rich domain that satisfy no wastage, equal treatment of equals, strategy-proofness, individual
rationality, and no subsidy coincides with the class of bundling unit-demand MPW rules (Sakai, 2013). Thus,
in that case, constrained efficiency can be dispensed with in Theorem.
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a rule f based on g as follows.

Informally, if all agents except one—say, agent i—have the same preference Ry, then agent
i is allowed to choose between the outcome under g and the outcome under a {M }-bundling
unit-demand MPW rule (which coincides with the bundling second-price rule for the grand
bundle M). If there is no such agent for which all other agents have preference Ry, then f
coincides with g.

The formal definition of f is as follows:
(i) If [{i € N : R, = Ry}| = 3, and for the unique i € N such that R; # Ry, we have
(M,V(M,0; Ro)) P; gi(R), then define f;(R) = (M,V(M,0;R,)) and f;(R) = 0 for each
j € N\{i}.
(i) If [{i € N: R; = Ro}| # 3, orif |{i € N: R; = Ryo}| = 3 and for the unique ¢ € N such
that R; # Ro, g;(R) R; (M,V(M,0;Ry)), then let f(R) = g(R).

Note that A" = {A € A:Vie N, A; = 0,{a},{b}, or M, UL, A = M}. Note also
that f is not a bundling unit-demand MPW rule with any partition of M.

Claim 5. The rule f satisfies no wastage, equal treatment of equals, anonymity, no envy,
strategy-proofness, individual rationality, and no subsidy, but it violates constrained effi-

ciency.
We defer the proof of Claim 5 to Appendix C. ]

Example 6 (Dropping no wastage). Let f be the no trade rule on R", that is, the rule
such that for each R € R™ and each i € N, f;(R) = 0. Note that A" = {(0,...,0)}. Then:
(i) f is not a bundling unit-demand MPW rule with any partition of M, and

(ii) it satisfies constrained efficiency, equal treatment of equals, strategy-proofness, individual

rationality, and no subsidy, but violates no wastage. [

Example 7 (Dropping equal treatment of equals). Let i € N, and let A € A be such
that A, = M and A; = ) for each j € N\{i}. Let f be a rule on R" such that for each
R € R™, we have f;(R) = (M,0) and f;(R) = 0 for each j € N\{i}—that is, agent 7 is the
dictator under f. Note that A/ = {A}. Then:

(i) f is not a bundling unit-demand MPW rule with any partition of M, and

(ii) it satisfies constrained efficiency, no wastage, strategy-proofness individual rationality,

and no subsidy, but violates equal treatment of equals. ]

Example 8 (Dropping strategy-proofness). Let f be a generalized pay-as-bid rule on
R", that is, a rule such that for each R € R", A(R) € arg max ) ..y V(A;,0; R;), and for
AcA

each i € N, t;(R) = V(A4i(R),0; R;). Note that A’ = {A € A:J,.y 4 = M}. Then:
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(i) f is not a bundling unit-demand MPW rule with any partition of M, and
(ii) it satisfies constrained efficiency, no wastage, equal treatment of equals, individual ratio-

nality, and no subsidy, but violates strategy-proofness. O

Example 9 (Dropping individual rationality). Let B be a partition of M. Let f be
a B-bundling unit-demand MPW rule with a (common and fixed) participation fee e > 0.
Note that A = C*(B). Then:

(i) f is not a bundling unit-demand MPW rule with any partition of M, and

(ii) it satisfies constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

and no subsidy, but violates individual rationality. ]

Example 10 (Dropping no subsidy). Let B be a partition of M. Let f be a B-bundling
unit-demand MPW rule associated with a (common and fixed) participation subsidy s < 0.
Note that A/ = C*(B). Then:

(i) f is not a bundling unit-demand MPW rule with any partition of M, and

(ii) it satisfies constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,

and individual rationality, but violates no subsidy. O]

4 Conclusion

We have studied the package assignment problem with money, in which the set of admissible
object allocations is selected by the planner. We have shown that the only admissible sets of
object allocations that ensure the existence of a rule satisfying a set of desirable properties
—namely, constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,
individual rationality, and no subsidy—are the bundling unit-demand constraints (Proposi-
tion). Furthermore, we have shown that the only rules satisfying these properties are the
bundling unit-demand MPW rules (Theorem).

In practice, certain technological characteristics suggest that some objects are comple-
ments, while others are substitutes for most agents. In such cases, policymakers often aim
to bundle complementary objects within the same packages and to separate substitutes into
different ones in order to achieve more efficient allocations—an approach that corresponds
to a special case of our bundling unit-demand constraints. Importantly, our domain richness
condition is sufficiently weak to ensure that the results apply to such environments.

Bundling unit-demand constraints are commonly adopted in practical auction designs,
including the European 3G frequency license auctions and recent 5G license auctions in
several countries. Our results provide a novel theoretical justification for this widely used

design principle.
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Appendix

A Proof of Proposition

In this section, we provide the proof of Proposition.

A.1 Preliminaties

In this subsection, we present the lemmas that will be used in the proof of Proposition.

A.1.1 Strategy-proofness

We begin by presenting a lemma related to strategy-proofness.
The following lemma states that, under a strategy-proof rule, each agent who receives
more objects must pay a higher amount. This result follows directly from object monotonicity

and strategy-proofness (in particular, Remark 3), and the proof is therefore omitted.

Lemma 1 (Object monotonic payments). Let R be a domain. Let f be a rule on R"
satisfying strategy-proofness. Leti € N and R_; € R"™'. For each A;, A; € M;(R_;) with
A; 2 A, we have t;(R_;; A;) > t;(R_;; AS).

A.1.2 Intrapersonal tractability of object allocations

We now turn to the issue of intrapersonal tractability of admissible object allocations, cor-
responding to Claim 1 in the proof outline presented in Section 3.4.3. As discussed in Sec-
tion 3.4.4, a key challenge posed by constrained efficiency is the potential loss of intrapersonal
tractability—that is, the difficulty of identifying the set of packages available to an individ-
ual agent. Under constrained efficiency, this set may depend on the preferences of the other
agents, which significantly complicates the analysis. To circumvent this difficulty, the follow-
ing lemma provides a sufficient condition on the preference profiles of the other agents that
ensures agent ¢ can obtain a specified package A;.

This condition consists of two components (see Figure 5):
(i) all other agents have the same willingness to pay of each object, except for those in A;
and one object a not in A;;
(ii) there exists an agent j # i who, conditional on agent i receiving A;, is assigned object a
and has a strictly higher willingness to pay of a than the other agents.
Note that if there are only two agents, this condition always holds, and the following lemma

reduces to Claim 1 in Section 3.4.3.
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V) k # 1,
vb e M\ (4; U{a}),
w({b}; R;) = w({b}; Ry).

Figure 5: An illustration of the package A; and the object a in Lemma 2.

Lemma 2 (Intrapersonal tractability). Let R be a rich domain, and let f be a rule
on R"™ satisfying constrained efficiency and no wastage. Let i € N and A; € M,;. Let
j € N\{i} and a € M\A; be such that for some A_; € M"1, (A;,A_;) € AT and a € A;.
Let R_; € (RA% N RE)"=1 be such that the following two conditions hold:

(i) For each k € M\{i} and each b € M\ (A; U {a}), w({b}; Rr) = w({b}; R;).

(it) For each k € N\{i}, w({a}; Ry) < w({a}; R;).

Then, there exists R; € RA% N R? such that A;(R;, R_;) = A;, and so A; € M;(R_y).

Proof. Let R; € R4 N RY be an additive quasi-linear preference such that the willingness
to pay of the objects in A; is sufficiently large, while the willingness to pay of the objects
not in A; is sufficiently small. Specifically, let R; € R4 N R? satisfy the following two

conditions:

e For each A, € M with A, D A,

e For each b € A,
w({b}; Ri) > w(M\Az R) + Y w(M;Ry). (4)
keN\{i}

Note that, by object monotonicity of R;, the right-hand side of (3) is positive, so we can
indeed choose such a preference R; satisfying (3). Moreover, by richness of R, R € R".

We show that A;(R) = A;. Suppose for contradiction that A;(R) # A;. By our assump-
tion, there exists A_; € M" ! such that (4;, A_;) € A and a € A;. We consider two cases.
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Case 1. A;(R) D A,

By no wastage of A/ (which follows from no wastage of f), Upen Ak(R) = Upen Ax = M.
We have

S w Al Ry) = w({al Ry) +w(A\{a}l B) + Y w(Ag Ry)

keN\{i} keN\{i,j}

=w({aliR)+w | | |J 4] \{ahB

keN\{:}

= w(M\A; Ry), (5)

where the first equality follows from a € A; and additivity of R;; the second from additivity
of R_; and the assumption that w({b}; Ry) = w({b}; R;) for each k € N\{i} and each
b € M\(A; U {a}) (and hence giving objects of agents in N\{i, j} to agent j does not change
the total willingness to pay among agents in N\{i}); and the last from (J,.y Ax = M and
additivity of R;. Since A;(R) D A;, we have Ax(R) C M\A; for each k € N\{i}. Then,

keN\{i} keN\{i,j}

=w({a}; Rj) +w U 4R | \{a}; R,

keN\{:}

where the inequality follows from additivity of R_; and the assumption that w({a}; Rx) < w({a}; R;)
for each k € N\{i} (and hence assigning object a to agent j (weakly) increases the to-
tal willingness to pay among agents in N\{i}); the first equality uses additivity of R_;
and that A,(R) C M\A; for each k € N\{i}, along with w({b}; Ry) = w({b}; R;) for each
b€ M\(A; U {a}) (and hence giving objects of agents in N\{i,;j}, except for object a,
to agent j does not change the total willingness to pay); the last equality follows from

UkeN\{i} Ap(R) = M\A;(R) (which follows from J,.y Ax(R) = M) and additivity of R;.

36



We have

> w(Ag R) =) w(Aw(R); Ry)

keN keN
- ¥ (w(Ak;Rk)—w(Ak(R);Rk)>—w(Ai(R)\Ai;RZ-)
kEN\{i}

A%

= ’LU(Ai(R)\Ai; Rj) - w(Ai(R)\Ai; Ri)> 0,

where the first equality uses additivity of R; and A;(R) 2 A;; the first inequality follows from
(5) and (6); the second equality uses additivity of R; and A;(R) 2 A;; and the last inequality
follows from A;(R) 2 A; and (3). Since A € A/, this contradicts constrained efficiency.

By Ai(R) 2 A;, A)\Ai(R) # 0, so we can choose some b € A;\A;(R). Then,

> w(Ag Ry) = Y w(Ax(R); Ry)

= w(ANA(R); R,) — w(A(RNA:R) - Y (w(Ak(R); Ry) — w(Ay; Rk)>
keN\{i}
> w({b}; R;) — w(M\A; R;) — Z w(M; Ry)
keN\{:}
> 0,

where the first equality uses additivity of R;; the first inequality follows from b € A;\ A;(R)
and object monotonicity; and the last inequality from (4). Since A € A/, this contradicts

constrained efficiency. [

A.1.3 Interpersonal tractability of object allocations

We now examine the interpersonal tractability of admissible object allocations, corresponding
to Claim 4 in the proof outline presented in Section 3.4.3. As discussed in Section 3.4.4,
constrained efficiency may compromise interpersonal tractability by making it difficult to
determine which combinations of packages are available to multiple agents. To address this
issue, we draw on the implications of equal treatment of equals, together with the other
desirable properties, to identify which combinations of packages may be available to any two

agents.
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Throughout this subsection, let R be a rich domain, and let f = (A,t) be a rule on R"
satisfying constrained efficiency, no wastage, equal treatment of equals, strategy-proofness,
individual rationality, and no subsidy.

The next two lemmas form the foundation of our analysis of interpersonal tractability.

Note that by richness, R4% N RY C RA¥ C R.
Lemma 3. Let g = (AY,19) be the restriction of f to (R4 N RP)". Then, A/ = A9.

Proof. Since g is the restriction of f to (R4 N R?)", we have A9 C A/. To show A/ C A9,
let A€ Af. Foreachi € N, let R; € R4% N RA be such that for each a € A;, w({a}; Ri) =
m + 1, and for each a € M\A,, w({a};Ri) = 1. By richness, R € R". By the defi-
nition of R, {A} = arg max ), yw(Aj; R;). Moreover, since A € A7, we have {A} =
arg max y . w(Aj; Ri)é,%fms, by constrained efficiency of f, we have A(R) = A. Since g is
thieré;triction of fto (RA% N R¥)" and R € (RA% N RY)", we also have A9(R) = A(R) =
A. Thus, A € A9. O

Lemma 4. Let R € (RA N R and leti,j € N satisfy R; = R;. Then,

max (Ag; Ry) = (Ag; R
a2 wlAsf) = mag D, (4 R
kEN\{z kEN\{J}

Proof. Let g = (A9,19) be the restriction of f to (R4 N R?)™. Since f satisfies constrained
efficiency, strategy-proofness, individual rationality, and no subsidy, so does g. Therefore,

by Fact 4, ¢ is a constrained Vickrey rule on (R44 N RP)". Thus, for each k € N, we have

w(AL(R): Ry) — t(R) = w(ALR): R) — (max S w(AsR)— Y w(Al(R):R)

Ac A9
leN\{k} leN\{k}
= Zw(Alg(R); R) — max w(Ag; Ry). (7)
lEN IeN\{k}

Since R; = Rj, equal treatment of equals of g implies that g;(R) I; g;(R), so w(Af(R); Ri) —
t!(R) = w(AY(R); R;) — tJ(R). Moreover, A/ = A9 (see Lemma 3). Thus, by (7),

Zw(Ai(R) Ry) — max | w(Ag; Ry) = Z (AL(R); Ri) — max Z w(Ag; Ry).
keN kEN\{i} keN kEN\{j}
Canceling ),y w(A (R); Rk) from both sides yields the desired equality. ]

The following lemma establishes a basic form of interpersonal tractability: if a package

is available to some agent under an admissible object allocation, then there exists another
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admissible object allocation in which a different agent receives a package that includes all

objects in the original package.

Lemma 5 (Interpersonal tractability (i)). Let A € A/, and leti,j € N be two distinct
agents. Then, there exists A" € A such that Al D A

Proof. Suppose for contradiction that for each A’ € Af, we have A% D A;. Note that A; # (.
Let R, € R4 N RY be such that for each a € A;, w({a};Ri) = m + 1, and for each
a € M\A;, w({a}; R;)) = 1. Let R; = R;, and for each k € N\{i,j}, let R, € R4 N RY
be such that for each a € M, w({a}; Ry) = 1. Since A € A’ and i € N\{j}, we have

max w(Ay; Ry) > w(A; Ry) = (m+ 1)] A

A'e Af
keN\{j}

In contrast, for each A’ € A/, we have A} 2 A;, and hence |4} N A;| < |A;]. Therefore, by
the construction of R_;, the total willingness to pay among agents in N\{i} is at most the
amount obtained when agent j receives |A;| — 1 objects from A;, and the remaining objects

are allocated to agents in N\{i} (that is, agent j cannot receive all the objects in A;). Thus,

max Y w(dRe) < (m+ 1)(JA] = 1)+ [M\A]+1 < (m+ 1) A,
gs
keEN\{i}

where the last inequality uses | M\ A;| < m (since A; # (). Combining these inequalities, we

obtain
max Z w(Ay; Re) > (m+1)|A;] > max Z (AL; Re),
AcAS AlcAS
keN\{j} keN\{i}
which contradicts Lemma 4. O

Given a non-empty set M’ C M of packages, a package A; € M’ is said to be maximal
(in M) if there does not exist any A, € M’ such that A; C A..

The following lemma shows that if a package is maximal in those available to a given
agent under the rule, then it is also available to any other agent and remains maximal in

that agent’s available set under the rule.

Lemma 6 (Interpersonal tractability (ii)). Let i,7 € N be two distinct agents, and let
A; € M; be a package that is mazimal in M;. Then, (i) A; € M;, and (ii) A; is mazimal
m ./\/lj.

Proof. By Lemma 5, there exists A; € M, such that A; DO A;. To prove (i) and (ii), it is
sufficient to show that for each A; € M, with A; D A;, we have A; = A;. Suppose for
contradiction that there exists A; € M; such that A; 2D A;,. Then, again by Lemma 5,
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there exists A; € M, such that A, O A;. Since A; D A;, we have A] D A,;, contradicting the

assumption that A; is maximal in M;. O

The following lemma states that for any two agents, if one agent has a maximal package
and there exists an object not included in that package, then there exists an admissible object
allocation in which the agent receives the maximal package while the other agent receives

that object.

Lemma 7 (Interpersonal tractability (iii)). Let i,j € N be two distinct agents, and
let A; € M\{0} be a package that is maximal in M;. Let a € M\A;. Then, there exists
A" e Al such that Aj = A; and a € Al

Proof. By A; € M, there exists A_; € M" ! such that A = (A;, A_;) € A/. Since A’ sat-
isfies no wastage (which follows from no wastage of f) and a € M\ A;, there exists k € N\{i}
such that a € A;. If k = j, then A € Af satisfies the desired properties: agent i receives A;
and a € A;. Suppose instead that k # j.

We now establish that there exists A’ € A/ such that A, = A; and A; D A;. Note that
for such A’ € A/, since a € A, C A%, A satisfies the desired properties.

We proceed by contradiction. Suppose that for each A’ € A/ with A} = A;, it holds that
AL D Ay Note that Ay # (). The proof now proceeds in three steps.

STEP 1. We begin by constructing a preference profile. Let R; € R4% N R? be such that
for each a € A;, w({a};RZ-) = (m + 1)2, and for each a € M\A;, w({a};Ri) = 1. For
each | € {j, k}, let B, € R4 N RY be such that for each a € Ay, w({a}; R) = m + 1,
and for each a € M\ A, w({a}; R;) = 1. Note that R; = Ry. For each | € N\{i,j, k}, let
R, € RA4% N RY be such that for each a € M, w({a}; R;) = 1.

STEP 2. Next, we show that for each A" € arg max )\ () w(A); Ri), we have A} = A;.
Are At
Let A" € arg max )\ gy W(A]; Ry). We claim that A7 O A;. Suppose for contradiction
A" AS
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that A, 2 A;. Then, A, N A; € A;, and hence |A; N A;] < |A4;|. Therefore,

> w(AjR) < (mA 12A 0 A+ A 0 Agl(m+ 1) +m— (JA] 0 A + 4] 0 Ay
leN\{k}

IA

(m+ DA N Al +m(m+1)+m
< (m+ 1) Al

w(Aj; R;)

< > w(A; Ry,

leN\{k}

where the right-hand side of the first inequality corresponds to the case in which all objects
are allocated at A’; and the third inequality uses the facts that |A; N A;| < |A;] and (m +
1)? > m(m+1)+m. However, since A € A/, this contradicts A’ € arg max D e gry WAL Ry).

A’eAf
Thus, we must have A, O A;, and since A; is maximal in M;, it follows that A, = A;.

STEP 3. Finally, we derive a contradiction. Let A’ € arg max} .y gy w(A]s ). By
Ale Af
Step 2, A; = A;. Thus, by our assumption, A’ 2 Ay. Thus, A: N A, C Ay, and hence

|A% N Ay < [Ag|. Then, we have
max Z w(A]; R) = Z w(A}; Ry)

AT Nk leN\{k}

< (m+1)%[A; N A+ (m+1)[A] N Al +m — [A] 0 A — [A] N Ay
< (m+ 1|4+ (m+ 1|45 N Al +m
< (m+1)%|4;] + (m+ 1)| Ay
= w(Aj; Ry) + w(Ay; Ry)
< > w(AsR)
LeN\{7}

< max w(Al; Ry),
Are AS )
leN\{;j}

where the right-hand side of the first inequality corresponds to the case in which all objects are
allocated at A’; the second inequality uses A; = A;; the third inequality uses [A} N Ag| < [Ag]
and m + 1 > m; and the last follows from A € A/. However, this contradicts Lemma 4,

completing the proof. ]

41



A.1.4 Existence of preferences in a rich domain

We examine the existence of an additive preference that demands a package A; at a payment
vector 7 and another package A} at another payment vector 7/. The lemmas presented here
correspond to Claim 3 in the proof outline provided in Section 3.4.3.

As discussed in Section 3.4.4, if we were allowed to choose arbitrary non-additive, non-
quasi-linear preferences from the domain, then constructing such a preference would be
relatively straightforward. The main challenge, however, lies in constructing an additive,
non-quasi-linear preference.

We begin with the following remark, which describes how to construct a non-quasi-linear

preference by interpolating between two given quasi-linear preferences.

Remark 4 (Figure 6). Let A;, A] € M, and let 74,,7), € R. Let R;, R; € R“ be two quasi-
linear preferences satisfying that for each A7 € M, w(AY; R;) —w(A;; R;)+71a, < w(Al; R})—

w(Aj; Ry) + 7). Let 7 = w(A, R) —w(Aj; R)) + 1), 50 T4, < 7. Let o [74,,74,] — [0,1]

be such that for each t; € [74,,7) ], a(t;) = % We now define a preference R/ as follows:
for each A7 € M and each t; € R,

= (1 —a(t) (w(As Ri) —w(Af; Ry)) + alts) (w(As BY) —w(Af RY)) if a, <t < 74
w(Aj; By) — w(A}; R) if t; > 7,

Note that R/ satisfies the following properties: for each A7 € M,

T, — V(Ag’, (Ai,Ta,); Ré’)
7_1/4; — V(AH’ ( ;, 7'1/4;), R,,L/)

]

w(Aj R;) — w(Af; Ry).

Figure 6 is an illustration of Remark 4. Remark 4 states that given two quasi-linear
preferences R;, R such that for each A} € M, w(A; R;) — w(A;; R;) + 74, < w(Al; R)) —
w(AL; R)) + 71’4; —that is, the indifference curve of R; through (A;, 74,) lies entirely to the
left of that of R] through (AQ,TAQ )—we can construct a preference R with the following
properties:

(i) Each indifference curve to the left of (A;,74,) is parallel to that of R;.
(ii) Each indifference curve to the right of (A}, TA;) is parallel to that of R;.
(iii) Each indifference curve in between is formed by interpolating between the two, that is,

by taking a convex combination of the corresponding willingness to pay for R; and R;.
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Figure 6: An illustration of Remark 4.

Given a non-empty set M’ C M of packages, a payment vector 7 € R™M'l is said to be
object monotonic (on M') if for each A;, A} € M’ with A} 2 A;, it holds that 74, > 7a,.
Two distinct packages A;, A, € M’ are said to be adjacent (in M) if one of the following
holds:
(i) A; € A;, and there is no A7 € M’ such that A; C A7 C A’; or
(i) A, C A;, and there is no A7 € M’ such that A} C A7 C A,.

The following lemma provides a sufficient condition for the existence of an additive non-
quasi-linear preference that demands package A; at a given payment vector 7 on M’ and
demands another package A,—which is adjacent to A;—at another payment vector 7’ on
M'’. Figure 7 illustrates the lemma. In the figure, a solid horizontal line indicates that the
corresponding package is included in M, while a dotted horizontal line indicates that it is

not. Accordingly, in Figure 7, M" = {0, {a}, {b}, {c}, {b,c}}.

Lemma 8 (Figure 7). Let M’ C M be a non-empty set of packages. Let A;, A, € M’ be
two adjacent packages in M', satisfying the following conditions: (i) A; # 0, (ii) A; C AL,
and (iii) for each A7 € M’ with AY N A, £ (0, A? C A, Let 7,7 € RM| be two payment
vectors on M' such that: (iv) T4, < 7)., and (v) 7,7" are object monotonic on M'. Then,

there exists an additive preference that demands A; at 7 on M', and A, at 7" on M'.

Proof. The proof proceeds in four steps.

STEP 1. We begin by constructing two additive quasi-linear preferences. Let K;, L;,e; € Ry
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Figure 7: An illustration of Lemma 8.

be a triple of positive constants, where K; is sufficiently large and ¢; is sufficiently small, such

that the following conditions are satisfied:

e For each A ¢ M/,
K; > ¢;m + max {TAi — Tar, T — 71'4//} ) (8)
e For each A} € M’ with A} O A,,

il AY\A| < Tay — Ta,, (9)

T;% — 7y, < Li]A\A;| < 71'4; — Ta,. (10)

Since 7 and 7' are object monotonic on M’, we can always choose a sufficiently small
g; > 0 satisfying (9). Furthermore, given object monotonicity of 7/, the assumption that
A; € Aj, and that 74, < 7)), we can select L; > 0 satisfying (10).

Let R; € R4% N RQ be such that for each a € A;, w({a}; Ri) = K, and each a € M\ A;,
w({a}; R;) = &;. Similarly, let R} € R4 N R be such that for each a € 4;, w({a}; R}) =
K;, for each a € A\\A;, w({a}; R) = L;, and for each a € M\ A}, w({a}; R}) = &;.

STEP 2. Next, we construct an additive non-quasi-linear preference based on R; and R;. For
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each A7 € M, observe that

w(A]; R;) — w(A;; R;) + 7a, = | A)\Ai| — Ki|ANAY | + 74,
< g ANAY| — K| ANAT| — Lil ANA| + 7
< g ANAY — KG[ANAT| = Lil A\ (A U A9 + 7
= w(Af; R)) — w(Ax RY) + 74,

where the first inequality follows from (10); and the second inequality uses A\ (A; U A7) C A\ A;
(and hence | A\ (A; U AY)| < |A\A;]). This confirms that the indifference curve of R; through
(A;, Ta,) lies entirely to the left of that of R, through (A}, 71’4; ). Hence, by Remark 4, we can
define a preference R! € R such that for each A} € M,

TA, — V(Ag’, (Ai,Ta,); R;’)
T, — V(A7 (A}, 7h); RY)

w(Az‘; Ri) - w(A;'; Ri)a (11)
w(Aj; R;) — w(A]; Ry). (12)

By additivity of R;, R}, we can ensure that R/ € R4% (see Remark 4).

STEP 3. We now show that R/ demands A; at 7 on M'. Let A? € M'\{A;}. If A 2 A,
then A;\ A/ # (), and we have

T4, — V(A7 (Ai,74,); RY) = w(Ai; Ry) — w(A]; Ry) = Ki|A\A] | — ei] AINA| > 74, — Tar,

where the first equality follows from (11); and the inequality from (8) and A;\ A7 # . Instead,
it A” O A;, then

Ta, = V(AY (Ai,7a,)s BY) = w(Ai; Ri) — w(Al; Ri) = =&, ANAi| > 74, — Tar,
where the first equality follows from (11); the second equality from A7 2 A;; and the inequal-
ity from (9) and A7 D A;. In both cases, we obtain 74, — V (A7, (A;,7a,); R) > Ta, — TAr,

or equivalently, V(Ag’ , (A, 7a,); RY ) < 747. This implies that (A;, 74,) P (A7, 7ar). Since
Al e M'\{A;} was arbitrary, we conclude that R/ demands A; at 7 on M’

STEP 4. Finally, we show that R, demands A} at 7/ on M’. Let A} € M'\{A,}. We consider

two cases.
Case 1. AV n AL =10.
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Since A; C A}, A; # 0 and A7 N AL = (), it follows that A;\ A7 # (). Then,

Ty — V(AL (A5 )i BY) = w(Aj; B)) — w(Af; Ry)
= [ANAT K + [ AN (A U AY)|Li — [A]\Ales > Tl — Tho,

where the first equality follows from (12), and the inequality from (8) and A;\ A7 # 0.
CaAsg 2. A7 n A, # 0.

By assumption, A7 C Al. Thus, by A7 # Al we have A7 C Al. Since A; C A}, and A,
and A} are adjacent in M’, we have either A = A; or A; € AY. If A? = A;, then

Ty = V(AT (AL 7 ) BY) = (A BY) — w(Ai BY) = [ANA L > 7)y — T,

where the first equality follows from (12); the second equality uses A; C A; and the inequality
from (10). Instead, if A; € A7, then A\ A # 0, so we have

Ty = V(AL (A, 7); BY) = w(Aj B)) — w(Af; R))
— ANALI, + [ AN (As U AD)| L — AN AYe; > 7 —

where the first equality follows from (12), and the inequality uses (8) and A;\ A7 # (.

In all cases, we have TAQ —V(A;’ , (AL 7’1,4;); R} ) > 71’4; —TI’L{;,, or equivalently, V(A;’ , (AL 7'1’42); R! ) < 7';12,.
Therefore, (AQ,TA; ) P! (A;/,ng,). Since A € M'\{A,} was arbitrary, we conclude that R/
demands A at 7/ on M. O

Furthermore, the next lemma provides a sufficient condition for the existence of an addi-
tive non-quasi-linear preference that demands a package A; at a given payment vector 7 on
M’ and a maximal package A} satisfying A, N A; = () at another given payment vector 7’

on M'. Figure 8 illustrates this result, where M’ = {0, {b}, {c}, {a, b}, {b, c}}.

Lemma 9 (Figure 8). Let M’ C M be a non-empty set of packages. Let A;, A, € M’ be
two packages satisfying the following conditions: (i) A; # 0, (ii) A; N Al =0, and (i) A, is
mazimal in M'. Let 7,7 € RM' be two payment vectors on M’ such that: (iv) Ta, < Th.»

and (v) 7,7 are object monotonic on M'. Then, there exists an additive preference that

demands A; at 7 on M’ and A} at 7" on M'.
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Figure 8: An illustration of Lemma 9.

Proof. We proceed with the proof in four steps.

STEP 1. We begin by constructing two additive quasi-linear preferences. Let K;, L;,e; € Ry
be a triple of positive constants, where K; and L; are sufficiently large and ¢; is sufficiently

small, satisfying the following conditions:

For each A? € M’,

K; > em+max<Ta, — Tar,Ta, — Tan, Tar — Th. . 13
i Al i Al T AL A;

For each A € M’ with A} € A7,

T — Ta, + Kil Ai] — ;| A]]
Lil A — & A + K| Ag| — &4 Aj
Tan — Th, + Kl AN\AY| — & AT\ A

< . 14
LA, 0 AT+ 2 ANA] — <AL+ KiAAT —eAanal Y

e For each A} € M’ with A} O A,,
gi|AJ\A;| < min {TA;/ — TA,, Tar — TAl.} : (15)

81’AZ| < 7'1/4i — TA;-
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For each A7 € M’ with A € AY, A\AY # (), so A; N AY C A}. Thus, we can choose L;
satisfying (14). Furthermore, since 7 and 7" are object monotonic on M’ and 74, < 7)., we
can choose ¢; € R, satisfying (15) and g;|As| < 7)), — 7a,.

Let R, € R4 N RQ be such that for each a € A;, w({a};Ri) = K;, and for each
a € M\A;, w({a}; R;) = &;. Similarly, let R, € R4 N R be such that for each a € A},
w({a}; R}) = L;, and for each a € M\ A}, w({a}; R;) = &;. Note that since A; N A} =0, we
have w(A;; R)) = ;] A;| and w(A}; R)) = L;| Al

STEP 2. Next, we construct an additive non-quasi-linear preference based on the two quasi-

linear preferences R; and R, constructed in Step 1. For each A7 € M, we have

w(ALs Ry) — w(Ai; Ry) + 74, = & ANA| — Ki|ANAY| + 7a,
< LAY 0 AL+ e AN\A;| 4 7a,
< Li|A] 0 A + & A\AY] — ei| A + 74,
= w(A]; ) — w(Ai; RY) + 7},

where the second inequality follows from &;|4;| < 7. —74,. This implies that the indifference
curve of R; through (A;,74,) lies entirely to the left of that of Rj through (A;,7},). Thus,
by Remark 4, the following preference R € R is well-defined: for each A € M and each
ti € R,

w(Ay; Ri) — w(A]; R;) if t; < 7a,,
= 0 (1= alt)) (0 A ) = wl A% ) + ) (w(As R = wl AL R)) i 7, < 13 < 74,

w(A; B) — w(A]; R) if & > 7,
where o : [74,,7) ] — [0,1] is a function such that for each t; € [ra,, 7} ], a(t;) = % y

additivity of R;, R}, we have R/ € RA%. By Remark 4, we also have that for each A? € M,

TA, — V(A;’, (Ai,Ta,); R;’)
mh, — V(AY, (A, 7)) RY)

77

w(Ay; Ri) — w(Afs R;), (16)
w(Ay; By) — w(Af; R)). (17)

Using (13), (15), and (16), we can show that R! demands A; at 7 on M’ as in Step 3 of

Lemma 8. In the next two steps, we will demonstrate that R, demands A} at 7" on M’.
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STEP 3. We now claim that for each A7 € M'\{4;}, it holds that (A;,7a,) P/ (A, T,).
This can be established in the same manner as in Step 3 of Lemma 8, using (13), (15), and

(16). We therefore omit the details.

STEP 4. Finally, we show that R; demands A} at 7" on M'.
We first establish that (Aj, 7)) P’ (A4, 7),). Observe that

where the first equality follows from (17); the first inequality from L; > K;; and the second
inequality uses (13) and A} # (). Therefore, we have V (A}, (A;, 7y.); RY) > 7/, which implies
that (4}, 7,) P! (4,7),)

Let A7 € M'\{A;, A;}. We consider the following two cases.

CASE 1. w(Ai; R;) _ 7—;11_ > ’LU(A;./; R;) . 7_1,4/!.

Then,
T, = V(A (4,74 RY) = w(Ai B) — w(A3 B) > 7, — 7l

3

where the equality follows from (17), and the inequality uses the assumption that w(A;; R}) —
mh, > w(Al; R) — 7, Thus, V (A}, (A, 7)) R!) < Th, so (A, 7)) R! (A}, 7),). This,
together with (Aj, 7)) P/ (A;, 7)), implies that (Aj, 7)) P (A7, 7).

Let tyr = V(Al-, (Ag’,TA,_,);Rg’). Then, in a similar way to Case 1, we can show that
(A7, 71’4;,) R} (Ai, 7)), Thus, (At A;/) I (A7, 71’42,) R} (A, 7),), which implies that ¢ Ay < Th,-
By Step 3, (Ai,7a,) P/ (A}, 7). Thus, (As,7a,) P (A, 7)) II' (Ai;tar), which implies

tar > Ta,. Thus, tar € [14,,74,]. Thus,

tar — Thy = tay — V(A (A, tay); RY)
= (1= alta)) (w(As Ry) = w(A; R)) + altay) (w(As RY) — w(A; R)).

where the first equality follows from 7/, = V(A;’ ,(Aiytar); RY ), which in turn follows from
(Ai,tar) I (A7, 7)n); and the second equality follows from the definition of R;. Rearranging
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this, we obtain

aty) = 7',/4;' —lar + (w(Az'; R;) — w(A; Rz))
o (w(AfR) —w(As Ry)) + (w(Ai; Ri) — w(Af; Ry))
Thr — tay + KG[ANAT| — & A\ Ayl
T LAY 0 A+ e ANAY — e Al + K ANAY] — e ANA|

Let ta = V(Ai, (A;-,TA,_);RQ’). By (Al-,tA;) I (A, 7)) P/ (Ai,TAi), we have tar < 7'1'41,.
By Step 3, (Ai,7a,) P/ (A}, 7)) I} (Ai,ta), which implies t4, > 74, Thus, t4 € [7a,, 73]

Thus, in the same way as above, we can show that

TA; —ta + (w(AZ-; R;) — w(A; R,))
(w(Af R) — w(As B)) + (w(Ais Ry) — w(AL; Ry))
71’4; —ta + KA — &i| Ay
Lil Al = i As| + K Ai] — i A}

Oé(tAé) =

Since A} is maximal in M', A, ¢ AY. Then,

o =t + KA — =il Al

T LA - Al + KAl - el A]

_ 7'1’4; — Ta, + Ki|A;| — €| A

T LilAj| = gl A + Kl Al — €] Aj
Tar — T, + K| AN\AY| — i AT\ A

Li A7 0 Ajl + i ANAY] — &l Al + KGJANAY| — e AY\ A

T — tag + K| ANAY| — £ AN\ A

= TIAT O A+ e ANAL — Al + K ANAT — o ANA,

= a(tay),

Oé(tA;)

where the first inequality follows from ¢4, > 74,; the second inequality uses (14) and A}  AY;

. . . . ti—TaA. . . . .
and the third inequality uses t4» < 7 . Since a(t;) = ——= is an increasing function
K Az ? TA- —TAj

in t;, a(ta) < a(tay) implies that t4 < ts4r. Thus, V(AZ-,(AQ,TA<);R§’) = ta <tay =
V(A;, (AY,7),,); RY'), which implies that (Af, 7/,,) P/ (AY, 7).

Thus, for each A} € M\{A}}, (AL, 7)) P! (A], 7)), so R demands A} at 7" on M’
This completes the proof. O

A.2 Proof of Proposition

We now proceed to the proof of Proposition. Let f = (A,t) be a rule on R"™ that satisfies

constrained efficiency, no wastage, equal treatment of equals, strategy-proofness, individual
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rationality, and no subsidy.

We begin with a brief outline of the proof. To show A/ = C*(B) for some partition B of
M with |B| < n, it suffices to show the following four properties:

(i) A’ is a B-bundling unit-demand constraint for some partition B of M.
(i) |B] < n.

(iii) A’ satisfies no wastage.

(iv) A7 satisfies anonymity.

Among these properties, (iii) follows directly from no wastage of f. Moreover, once (i) is
established, (ii) follows as a consequence of no wastage. Thus, it remains to prove that A/
satisfies properties (i) and (iv). In the first part (Appendix A.2.1), we prove property (i). This
part, outlined in Section 3.4.3, is the most technically involved in the paper and repeatedly
relies on no wastage of A/ (i.e., property (iii)). In the second part (Appendix A.2.2), we prove
property (iv). A simple outline of the proof of this part in the two-agent, two-object case is
provided in Section 3.4.5. This part builds on the result that A/ is a bundling unit-demand

constraint (i.e., property (i)) and again relies on no wastage of A”.

A.2.1 Bundling unit-demand constraint

In this subsection, we show that there exists a partition B of M such that A/ is a B-bundling

unit-demand constraint and |B| < n. The proof proceeds in three steps.

STEP 1. We first show that for each i € N and each distinct A;, A; € M;\{0}, we have
A; N Al = (. Suppose for contradiction that there exist ¢ € N and distinct A;, A; € M, \{0}
such that A; N A, # (. The proof basically follows the outline provided in Section 3.4.3.

If A} is not maximal in M;, then there exists A7 € M; such that A7 O Al. Since
A; N AL £ () it follows that A; N AY # (). Therefore, without loss of generality, we may
assume that A} is maximal in M,.

Since R is rich, we have R4% N RY C RAM C R. Let g be the restriction of f on
R" to (R4 N RP)™. Since f satisfies constrained efficiency, strategy-proofness, individual
rationality, and no subsidy, its restriction g also satisfies these properties. Thus, by Fact 3, g
is a constrained Vickrey rule. Thus, for each R € (R4 N RP)", f(R) = g(R) is an outcome

of a constrained Vickrey rule, and hence
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ti(R) = t;(R_i; Ai(R)) = max w(Af; Ry) = Y w(A;(R); R))

A’e A9

JEN\{i} JEN\{3}
_ ", .
= max D> w(AGR) = 30 w(A(R);Ry), (18)
JEN\{i} JEN\{i}

where the last equality uses A/ = A9 (see Lemma 3). Note that (18) corresponds to Claim 2
in the outline of the proof presented in Section 3.4.3.
Let Ry € R4 N RY be such that for each a € M, w({a}; Ry) = 1.

We consider two cases.
CASE 1. For each A € M; with A7 N A} # 0, it holds that A7 C AL

Since A; N A, # 0, we have A; C Al. Given that A; # A}, we have A; C AL, Without
loss of generality, assume that A; and A/ are adjacent in M;. Since A; # ), we can choose
a € A;. Since A; C AL, we have AJ\A; # 0, so we can choose some b € A;\A;. Note that
a # b. Figure 9 illustrates the packages A; and Al.

A

l

[ Ryl

0

Figure 9: An illustration of the packages in Case 1.

By A; € M;, there exists A_; € M" ! such that A = (A;,A_;) € A/. By no wastage
of A/ (which follows from no wastage of f) and b & A;, there exists j € N\{i} such that
be Aj. Let R; € R4 N R be such that w({b}; R;) = m + 1, and for each ¢ € M\{b},
w({c}; R;) = 1. Let R} € R4 0 RY be such that w({a}; R}) = 3m, w({b}; R}) = m + 2,
and for each ¢ € M\{a,b}, w({c}; R;) = 1. For each k € N\{i,j}, let Ry = Ry.

Let 7,7/ € RMil be two object monotonic payment vectors on M; such that for each
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Al € Mi(R_;), Tar = ti(R_;; AY), and for each A} € M,(R, R_;;), Thn = ti(R, Ry j; AY).
Note that by Lemma 1, we can choose such 7,7’ satisfying object monotonicity on M;.?
Recall that A € A7 and b € A;. Thus, since w({b}; R;) > w({b}; Rx) and w({c}; R;) =
w({c}; Ry) for each k € N\{i,j} and each ¢ € M\ (A; U {b}), Lemma 2 implies that there
exists R; € R4 N R such that A;(R;, R_;) = A;, and thus A; € M;(R_;). This corre-

sponds to Claim 1 in the outline of the proof presented in Section 3.4.3. Then, we have

TAz‘ = tl(R_l,Al) = tz(R)
= max Z w(AY; Ry) — Z w(Ag(R); Ry)

ATEAT N} KEN\{i}
< ",
< ey 2 wAGRY
KEN\{i}
< w({b}; R;) + w(M\{b}; Ry)
= 2m, (19)

where the first equality uses A; € M;(R_;); the second equality follows from A;(R) = A;; the
third equality uses that R € (R4 N RY)™ and (18); and the second inequality follows from
the fact that for each ¢ € M\{b}, w({b}; R;) > w({c}; R;) = w({c}; Ro), so that assigning
object b to agent j maximizes the total willingness to pay among agents in N\{i}.

By the same argument as above, we can invoke Lemma 2 to claim that there exists

R; € R4 N R such that A;(R];,R_;;) = A;.*® Thus, A; € M;(R},R_;;). Since Aj is

7’7‘77

maximal in M;, A} € M; (see Lemma 6). Since a € A; = Ay(R; ;, R_i;), a & Aj(R;;, R_i ).

) 0,7

Given A € A a & Aj(R];,R_; ), and b € A;, constrained efficiency implies that b € A;(R, ,, R

1,77 -]

because—conditional on agent j not receiving object a (i.e., a ¢ A;(R;

i j» R j))—assigning

2TFor each Al € M\M;(R_;), define T4y € R as follows:

(i) If there is no A; € M, such that A; 2 A, then TAy =Maxj g, (g ,) T, T 1
(ll) If there is no I‘L € M, such that Al - A;/, then TAY = minAiEMi(Rﬂ-) Ti, — 1.
(iii) If there are A;, A; € M, such that A; C A C A;, then

/TAi <T v < min TA,-

5 max 5 5
Ry A;eM;(R_;):A; DAY

A€M (R_;):A; CA!
Note that in case (iii), we can choose such Tar due to Lemma 1. Then, using Lemma 1, it is straightforward
to show that 7 is an object monotonic payment vector on M;. An object monotonic payment vector 7/ on
M, can be constructed in the same manner.

28This also corresponds to Claim 1 in the outline of the proof presented in Section 3.4.3.
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object b to agent j maximizes the total willingness to pay. Then,

Ty, = L(R), R j; As) = Li(R;

Z?]’

R_;)

— . p/ /R
= max | w(AfR)) + Zu w(AL Ry
keN\{i,j}

- w(Aj(R;J,R—i,j);R;)‘i‘ Z U)(Ak(R;,jaR—i,j)QRk>
keN\{i,j}

> w(Aj Ry) — | w(Aj(R;, Reiy); Ry + Y w(Ak(Ri;, R_iy); Ri)

keN\{i,j}

> w({a}; R;) + w({b};R;) — w(Aj(Rg’j,R—i,j);R;-) + Z w(Ak(R;j,R,i,j); Ry)

keN\{i.j}
> w({a} ) +w({v}: B)) — (w({bh; B) +w(M\{b}; o))

= w({a}; Bj) — w(M\{b}; Ro)
=2m + 1, (20)

where the first equality uses that A; € M;(R}, R_;;); the second equality follows from
Ai(R;;, R_;;) = Aj; the third equality uses that (R;;, R_;;) € (R N R?)" and (18); the
first inequality uses A} € M,; the second inequality follows from a,b € A; and additivity of
R}; and the third inequality follows from b € A;(R;;, R_i;), a € A;(R;;, R_i;), and from the
fact that for each ¢ € M\{a,b}, w({b}; R}) > w({c}; R}) = w({c}; Ro), so that assigning
object b to agent j maximizes the total willingness to pay among agents in N\{:}.

Combining (19) and (20), we obtain
Th, = 2m+1>2m > 7y,

This inequality corresponds to inequality (1) in the outline of the proof presented in Sec-
tion 3.4.3. Recall that 7 and 7/ are both object monotonic on M,;. Note that ) # A; C Al
that A; and A’ are adjacent in M, and that, by the assumption of Case 1, for each A7 € M,
with A, N AY # 0, it holds that A7 C Al. Thus, the assumptions of Lemma 8 are satisfied,
and so the lemma implies that there exists R/ € R4 that demands A; at 7 and Al at 7/ on
M,;. Note that this corresponds to Claim 3 in the proof outline provided in Section 3.4.3.
Recall that A; € M;(R_;), and note that M;(R_;) C M,. Thus, since R demands A; at
7 on M, it follows that for each A} € Mi(R_)\{Ai}, zi(R_i; Ai) = (Ai, 7a,) By (A}, 7ar) =
zi(R_;; AY). Therefore, by strategy-proofness, A;(R!,R_;) = A; (see Remark 3). Since
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a € A;, wehavea € A;(R!,R_;),and hencea & A;(R!, R_;). Also,since A € A',a & A;(R!,R_;),
and b € A;, it follows from constrained efficiency that b € A;(R!, R_;), as assigning object b

to agent j, conditional on agent j not receiving object a (i.e., a € A;(R/, R_;)), maximizes

the total willingness to pay.

Since w({c}; R}) = w({c}; Ry) = w({c}; Ri) for each k € N\{i,j} and each ¢ € M\ A/,
Lemma 2 implies that A € M;(R}, R_;;). Thus, since M;(R}, R_;;) € M; and R de-
mands A} at 7/ on M;, it follows that for each A} € M;(R, R_;;)\{Aj}, (R}, R_i;; A}) =
(AL, 7'1’42) P! (A7, 71’4;,) = 2(R}, R j; A). Therefore, by strategy-proofness, A;(R}, R}, R_; ;) =
Aj (see Remark 3). Since a,b € A] = A(R], R}, R_;;), it follows that a,b ¢ A;(R}, R}, R_; ;).

To sum up, we have
a g AJ(R;/7 R—i)7 be A]'(Rgv R—i)a a, b ¢ Aj(R;/? R;7 R—iJ)' (21)
This corresponds to Claim 4 in the outline of the proof presented in Section 3.4.3. Then,

w(A; (R, Ro); Ry) — w(A; (R}, Ry, Rei ) B))
= (JA; (R}, R_i)\{a}| + (m +2)) — |A;(R!, R}, R_; ;)|
> (145(R, R\l + (m +1)) = |A,(RY, B, Rij)|
= w(4;(R}, R); Ry) — w(A; (R, R}, R_ij); B;),

where the first and the second equalities follow from (21) and additivity of R;, R}. This
inequality corresponds to inequality (2) in the outline of the proof presented in Section 3.4.3.

However, it contradicts monotonicity of f (see Fact 3).
CASE 2. There exists A € M, such that A, N A? # () and AY ¢ Al

By A; N A, # 0, we may assume without loss of generality that A7 = A;. Since A; N A} # 0,
we can choose some a € A; N Al. Since A; € A}, we also have A;\ A, # 0, so we can choose
some b € A;\AlL. Note that a # b. If there exists A € M, such that A} D A;, thena € A, N A7
and b € AY\ Al. Therefore, without loss of generality, we may assume that A; is maximal in
M.

Let j € N\{i}. Since A} is maximal in M;, A} € M;, and it is also maximal in M,
(see Lemma 6). Since A, is maximal in M; and b ¢ Al there exists A” € A/ such that
A = Ajand b € A (see Lemma 7). Since A7 N A = () and A} = Aj, we have A N A} = 0.

Therefore, as a € A}, we have a ¢ AY.
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In summary, we obtain

a,be Ay, ae A, bg A, be Al

7 1

a¢g Al

Figure 10 illustrates the packages A;, A%, and AY.

4= A Ay

Figure 10: An illustration of the packages in Case 2.

Let R; € RA% N R be such that w({a}; R;) = m+1, and for each ¢ € M\{a}, w({c}; R;) =
L. Let R € R4 N R? be such that w({a}; R}) = 4m + 1, w({b}; R}) = 3m, and for each
c € M\{a,b}, w({c}; R}) = w({c}; Ro). For each k € N\{i,j}, let Ry = Ry.

Let 7,7 € RMil be two object monotonic payment vectors on M; such that for each
Al € My(R-;), we have Ty = t;(R_;; A]"), and for each A" € M;(R}, R_;;), we have
7';‘;,, =t;(R}, R_;;; A}"). By Lemma 1, such 7,7’ can be chosen to satisfy object monotonicity
on M;.?

Recall that A” € A/ and a € A”. Thus, since w({a}; R;) > w({a}; Ry) and w({c}; R;) =
w({c}; Ry) for each k € N\{i,j} and each ¢ € M\ (A} U {a}), Lemma 2 implies that there
exists R; € R4 N R? such that 4;(R;, R_;) = A. Thus, A7 € M;(R_;). This corresponds

29For a detailed discussion, see footnote 25.
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to Claim 1 in the outline of the proof presented in Section 3.4.3. Then,

TA;/ = t,;(R_Z'; A;’) = tz(R)
= max Y w(AYsRy)— Y w(Ak(R); Ry)

A ) kEN\{3}
< A
< my, 2 AR
kEN\{i}
< w({a}; R;) +w(M\{a}; Ro)
= 2m, (22)

where the first equality follows from A7 € M;(R_;); the second equality from A;(R) = AY; the
third equality uses R € (R4 N R2)™ and (18); and the second inequality follows from the
fact that, for each ¢ € M\{a}, we have w({a}; R;) > w({c}; R;) = w({c}; Ry), so assigning
object a to agent j maximizes the total willingness to pay among agents in N\{i}.

By the same argument as above, Lemma 2 implies that there exists R} € R4 N RY

such that A;(Rj, R}, R_; ;) = A}.* Thus, A} € M;(R},R_;;). Since A} is maximal in M,

Aj € M; (see Lemma 6). By b € A and A;(R;};, R_;;) = A], we have b ¢ A;(R};, R, ;).
Thus, given A” € Af and a € AY, it follows from constrained efficiency that a € A;(R; ;, R, ),

because—conditional on agent j not receiving object b (i.e., b & A;(R; ., R_; ;))—assigning

1,57

object a to agent j maximizes the total willingness to pay. Then,

R_ij)

’L]’

7—;1;/ = tl(R;, R*’LJ7 A//> = t (R/

= max | w(A]; R}) + Z w(AY; Ry,)

AV EAS
keN\{i,j}

— [ w(A (R, Reiy)s B+ ) w(Aw(Ry,, R_i;); Ri)

keN\{i,j}
w(As By) = | w(4;(Ri;, Ry); B+ Y w(A(R;;, Roij); Ry)
keN\{i.j}
w({a}; By) + w({b}; R;) — | w(A; (R, Roij)i By) + Y w(Aw(R, Ry ) Ry)

keN\{i,j}
> w({ah; B) + w({bh &) — (w({a}: B)) + w(M\{a}: Ro))

= w({b}; R}) — w(M\{a}; Ro)
=2m + 1, (23)

30Note that this also corresponds to Claim 1 in the outline of the proof presented in Section 3.4.3.
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where the first equality follows from A} € M;(R}, R_;;); the second equality from A;(R; ;, R_;;) =

AY; the third equality uses (R} ;, R_;;) € (R*% N R%)" and (18); the first inequality follows
from A; € Mj; the second inequality from a,b € A; and additivity of R}; and the third in-
equality from the facts that a € A;(R; ;, R_i;), b & A;(R;};, R_;;), and for each ¢ € M\{a, b},
w({b}; R;) > w({c}; R}) = w({c}; Ro), so that assigning object a to agent j maximizes the
total willingness to pay among agents in N\{i}.

By (22) and (23),

71/4/_/ >2m+1>2m > TA.

This inequality corresponds to inequality (1) in the outline of the proof presented in Sec-
tion 3.4.3. Recall that 7 and 7/ are both object monotonic on M;. Thus, since A N A = (),
Al (), and A} is maximal in M;, we can invoke Lemma 9 to conclude that there exists
R! € RA% that demands A7 at 7 and A} at 7/ on M,. Note that this corresponds to Claim 3
in the proof outline provided in Section 3.4.3.

Recall that A € M,;(R_;). Thus, since M;(R_;) € M; and R} demands A’ at 7 on
M, it follows that for each A} € Mi(R_;)\{A}}, zi(R_i; A}) = (A}, 7ar) P (A, Tar) =
zi(R_;; AY). Therefore, by strategy-proofness, A;(R!, R_;) = A (see Remark 3). Since
be A? = Aj(R!,R_;), it follows that b ¢ A;(R!, R_;). On the other hand, since A” € A/
and a € AJ, constrained efficiency implies that a € A;(R], R_;), as, conditional on agent j
not receiving object b (i.e., b ¢ A;(R!, R_;)), assigning object a to agent j maximizes the
total willingness to pay.

Recall that A} # ) is maximal in M;. Thus, since b ¢ A, there exists A” € A/ such
that A = A} and b € A (see Lemma 7). Moreover, since w({b}; R}) > w({b}; Ry) and
w({c}; R}) = w({c}; Ri) for each k € N\{i,j} and each ¢ € M\ (A} U {b}), Lemma 3 im-
plies that A} € M;(R}, R_;;). Since M;(R}, R_; ;) € M, and R} demands Aj at 7" on M;,
it follows that for each A; € Mi(R), R j)\{A}, 2(R, R j; A}) = (A5 7y) B (/L,T;L) =
zi(R;, R_ij; A;). Hence, by strategy-proofness, Ai(R}, R, R_;;) = Aj (see Remark 3).
Since a € A; = A;j(R{, R}, R_;;), it follows that a & A;(R{, R}, R_;;). Furthermore, since
A" e A and b e AY

", constrained efficiency implies that b € A;(R}, R}, R_;;), as, condi-

tional on agent j not receiving object a (i.e., a & A;(R}, R}, R_;;)), assigning object b to
agent 7 maximizes the total willingness to pay.

To sum up, we have

a€ Aj(R/,R;), b¢g Aj(R!,R), a¢ Aj(R},R;,R_i;), be Aj(R/,R},R ;). (24)
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This corresponds to Claim 4 in the outline of the proof presented in Section 3.4.3. Then,

w(A;(R!,R_;); R;) —w(A;(R!, R}, R_;;); R})

(14 (R}, R-)\{a}| + (4m + 1)) — (|4;(R}, R}, R-i;)\{b}| + 3m)
> (14;(RY, Roi)\Mat| + (m+ 1)) — (|4 (R}, R, Roiy)\{b}] + 1)
w(A;(R!, R )-Rj) —w(A;(R!, R}, R_i ;) R;),

where the first and the second equalities follow from (24) and additivity of R;, R}. This
inequality corresponds to inequality (2) in the outline of the proof presented in Section 3.4.3.

However, this contradicts monotonicity of f (see Fact 3).

STEP 2. In this step, we show that for each 7,7 € N, M; = M;. Let i,j € N be two
distinct agents. We show that M, C M;; the reverse inclusion follows symmetrically. Let
A; € M;. If A; # 0, then by Step 1, A; is maximal in M,. Hence, A; € M; (see Lemma 6).
Now suppose A; = (). To show that A; € M, suppose for contradiction that A; ¢ M;. For
cach k € N, let R;, € R4% N RY be such that for each a € M, w({a};Rk) = 1. Note that
R; = R;.

By A; € M, there exists A_; € M" ! such that A = (4;, A_;) € A’. Given that 4; = ()
and using no wastage of A’ (which follows from no wastage of f), we have Ure N} Ay =M.

Therefore,

Al > . —
max | w(Al; Ry) > Z. w(Ay; Ry) = m, (25)
keN\{i} keN\{i}

where the inequality uses A € A/,
Let A" € A/, Since A; = ) ¢ M;, we have A # (. By no wastage of A7, it follows that
Uren gy Ak = M\Aj. Therefore,

S° (A R =m— 4] < m,
keN\{j}

where the inequality follows from A% # ). Since A" € A’ was arbitrary, we obtain

/!
Inax Z w(Ay; Rp) < m. (26)
keN\{j}
By (25) and (26),
Al;Rp) > m > w(Aj; R
oy 2o wiB zm> ), wldiR)
keN\{i} keN\{J}
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which contradicts Lemma 4.

STEP 3. We now complete the proof. Let B = J,cy(M;\{0}). By no wastage of A/,
we have | JB = M. By Step 2, for each i € N, we have B = M;\{0}. Then, by Step 1,
for each distinct A;, A, € B, A; N A, = (). Thus, B is a partition of M. Furthermore, for
each A € A/ and each i € N, since 4; € M; and B = M;\{0}, we have A, € B U {0}.
Hence, A/ is a B-bundling unit-demand constraint. Finally, by no wastage of A/, we have
|B| < n, since otherwise more than n non-empty packages would be assigned to distinct

agents, contradicting feasibility. |

A.2.2 Anonymity

In this subsection, we prove that A/ satisfies anonymity. The argument in this subsection
corresponds to the outline given in Section 3.4.5.

A permutation 7 : N — N is said to be a transposition on N if there exist i, 7 € N such
that m(i) = j, 7(j) = 4, and for each k € N\{i,j}, 7(k) = k. Note that any permutation on
N can be written as a product of transpositions. Hence, to prove that A/ satisfies anonymity,
it suffices to show that for each A € A’ and each transposition 7 on N, A™ € A’. The proof

proceeds in two steps.

STEP 1. We show that for each A € A/ and each transposition = on N such that for some
i,j €N, n(i) = j, 7(j) = i, and A; = 0, we have A™ € A/. The argument in Step 1
corresponds to Case 1 in the outline presented in Section 3.4.5. Let A € Af. Let 7 be a
transposition on N such that for some distinct 7,5 € N, 7(i) = j, n(j) = 4, and A; = 0.
If A, = 0, then A™ = A€ Af. Suppose that A; # (. To show A™ € A/, suppose for
contradiction that A™ & A/,

For each k € {i,7}, let Ry € R4 N R? be such that for each a € A;, w({a}; Ry) =
m~+1, and for each a € M\ A;, w({a}; R) = 1. Note that R; = R;. For each k € N\{i,j}, let
Ri, € RA% N R be such that for each a € Ay, w({a}; Rk) = m+1, and for each a € M\ Ay,

w({a}; Ry) = 1.
By A e A/,
max w(Al; Re) > Y w(Ag Ry) = (m+1) Y [A (27)

keN\{j} keN\{j} keN\{sj}

Let A" € Af. We claim A} 2 A;, or there exists k € N\{i,j} such that A} 2 A;. For
contradiction, suppose that A} 2 A;, and for each k € N\{i,j}, A} 2 A. Then, we have
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Urengiy A 2 Ugemgjy Av- By no wastage of A’ (which follows from no wastage of f),
A € A’ implies that Usem gy Ax = M\A; = M, where the last equality follows from A; = 0.
Also, by no wastage of A and A’ € A7, Urenv iy Ak = M\A;. Thus, M\A; O M, and hence
Al =0 = A;. Since A’ is a bundling unit-demand constraint (see Appendix A.2.1) and
A; # 0, A; is maximal in M;. Thus, since M; = M; (see Step 2 of Appendix A.2.1) 4; is
also maximal in M;. Thus, by A} 2 A;, A} = A;. Let N¥(A) = {k € N : A, # 0}. Since
A’ is a bundling unit-demand constraint, for each k € N*(A)\{i,j} such that A, # 0, A

is maximal in My, so A}, D Ay implies A = Aj. Thus,

AU U A4 |=4u U Aal=U4a=M

keN+(A)\{3,5} keN+(A\{s,7} keN

where the second equality follows from A; = (), and the last one from no wastage of A/. This
implies that for each k € N\({i,j} U NT(A)), A}, =0 = A;. Therefore, we conclude that
A" = A™. However, this contradicts that A’ € A/ and A™ ¢ A/.

Thus, we have A} 2 A;, or there exists & € N\{i, j} such that A} 2 A. Thus, we have
Al N A; © Ay, or there exists k € N\{4,j} such that A} N Ay & Ag. Thus,

S w A Re) = (m+1) (A0 Al+ D0 AN AL HIANAL+ DD [AN\A

keN\{i} keN\{i,j} keN\{i,j}
!/ /
< mA1) A NAl+ Y A NAl| +m
keN\{i,j}

<m+1) Y A,

keN\{j}

where the second inequality uses the fact that A} N A; C A;, or there exists k € N\{4, j} such
that A N Ay © Ax (and hence |A] N Al + 30 v gy 1A% 0 Akl < 2pem gy [Akl). Since

A" € Al was arbitrary, we have

",
max Z w(Ay; Rk) < (m+1) Z | Ak (28)
keN\{i} keN\{j}

By (27) and (28),

A’ Ry) > 1 A Al R
py 2L wAGR) 2 e l) 3 Al > e ) w(Af )
keN\{j} keN\{j} keN\{i}

which contradicts Lemma 4.
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STEP 2. Next, we show that for each A € A/ and each transposition = on N such that for
somei,j € N, m(i) = j, m(j) = i, and A;, A; # ), we have A™ € A/. The argument in Step 2
corresponds to Case 2 in the outline presented in Section 3.4.5. Let A € Af. Let 7 be a
transposition on N such that for some distinct i, j € N, w(i) = j, n(j) =i, and A;, A; # 0.
We show that A™ € A/. There are two cases.

CASE 1. There exists k € N\{4, j} such that A; = 0.

agents
i j k N\{ij k}

A= (A4, A A_gijiy)
A" = (A, Aj Ay Ay i)
Amint (Aj,Ak;Ai:A—{i,j,k})

3,21

AT = AT — (Aj,Ai,Ak,A_{i,j,k})

Figure 11: An illustration of the packages A, A™, A™™ and A™™ ™ in Case 1 of Step 2

We introduce a notation: given two transpositions 7! and 72 on N, we define AT = (A”l)”2.
Let 7! be a transposition on N such that 7'(i) = k and 7*(k) = i. By A, = 0, Step 1 implies
that A™ € A’. Let 72 be a transposition on N such that 72(i) = j and 72(j) = i, and 7% a
transposition on N such that 73(j) = k and 73(k) = j. Then, by successively applying Step
1 and using A4j, = 0, we obtain A™™™ € A/. Thus, since A™ = A= ™™ (see Figure 11), it
follows that A™ ¢ A7.

CASE 2. For each k € N\{i,j}, Ax # 0.

To show A™ € A/, suppose for contradiction that A™ ¢ Af.

We first claim that for each A’ € A/, A} 2 A;, or there exists k € N\{i,j} such that
A 2 Ag. Suppose for contradiction that there exists A’ € A/ such that AL D A, and
for each k € N\{i,j}, A, D A;. Since A’ is a bundling unit-demand constraint (see Ap-
pendix A.2.1) and A; # 0, it follows as in Step 1 that Ay = A;. Moreover, for each
k € N\{i,j}, since Ay # 0, Ay is maximal in My. Hence, A} D Ay implies that A = Ay. It
then follows that Uyc iy Ak = Uken 51 Ak and using no wastage of A’ we obtain A, = A;.
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Therefore, A™ = A’, contradicting the assumption that A’ € Af and A™ ¢ A/.
It follows that for each A" € Af, A} 2 A;, or there exists k € N\{i, j} such that A} 2 Ay.
The remaining part of the proof, including the construction of a preference profile, follows

the same argument as in Step 1. Thus, we omit the details. |

B Proof of Theorem

In this section, we present the proof of Theorem.

We show that for each rich domain R and each partition B of M, we have R|z, = R|z,-
Let R be a rich domain, and let B be a partition of M. Since R C R, it follows that
Rls, € Rz,

We now show the reverse inclusion, i.e., R|z, € Rl|p,. Let Rils, € R|s,, where R; € R.
Let R, € R4 be such that for each B; € B and each t; € R, w(B;,t; R)) = w(B;, ts; Ry).
Note that such R, € R4% can be defined because B is a partition of M. By richness of R, it
follows that R, € R. Hence, R}|s, € R|g,- By the definition of R, for each B;, B, € B, and
each t;,t; € R, we have (B, t;) R, (B.,t;) if and only if (B;,t;) R; (B, ;). This implies that
R!|p, = R|g,- Thus, since R}|z, € R|s,, we conclude that R;|z, € R|g,-

We now complete the proof of Theorem. We have already shown R|s, = R|s,. Thus, the
“if” part of Theorem follows from Fact 2 (i). We next prove the “only if” part of Theorem.
Suppose that a rule f on R" satisfies constrained efficiency, no wastage, equal treatment
of equals, strategy-proofness, individual rationality, and no subsidy. By Proposition, there
exists a partition B of M such that Af = C*(B) and |B| < n. Since R|z, = R|s,, it then
follows from Fact 2 (ii) that f is a B-bundling MPW rule. |

C Proof of Claim 5

In this section, we provide the proof of Claim 5. For each R € R™ such that f;(R) =
(M,V(M,0; Ry)) for some i € N, we have f(R) # g(R). Note that, by richness of R, there
exists such R € R". Thus, f is different from any bundling MPW rule.

We show that f satisfies the properties except for constrained efficiency. Since g satisfies
no wastage, equal treatment of equals, anonymity, no envy, individual rationality, and no
subsidy, f inherits these properties.

We now show that f satisfies strategy-proofness.®’ Let R € R*. We show that agent 1

3If n = 3 and the domain includes non-additive preferences, the same type of rule f as in Example 5 is
not strategy-proof. In the case n = 3, the rule is defined as follows. Let Ry € R.
(i) f {ieN : R, = Ry} = 2, and for the unique i € N with R; # Ry, it holds that
(M,V(M,0;Ry)) P; gi(R), then define f;(R) = (M,V(M,0;Ry)) and f;(R) = 0 for each j € N\{i}.
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cannot benefit from misrepresenting his preferences; the same argument applies to any 7 # 1.

There are three cases.
Case 1. [{ie N\{1}: R, =Ro}| < 1.

In this case, for each R} € R, we have [{i € N : R, = Ry| < 2, where R, = R; for each
i € N\{1}. Hence, by the definition of the rule f, it follows that f,(R}, R_1) = ¢g1(R}, R_1)
for each R} € R. Since g is strategy-proof (see Fact 2 (i)), agent 1 cannot benefit from

misrepresenting his preferences.
Cast 2. [{i e N\{1}: R, = Ro}| =2.

In this case, for each R} € R, we have either f1(R}, R_1) = ¢1(R}, R_1) or f1(R},R_1) =
0. We claim that f1(R) Ry ¢g1(R). Note that either (i) fi(R) = ¢1(R) or (ii) fi(R) # g1(R)
and fi1(R) = 0.

In case (i), the claim holds trivially. In case (ii), since exactly two agents other than
agent 1 have preference Ry, the rule assigns fi(R) = 0 only when R; = Ry. In this case,
we can compute p™*(R, B) = (p2™(R, B),py"*(R,B)) = (V({a},();Ro),V({b},O;RO)>.32

Thus, since Ry = Ry, we have f1(R) =0 I ¢;(R).

(i) If {+e N : R, = Ro}| # 2, or if {ie N : R, = Ro}| = 2 but the above condition
(M,V(M,0;Ry)) P; gi(R) fails, then let f(R) = g(R).

This rule f is not strategy-proof. To see this, let Ry € R4 N RY be such that w({a}; Ry) = w({b}; Ro) =
2 and w(M; Ry) = 4. Let R € R N R¥ be such that w({a}; R1) = w({b}; R1) =1 and w(M; Ry) =5, and
let Ro = R3 = Ry. Note that agent 1 has a non-additive preference R;.

Then, g2(R) = ({a},1) and f2(R) = 0. Let Ry € R*% N RY be such that w({a}; Ry) = w({b}; Ry) =3
and w(M; Ry) = 6. Then, fo(R), R_2) = g2(Ry, R_2) = ({a},1). Hence, f(R}, R_2) P> f(R), and f fails
strategy-proofness.

In this example, the non-additivity of R is crucial for agent 2 to benefit from misreporting R}. Even
when n = 3, if the domain includes only additive preferences, the same type of rule f as in Example 5 is
strategy-proof. Therefore, constrained efficiency is indispensable for the conclusion of Theorem.

32To see this, let z € Z™%(R, B) be a B-bundling unit-demand Walrasian equilibrium allocation supported
by p™*(B,R). Given Ry = Ry and [{i € N\{1} : R; = Ry}| = 2, exactly three agents have the same
preference Ry. Since B contains only two packages, at least one of these agents—say agent j—must receive 0
under z. If p2*(R, B) < V ({a},0; Ry), then agent j would strictly prefer package {a} to his assigned package
A; = 0 at price p™®(R, B), contradicting the definition of a B-bundling unit-demand Walrasian equilibrium.
Thus, p™*(R, B) > V({a},O;RO). Similarly, we have p"™(R, B) > V({b}, 0; Ry).

Let p’ = (V({a}, 0; Ro), V({b}, 0; Ro)) be a B-bundling price vector. Let k € N be the unique agent with

Ry # Ro (such k exists since exactly three agents have preference Ry).

Counsider an allocation 2z’ = (A’,¢') such that: (i) A’ € C*(B); (ii) agent k receives his most preferred
package in B at price p'; (iii) the remaining packages in B are allocated arbitrarily among the other agents;
and (iv) for each | € N, t] = p;‘;.

Then, (2/,p’) is a B-bundling unit-demand Walrasian equilibrium for R, so p’ € P(B,R). We already
showed p’ < p™n(R, B). Since p™" (R, B) is the minimum element of P(B, R) and p’ € P(B, R), we have

p™*(R, B) < p’. Combining these inequalities yields p™*(R, B) = p’ = (V({a}, 0; Ry), V ({b}, 0; R0)>.
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Therefore, we have fi(R) Ry gi(R). Given that |[{i € N\{1} : R, = Ro}| = 2, we
have, for each R| € R, either fi(R},R_1) = ¢1(R}, R_1) or fi(R},R_1) = 0. By strategy-
proofness of g (see Fact 2 (i)), we have f1(R) Ry ¢1(R) Ry ¢1(R}, R_;) for each R} € R, and
by individual rationality of g (Fact 2 (1)), fi(R) R1 ¢1(R) Ry 0. Thus, in either case, agent

1 cannot benefit by misrepresenting his preferences.
Case 3. [{ie N\{1}: R, = Ro}| = 3.

We show that fi(R) Ry ¢1(R) and f1(R) Ry (M,V(M,0; Ry)). There are three cases.

First, suppose R; = Ry. Then, since more than three agents have preference Ry,
fi(R) = ¢g1(R). Tt follows from individual rationality of g (see Fact 2 (i)) that fi(R) =
g1(R) R1 0 I (M,V(M,0;Ry)) = (M,V(M,0; Ry)).

Second, suppose Ry # Ry and g1(R) R, (M, V(M,0; RO)). Then, since three agents other
than agent 1 have preference Ry, we have fi(R) = g1(R), and hence f1(R) = ¢1(R) Ry (M, V(M,0; Ro)).

Finally, if Ry # Ry and (M, V (M, 0; RO)) Py g1(R), then, again by the fact that three
agents other than agent 1 have preference Ry, fi(R) = (M,V(M,0;Rp)). Thus, fi(R) =
(M, V(M,0; Ro)) P g1(R).

In all three cases, we conclude that fi(R) Ry gi(R) and fi(R) Ry (M,V(M,0;Ry)).
Moreover, since |{i € N\ {1} : R; = Ro}| = 3, it follows from the definition of the rule f
that for each R € R, fi(R|, R_1) € {gl(R’l, R_y), (M,V(M,0; RO))}. Then, by strategy-
proofness of g (see Fact 2 (1)), we have fi(R) Ry g1(R) Ry g1(R}, R_1). Thus, agent 1 cannot

benefit from misrepresenting his preferences.

Finally, we show that f violates constrained efficiency. Let R € (RA%NR%)* be such that:
(i) w({a}; R1) = 2, w({b}; R1) = 2, and w(M; Ry) = 4; (ii) Ry = Ry; (ili) w({a}; R3) = 1,
w({b}; R3) = 3, and w(M;Rs) = 4; and (iv) w({a}; Ry) = 5, w({b}; Ry) = 5, and
w(M; Ry) = 10. Then, f(R) = g(R) = (0,0, ({b},2), ({a},z)). Let z = (0,0, (0, —1), (M, 7).
Note that A = (0,0,0, M) € A/, where A is the object allocation associated with z. More-

over, z Pareto dominates f(R) for R. Therefore, f violates constrained efficiency. |

D Rich domains

In this section, we present examples of rich domains to which Theorem applies.
A price vector is a vector p = (pa)aenm € R7'. Note that a price vector differs from

a bundling price vector in that a price vector specifies the price of each object, whereas a
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bundling price vector specifies the price of each package. Thus, a price vector corresponds to
a B-bundling price vector.
Given a preference R; € R and a price vector p € R, the (Walrasian) demand set

for R; at p is defined as

D(Riap) =4 eM :VA;’ e M, (Aia Zpa> R; A;, Zpa )

a€A; ac A

where we set )y po = 0. In words, the demand set for R; at p is the set of most preferred
packages at the given price vector p.
Given a preference I; € R, a price vector p € R, and z; € M x R, the Hicksian de-

mand set for R; at p and z; is defined as

Dy(Ri,p,zi) =  A; € M : 3t; € R such that (A;,t;) € arg min Zpa —t

(A;,t;)e/\/l XR:(A;,t;) R; z; aEA;-

Here, a payment is considered a good, with its price normalized to —1. Thus, the expen-
diture for (A;,;) at price vector p is equal to >, ., po —ti. The Hicksian demand set at
p and z; is the set of expenditure-minimizing packages that yield at least as high a welfare
level as z;.

The following are examples of rich domains. These domains have recently attracted
attention because they ensure the existence of a Walrasian equilibrium without requiring

quasi-linearity:.
Example 11 (Rich domains). The following are all rich domains.

e A preference R; satisfies the net substitutes condition (Kelso and Crawford, 1982;
Baldwin et al., 2023) if for each price vector p € R, each z; € M x R, each a € M,
each § € Ry, and each A; € Dy (R;,p, z), there exists A, € Dy (R;,p + deq, z;) such
that A;\{a} C Al. That is, a preference satisfies the net substitutes condition if, when-
ever the price of an object increases, the Hicksian demand for the other objects does not
decrease. This condition reflects substitutability among all objects and guarantees the
existence of a Walrasian equilibrium (Kelso and Crawford, 1982; Baldwin et al., 2023).
Let RY® denote the class of all preferences that satisfy the net substitutes condition.

Then, RY? is a rich domain (Kelso and Crawford, 1982; Baldwin et al., 2023).3

33To be more specific, the richness of RS follows from two established results:

— Baldwin et al. (2023) show that a preference R; satisfies the net substitutes condition, provided that for
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e A preference R; satisfies the net complements condition (Rostek and Yoder, 2020;
Baldwin et al., 2023) if for each p, p’ € R withp > p’, each z; € M x R, each A; € Dy (R;,p, z),
and each A € Dy (R;,p', z;), we have that A; N A, € Dy(R;,p,z;) and A; U A, € Dy (R, 1, 2).
Roughly speaking, a preference satisfies the net complements condition if, as prices in-
crease, the Hicksian demand for the objects does not increase. The net complements
condition reflects complementarity among all objects and ensures the existence of a
Walrasian equilibrium (Rostek and Yoder, 2020; Baldwin et al., 2023). Let RNC de-
note the class of all preferences that satisfy the net complements condition. Then, RN¢

is a rich domain (Rostek and Yoder, 2020; Baldwin et al., 2023).

e Let B be a partition of M such that |[B| = 2. Thus, M is partitioned into two sets,
M and M,. A preference R; satisfies the net substitutes and complements con-
dition (with respect to B) (Sun and Yang, 2006; Baldwin et al., 2023) if for each
price vector p € R, each z; € X x R, each distinct j,k € {1,2}, each a € M;, each
d € Ry, and each A; € Dy (R;,p, z), there exists A € Dy(R;,p + de,, ;) such that
(A; N M)\{a} C A, N M; and A} N M, C A; N M. That is, the net substitutes and
complements condition requires that when the price of an object in M, increases, the
Hicksian demand for other objects in the same set does not decrease, while the demand
for objects in the other set does not increase. This condition reflects substitutability
within each set and complementarity across sets. It guarantees the existence of a Wal-
rasian equilibrium (Sun and Yang, 2006; Baldwin et al., 2023). Given a partition B of
M with |B| = 2, let RV5Y(B) denote the class of all preferences that satisfy the net

substitutes and complements condition with respect to B. Then, RV (B) is a rich

domain (Sun and Yang, 2006; Baldwin et al., 2023).

e A preference R; satisfies the single improvement condition (Gul and Stacchetti,
1999; Nguyen and Vohra, 2024) if for each price vector p € R and each A; € D(R;, p),
there exists A; € M such that <A;,ZaeA; pa> P, (Ai,zaeAi Pa), |A\A} <1, and
|AD\NA;| < 1. That is, a preference satisfies the single improvement condition if any
suboptimal bundle (in terms of Walrasian demand) can be improved by removing,
adding, or swapping a single object. The single improvement condition is equivalent to

the net substitutes condition under quasi-linear preferences (Gul and Stacchetti, 1999),

each payment ¢; € R, the quasi-linear preference R}, € R% with willingness to pay w(; R}) = w(-, t;; R;)
satisfies the net substitutes condition.

— Kelso and Crawford (1982) establish that all additive quasi-linear preferences satisfy the net substitutes
condition.

By the same argument, one can also show that the net complements domain and the net substitutes and
complements domain introduced below are both rich.
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and has played a central role in the design of dynamic auctions that converge to a
Walrasian equilibrium under quasi-linear preferences (Gul and Stacchetti, 2000).3* Tt
also guarantees the existence of a Walrasian equilibrium even without assuming quasi-
linearity (Nguyen and Vohra, 2024). Let R’ denote the class of all preferences that

satisfy the single improvement condition. Then, R®! is a rich domain.?

e Gul and Stacchetti (1999) also introduce another condition that is equivalent to both
the net substitutes condition and the single improvement condition under quasi-linear
preferences. A preference R; satisfies the no complementarities condition (Gul
and Stacchetti, 1999) if for each price vector p € RT?, each A;, A} € D(R;, p), and each
Al e M with A C A;, there exists A € M such that A} C A} and A;\(A} U AY) € D(R;,p).
This condition guarantees the existence of a Walrasian equilibrium without assuming
quasi-linearity (Nguyen and Vohra, 2024). Let R denote the class of all preferences

that satisfy the no complementarities condition. Then, R™°¢ is a rich domain. ]

We can also define the gross substitutes condition (Kelso and Crawford, 1982), the gross
complements condition (Rostek and Yoder, 2020), and the gross substitutes and complements
condition (Sun and Yang, 2006) in terms of the Walrasian demand set instead of the Hicksian

demand set. However, none of these domains is rich.
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