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Abstract

This paper studies the assignment of a treatment by a social planner when
the valuations of the treatment are interdependent across individuals in the
population. Specifically, an individual’s valuation of the treatment is influenced
by the treatment status of some group of individuals and is positive if and
only if any member of the group is treated. The identities of those who have
positive spillovers on an individual is his private type, and the social planner
assigns the treatment based on their reported types aiming to maximize the
number of treated individuals less subsidies. We study the property of an
assignment mechanism that offers a subsidy to a single individual and provides
the treatment to everyone over whom this individual has positive spillovers
either directly or indirectly. We use the percolation theorem of McDiarmid
(1981) to show that the number of treated individuals under such a mechanism
is independent of the reciprocal property of the spillover relationship, and is
asymptotically optimal when the population grows large.

Key words: reciprocity, networks, divide and conquer, private information, local
externalities.
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1 Introduction

Economic treatments such as enrolment in public schools, programs for healthy
lifestyles, vaccination, occupational training, etc., all intend to improve social wel-
fare through the maximal participation of individuals. How to assign a treatment
to individuals most effectively is a central theme in economic policy making, and
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the literature on the subject recognizes the significant impact of spillovers on the
inducement of participation in various treatments. For example, Dahl et al. (2014)
study the impact on a father’s decision to take a paternity leave of the presence
of his peers who have taken such a leave: The presence of those who have taken
such leaves provides reassurance to other fathers concerning employers’ response
to such an action. As another example, an individual may find participation in a
quit-smoking program not worth the opportunity cost if his peers don’t participate,
but may receive the treatment otherwise either because of the reduced cost from the
shared experience or the increased benefit from mutual monitoring. As yet another
example, a firm may find it too costly to relocate to a newly developed industrial
park if it implies physical separation from its input supplier, but may relocate if it
is accompanied by the supplier. In many of these settings, however, the social plan-
ner does not directly observe the spillover relationships among the agents and must
rely on their self reports. In this paper, we formulate a stylized model of privately
observed spillover relationships among economic agents, and study what kind of
mechanism can effectively induce participation in a treatment. As recognized in the
literature (Nakajima, 2007), one important consideration in formulating spillovers
across individuals is their reciprocity. In some instances, spillovers are “peer ef-
fects” where they are reciprocal and two ways. In some other instances, occurrence
of spillovers is independent so that the presence of a spillover in one direction pro-
vides no information on the presence of a spillover in the other direction. Yet in
other applications, spillovers are “role model effects” where they are non-reciprocal
and one way. One focus of the present study is to examine how such a reciprocity
property of the spillover network interacts with the working of the mechanism.
Formally, each agent in our model has the set of other agents who have positive
spillovers over him as his private type. Their valuation of the treatment is negative
if none of them receives the treatment, but is positive otherwise. The social planner
solicits information from the agents about their private types and then proposes
the set of treated agents along with the subsidy profile. The agents then play the
participation game where they accept or reject the proposal. We require this two-
stage mechanism to be strategy-proof in the first stage so that it is weakly dominant
for each agent to report their types truthfully, and dominance solvable in the second
stage so that accepting the proposal is an iteratively dominant action for every
agent. Importantly, dominance solvability addresses the problem of coordination
failures which is typical in games with externalities. In other words, an agent finds
it optimal to be treated if those who have positive spillovers over him also choose to
be treated, but optimal not to be treated if none of them chooses to be treated.! We

!Such equilibrium multiplicity is often referred to as the chicken-end-egg problem (Caillaud &



refer to a mechanism satisfying strategy-proofness in the first stage and dominance
solvability in the second stage as uniquely enforceable (UE).

In the complete information benchmark where the social planner observes the
spillover network among the agents, the treatment can be assigned based on an
analogue of a divide-and-conquer strategy with subsidies to some set of agents.
Specifically, it offers a subsidy just sufficient to induce some set of agents to receive
the treatment (even with no spillovers) and then assigns the treatment with no sub-
sidy to all those agents over whom the first set of subsidized agents have spillovers.
It then assigns the treatment to the third set of agents over whom the second set
of agents have spillovers. Proceeding in the same manner, it assigns the treatment
to all those agents over whom the first set of subsidized agents have either direct
or indirect spillovers. In the optimum, the set of subsidized agents is minimized
whereas the set of treated agents with no subsidy is maximized.

Under incomplete information, we present a class of UE assignment mechanisms
based on the same type of divide-and-conquer strategy as described above. These
mechanisms, called single-seed mechanisms, differ from the first-best mechanism
described above in that only a single agent i1 is offered a positive subsidy and
that the choice of the seed agent is not contingent on the agents’ (reported) type
profile. Just as the first-best mechanism, this mechanism identifies (now based on
the reported type profile) the set I of agents over whom 4; has positive spillovers,
then identifies the set I3 of agents over whom the members of Is have positive
spillovers, and so on. The subsidy to the seed agent 7 is just sufficient to induce him
to receive the treatment, whereas no subsidy is offered to the agents in Is, I3, ... ,.
We can readily show that this mechanism satisfies the requirements of UE.

The performance of the single-seed mechanism generally depends on the prop-
erties of the spillover-network. For example, the single-seed mechanism performs
poorly if each agent on average has few spillover relations. Surprisingly, however,
we can show that the probability distribution over the sets of treated agents un-
der the single-seed mechanism is independent of the reciprocity property of the
spillover network. This conclusion, which is due to the percolation theorem (McDi-
armid, 1981), implies payoff equivalence of the single-seed mechanism in terms of
the spillover reciprocity. In comparison with the first-best under complete informa-
tion, incomplete information typically implies a lower payoff of the social planner.
We can show, however, that the single-seed mechanism is asymptotically optimal as
the population grows large. In particular, as the population grows large, the proba-
bility that every agent is treated under the single-seed mechanism approaches one,

Jullien, 2003) and is a central concern in the analysis of network externalities (Dybvig & Spatt,
1983).



implying that the social planner can treat everyone with a single subsidy. When the
spillover-network is perfectly reciprocal, this result holds since it is identified with
the standard Erdés-Rényi random graph, and as such, the network is connected with
probability close to one when the number of agents becomes large. The percolation
theorem then shows that this result holds for any spillover network with imperfect
reciprocity.

The contributions of this paper can be summarized as follows: First, we model
treatment assignment in the presence of spillovers. While the model ignores hetero-
geneity across individuals through their covariates, the simplified framework high-
lights how direct and indirect spillovers help induce participation in treatments.

Second, we consider a problem of network externalities when they are local and
only privately observable. This is a major departure from the standard assumption
in the literature which assumes that the externalities are either global and depends
on the size of adoption, or local but publicly observable.

Third, the paper introduces the percolation theorem in probability theory to
show that the performance of some class of mechanism is independent of the reci-
procity property of the spillover network. It also allows us to obtain asymptotic
properties of the mechanism based on the standard conclusion from the Erd6s-Rényi
random networks.

Fourth, the paper shows the validity of an analogue of the divide-and-conquer
strategy in the presence of incomplete information. Specifically, unlike the standard
divide-and-conquer strategy, the treatment strategy considered in this paper takes
advantage of not only the direct externalities among individuals, but also the indirect
externalities among them.

The paper is organized as follows. We discuss the related literature in Section
2. Section 3 formulates a model and defines an assignment mechanism. Section 4
analyzes the first-best under complete information and compares it with the second-
best under incomplete information. The definition and properties of the single-seed
mechanism are presented in Section 5. We conclude with a discussion in Section 6.

2 Related Literature

The present paper is related to a few strands of the literature.

First, it belongs to the literature on local network externalities that express
externalities by networks of agents. The primary focus of the literature however is
on the monopoly sale of a good to the agents. Among them, Candogan et al. (2012)
characterize the relationship between the location of a buyer in the network and
the price he faces under imperfect and perfect price discrimination, and Bloch and



Quérou (2013) examine the optimality of price discrimination when each buyer is
privately informed about the stand-alone valuation of the monopolist’s good. Chen
et al. (2018, 2020) formulate models of price competition between sellers of goods
with local network externalities. Incomplete information about the valuation of the
good provided by the monopolist is also studied in Aoyagi (2013), which assumes the
value of the good to each agent is the product of the agent’s private type and the size
of adoption. Closer to the present paper, some recent papers introduce incomplete
information concerning the relationship among agents and study its impact on the
optimal strategies of a monopolist. Fainmesser and Galeotti (2016, 2020) and Zhang
and Chen (2020) study optimal pricing when agents are privately informed about
the number of their neighnors. Kanoria and Saban (2021) and Basu et al. (2024)
both formulate relation-specific preferences over others as in the present paper.

How peer-effects impact the value of a group to its member is discussed in a
model of group formation (e.g., Board, 2009; Sarkisian & Yamashita, 2024; Veiga,
2013). These papers specify the value of a group as a function of the qualities of
its members. Similar assumptions can also be found in matching theory (Alcalde &
Revilla, 2004; Cechlarova & Romero-Medina, 2001; Dimitrov et al., 2006; Rodriguez-
Alvarez, 2009).

The present paper is also related to the literature on network interventions (Ga-
leotti et al., 2020; Sun et al., 2023). Under the assumption that the agent network
is publicly observable, the papers in the literature measure the effects of treating
some agents through the change of their payoff functions or their connections with
others.

As mentioned in the Introduction, the social planner uses a subsidy scheme anal-
ogous to the divide-and-conquer strategy with the aim of eliminating coordination
failures among agents. Bernstein and Winter (2012) present comprehensive analysis
of the optimal divide-and-conquer pricing strategy in a monopolistic setting when
the externalities are heterogeneous and agents differ in their popularity to others.
Aoyagi (2018) examines the extent to which the divide-and-conquer pricing strategy
influences the equilibrium price configuration in a competitive setting.

Treatment spillovers are empirically documented in such areas as health-related
behavior including vaccination and smoking, educational achievement in various
contexts, and microfinance (e.g. Dahl et al., 2014; Ferracci et al., 2014; Kitagawa
& Wang, 2026). An observation most closely related to the present paper is made
by Dahl et al. (2014), who show that treatment participation snowballs: The ex-
ogenously treated individuals first induce participation by those around them, who
in turn induce participation around them and so on. This is exactly the treatment
participation pattern induced by the mechanism studied in the present paper.



3 Model

3.1 Valuation of the treatment

A social planner assigns a treatment to the population consisting of the set I =
{1,...,n} of ex ante identical agents (n > 2). Each agent i has a private type 0; =
(95 )jzi € ©; = {0,1}" 1. As described below, 95 = 1 implies the influence of agent
J’s treatment status on agent ¢’s valuation of the treatment. Denote by © =[], ©;
the set of type profiles 6 = (6;);cs of all agents. The joint probability distribution of
0 is described below. Let t; € {0, 1} denote the treatment status of agent i: ¢; = 1 if
i is treated and t; = 0 otherwise. An assignment t = (t;);cr € {0,1} is the profile of
treatment status of all agents. Let G(t) = {j € I : t; = 1} denote the set of treated
agents in the population under assignment ¢, and G;(¢,0;) = G(t) N {j : 93 =1}
the set of treated agents under assignment ¢ whose have spillovers over agent ’s
valuation of the treatment. We assume that agent i’s valuation of the treatment
when his type is 6; is given by

Gi t,@z‘
Ui(f, 97,) = 7)‘ ( )‘,
where v ,’l)l, .. .,Un 1 S R salisﬁes

v < 0 < min v".
n>1
In other words, i’s valuation is strictly negative if no agent j with 9{ =1 is treated,
and strictly positive if at least one such agent is treated.

3.2 Assignment mechanism

An assignment mechanism I' is an indirect mechanism over two stages described as
follows: In stage 1, it announces an assignment rule f : © — T which determines
an assignment as a function of ¢, and a subsidy rule y = (y;)ies : © — R. which
determines subsidies to all the agents also as a function of . It then solicits from
every agent ¢ a report on his type 6; and determines the assignment and subsidies
((f(0),y(0)). In stage 2, the mechanism publicly discloses ((f(#),y(f)) and 6, and
has the agents play a participation game in which they simultaneously choose be-
tween accept and reject. The treatment is provided to agent 4 if and only if he
accepts. When an agent choose to reject, he takes the outside option whose value
is normalized to zero. Let A; = {0,1} denote the set of actions available to agent
i € I in the participation game, where a; = 1 represents accept and a; = 0 rep-
resents reject. If agent ¢ is not assigned the treatment (¢; = 0), then his choice a;
only determines whether or not he accepts the transfer y;. The decision of any such



agent is hence irrelevant for the other agents. Assignment ¢t* = (t¢);cs following the
action profile a and the proposal (f,y) is given by

t* =tAa,

where A is the component-wise minimum of the two vectors ¢ and a. Accordingly,
given (f,y) and 6, agent i’s payoff from the action profile a is given by

ul(f(a) N a, 9,) + Y if a; =1,

0 otherwise.

Uz(aleaf7y>:{

Let a* = (1,...,1) denote the action profile corresponding to acceptance by all the
agents. A mechanism I' is strategy-proof (SP) if truthful reporting is a (weakly)
dominant strategy for every agent provided that a* is played in the participation
game: For every 0;, 0, € ©;,0_, € ©_;, and i € I,

Ui(a® | 0:,0_s, f,y) > Ui(a* | 0;,0_;, f,y)
< wi(f(0;,0-:),0;) + vi(0;,0_;) > ui(f(6;,0-5),0;) + yi(6;,0_;).

I is uniquely acceptable (UA) if for every 6 € ©, the participation game (I, A, (U;(a |
0;, £(6),y(0)))icr) is dominance solvable with a* surviving the iterative elimination
of strictly dominated strategies. The requirement of UA addresses equilibrium mul-
tiplicity under adoption externalities and replaces the standard participation (indi-
vidual rationality) constraint. T is uniquely enforceable (UE) if it is SP and UA.2
By SP, no unilateral deviation that involves misreporting in stage 1 and acceptance
in stage 2 is profitable. No unilateral deviation that involves rejection in stage 2
is profitable either since any such deviation yields zero, whereas truthful reporting
and acceptance yield at least zero by UA. It follows that if the mechanism is UE,
then agents will report their types truthfully as a weakly dominant reporting strat-
egy, and then accept the assignment proposal by the social planner as an iteratively
strictly dominant participation decision. Since SP and UA are both properties of the
assignment and transfer rules, we represent an assignment mechanism I" by (f,y)
with some abuse of notation.

Given the assignment ¢t and transfer profile y, the social planner’s payoff (¢, y)
is given by

m(ty) = Z (Vti — i),
i€l

where V' > 0 is a constant representing the marginal benefit of treating one addi-
tional agent. It follows that the social planner wants to maximize the number of

2Note however that UE does not imply the uniqueness of a PBE in the two-stage game, making
our requirement different from that for unique (full) implementation.



treated agents while minimizing the sum of subsidies. Note that a subsidy may be
offered to an agent who is not treated and that no transfer is made from the agents
to the social planner. We further assume that

V4 <0, and 2V +°>0.

The first inequality implies that the marginal benefit to the social planner of treating
one additional agent is less than the disutility incurred by any agent from receiving
the treatment in isolation. On the other hand, the second inequality implies that
the social planner’s payoff is positive when he can treat two agents one with a
subsidy equal to —v” and the other with no subsidy. When I' = (f,y) is UE, the
social planner’s ex post payoff given the type profile 8 equals 7r( £(0), y(ﬂ)), and his
expected payoff equals

I(T) = Eolm (£(0),y(0))].

3.3 Type distribution and the spillover network

As mentioned above, agent i’s valuation is influenced by the treatment status of
agent j if and only if #/ = 1. We assume that 6; is identically distributed across
agents, and that the distribution of the type profile 6 satisfies

Pr(0)= [ Pr(¢!.0i) forevery 6 €O.
{(.9): 5}

In other words, the distribution of the type components regarding the pairwise
relationship is independent across all different pairs, but correlation is possible in
the distribution of (923 ,9;-). The latter assumption captures different possibilities
regarding the relationship between any pair of agents. The relationship may be
mutual friendship whereby the action of one agent influences the other, or a one-
way relationship whereby the action of one agent influences the other, but not the
other way around. Formally, we suppose that there exist constants p € (0,1) and
p > max {0, 2 — %} such that the joint distribution of 0{ and 0;- for i # j is given in
Table 1.

Hence, we have p = Pr(ﬂg = 1) for any i # j, and p represents the degree of
reciprocity between any pair of agents: When p = 1, 93 =1& 9; = 1, and when

p < % and p =0, Gg =1= 9;- = 0. Now define the binary random variable X;; by

X, = 07 ifi+# ],
0 ifi=j.



Table 1: Joint distribution of 9{ and 6;-

0;
0 1
b 0 1-p2-p) (@A-pp 1—p
! 1 (1—-p)p PP p
1—p P

We identify X = (Xj;)ijer as a directed graph with the node set I and the link
set {ij : X;; = 1}. In X, agent ¢ is strongly connected to agent j, denoted i~y j,
if there is a directed path from ¢ to j: There exists a sequence of agents ig, ..., ix
(K > 1) in I such that ig = i, ix = j, and for every iy and ix4q (K =0,..., K —1),
there is a directed link i, — iry1 (& X, (0) = 1). We write ~ instead of ~+
when 6 is evident. A subset H C I of agents is strongly connected if i ~» j for every
pair (i,7) of agents in H. i is connected to j if there is a path from i to j when the
direction of each link is ignored.

4 First- and second-best with a finite population

4.1 First-best under complete information

We begin our analysis with the benchmark case where the social planner has com-
plete information about the agents’ type profile €, or equivalently, the underlying
network X (6). In this case, we only require the mechanism I' to be UA. Define
IT*(#) to be the supremum of the social planner’s payoff from such mechanisms:

IT*(0) = sup {m (f(6),y(0)) : T is UA},

and IT* = Ey[IT*(0)].

For any set F' C I of agents and i ¢ F', we write i ~»¢ F if i ~» j for some j € F.
Define (F*,Y*) = (F*(6),Y*(0)) to be a solution to the following maximization
problem:

F, Y CI,
max Y|V + [F|(V + %) subject to (1)
(FY) Y={j¢F:j~yF}
(1) has a solution since I is finite, and gives the maximal payoff that the social
planner can achieve from any UA mechanism as seen in Proposition 1 below. The



intuition is as follows: The objective function corresponds to the social planner’s
payoff when it treats the agents in Y with no subsidy, but the treats the agents in
F with a subsidy equal to —v® > 0. Since each member of Y is strongly connected
to some agent in F', they are willing to be treated with no subsidy if the agents in F’
are also treated. The social planner then maximizes its payoff by taking Y as large
as possible (since V > 0) and F as small as possible (since V 4 1% < 0).

We next show that for any £ > 0, there exists a UA mechanism I" such that
(G| T) = [Y*(0)|V +|EF*(0)|(V +2°) — ¢ for the solution (F*(#),Y*(6)) to (1). Let
(f,y) be defined by

= (2)

1 ifie F*(0)uY™*(0),
oy [1 e OUY )
0 otherwise,

and

vi(0) =

{g if i ¢ F*(0), )

-+ £ ifie F¥(0),

In other words, agents in F*(6) are offered a subsidy slightly above —v°, whereas
other agents are offered a small subsidy.?

Proposition 1. Suppose that the social planner has complete information about 6.
Then I defined in (2) and (3) is UA for any € > 0, and satisfies I1(6 | ") = I1*(0) —¢
for every 0. It follows that

II*(0) = [Y*(0)|V + |F*(0)|(V + vY).

Note that the maximized payoff is strictly positive as long as |Y*| > 1 since
2V +9” > 0. When the network X () is as described in Figure 1, for example,
(1) has the solution F* = {5,6} and Y* = {1,2,4,7,8,9,10}, and its value equals
II* = 7V + 2(V + %) = 9V + 20°. Note that agent 3 is not treated since doing so
requires a subsidy in excess of V' but does not contribute to the expansion of Y. In
the participation game, acceptance is a strictly dominant action for every agent in
F*, and is an iteratively strictly dominant action for agents in Y*. The number of
iterations required for each agent in Y* to find out that acceptance is an optimal
action equals the length of the shortest directed path that connects him with agents
in F™*.

3 As specified, agents who are offered no treatment also receive a small subsidy. This is to ensure
that the participation game is dominance solvable, but is irrelevant for the decisions of agents who
are assigned the treatment. Alternatively, we may suppose that the participation game is played
only by those agents who are assigned the treatment.

10



F*

Figure 1: Optimal mechanism under complete information

The figure depicts a two sided-market but the construction is the same in a one-sided market.

4.2 Second-best under incomplete information

We now return to the incomplete information environment in which the realization
of the types is private information of the agents. Specifically, we show that the
social planner’s payoff from the optimal mechanism I' under incomplete information
is bounded away from the first-best level described above for a fixed population n.

Proposition 2. Suppose that p € (0,1) and that v? < --- < V"1, There exists
k = k(n,p) > 0 such that if the social planner’s expected payoff under any UE
mechanism T is bounded away from the first-best level by k: II(T") < II* — k.

The intuition is simple: Suppose that the true type profile § = (6;,6_;) is such
that every agent is strongly connected and consider any mechanism I' under incom-
plete information. Take any agent 7 who is treated with no subsidy under I'. If agent
1 misreports his type as 6; such that éf = 0 for every j # i, the set of treated agents
under I' must be smaller than that under the true 0: If it were the same, agent ¢
would still be treated and enjoy the same externality benefit as under # while he now
receives a subsidy at least as large as —v”. Since the first-best mechanism has every
agent treated under (9}, 6_;) by providing a subsidy to agent ¢, this implies that the
treatment size under I is smaller than the first-best, implying a lower payoff to the
social planner.

11



5 Single-seed mechanism

5.1 Definition

This section introduces a class of UE mechanisms under incomplete information.
Specifically, a single-seed mechanism offers the treatment to a fixed agent i1 along
with all agents who are strongly connected to ;. It offers a subsidy slightly above
—vY to i1, and a small subsidy to all other treated agents. Formally, the single-seed
mechanism I'* = I'¥(i1) based on i; € I has the assignment rule f and the transfer
rule y such that
{1 ifie{i}U{j:j~gir},
fi(0) = .
0 otherwise,

and for ¢ > 0,

% otherwise.

Figure 2 illustrates a single-seed mechanism based on i; = 6. Note that the choice
of agent 4; is not contingent on the realization of §. Upon learning the type profile,
it is tempting for the social planner to designate the most “influential” agent as i,
(i.e., agent ¢ such that ) j 0; is the maximum). With unobservable types, however,
choice of i1 according to their influence based on the agents’ reported types creates
an incentive problem. For example, if agents ¢ and j both have the highest influence
according to 6, then it can create room for profitable misreporting by : Instead of
reporting his true type 6; for which 0{ =1, i can report §; such that ég = 0 so that
>k Ai =30 >>, éi Such misreporting reduces j’s influence by one, while
maintaining i’s own influence, making ¢ himself uniquely the most influential agent

under (6;,0_;).

5.2 Properties

Under the single-seed mechanism, it is clear that the seed agent i; has no incentive
to misreport his type since it does not change the outcome in any way. The single-
seed mechanism has the following important property: For any agent assigned the
treatment, he cannot change the set of treated agents by misreporting his type as
long as it keeps his treatment status. With this property, if agent j is strongly
connected to 71 under the true type profile, then he cannot profitably misreport a
type that keeps him strongly connected to ¢1. If misreporting makes him not strongly
connected to i1, it is not profitable either since he will then lose the treatment. On
the other hand, the single-seed mechanism is UA through iterative reasoning starting
from the agents closer to 1. Its working hence hinges on the ability of the social

12



Figure 2: Single-seed mechanism based on i; = 6

Agents encircled by the solid curve are assigned the treatment with
no subsidy as they are strongly connected to i1 = 6.

planner to make public the reported type profile € along with the subsidy profile
y(0) (Miklés-Thal & Shaffer, 2017).

Proposition 3. For any iy € I, the single-seed mechanism I'® based on i1 is UE.

The single-seed mechanism I'? is typically inefficient since only a few agents are
strongly connected to ¢; with non-negligible probability. In Figure 2, for example,
a single-seed mechanism based on ¢ = 4, 7 or 9 ends up treating no additional
agent. As the population grows, however, such a problem with the treatment size
occurs less frequently as seen below. Regardless of the population, the surprising
property of the single-seed mechanism concerns the independence of the number
of treated agents from the reciprocal property of the spillover network X. This in
particular implies that the expected revenue from the single-seed mechanism is also
independent of the degree of reciprocity p. Formally, the percolation theorem of
McDiarmid (1981, Theorem 4.2) shows that for any J C I\ {i1}, the probability
that all agents in J are strongly connected to i; is the same regardless of the joint
distribution of (X;j, X;;) as long as the link occurrence between different pairs of
agents is independent. The proof of the percolation theorem based on a clutter is
involved, but we can gain some intuition by looking at the case where n is small.*
Suppose that I = {1,2,3} and that iy = 1. Consider the probability that both

4A clutter is a collection of the minimal sets possessing some property. In the example below,
{Z1,Z2,Z3} is a clutter with the property that both 2 and 3 are strongly connected to 1.

13



agents 2 and 3 are strongly connected to 1. If we define

Zl == {0 : X21(0) == X31(9)
Zy ={0: X91(0) = X32(0)
Zz={0: X3(0) = Xa3(0)

Il
T
— =

——

then

PI‘(9 12,3~y 1) = PI‘(Zl UZyU Zg)
= PI"(Zl) -+ PI“(ZQ) + PI‘(Zg)
— Pl"(Zl N ZQ) - PI‘(ZQ N Zg) — Pl"(Zg N Zl) + PI‘(Zl NZyN Zg)

Since Zy N Z3 = Z1 N Zy N Z3 and since no opposite links appear in the definitions
of Z1, Zy, Z3, Z1 N Zy, and Z3 N Zy, we conclude from the independence of link
occurrence between different pairs that

PI‘(Zl UZyU Zg) = PI‘(Zl) + PI'(ZQ) + PI‘(Zg) - PI‘(Zl N ZQ) — PI‘(Zg N Zl)
= 3p* —2p°,

which is independent of the degree of reciprocity.

Proposition 4. (Payoff equivalence) The social planner’s expected payoff TI(I'*)
from a single-seed mechanism I'* is independent of the degree of reciprocity p.

The percolation theorem applies more generally to the case where the joint
distribution of (93 ,04) (or (Xij,Xji)) is different for different pairs (i,7). This
corresponds to considering ex ante heterogeneity across agents more in line with
the econometric approach to treatment assignment. Although the social planner’s
payoff is again independent from the reciprocity of the spillover network as long
as the seed agent is fixed, the choice of a seed agent determines the performance
of the single-seed mechanism. The optimal selection of the seed agent under ex
ante heterogeneity is an interesting topic of future research. We now investigate
the performance of the single-seed mechanism as the population grows large. Define
O™ to be the set of type profiles such that every agent is strongly connected to i1:

OV ={0:i#i = i~gil}.
Lemma 5. For every € > 0, there exists N > 0 such that if n > N, then

Pr(@”’il) >1—c¢.
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The intuition behind the result is as follows. When the spillover network is
perfectly reciprocal (p = 1), the corresponding network X is such that X;; = 1 if
and only if X;; = 1, so that we can identify X (#) with an undirected graph G(0)
which has a link between i and j if and only if X;; = X;; =1 in X (). In this case,
every agent j # iy is strongly connected to i1 in X if and only if G is connected.
Furthermore, since the link occurrence is independent across different pairs, G is
the standard Erd&és-Rényi type random graph. Lemma 5 is then established if the
probability that G is connected approaches one as n — co. When Pr(X;; =1) =p
is held constant, this holds as n increases (e.g. Diestel, 2000). Since Pr(f € ©>%) is
independent of the value of p by the percolation theorem, the same holds for any p.

Now denote by ©%(n) the set of type profiles 6 at which the expected revenue
from the single-seed mechanism I'* described above is within ¢ of the optimal level
IT*(#) under complete information:

0% = {0: I1(0 | I*) > IT*(0) — <}

We now observe that ©% D ©™ for any £ > 0 since if § € ©™%, then the single-seed
mechanism ['* treats all agents with no subsidy but ¢; so that the principal’s payoff
can be made arbitrarily close to the first-best. This observation immediately implies
the following result.

Proposition 6. The single-seed mechanism I'® is asymptotically optimal: For every
e > 0, there exists N > 0 such that if n > N, then

Pr(f € ©) >1—c¢. (4)

As the population grows, the number of steps required to find out the iteratively
dominant action in the participation game may increase indefinitely. In this case,
the result requires unboundedness in the agents’ cognitive abilities. On the other
hand, if we take the alternative interpretation of the participation game and suppose
that the agents move sequentially to take best responses, the required cognitive load
is not large. According to the latter interpretation, participation in the treatment
grows over time through a chain of spillovers. Such snowballing growth of treatment
participation is of empirical relevance (Dahl et al., 2014) as mentioned in Section 2.

6 Conclusion

A divide-and-conquer strategy in a two-sided market typically subsidizes all agents
on one side and charges a positive price to the other side. The single-seed mechanism
we study employs a generalization of such a strategy in the specification of subsidies
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based not only on direct externalities but also on indirect externalities. Although
we have assumed that an agent’s valuation of a treatment is positive with a spillover
from a single agent, it is possible to suppose that the valuation is positive for the first
time with two or more spillovers. When two spillovers are necessary, for example,
would subsidies to two agents suffice to obtain a similar conclusion? Answering this
question is difficult. In our model, an agent finds participation in the treatment a
dominant action if and only if there exists a single directed path from him to the seed
agent i1. Two spillovers would then imply the existence of two disjoint directed paths
to the two subsidized seed agents. However, an agent having two disjoint paths does
not necessarily finds participation to be a dominant action. For example, suppose
that there exist four agents 1,..,4, and that I; = {1,2} are subsidized seed agents.
If agents 1 and 4 have spillovers over agent 3, and agents 2 and 3 have spillovers
over agent 4, then both agents 3 and 4 have two disjoint paths to I;: 3 — 1 and
3 =4 — 2 for agent 3, and 4 — 3 — 1 and 4 — 2 for agent 4. However, agent 3
would find participation dominant only if agent 4 also subscribes, and vice versa. In
other words, unlike in the original problem, there is no straight connection between
the connectivity of the network constructed from I as above and participation being
a iteratively dominant action. The problem is difficult because of this difference,
and how exactly the mechanism can be made UE in this modified environment is
an open question.

Appendix
Proof of Proposition 1. We first show that
IT*(0) < [Y*(0)|V + | F*(0)|(V + 7).

Suppose to the contrary that a UA mechanism I’ with (t,9) yields the payoff TI(6 |
D) > [Y*O)|V 4+ |F*@)|(V 4+ °). Let Y = {i € I : §;(f) < —v°} be the set of
agents who are offered the treatment for a subsidy less than —v°, and F= {iel:
7i(0) > —v°} be the set of agents who are offered the treatment for a subsidy above
—v0. Note first that there exists i, € ¥ who is not strongly connected to F' since
otherwise, (F,Y) would be feasible in (1). Let J; = {i1}, and let J, C ¥ be the set
of agents in Y to whom 4; is strongly connected: Jo = {j € Vi~ j}. Since i1
is charged a positive price, IR implies that Jo # (), and furthermore, since 7 is not
strongly connected to F, no J € Jo is strongly connected to F'. Let then J3 C Y be
the set of agents j to whom agents in J; are strongly connected. In the same way,
we can iteratively construct a sequence Jy, Js, ... of subsets of Y so that no agent
in those subsets is strongly connected to F'. Since Y is finite, however, we will have
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Jpr1 C U’;Zl Jy for some k. We then have a contradiction to unique acceptability
since then for agents ¢ in the set U§:1 Jy, rejection a; = 0 is a Nash equilibrium
action since they are offered no subsidies.

The mechanism I' defined in (2) and (3) is clearly UA: For i € F*(0), y;(6) >
—vY so that acceptance a; = 1 is a dominant action. For j € Y*(0), a; = 1 is
an iteratively dominant action since Y*(#) consists of all agents who are strongly
connected to some i € F*(f): For any j € Y*(0), either 9;- =1 for some i € F*(6)
or there exists k € Y () with k € C_ p-(4)(#). Rejection is dominated in the second
round of the iterative elimination procedure in the first case, whereas in the second
case, it is iteratively dominated for j in one round after it is dominated for k. Finally,

the social planner’s payoff under I' equals
IO | T) = [Y*(O)|V + |F*(0)|(V + ") —e.

Since ¢ is arbitrary, II*(0) > [Y*(0)|V + |F*(0)|(V + v°). The conclusion then
follows. O

Proof of Proposition 2. Since p € (0,1), there exists 6 > 0 such that P(f) > ¢
for every 0. Let ©° denote the set of type profiles # such that X () is strongly
connected. Define

Kk =0V|0*| > 0.

For any 0 € ©%, there exists an UA mechanism under complete information offers
one agent a subsidy slightly above —v” and all other agents no subsidy. If follows
that the first-best satisfies

IT*(0) = (n — D)V + (V +2°).

Fix any mechanism (f,y). For any 0, let J(0) = {j € G(f(0)) : y;(0) < —v°} be
the set of agents who are treated for subsidies less than —v® under (f,y). Since T’
is UA,

RO | f,y) < [JO)V + (V + ).

It follows that for any 0 € ©%¢,
I(0) =110 | f,y) = (n = [J(O)] = )V.
Let ©! be the set of § € ©% for which [J(0)| < n — 1, we have
IT*(0) —T1(0 | f,y) >V for any § € O (5)

Let now ©2 be the set of § € ©% for which |J(#)] = n — 1. Take any such 6 and
j € J(8), and consider now a profile (6;,60_;) where 6; is such that éf = 0 for every
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k # j. Clearly, (éj, 6_;) ¢ © but the first-best under complete information satisfies
T (éj, 0_;)=(n—1)V+ (V+2°). Let K and K be the numbers of treated agents
who have spillover on j under 6 and (éj, 0_;), respectively:

K =[{k: 0] =1} G(f(0,0-)))],
K = |{k: 6] =1} NG(f(8;,0-)))I-
If j is treated under (8;,0_;) (i.e., j ¢ G(f(éj,ﬁ,j))) and K > K, then agent j
would have incentive to report éj when his true type is 6;: Since yj(éj, 0_;) > —Y
by UA, his utility from misreporting would satisfy
o 4 y;(05,0-5) > 0% = 0® > 0K 4 5(0),

~

where the last term equals his payoff from truthful reporting. Hence, under (6;,6_;),
we must have either j ¢ G(f(;,6_;)), or

K < K.

It follows that G(f(éj, 6_;)) consists of at most n — 1 agents, and hence UA implies
that
(0;,0-; | f.y) < (n—2)V + (V +°).

This further implies that
T (6;,60_;) — 11(8;,0_; | f,y) >V for any 6 € ©% and j € J(6). (6)
We then have from (5) and (6),

> 3" Pr(6) {T1°(6) ~11(6 | £,y)}

el
+ > Pr(;,0-5) {1°(0;,0-) — (6,05 | f,)}
0eO2 jeJ(0)
>Pr(fcO)V+ > > Pr(;,0,)V
0eO? jeJ(0)
> V(|0 + 6%)) = k.

Since (f,y) is an arbitrary UE mechanism, the conclusion follows. O

Proof of Proposition 3. To see that ' is SP, note first that agent ¢; has no incentive
to misreport since the allocation (f(6),y(0)) is independent of his report. Take any

i # iy
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1) If i ~¢ i1, his subsidy equals y;(0) = % and hence his payoff is given by
€
wi(f(0),0:) +yi(0) = v + = >0,

where K = |G;(f(0;,0—;),6;)| is the number of treated agents under (6;,0_;) who
have spillovers on 4. If i reports 0} such that i 7@(9239%) i1, then his payoff equals
just his subsidy: y;(6;,0_;) = .

Suppose then that ¢ reports ¢; such that i 00 ;) - We will first show that
for any j # i,

f](eg,e_z) =1 = f](gz,e_l) =1. (7)

Suppose to the contrary that f;(6;,0_;) = 1 but f;(0;,60—;) = 0 for some j # i.
By the definition of I'?; this implies that every directed path from j to the seed
agent i1 goes through ¢. It then follows that j ~» @, ¢_,) ¢ and also j ~00_;)
since neither of these properties depends on i’s type. This however implies that
J ~6:,6_:) T ~9,6_,) i1, which leads to the contradiction that f;(6;,0_;) = 1.
The symmetric argument switching ¢; and ¢, then shows (7), which shows that the
number of treated agents under (6},6_;) who have spillovers on ¢ also equals K:
K =|G(f(0,,0—;),0;)|. It follows that i’s payoff is unchanged when he reports ;.

2) If i ot i1, then his payoffs equals just his subsidy: wu;(f(0),0;) +v:(0) = 5. If
he reports ¢ such that ¢ 7@(9279%) i1, then his payoff is unchanged. If he reports 0,

such that ¢ ~(000_;) 115 then his payoff is unchanged and given by =. In either case,

1 has no incentive to misreport.
We have hence shown that I'* is SP. To see that I'* is UA, note that a; = 1 is

a strictly dominant action for ¢ = i1, and a; = 1 is iteratively strictly dominant for
any ¢ such that ¢ ~g 7. O

Proof of Proposition 4. For any i1 € I, consider the single-seed mechanism I'* based
on i1, and let J C I'\ {i1} be any subset of agents other than i;. Define ©; to be
the set of type profiles such that agent i # i1 is strongly connected to 7 if and only
itie J:
@J:{9€@2 ivgilﬁiEJ}.

Since (Xjj)iz; is independent, by Theorem 4.2 of McDiarmid (1981), for any J C
I'\ {i1}, the probability Pr(f € ©) is independent of the specification of the joint
distribution of (X;;, X;;) (i # j)and depends only on the marginal distribution
Pr(X;; = 1) = p. Since the expected revenue II(I'*) from I'* is given by

I = Y Pr@e0)[J|V+(V+°) ¢
JCI\{i1}
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it depends only on p and is independent of p. O

Proof of Lemma 5. When p = 1, X is identified with an undirected graph G and
6 € ©>" is implied by the connectedness of G, which is the standard Erdds-Rényi
type random graph. With Pr(X;; = 1) = p fixed, the probability that G is connected
approaches one as n — oo (e.g. Diestel, 2000, p. 239). By Proposition 4, then we
also have Pr(# € @) — 1 as n — 1 even when p < 1. O]
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